WorldWideScience

Sample records for clostridium cellulase genes

  1. Secretion of clostridium cellulase by E. coli

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  2. Cloning and expression in Escherichia coli of cellulases genes from Clostridium IBUN 22A

    Lucy Carolina Vargas Pabón

    2002-01-01

    Full Text Available Genomic library of the native strain Clostridium IBUN 22A was constructed, using plasmid pBluescriptlI® KS+/ - as cloning vector and its expression in Escherichia coli was evaluated. Eight recombination clones with enzymatic activity were detected by enzymatic screening and using the red-Congo test with three substrates: cellobiose, carboxymethyl cellulose (CMC and cellulose powder (native. Restriction analysis of three recombination plasmids, representative of each enzymatic activity showed the inserted size (1600, 13000 and 11000bp approximately for pBS68, pBS25 and pBS57 respectively. More studies of protein expression and enzymatic characterization will allow theses enzymes and other typical parameters to be defined. In the same way the fragment sequence cloned will lead to a more detailed analysis and definition of the biotechnological potential of this strain regarding solvent production using cellulosic substrates for fermentation.

  3. Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium.

    Allcock, E R; Woods, D R

    1981-01-01

    The production of a carboxymethyl cellulase and a cellobiase by Clostridium acetobutylicum was demonstrated. In liquid medium the carboxymethyl cellulase was induced by molasses, and it was not repressed by glucose. Optimum carboxymethyl cellulase activity occurred at pH 4.6 and 37 degrees C.

  4. Thermostable cellulase from a thermomonospora gene

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  5. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum

    Ruchi Mutreja

    2011-01-01

    Full Text Available The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun, Azadirachta indica (neem, Saracens indica (asoka, bambusa dendrocalmus (bamboo, Populas nigra (poplar, Achnatherum hymenoides (wild grass, Eucalyptus marginata (eucalyptus, and Mangifera indica (mango, were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun at 30°C gave maximum ethanol yield of 1.42 g/L.

  6. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.

  7. Molecular cloning of cellulase genes from indigenous bacterial isolates

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  8. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  9. Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum

    Lopez Contreras, A.M.; Gabor, K.; Martens, A.A.; Renckens, B.A.M.; Claassen, P.A.M.; Oost, van der J.; Vos, de W.M.

    2004-01-01

    Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of beta-1,3- and beta-1,4-linked beta-D-glucose units. C. acetobutylicum does not degrade cellulose,

  10. Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology.

    Fukumori, F; Sashihara, N; Kudo, T; Horikoshi, K

    1986-01-01

    Two genes for cellulases of alkalophilic Bacillus sp. strain N-4 (ATCC 21833) have been sequenced. From the DNA sequences the cellulases encoded in the plasmids pNK1 and pNK2 consist of 488 and 409 amino acids, respectively. The DNA and protein sequences of the pNK1-encoded cellulase are related to those of the pNK2-encoded cellulase. The pNK2-encoded cellulase lacks the direct repeat sequence of a stretch of 60 amino acids near the C-terminal end of the pNK1-encoded cellulase. The duplicatio...

  11. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum

    Najmudin, Shabir; Guerreiro, Catarina I. P. D.; Ferreira, Luís M. A.; Romão, Maria J. C.; Fontes, Carlos M. G. A.; Prates, José A. M.

    2005-01-01

    The two C-terminal domains of the cellulase ctCel9D-Cel44A from C. thermocellum cellulosome have been crystallized in tetragonal space group P4 3 2 1 2 and X-ray diffraction data have been collected to 2.1 and 2.8 Å from native and seleno-l-methionine-derivative crystals, respectively. Clostridium thermocellum produces a highly organized multi-enzyme complex of cellulases and hemicellulases for the hydrolysis of plant cell-wall polysaccharides, which is termed the cellulosome. The bifunctional multi-modular cellulase ctCel9D-Cel44A is one of the largest components of the C. thermocellum cellulosome. The enzyme contains two internal catalytic domains belonging to glycoside hydrolase families 9 and 44. The C-terminus of this cellulase, comprising a polycystic kidney-disease module (PKD) and a carbohydrate-binding module (CBM44), has been crystallized. The crystals belong to the tetragonal space group P4 3 2 1 2, containing a single molecule in the asymmetric unit. Native and seleno-l-methionine-derivative crystals diffracted to 2.1 and 2.8 Å, respectively

  12. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum

    Najmudin, Shabir [REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal); Guerreiro, Catarina I. P. D.; Ferreira, Luís M. A. [CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa (Portugal); Romão, Maria J. C. [REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal); Fontes, Carlos M. G. A.; Prates, José A. M., E-mail: japrates@fmv.utl.pt [CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa (Portugal); REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica (Portugal)

    2005-12-01

    The two C-terminal domains of the cellulase ctCel9D-Cel44A from C. thermocellum cellulosome have been crystallized in tetragonal space group P4{sub 3}2{sub 1}2 and X-ray diffraction data have been collected to 2.1 and 2.8 Å from native and seleno-l-methionine-derivative crystals, respectively. Clostridium thermocellum produces a highly organized multi-enzyme complex of cellulases and hemicellulases for the hydrolysis of plant cell-wall polysaccharides, which is termed the cellulosome. The bifunctional multi-modular cellulase ctCel9D-Cel44A is one of the largest components of the C. thermocellum cellulosome. The enzyme contains two internal catalytic domains belonging to glycoside hydrolase families 9 and 44. The C-terminus of this cellulase, comprising a polycystic kidney-disease module (PKD) and a carbohydrate-binding module (CBM44), has been crystallized. The crystals belong to the tetragonal space group P4{sub 3}2{sub 1}2, containing a single molecule in the asymmetric unit. Native and seleno-l-methionine-derivative crystals diffracted to 2.1 and 2.8 Å, respectively.

  13. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.

  14. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  15. Electrotransformation and expression of cellulase genes in wild-type Lactobacillus reuteri.

    Li, Wang; Yang, Ming-Ming; Zhang, Guang-Qin; He, Wan-Ling; Li, Yuan-Xiao; Chen, Yu-Lin

    2012-01-01

    Two cellulase genes, Cel15 and Cel73, were amplified from Bacillus subtilis genome DNA in a previous study. Two integrative vectors, pLEM4153 and pLEM4154, containing the genes Cel15 and Cel73, respectively, were constructed and successfully electroporated into the wild-type Lactobacillus reuteri which was isolated from chick guts through an optimized procedure. Two recombinant L. reuteri were selected from a Man, Rogosa, and Sharp (MRS) plate with 10 µg/ml erythromycin, and named L. reuteri XNY-Cel15 and L. reuteri XNY-Cel73, respectively. To verify the transcription and expression of the two cellulase genes in the recombinant L. reuteri strains, the mRNA relative quantity (RQ) and the cellulase activity were determined. The mRNA RQ of Cel15 in L. reuteri XNY-Cel15 is 1,8849.5, and that of Cel73 in L. reuteri XNY-Cel73 is 1,388, and the cellulase activity of the modified MRS broth cultured with L. reuteri XNY-Cel15 was 0.158 U/ml, whereas that with L. reuteri XNY-Cel73 was 0.15 U/ml. Copyright © 2012 S. Karger AG, Basel.

  16. Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose

    Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun

    2012-01-01

    Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106

  17. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  18. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene

    Gong Xia

    2012-10-01

    Full Text Available Abstract Background Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the cellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. Results Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. Conclusion The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.

  19. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  20. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  2. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  3. The VELVET A Orthologue VEL1 of Trichoderma reesei Regulates Fungal Development and Is Essential for Cellulase Gene Expression

    Atanasova, Lea; Fekete, Erzsébet; Paholcsek, Melinda; Sándor, Erzsébet; Aquino, Benigno; Druzhinina, Irina S.; Karaffa, Levente; Kubicek, Christian P.

    2014-01-01

    Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex. PMID:25386652

  4. Neurospora crassa tox-1 Gene Encodes a pH- and Temperature-Tolerant Mini-Cellulase.

    Xiao, Yue; Zhang, Qiongsi; Luo, Yiquan; Zhang, Ying; Luo, Xi; Wang, Yuchuan; Cao, Weiguo; Pinto, Vito De; Liu, Qiuyun; Li, Gang

    2016-06-15

    Cellulases that endure extreme conditions are essential in various industrial sectors. This study reports a mini-cellulase gene tox-1 from Neurospora crassa. The gene tox-1 was cloned in Escherichia coli after chimerization with the YebF gene and substitutions of certain isoleucine and valine with leucine residues. The yeast transformants could grow on rice straw-agar medium. The 44-amino acid peptide and its two mutant variants displayed potent cellulase activities in Congo Red assay and enzymatic assays. Conservative replacements with leucine have substantially increased the stabilities and half-lives of the peptides at alkaline pH and low and high temperatures and also the tolerance to organic solvents and surfactants, on the basis of activities toward cellose. The small size of the mini-cellulase would allow for commercially viable automatic chemical peptide synthesis. This work suggests that conservative leucine replacements may serve as a general strategy in the engineering of more robust enzymes with special features with little loss of activities.

  5. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes.

    Rybarczyk-Mydłowska, Katarzyna; Maboreke, Hazel Ruvimbo; van Megen, Hanny; van den Elsen, Sven; Mooyman, Paul; Smant, Geert; Bakker, Jaap; Helder, Johannes

    2012-11-21

    Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed. Single nematodes were used to obtain (partial) genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C). Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated) small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns. All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root-knot and cyst nematodes did not acquire this gene directly

  6. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes

    Rybarczyk-Mydłowska Katarzyna

    2012-11-01

    Full Text Available Abstract Background Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5 cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed. Results Single nematodes were used to obtain (partial genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C. Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns. Conclusions All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root

  7. Discovery of a novel gene involved in autolysis of Clostridium cells.

    Yang, Liejian; Bao, Guanhui; Zhu, Yan; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2013-06-01

    Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.

  8. Cloning of cellulase genes using pUC18 and lambda 2001 vectors

    Bashir, A.; Ashfaq, S.R.; Rajoka, M.I.; Malik, K.A.; Batt, C.A.

    1991-01-01

    Chromosomal DNA from cellulomonas biazotea NIAB 442 was used for isolation and cloning of cellulase genes. For this purpose plasmid pUC18 was used for cloning fragments in the range of 109 Kb and phase vector lambda 2001 for cloning fragments in the range of 15-20 Kb respectively. Three restriction enzymes BamHI, Sau3AI and SaII were used for partial restriction of chromosomal DNA to obtain fragment size in the range of 0.5 - 20 Kb. BamHI and SaII were used to linearize pUC18 to obtain compatible ends against the three enzymes used in chromosomal DNA restriction. Linearized pUC18 was then ligated to respective compatible chromosomal DNA fragments and transformed to JM109 competent cells. A total of 6781 recombinants were tested for the production of B-glucosidase and carboxy methyl cellulase (CMC-ase) production. Only one of the recombinants was found to be positive for B-glucosidase production in solid culture. One of the recombinants was found positive for CMC-ase production in solid culture and is being verified and characterized. Larger DNA fragments in the range of 15-20 Kilobase were obtained by partial restriction of chromosomal DNA with BamHI, SaII and Xhol. Lambda 2001 was double digested with BamHI/EcoRI and Xhol/EcoRI for removal of stuffer fragment. Ligation of respective compatible ends was performed between Lambda DNA and chromosomal DNA. Ligation mixture was used for packaging and infection of P2 lysogen. No plaques could be obtained on P2 lysogen due to inefficient packaging. (author)

  9. Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

    SooYeon Lim

    2013-08-01

    Full Text Available In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below E−10 using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4 were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below 10−5. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

  10. Bioprospecting thermophiles for cellulase production: a review.

    Acharya, Somen; Chaudhary, Anita

    2012-07-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  11. Bioprospecting thermophiles for cellulase production: a review

    Somen Acharya

    2012-09-01

    Full Text Available Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  12. Neurotoxin gene profiling of Clostridium botulinum types C and D gathered from different countries within Europe

    Woudstra, C.; Skarin, A.; Anniballi, F.; Fenicia, F.; Bano, L.; Drigo, I.; Koene, M.G.J.; Bäyon-Auboyer, M.H.; Buffereau, J.P.; Medici, D.; Fach, P.

    2012-01-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous

  13. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    2012-01-01

    Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa. PMID:22462823

  14. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi)

    Li, Wang; Huan, Xiajuan; Zhou, Ying; Ma, Qingyi; Chen, Yulin

    2009-01-01

    A bacterial strain with high cellulase activity was isolated of feces sample of Golden Takin (Budorcas taxicolor Bedfordi). The bacterium was classified and designated Bacillus subtilis LN by morphological and 16SrDNA gene sequence analysis. Two putative cellulase genes, CelL15 and CelL73, were simultaneously cloned from the isolated strain by PCR. The putative gene CelL15 consisted of an open reading frame (ORF) of 1470 nucleotides and encoded a protein of 490 amino acids with a molecular weight of 54 kDa. The CelL73 gene consisted of an open reading frame (ORF) of 741 nucleotides and encoded a protein of 247 amino acids with a molecular weight of 27 kDa. Both genes were purified and cloned into pET-28a for expression in Escherichia coli BL21 (DE3). The ability of E. coli to degrade cellulose was enhanced when the two recombinants were cultured together.

  15. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.

    Fitzpatrick, J; Kricka, W; James, T C; Bond, U

    2014-07-01

    To compare the production of recombinant cellulase enzymes in two Saccharomyces species so as to ascertain the most suitable heterologous host for the degradation of cellulose-based biomass and its conversion into bioethanol. cDNA copies of genes representing the three major classes of cellulases (Endoglucanases, Cellobiohydrolases and β-glucosidases) from Trichoderma reesei were expressed in Saccharomyces pastorianus and Saccharomyces cerevisiae. The recombinant enzymes were secreted by the yeast hosts into the medium and were shown to act in synergy to hydrolyse cellulose. The conditions required to achieve maximum release of glucose from cellulose by the recombinant enzymes were defined and the activity of the recombinant enzymes was compared to a commercial cocktail of T. reesei cellulases. We demonstrate that significantly higher levels of cellulase activity were achieved by expression of the genes in S. pastorianus compared to S. cerevisiae. Hydrolysis of cellulose by the combined activity of the recombinant enzymes was significantly better at 50°C than at 30°C, the temperature used for mesophilic yeast fermentations, reflecting the known temperature profiles of the native enzymes. The results demonstrate that host choice is important for the heterologous production of cellulases. On the basis of the low activity of the T. reesei recombinant enzymes at fermentation temperatures, we propose a two-step process for the hydrolysis of cellulose and its fermentation into alcohol using cellulases produced in situ. © 2014 The Society for Applied Microbiology.

  16. A carboxymethyl cellulase from a marine yeast ( Aureobasidium pullulans 98): Its purification, characterization, gene cloning and carboxymethyl cellulose digestion

    Rong, Yanjun; Zhang, Liang; Chi, Zhenming; Wang, Xianghong

    2015-10-01

    We have reported that A. pullulans 98 produces a high yield of cellulase. In this study, a carboxymethyl cellulase (CMCase) in the supernatant of the culture of A. pullulans 98 was purified to homogeneity, and the maximum production of CMCase was 4.51 U (mg protein)-1. The SDS-PAGE analysis showed that the molecular mass of the purified CMCase was 67.0 kDa. The optimal temperature of the purified enzyme with considerable thermosensitivity was 40°C, much lower than that of the CMCases from other fungi. The optimal pH of the enzyme was 5.6, and the activity profile was stable in a range of acidity (pH 5.0-6.0). The enzyme was activated by Na+, Mg2+, Ca2+, K+, Fe2+ and Cu2+, however, it was inhibited by Fe3+, Ba2+, Zn2+, Mn2+ and Ag+. K m and V max values of the purified enzyme were 4.7 mg mL-1 and 0.57 µmol L-1 min-1 (mg protein)-1, respectively. Only oligosaccharides with different sizes were released from carboxymethylcellulose (CMC) after hydrolysis with the purified CMCase. The putative gene encoding CMCase was cloned from A. pullulans 98, which contained an open reading frame of 954 bp (EU978473). The protein deduced contained the conserved domain of cellulase superfamily (glucosyl hydrolase family 5). The N-terminal amino acid sequence of the purified CMCase was M-A-P-H-A-E-P-Q-S-Q-T-T-E-Q-T-S-S-G-Q-F, which was consistent with that deduced from the cloned gene. This suggested that the purified CMCase was indeed encoded by the cloned CMCase gene in this yeast.

  17. Cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of Clostridium chauvoei

    Saroj K. Dangi

    2017-09-01

    Full Text Available Aim: Blackleg disease is caused by Clostridium chauvoei in ruminants. Although virulence factors such as C. chauvoei toxin A, sialidase, and flagellin are well characterized, hyaluronidases of C. chauvoei are not characterized. The present study was aimed at cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of C. chauvoei. Materials and Methods: C. chauvoei strain ATCC 10092 was grown in ATCC 2107 media and confirmed by polymerase chain reaction (PCR using the primers specific for 16-23S rDNA spacer region. nagH gene of C. chauvoei was amplified and cloned into pRham-SUMO vector and transformed into Escherichia cloni 10G cells. The construct was then transformed into E. cloni cells. Colony PCR was carried out to screen the colonies followed by sequencing of nagH gene in the construct. Results: PCR amplification yielded nagH gene of 1143 bp product, which was cloned in prokaryotic expression system. Colony PCR, as well as sequencing of nagH gene, confirmed the presence of insert. Sequence was then subjected to BLAST analysis of NCBI, which confirmed that the sequence was indeed of nagH gene of C. chauvoei. Phylogenetic analysis of the sequence showed that it is closely related to Clostridium perfringens and Clostridium paraputrificum. Conclusion: The gene for virulence factor nagH was cloned into a prokaryotic expression vector and confirmed by sequencing.

  18. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes

    Rybarczyk-Mydlowska, K.D.; Maboreke, H.R.; Megen, van H.H.B.; Elsen, van den S.J.J.; Mooijman, P.J.W.; Smant, G.; Bakker, J.; Helder, J.

    2012-01-01

    Background: Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for

  19. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance.

    Alexander G Bulakhov

    Full Text Available Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO displaying a synergism with cellulases.Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL, and eglIV, encoding LPMO (formerly endoglucanase IV from Trichoderma reesei (TrLPMO, were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3 varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples. The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10-43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable

  20. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-12-21

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.

  1. Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei.

    Yenenler, Asli; Sezerman, Osman Ugur

    2016-06-01

    Cellulases have great potential to be widely used for industrial applications. In general, naturally occurring cellulases are not optimized and limited to meet the industrial needs. These limitations lead to demand for novel cellulases with enhanced enzymatic properties. Here, we describe the enzymatic and structural properties of two novel enzymes, EG3_S1 and EG3_S2, obtained through the single-gene shuffling approach of Cel12A(EG3) gene from Trichoderma reseei EG3_S1 and EG3_S2 shuffled enzymes display 59 and 75% identity in protein sequence with respect to native, respectively. Toward 4-MUC, the minimum activity of EG3_S1 was reported as 5.9-fold decrease in native at 35°C, whereas the maximum activity of EG3_S2 was reported as 15.4-fold increase in native activity at 40°C. Also, the diminished enzyme activity of EG3_S1 was reported within range of 0.6- to 0.8-fold of native and within range of 0.5- to 0.7-fold of native toward CMC and Na-CMC, respectively. For EG3_S2 enzyme, the improved enzymatic activities within range of 1.1- to 1.4-fold of native and within range of 1.1- to 1.6-fold of native were reported toward CMC and Na-CMC, respectively. Moreover, we have reported 6.5-fold increase in the kcat/Km ratio of EG3_S2 with respect to native and suggested EG3_S2 enzyme as more efficient catalysis for hydrolysis reactions than its native counterpart. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Cellulolytic (cel) genes of Clostridium thermocellum F7 and the proteins encoded by them

    Piruzyan, E.S.; Mogutov, M.A.; Velikodvorskaya, G.A.; Pushkarskaya, T.A.

    1988-01-01

    This study is concerned with genes cell, ce12, and ce13 encoding the endoglucanase of the cellulolytic complex of the anaerobic thermophilic Clostridium thermocellum F7 bacteria, these genes having been closed by us earlier. The authors present the characteristics of proteins synthesized by the cel genes in the minicell system of the strain Escherichia coli K-12 X925. The molecular weights of the proteins encoded by genes cell, ce12, and ce13 are 30,000, 45,000, and 50,000 dalton, respectively. The study of the homology of the cloned section of the C. thermocellum DNA containing the endoglucanase genes, using Southern's blot-hybridization method, did not reveal their physical linkage in the genome. The authors detected a plasmid with a size of about 30 kb in the cells of the C. thermocellum F7 strain investigated

  3. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  4. In situ detection of the Clostridium botulinum type C1 toxin gene in wetland sediments with a nested PCR assay

    Williamson, Judy L.; Rocke, Tonie E.; Aiken, Judd M.

    1999-01-01

    A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.

  5. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    2011-01-01

    Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase

  6. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.

    Fatmawati, Ni Nengah Dwi; Sakaguchi, Yoshihiko; Suzuki, Tomonori; Oda, Masataka; Shimizu, Kenta; Yamamoto, Yumiko; Sakurai, Jun; Matsushita, Osamu; Oguma, Keiji

    2013-01-01

    Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs), the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  7. Analysing the dhaT gene in Colombian Clostridium sp. (Clostridia 1,3-propanediol-producing strains

    Diana Milena Quilaguy-Ayure

    2010-04-01

    Full Text Available To analyze the dhaT gene, one of the genes responsible for the 1,3-propanediol (1,3-PD production, in two native Clostridiumstrains. Materials and methods: The dhaT gene was amplified by Polimerase Chain Reaction with specific primers designed fromClostridium butyricum VPI1718 operon. Bioinformatics tools like BLASTN, ORF finder, BLASTP and ClustalW were used to determinethe identity of the sequence and to assign a function. Results: DNA amplification products were obtained from Colombian Clostridium sp.native strains (IBUN 13A and IBUN 158B and the Clostridium butyricum DSM 2478 strain, which were sequenced. According to thebioinformatics analysis of the above sequences, a high degree of similarity was found with the dhaT gene of different bacterial species. Thehighest percentage of identity was obtained with the Clostridium butyricum VPI 1718 strain. Conclusion: knowledge of the physicalstructure of the 1,3-PD operon in native strains opens the way for developing genetic and metabolic engineering strategies for improvingprocesses productivity.

  8. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  9. Enzymatic hydrolysis of lignocelluloses: Identification of novel cellulase genes from filamentous fungi

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen

    2010-01-01

    source. By means of degenerate PCR, specific genes, homologous to the genes of previously classified glycoside hydrolases from CAZY database, are searched for in selected strains of Aspergillus sp., Trichoderma sp. and Penicillium sp. Both methods are anticipated to facilitate identification of target...

  10. Cloning in Escherichia coli of the enterotoxin gene from Clostridium perfringens type A.

    Iwanejko, L A; Routledge, M N; Stewart, G S

    1989-04-01

    A 26 bp DNA probe has been constructed with minimal degeneracy to the protein sequence for Clostridium perfringens enterotoxin. The probe has been hybridized against a 6-10 kb chromosomal bank from C. perfringens 8239, prepared as a HindIII partial digest in pHG165. From this survey a clone has been identified containing a 6.8 kb DNA insert with strong hybridization to the probe. Direct plasmid sequencing has identified a translational reading frame within this clone which correlates with the known protein sequence for the type A enterotoxin. DNA sequences 5' to this open reading frame and containing the putative transcriptional control regions show areas of significant homology with regions upstream from the ATG codon of the tetanus toxin gene.

  11. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters.

    Raphael, Brian H; Luquez, Carolina; McCroskey, Loretta M; Joseph, Lavin A; Jacobson, Mark J; Johnson, Eric A; Maslanka, Susan E; Andreadis, Joanne D

    2008-07-01

    A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.

  12. Isolation of Clostridium difficile and Detection of A and B Toxins Encoding Genes

    Abbas Ali Imani Fooladi

    2014-02-01

    Full Text Available Background: Clostridium difficile is the most important anaerobic, gram positive, spore forming bacillus which is known as a prevalent factor leading to antibiotic associated diarrheas and is the causative agent of pseudomembrane colitis. The role of this bacterium along with the over use of antibiotics have been proved to result in colitis. The major virulence factors of these bacteria are the A and B toxins. Objectives: The purpose of this study was to isolate C. difficile from stool samples and detect A and B toxins encoding genes, in order toserve as a routine method for clinical diagnosis. Materials and Methods: Recognition of A and B toxins encoding genes by uniplex and multiplex PCR using two pairs of primers from 136 accumulated stool samples. Results: Results of the present study showed that out of 136 stool samples, three C. difficile were isolated and these strains contained A and B toxins encoding genes. Conclusions: It was concluded that although detection of C. difficile from stool samples based on PCR (polymerase chain reaction is expensive, yet this method is more sensitive and less time-consuming than culture methods and can be used as a clinical laboratory test.

  13. Composition of cellulase complex of Clostridium thermocellum

    Golovchenko, N P; Chuvil' skaya, N A; Akimenko, V K

    1985-01-01

    It is thought that the anaerobic thermophilic cellulolytic bacterium C. thermocellum has the potential for direct industrial bioconversion of cellulose into ethanol. Therefore, much attention has been given to the study of the cellulolytic properties of the culture and to the characteristics of the cellulose complex, which is still not completely understood. Hence, the activity and location of various cellulolytic enzymes of C. thermocellum were determined. C. thermocellum has 6 known cellulolytic enzymes. Endoglucanase, cellobiohydrolase and exoglucosidase are extracellular enzymes (99-100 percent of the activity is located outside the cells) while cellulobiases, cellobiose phosphorylase and cellodextrine phosphorylase are inside the cells (80-90% of the activity). 25 references.

  14. Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’

    M.T. Alou

    2018-01-01

    Full Text Available Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics

  15. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  16. Thermostable Cellulases: Why & How?

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-03-24

    These are a set of slides from the conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Thermostable Cellulases: Why & How?

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2010-04-19

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Engineering Cellulases for Biorefinery

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  19. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene.

    Jiang, Ling; Wu, Qian; Xu, Qing; Zhu, Liying; Huang, He

    2017-08-11

    Clostridium tyrobutyricum ATCC25755 has been reported as being able to produce significant quantities of hydrogen. In this study, the exo-inulinase encoding gene cloned from Paenibacillus polymyxa SC-2 was into the expression plasmid pSY6 and expressed in the cells of C. tyrobutyricum. The engineered C. tyrobutyricum strain efficiently fermented the inulin-type carbohydrates from Jerusalem artichoke, without any pretreatment being necessary for the production of hydrogen. A comparatively high hydrogen yield (3.7 mol/mol inulin-type sugar) was achieved after 96 h in a batch process with simultaneous saccharification and fermentation (SSF), with an overall volumetric productivity rate of 620 ± 60 mL/h/L when the initial total sugar concentration of the inulin extract was increased to 100 g/L. Synthesis of inulinase in the batch SSF culture was closely associated with strain growth until the end of the exponential phase, reaching a maximum activity of 28.4 ± 0.26 U/mL. The overall results show that the highly productive and abundant biomass crop Jerusalem artichoke can be a good substrate for hydrogen production, and that the application of batch SSF for its conversion has the potential to become a cost-effective process in the near future.

  20. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    Charles Darkoh

    2016-08-01

    Full Text Available Clostridium difficile infection (CDI is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease.

  1. [Cloning of Clostridium perfringens alpha-toxin gene and extracellular expression in Escherichia coli].

    Inoue, Masaharu; Kikuchi, Maho; Komoriya, Tomoe; Watanabe, Kunitomo; Kouno, Hideki

    2007-01-01

    Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.

  2. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens

    Abildgaard, L; Engberg, RM; Pedersen, Karl

    2009-01-01

    The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in a-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio......-hepatitis. The a-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C perfringens were sequenced and translated in silico to amino acid sequences and the a-toxin production was investigated in batch cultures of 45 of the strains using an enzyme...

  3. Toxin Gene Analysis of a Variant Strain of Clostridium difficile That Causes Human Clinical Disease

    Sambol, Susan P.; Merrigan, Michelle M.; Lyerly, David; Gerding, Dale N.; Johnson, Stuart

    2000-01-01

    A toxin variant strain of Clostridium difficile was isolated from two patients with C. difficile-associated disease (CDAD), one of whom died from extensive pseudomembranous colitis. This strain, identified by restriction endonuclease analysis (REA) as type CF2, was not detected by an immunoassay for C. difficile toxin A. Culture supernatants of CF2 failed to elicit significant enterotoxic activity in the rabbit ileal loop assay but did produce atypical cytopathic effects in cell culture assay. Southern hybridization, PCR amplification, and DNA sequence analyses were performed on the toxin A (tcdA) and toxin B (tcdB) genes of type CF2 isolate 5340. Type CF2 5340 tcdA exhibited a 1,821-bp truncation, due to three deletions in the 3′ end of the gene, and a point mutation in the 5′ end of the gene, resulting in a premature stop codon at tcdA position 139. Type CF2 5340 tcdB exhibited multiple nucleotide base substitutions in the 5′ end of the gene compared to tcdB of the standard toxigenic strain VPI 10463. Type CF2 5340 toxin gene nucleotide sequences and deduced amino acid sequences showed a strong resemblance to those of the previously described variant C. difficile strain 1470, a strain reported to have reduced pathogenicity and no association with clinical illness in humans. REA of strain 1470 identified this strain as a distinct type (CF1) within the same REA group as the closely related type CF2. A review of our clinical-isolate collection identified five additional patients infected with type CF2, three of whom had documented CDAD. PCR amplification of the 3′ end of tcdA demonstrated identical 1.8-kb deletions in all seven type CF2 isolates. REA type CF2 is a toxin variant strain of C. difficile that retains the ability to cause disease in humans but is not detected in clinical immunoassays for toxin A. PMID:10992443

  4. Mucin gene mRNA levels in broilers challenged with eimeria and/or Clostridium perfringens.

    Kitessa, Soressa M; Nattrass, Gregory S; Forder, Rebecca E A; McGrice, Hayley A; Wu, Shu-Biao; Hughes, Robert J

    2014-09-01

    The effects of Eimeria (EM) and Clostridium perfringens (CP) challenges on the mRNA levels of genes involved in mucin (Muc) synthesis (Muc2, Muc5ac, Muc13, and trefoil family factor-2 [TFF2]), inflammation (tumor necrosis factor alpha [TNF-alpha] and interleukin-18 [IL-18]), and metabolic processes (cluster of differentiation [CD]36) in the jejunum of broilers were investigated. Two parallel experiments involving 1) EM challenge and 2) EM and CP challenges were conducted. The first experiment was a 2 X 2 study with 12 birds per treatment (N = 48) involving fishmeal substitution (25%) in the diet (FM) and EM challenge. The treatments were: Control (FM-, EM-), Fishmeal (FM+, EM-), EM challenge (FM-, EM+), and fishmeal substitution and EM challenge (FM+, EM+). The second experiment was a 2 X 2 X 2 experiment with six birds per treatment (N = 48) involving fishmeal (FM-, FM+), Eimeria (EM-, EM+), and C perfringens (CP-, CP+). In both arms of the study, male broilers were given a starter diet for the whole period of 16 days, except those assigned to FM+, where 25% of the starter ration was replaced with fishmeal from days 8 to 14. EM inoculation was performed on day 9 and CP inoculation on days 14 and 15. The EM challenge birds were euthanatized for sampling on day 13; postmortem examination and sampling for the Eimeria plus C perfringens challenge arm of the study were on day 16. In the Eimeria challenge arm of the study, fishmeal supplementation significantly suppressed the mRNA levels of TNF-alpha, TFF2, and IL-18 pre-CP inoculation but simultaneously increased the levels of Muc13 and CD36 mRNAs. Birds challenged with Eimeria exhibited increased mRNA levels of Muc13, Muc5ac, TNF-alpha, and IL-18. In the Eimeria and C. perfringens challenge arm, birds exposed to EM challenge exhibited significantly lower mRNA levels of Muc2 and CD36. The mRNA levels of CD36 were also significantly suppressed by CP challenge. Our results showed that the transcription of mucin synthesis

  5. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.

    Senta Heiss-Blanquet

    Full Text Available Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.

  6. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    Duo-Chuan Li

    2011-01-01

    Full Text Available Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.

  7. Cellulase Production Potentials of the Microbial Profile of Some Sugarcane Bagasse Dumping Sites in Ilorin, Nigeria

    Kamoldeen Abiodun AJIJOLAKEWU

    2013-11-01

    Full Text Available This research work investigated cellulase production potentials of the microbial profile of three sugarcane bagasse dumping sites at Zango area, Ilorin, Nigeria. The microbial isolates were screened for cellulase production with a view to select the best organism for eventual cellulase production. Pour Plate method was used for the isolation and a total of thirteen (13 different organisms including both fungal and bacterial species were isolated and screened. Six (6 fungal isolates identified as Mucor racemosus, Aspergillus niger, Aspergillus flavus, Neurospora sitophilus, Penicillium oxalicum and Penicillium citrinum were isolated, while seven (7 different bacterial species isolated include Clostridium cellobioparum, Clostridium thermocellum,Bacillus subtilis, Bacillus pumillus, Lactobacillus spp, Pseudomonas flavescens and Serratia spp. Generally, bacterial isolates were more in abundance than fungal species. However; fungal isolates were constant and were isolated through the experimental period of three weeks. All the isolates showed cellulase production potential in varying degrees as reflected in the clearance zone around their colonies. Fungal isolates produced more cellulase than the bacterial isolates. Mucor racemosus had the highest clearance zone (75.0 mm among the fungal isolates while Clostridium cellobioparum (35.0 mm were the best producer among bacterial isolates. The least producer among fungal isolates, Penicillium citrinum (40.0 mm, is a little more than the bacterial cellulase producer (35.0 mm and is far greater than the least bacterium Serratia spp (14.0 mm.

  8. The majority of atypical cpb2 genes in Clostridium perfringens isolates of different domestic animal origin are expressed.

    Kircanski, Jasmina; Parreira, Valeria R; Whiteside, Samantha; Pei, Yanlong; Prescott, John F

    2012-10-12

    This study examined the prevalence and expression of the "consensus" and the "atypical"cpb2 genes in Clostridium perfringens isolates from cattle, chickens, dogs, goats, horses, pigs and sheep using polymerase chain reaction (PCR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting. Almost all porcine isolates (12/14) carried and expressed the consensus form of cpb2 but, when present in 108 non-porcine isolates, the gene was usually the atypical form (40 atypical versus 9 consensus). Western blotting showed expression in 30 of 40 (75%) atypical cpb2-positive isolates, considerably more frequently than reported previously. CPB2 was expressed by almost all (20/21) the consensus cpb2-positive isolates, regardless of source. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Comparison of toxicity neutralization-, ELISA- and PCR tests for typing of Clostridium perfringens and detection of the enterotoxin gene by PCR

    Møller, Kristian; Ahrens, Peter

    1996-01-01

    A polymerase chain reaction (PCR) was developed for the specific amplification of a part of each of the five Clostridium perfringens toxin genes: alpha (alpha), beta (beta), epsilon (epsilon), iota (iota), and enterotoxin (CPE). While the toxicity neutralization test (TNT) only showed limited...

  10. Isolation of Clostridium difficile and Detection of A and B Toxins Encoding Genes

    Abbas Ali Imani Fooladi; Sadegh Rahmati; Jalil Falah Mehr Abadi; Raheleh Halabian; Hamid Sedighian; Mohammad Javad Soltanpour; Mohsen Rahimi

    2014-01-01

    Background: Clostridium difficile is the most important anaerobic, gram positive, spore forming bacillus which is known as a prevalent factor leading to antibiotic associated diarrheas and is the causative agent of pseudomembrane colitis. The role of this bacterium along with the over use of antibiotics have been proved to result in colitis. The major virulence factors of these bacteria are the A and B toxins. Objectives: The purpose of this study was to isolate C. difficile from sto...

  11. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species.

    Lawson, Paul A; Rainey, Fred A

    2016-02-01

    The genus Clostridium as presently constituted is phylogenetically and phenotypically incoherent. Data from polyphasic taxonomic studies indicate that the genus comprises a collection of very heterogeneous species. Numerous phylogenetic studies, principally based on sequencing of the 16S rRNA gene, indicate that the genus Clostridium should be restricted to Clostridium cluster I as Clostridium sensu stricto . Despite these findings, authors continue to add novel species to the genus Clostridium that do not fall within the radiation of cluster I and the type species Clostridium butyricum , thus perpetuating the confusion associated with the taxonomy of this group. Here, we formally propose that members of the genus Clostridium Prazmowski be restricted to the type species C. butyricum and cluster I species. Eubacterium moniliforme , Eubacterium tarantellae , Sarcina maxima and Sarcina ventriculi should be transferred to the genus Clostridium as Clostridium moniliforme comb. nov., Clostridium tarantellae comb. nov., Clostridium maximum comb. nov. and Clostridium ventriculi comb. nov. A novel genus, Hathewaya gen. nov., is proposed for the species Clostridium histolyticum , Clostridium limosum and Clostridium proteolyticum as Hathewaya histolytica gen. nov. comb. nov., Hathewaya limosa comb. nov. and Hathewaya proteolytica comb. nov. The type species of the genus Hathewaya is Hathewaya histolytica.

  12. Cellulases: biosynthesis and applications

    Ryu, D D.Y.; Mandels, M

    1980-04-01

    Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulose suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus beta-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugar. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentrations. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10 to 25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of beta-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favorable for such application.

  13. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  14. A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A.

    Brynestad, S; Iwanejko, L A; Stewart, G S; Granum, P E

    1994-01-01

    Enterotoxin production in Clostridium perfringens is both strain dependent and sporulation associated. Underlying these phenotypic observations must lie a genetic and molecular explanation and the principal keys will be held within the DNA sequence both upstream and downstream of the structural gene cpe. In accordance with the above we have sequenced 4.1 kbp of DNA upstream of cpe in the type strain NCTC 8239. A region of DNA extending up to 1.5 kb 5' to cpe is conserved in all enterotoxin-positive strains. This region contains a putative ORF with substantial homology to an ORF in the Salmonella typhimurium IS200 insertion element and, in addition, contains multiple perfect consensus DNA-binding sequences for the Bacillus subtilis transition state regulator Hpr. The detailed structural elements revealed by the sequence analysis are presented and used to develop a new perspective on the molecular basis of enterotoxin production in this important food-poisoning bacterium.

  15. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene.

    Kazuaki Miyamoto

    Full Text Available Clostridium perfringens enterotoxin (CPE is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ∼65 kb. Complete sequence analysis of the ∼65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ∼65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.

  16. High-throughput selection for cellulase catalysts using chemical complementation.

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  17. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains.

    Giovanna Franciosa

    Full Text Available Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human

  18. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.

    Xiao, Yinghua; van Hijum, Sacha A F T; Abee, Tjakko; Wells-Bennik, Marjon H J

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.

  19. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  20. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes

    Smant, Geert; Stokkermans, Jack P. W. G.; Yan, Yitang; de Boer, Jan M.; Baum, Thomas J.; Wang, Xiaohong; Hussey, Richard S.; Gommers, Fred J.; Henrissat, Bernard; Davis, Eric L.; Helder, Johannes; Schots, Arjen; Bakker, Jaap

    1998-01-01

    β-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing β-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37–44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3′ end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation. PMID:9560201

  1. Multifunctional cellulase and hemicellulase

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  2. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  3. Enhanced processive cellulases

    Adney, William S.; Beckham, Gregg T.; Jarvis, Eric; Himmel, Michael E.; Decker, Stephen R.; Linger, Jeffrey G.; Podkaminer, Kara; Baker, John O.; Taylor, II, Larry; Xu, Qi; Singh, Arjun

    2017-06-20

    Nucleic acid sequences encoding chimeric polypeptides that exhibit enhanced cellulase activities are disclosed herein. These nucleic acids may be expressed in hosts such as fungi, which in turn may be cultured to produce chimeric polypeptides. Also disclosed are chimeric polypeptides and their use in the degradation of cellulosic materials.

  4. Chimeric enzymes with improved cellulase activities

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  5. Ionic liquid-tolerant cellulase enzymes

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  6. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.

    Garvey, Megan; Klose, Holger; Fischer, Rainer; Lambertz, Camilla; Commandeur, Ulrich

    2013-10-01

    Improvement of cellulase expression has the potential to change the nature of the biofuel industry. Increasing the economic feasibility of cellulase systems would significantly broaden the range of practicable biomass conversion, lowering the environmental impact of our civilisations' fuel needs. Cellulases are derived from certain fungi and bacteria, which are often difficult to culture on an industrial scale. Accordingly, methods to recombinantly express important cellulases and other glycosyl hydrolase (GH) enzymes are under serious investigation. Herein, we examine the latest developments in bacterial, yeast, plant, and fungal expression systems. We discuss current strategies for producing cellulases, and evaluate the benefits and drawbacks in yield, stability, and activity of enzymes from each system, and the overall progress in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  8. Clostridium difficile

    Bakker, Guido J.; Nieuwdorp, Max

    2017-01-01

    Clostridium difficileinfection (CDI), inflammatory bowel disease (IBD), and metabolic diseases such as obesity, type 2 diabetes (T2D), and nonalcoholic steatohepatitis (NASH). Fecal microbiota transplantation (FMT) is currently tested as a therapeutic option in various diseases and can also help to

  9. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation.

    Hosomi, Koji; Kuwana, Ritsuko; Takamatsu, Hiromu; Kohda, Tomoko; Kozaki, Shunji; Mukamoto, Masafumi

    2015-06-01

    Clostridium botulinum is a heat-resistant spore-forming bacterium that causes the serious paralytic illness botulism. Heat-resistant spores may cause food sanitation hazards and sporulation plays a central role in the survival of C. botulinum. We observed morphological changes and investigated the role of the transcriptional regulator SpoIIID in the sporulation of C. botulinum type B strain 111 in order to elucidate the molecular mechanism in C. botulinum. C. botulinum type B formed heat-resistant spores through successive morphological changes corresponding to those of Bacillus subtilis, a spore-forming model organism. An analysis of the spoIIID gene knockout mutant revealed that the transcriptional regulator SpoIIID contributed to heat-resistant spore formation by C. botulinum type B and activated the transcription of the sigK gene later during sporulation. Transcription of the spoIIID gene, which differed from that in B. subtilis and Clostridium difficile, was observed in the sigE gene knockout mutant of C. botulinum type B. An analysis of the sigF gene knockout mutant showed that the sporulation-specific sigma factor SigF was essential for transcription of the spoIIID gene in C. botulinum type B. These results suggest that the regulation of sporulation in C. botulinum is not similar to that in B. subtilis and other clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  11. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp.

    Scott, Andrew; Tien, Yuan-Ching; Drury, Craig F; Reynolds, W Daniel; Topp, Edward

    2018-03-01

    The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.

  13. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production

    Abildgaard, Lone; Schramm, Andreas; Rudi, Knut

    2009-01-01

    The aim of the present study was to investigate transcription dynamics of the α-toxin-encoding plc gene relative to two housekeeping genes (gyrA and rplL) in batch cultures of three Clostridium perfringens strains with low, intermediate, and high levels of α-toxin production, respectively. The plc...... transcript level was always low in the low α-toxin producing strain. For the two other strains, plc transcription showed an inducible pattern and reached a maximum level in the late exponential growth phase. The transcription levels were however inversely correlated to α-toxin production for the two strains....... We propose that this discrepancy is due to differences in plc translation rates between the strains and that strain-specific translational rates therefore must be determined before α-toxin production can be extrapolated from transcript levels in C. perfringens....

  14. Cellulase hydrolysis of unsorted MSW

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfact......A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition...... of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants....

  15. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced Lichenan utilization and solvent production

    Lopez-Contreras, A.; Oost, van der J.; Claassen, P.; Mooibroek, H.; Vos, de W.M.

    2001-01-01

    Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan

  16. Necrotic enteritis locus 1 diguanylate cyclase and phosphodiesterase (cyclic-di-GMP) gene mutation attenuates virulence in an avian necrotic enteritis isolate of Clostridium perfringens.

    Parreira, Valeria R; Ojha, Shivani; Lepp, Dion; Mehdizadeh Gohari, Iman; Zhou, Hongzhuan; Susta, Leonardo; Gong, Jianhua; Prescott, John F

    2017-09-01

    Necrotic enteritis (NE) caused by netB-positive strains of Clostridium perfringens is an important disease of intensively-reared broiler chickens. It is widely controlled by antibiotic use, but this practice that has come under increasing scrutiny and alternative approaches are required. As part of the search for alternative approaches over the last decade, advances have been made in understanding its pathogenesis but much remains to be understood and applied to the control of NE. The objective of this work was to assess the effect on virulence of mutation of the cyclic-di-GMP signaling genes present on the large pathogenicity locus (NELoc-1) in the tcp-encoding conjugative virulence plasmid, pNetB. For this purpose, the diguanylate cyclase (dgc) and phosphodiesterase (pde) genes were individually insertionally inactivated and the two mutants were subsequently complemented with their respective genes. Southern blotting showed that a single gene insertion was present. Mutation of either gene resulted in almost total attenuation of the mutants to cause NE in experimentally-infected broiler chickens, which was fully restored in each case by complementation of the respective mutated gene. Production of NetB-associated cytotoxicity for Leghorn male hepatoma (LMH) cells was unaffected in mutants. We conclude that the cyclic-di-GMP signaling system is important in controlling virulence in a NE C. perfringens strain and might be a target for control of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Immobilization of cellulase by radiation polymerization

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  18. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis.

    Zhou, Mengjia; Zeng, Dong; Ni, Xueqin; Tu, Teng; Yin, Zhongqiong; Pan, Kangcheng; Jing, Bo

    2016-03-08

    Necrotic enteritis (NE), caused by Clostridium perfringens, has cost the poultry industry $2 billion in losses. This study aimed to investigate the effect of Bacillus licheniformis as dietary supplement on the growth, serum antioxidant status, and expression of lipid-metabolism genes of broiler chickens with C. perfringens-induced NE. A total of 240 one-day-old broilers were randomly grouped into four: a negative control, an NE experimental model (PC), chickens fed a diet supplemented with 30 % of fishmeal from day 14 onwards and challenged with coccidiosis vaccine (FC), and NE group supplied with feed containing 1.0 × 10(6) CFU/g B. licheniformis (BL). Body weight gain, feed conversion ratio, serum antioxidant status, and lipid-metabolism-gene expression were analyzed. In the PC group, FCR increased significantly whereas serum catalase and glutathione peroxidase activity decreased compared with NC group. Dietary B. licheniformis supplementation improved FCR and oxidative stress in experimental avian NE. Using Bacillus licheniformis as a direct-fed microbial (DFM) could also significantly upregulate catabolism-related genes, namely, peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1, in livers and changed the expression of lipid-anabolism genes. These results suggested that dietary B. licheniformis supplementation can enhance growth and antioxidant ability, as well as change the expression of genes related to fatty-acid synthesis and oxidation in the livers of NE-infected broilers.

  19. Polymerase chain reaction amplification and cloning of immunogenic protein NAD-dependent beta hydroxybutyryl CoA dehydrogenase gene of Clostridium chauvoei

    Saroj K. Dangi

    2014-10-01

    Full Text Available Aim: The present study was aimed at polymerase chain reaction (PCR amplification and cloning of NAD-dependent betahydroxybutyryl coenzyme A dehydrogenase (BHBD gene of Clostridium chauvoei. Materials and Methods: C. chauvoei was cultured and confirmed by 16-23S rDNA spacer region primers. The primers for nad-bhbd gene of C. chauvoei were designed to aid in cloning into pRham-N-His SUMO-Kan vector, and nad-bhbd gene was amplified by PCR. The amplified nad-bhbd gene was purified and cloned into pRham-N-His SUMO-Kan expression vector. The recombinant plasmid was transformed into E. cloni 10 G cells and the clone was confirmed by colony PCR using the pRham-SUMO-NAD-For and pRham-SUMO-NAD-Rev primers and also by sequencing. Results: PCR amplification of nad-bhbd gene yielded a product length of 844 base pairs which was cloned into pRham-NHis SUMO-Kan vector followed by transformation into E. cloni 10G chemically competent cells. The recombinant clones were characterized by colony PCR, sequencing, followed by basic local alignment search tool (BLAST analysis to confirm the insert. Conclusions: Immunogenic protein NAD- dependent BHBD of C. chauvoei was cloned and the recombinant clones were confirmed by colony PCR and sequencing analysis.

  20. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  1. Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

    Elijah Johnson

    2006-01-01

    Full Text Available An analysis of the recently published genome sequence of Cytophagahutchinsonii revealed an unusual collection of genes for an organism that can attackcrystalline cellulose. Consequently, questions were being raised by cellulase scientists, as towhat mechanism this organism uses to degrade its insoluble substrates. Cellulose, being ahighly polymeric compound and insoluble in water, cannot enter the cell walls ofmicroorganisms. Cellulose-degrading enzymes have therefore to be located on the surface ofthe cell wall or released extracellularly. The location of most cellulase enzymes has beenstudied. However, basic information on C. hutchinsonii cellulases is almost non-existent. Inthe present study, the location, formation and biosynthetic regulation of cellulases in C.hutchinsonii were demonstrated on different substrates. Various fractions isolated from C.hutchinsonii after cell rupture were assayed for carboxymethyl-cellulase activity (CMC.The cellulases were found to be predominantly cell-free during active growth on solka-flok,although 30% of activity was recorded on cell-bound enzymes. Relatively little CM-cellulase was formed when cells were grown on glucose and cellobiose. Apparently glucoseor labile substrates such as cellobiose seem to repress the formation of CM-cellulase. Thesefindings should provide some insight into possible hydrolysis mechanisms by C.hutchinsonii.

  2. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.

    Maki, Miranda; Leung, Kam Tin; Qin, Wensheng

    2009-07-29

    Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  3. Exo-endo cellulase fusion protein

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  4. Bioprospecting thermophiles for cellulase production: a review

    Acharya,Somen; Chaudhary,Anita

    2012-01-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of...

  5. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  6. Caracterización molecular y resistencia antimicrobiana de aislamientos de Clostridium perfringens de diferentes orígenes en Costa Rica

    María del Mar Gamboa-Coronado

    2011-12-01

    Full Text Available Clostridium perfringens es un bacilo Gram positivo, esporulado, anaerobio, ampliamente distribuido en la naturaleza, que produce cuatro toxinas principales α, β, ε y ι, las cuales permiten su clasificación en cinco toxinotipos (A-E. Algunas cepas producen una enterotoxina (CPE, codificada por el gen cpe, que causa diarrea en seres humanos y en algunos animales. La presencia de los genes de estas toxinas y la sensibilidad a los antibióticos se determinó en 81 cepas de C. perfringens previamente aisladas y que habían sido mantenidas a -80°C; 20 de suelos, 20 de origen animal, 20 de origen humano y 21 de alimentos cocidos no relacionados con brotes alimentarios. De acuerdo con los resultados de PCR, todas las cepas fueron clasificadas como C. perfringens tipo A, debido a que solo se les detectó el gen de la toxina α, mientras que el gen de la enterotoxina (cpe se detectó en dos cepas (2.5% aisladas de alimentos, tal como ha sido descrito en otras regiones del mundo. El 44% de las cepas fue resistente a algún antibiótico; clindamicina (41%, cloranfenicol (25%, penicilina (22% y metronidazol (20%. En general, las cepas provenientes de suelos presentaron los mayores porcentajes de resistencia a casi todos los antibióticos. El 40% de las cepas de suelo presentó multiresistencia (a tres o más grupos de antibióticos, el 30% de las de origen humano, el 14% de las de alimentos y el 5% de las de origen animal. Las altas tasas de resistencia encontradas podrían deberse al amplio uso de antibióticos como promotores de crecimiento de plantas y animales y esas cepas resistentes podrían actuar como reservorio de genes de resistencia que pueden transferirse entre bacterias de diversos ambientes.Molecular characterization and antimicrobial resistance of Clostridium perfringens isolates of different origins from Costa Rica. Clostridium perfringens, a Gram positive, spore-forming anaerobe, is widely distributed in nature. Based upon their

  7. Investigation and Isolation of Cellulase-Producing microorganisms in the Red Sea

    Fatani, Siham

    2016-05-01

    Cellulolytic microorganisms are considered to be key players in biorefinery, especially for the utilization of plant biomass. These organisms have been isolated from various environments. The Red Sea is one of the seas with high biodiversity and a unique environment, characterized by high water temperature and high salinity . However, there is little information regarding cellulases in Red Sea environments. The aim of the present study is to evaluate the Red Sea as a gene resource for microbial cellulase. I first surveyed microbial cellulases in the Red Sea using a method called metagenomes, and then investigated their abundance and diversity. My survey revealed that the Red Sea biome has a substantial abundance and a wide range of cellulase enzymes with substantial abundance, when compared with those in other environments. Next, I tried to isolate cellulase-active microorganisms from the Red Sea and I successfully obtained seven strains of four different taxonomic groups. These strains showed a similarity of 99% identity to Aspergillus ustus, 99% to Staphylococcus pasteuri, 99% to Bacillus aerius and 99% to Bacillus subtilis. The enzyme assay I conducted, revealed that these strains actually secreted active cellulases. These results suggest that the Red Sea environment can be, indeed, an excellent gene resource of microbial cellulases.

  8. Cellulase producing microorganism ATCC 55702

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  9. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  10. Determination of enterotoxigenic Clostridium perfringens by detecting of the cpa and cpe genes in stool samples of human origin, associated to gastrointestinal disease

    Oropeza Barrios, Gletty

    2014-01-01

    A molecular methodology is provided to the Centro Nacional de Referencia de Bacteriologia (CNRB) of the Instituto Costarricense de Investigacion y Ensenanza en Nutricion y Salud. An opportune diagnosis is realized of enterotoxigenic Clostridium perfringens in stool samples of sporadic cases and cases associated to foodborne disease outbreaks. DNA extraction of the white microorganism was performed through the methodology implemented in the CNRB. The technique of polymerase chain reaction (PCR) were adapted and standardized to establish the identification of C. perfringens to species level and detection of cpe gene coding for enterotoxin. The sensitivity of the method was determined in a selective culture medium for C. perfringens (Tryptose sulfite cycloserine Agar). A detection limit of about 2,3 x 10 4 CFU/ml was reached for the cpe gene and at least 2,8 x 10 2 CFU/ml for the cpa gene. Retrospective analysis of 61 samples of diarrheal stool suspicious by C. perfringens is performed to evaluate the efficacy of the technique. Three outbreaks caused by C. perfringens were identified and a 10% of positivity in the samples were obtained analyzed during the period between July 2012-March 2014 [es

  11. Highly Efficient Thermostable DSM Cellulases: Why & How?

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-04-26

    These are the slides from this presentation. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  12. Biotechnological applications of bacterial cellulases

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  13. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    Bahl Hubert

    2011-01-01

    Full Text Available Abstract Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7 acids are the dominant product while at low pH (pH 4.5 this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  14. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population

    Gaucher, Marie-Lou; Perron, Gabriel G.; Arsenault, Julie; Letellier, Ann; Boulianne, Martine; Quessy, Sylvain

    2017-01-01

    Extensive use of antibiotic growth promoters (AGPs) in food animals has been questioned due to the globally increasing problem of antibiotic resistance. For the poultry industry, digestive health management following AGP withdrawal in Europe has been a challenge, especially the control of necrotic enteritis. Much research work has focused on gut health in commercial broiler chicken husbandry. Understanding the behavior of Clostridium perfringens in its ecological niche, the poultry barn, is key to a sustainable and cost-effective production in the absence of AGPs. Using polymerase chain reaction and pulsed-field gel electrophoresis, we evaluated how the C. perfringens population evolved in drug-free commercial broiler chicken farms, either healthy or affected with recurring clinical necrotic enteritis outbreaks, over a 14-month period. We show that a high genotypic richness was associated with an increased risk of clinical necrotic enteritis. Also, necrotic enteritis-affected farms had a significant reduction of C. perfringens genotypic richness over time, an increase in the proportion of C. perfringens strains harboring the cpb2 gene, the netB gene, or both. Thus, necrotic enteritis occurrence is correlated with the presence of an initial highly diverse C. perfringens population, increasing the opportunity for the selective sweep of particularly virulent genotypes. Disease outbreaks also appear to largely influence the evolution of this bacterial species in poultry farms over time. PMID:28567032

  15. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population

    Marie-Lou Gaucher

    2017-05-01

    Full Text Available Extensive use of antibiotic growth promoters (AGPs in food animals has been questioned due to the globally increasing problem of antibiotic resistance. For the poultry industry, digestive health management following AGP withdrawal in Europe has been a challenge, especially the control of necrotic enteritis. Much research work has focused on gut health in commercial broiler chicken husbandry. Understanding the behavior of Clostridium perfringens in its ecological niche, the poultry barn, is key to a sustainable and cost-effective production in the absence of AGPs. Using polymerase chain reaction and pulsed-field gel electrophoresis, we evaluated how the C. perfringens population evolved in drug-free commercial broiler chicken farms, either healthy or affected with recurring clinical necrotic enteritis outbreaks, over a 14-month period. We show that a high genotypic richness was associated with an increased risk of clinical necrotic enteritis. Also, necrotic enteritis-affected farms had a significant reduction of C. perfringens genotypic richness over time, an increase in the proportion of C. perfringens strains harboring the cpb2 gene, the netB gene, or both. Thus, necrotic enteritis occurrence is correlated with the presence of an initial highly diverse C. perfringens population, increasing the opportunity for the selective sweep of particularly virulent genotypes. Disease outbreaks also appear to largely influence the evolution of this bacterial species in poultry farms over time.

  16. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population.

    Gaucher, Marie-Lou; Perron, Gabriel G; Arsenault, Julie; Letellier, Ann; Boulianne, Martine; Quessy, Sylvain

    2017-01-01

    Extensive use of antibiotic growth promoters (AGPs) in food animals has been questioned due to the globally increasing problem of antibiotic resistance. For the poultry industry, digestive health management following AGP withdrawal in Europe has been a challenge, especially the control of necrotic enteritis. Much research work has focused on gut health in commercial broiler chicken husbandry. Understanding the behavior of Clostridium perfringens in its ecological niche, the poultry barn, is key to a sustainable and cost-effective production in the absence of AGPs. Using polymerase chain reaction and pulsed-field gel electrophoresis, we evaluated how the C. perfringens population evolved in drug-free commercial broiler chicken farms, either healthy or affected with recurring clinical necrotic enteritis outbreaks, over a 14-month period. We show that a high genotypic richness was associated with an increased risk of clinical necrotic enteritis. Also, necrotic enteritis-affected farms had a significant reduction of C. perfringens genotypic richness over time, an increase in the proportion of C. perfringens strains harboring the cpb2 gene, the netB gene, or both. Thus, necrotic enteritis occurrence is correlated with the presence of an initial highly diverse C. perfringens population, increasing the opportunity for the selective sweep of particularly virulent genotypes. Disease outbreaks also appear to largely influence the evolution of this bacterial species in poultry farms over time.

  17. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells.

    Dumitrache, Alexandru; Klingeman, Dawn M; Natzke, Jace; Rodriguez, Miguel; Giannone, Richard J; Hettich, Robert L; Davison, Brian H; Brown, Steven D

    2017-02-27

    Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.

  18. Diagnosis of Clostridium difficile

    Jensen, M B F; Olsen, K E P; Nielsen, X C

    2015-01-01

    The diagnosis of Clostridium difficile infection (CDI) requires the detection of toxigenic C. difficile or its toxins and a clinical assessment. We evaluated the performance of four nucleic acid amplification tests (NAATs) detecting toxigenic C. difficile directly from faeces compared to routine...... ribotyping and toxinotyping (TT) were performed on culture-positive samples. In parallel, the samples were analysed by four NAATs; two targeting tcdA or tcdB (illumigene® C. difficile and PCRFast® C. difficile A/B) and two multi-target real-time (RT) PCR assays also targeting cdt and tcdC alleles...... characteristic of epidemic and potentially more virulent PCR ribotypes 027, 066 and 078 (GeneXpert® C. difficile/Epi and an 'in-house RT PCR' two-step algorithm). The multi-target assays were significantly more sensitive compared to routine toxigenic culture (p 

  19. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  20. Cellulase Production by Bacteria: A Review

    Sadhu Sangrila; Maiti Tushar Kanti

    2013-01-01

    Cellulose is an abundant natural biopolymer on earth and most dominating Agricultural waste. This cellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. It can be degraded by cellulase produced by cellulolytic bacteria. This enzyme has various industrial applications and now considered as major group of industrial enzyme. The review discusses application of cellulase, classification of cellulase, quantification...

  1. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli.

    Clayton, M A; Clayton, J M; Brown, D R; Middlebrook, J L

    1995-01-01

    A completely synthetic gene encoding fragment C, a approximately 50-kDa fragment, of botulinum neurotoxin serotype A was constructed from oligonucleotides. The gene was expressed in Escherichia coli, and full-sized product was produced as judged by Western blot (immunoblot) analysis. Crude extracts of E. coli expressing the gene were used to vaccinate mice and evaluate their survival against challenge with active toxin. Mice given three subcutaneous vaccinations were protected against an intr...

  2. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  3. Caracterización molecular y resistencia antimicrobiana de aislamientos de Clostridium perfringens de diferentes orígenes en Costa Rica

    María del Mar Gamboa-Coronado

    2011-12-01

    Full Text Available Clostridium perfringens es un bacilo Gram positivo, esporulado, anaerobio, ampliamente distribuido en la naturaleza, que produce cuatro toxinas principales α, β, ε y ι, las cuales permiten su clasificación en cinco toxinotipos (A-E. Algunas cepas producen una enterotoxina (CPE, codificada por el gen cpe, que causa diarrea en seres humanos y en algunos animales. La presencia de los genes de estas toxinas y la sensibilidad a los antibióticos se determinó en 81 cepas de C. perfringens previamente aisladas y que habían sido mantenidas a -80°C; 20 de suelos, 20 de origen animal, 20 de origen humano y 21 de alimentos cocidos no relacionados con brotes alimentarios. De acuerdo con los resultados de PCR, todas las cepas fueron clasificadas como C. perfringens tipo A, debido a que solo se les detectó el gen de la toxina α, mientras que el gen de la enterotoxina (cpe se detectó en dos cepas (2.5% aisladas de alimentos, tal como ha sido descrito en otras regiones del mundo. El 44% de las cepas fue resistente a algún antibiótico; clindamicina (41%, cloranfenicol (25%, penicilina (22% y metronidazol (20%. En general, las cepas provenientes de suelos presentaron los mayores porcentajes de resistencia a casi todos los antibióticos. El 40% de las cepas de suelo presentó multiresistencia (a tres o más grupos de antibióticos, el 30% de las de origen humano, el 14% de las de alimentos y el 5% de las de origen animal. Las altas tasas de resistencia encontradas podrían deberse al amplio uso de antibióticos como promotores de crecimiento de plantas y animales y esas cepas resistentes podrían actuar como reservorio de genes de resistencia que pueden transferirse entre bacterias de diversos ambientes.

  4. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries.

    Ellilä, Simo; Fonseca, Lucas; Uchima, Cristiane; Cota, Junio; Goldman, Gustavo Henrique; Saloheimo, Markku; Sacon, Vera; Siika-Aho, Matti

    2017-01-01

    During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei . With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

  5. Undefined cellulase formulations hinder scientific reproducibility.

    Himmel, Michael E; Abbas, Charles A; Baker, John O; Bayer, Edward A; Bomble, Yannick J; Brunecky, Roman; Chen, Xiaowen; Felby, Claus; Jeoh, Tina; Kumar, Rajeev; McCleary, Barry V; Pletschke, Brett I; Tucker, Melvin P; Wyman, Charles E; Decker, Stephen R

    2017-01-01

    In the shadow of a burgeoning biomass-to-fuels industry, biological conversion of lignocellulose to fermentable sugars in a cost-effective manner is key to the success of second-generation and advanced biofuel production. For the effective comparison of one cellulase preparation to another, cellulase assays are typically carried out with one or more engineered cellulase formulations or natural exoproteomes of known performance serving as positive controls. When these formulations have unknown composition, as is the case with several widely used commercial products, it becomes impossible to compare or reproduce work done today to work done in the future, where, for example, such preparations may not be available. Therefore, being a critical tenet of science publishing, experimental reproducibility is endangered by the continued use of these undisclosed products. We propose the introduction of standard procedures and materials to produce specific and reproducible cellulase formulations. These formulations are to serve as yardsticks to measure improvements and performance of new cellulase formulations.

  6. Production of cellulase from Pellicularia filamentosa

    Mizukoshi, S; Sugi, H; Mori, H; Ichihashi, M

    1977-01-01

    In the screening test for cellulase producers from 237 strains of microorganisms, 3 strains of Fusarium sp., 2 strains of Trichoderma sp., and 4 strains of Pellicularia sp. were found to produce a lot of cellulase in their culture filtrates. Of these cellulase producing fungi, Pellicularia filamentosa isolated from diseased cucumber seedlings showed high cellulase activity comparable to that of Trichoderma viride. This preparation was active toward filter paper, avicel, carboxymethyl cellulose, soluble starch, insulin, and p-nitrophenyl ..beta..-D-glucopyranoside. The optimum temperature and pH for the filter paper degrading activity of this crude cellulase were 45/sup 0/C and 5.0, respectively. The filter paper degrading activity was inhibited by Cu/sup + +/, Fe/sup + + +/, N-bromosuccinimide, and sodium dodecyl sulfate.

  7. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from coptotermes formosanus and expressed in E. coli

    The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...

  8. Functional Expression of the Thiolase Gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri

    The first step of the butanol pathway involves an acetyl-CoA acetyltransferase (ACoAAT), which controls the key branching point from acetyl-CoA to butanol. ACoAAT, also known as thiolase (EC 2.3.1.9), is encoded by the thl gene and catalyzes ligation of 2 acetyl-CoA into acetoacetyl-CoA. Bioinform...

  9. Engineering Cellulase Enzymes for Bioenergy

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  10. The effect of feeding a commercial essential oil product on Clostridium perfringens numbers in the intestine of broiler chickens measured by real-time PCR targeting the α-toxin-encoding gene (plc)

    Abildgaard, Lone; Højberg, Ole; Schramm, Andreas

    2010-01-01

    Proliferation of Clostridium perfringens type A in the broiler intestinal tract is related to poor growth and litter quality, and can under certain conditions lead to the development of necrotic enteritis (NE), a severe gastrointestinal disease in broilers. The aim of the present study was to inv...... quantification of C. perfringens type A in broilers, a real-time PCR assay, targeting the α-toxin-encoding plc gene, was developed for use in ileal and caecal samples and was shown to be a fast and reliable alternative to conventional plate counting....

  11. Reaction mechanism of dicofol removal by cellulase.

    Wang, Ziyuan; Yang, Ting; Zhai, Zihan; Zhang, Boya; Zhang, Jianbo

    2015-10-01

    It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol (a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4'-dichloro-dibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4'-dichloro-dibenzophenone. Copyright © 2015. Published by Elsevier B.V.

  12. Construction of a Bacterial Cellulase Cocktail for Saccharification of Regenerated Cellulose and Pretreated Corn Stover

    Alei Geng

    2015-09-01

    Full Text Available To apply bacterial cellulases for efficient saccharification of biomass, three Clostridium thermocellum cellulases and a Thermoanaerobacter brockii β-1,4-glucosidase were synthesized in Escherichia coli, and the proportions among them were optimized. When the activities of CelD, CBHA, CBH48Y, and CglT were set at 554, 0.91, 0.91, and 856 mU per assay, respectively, the percent conversion of regenerated cellulose (0.92 g/L reached 80.9% within 24 h at 60 °C without shaking. Meanwhile, the percent conversion of pretreated corn stover (0.62 g/L reached 70.1%. Gradually raising the loads of regenerated cellulose from 0.92 to 4.58 g/L resulted in a linear increase in glucose production from 870 to 3208 μg (R2=0.997, as well as a decrease in the percent conversion from 80.9% to 59.6%. These findings suggested that the cellulase cocktail is efficient in saccharification of regenerated cellulose, as well as pretreated corn stover, and has potential applications in the biofuels industry.

  13. A steady state theory for processive cellulases

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2013-01-01

    coefficient’, which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low....... This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....

  14. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  15. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  17. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  19. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  20. Product inhibition of five Hypocrea jecorina cellulases

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  1. Biochemical characterization of thermostable cellulase enzyme from ...

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  2. Purification and Characterization of Thermostable Cellulase from ...

    Available online at http://www.tjpr.org ... Methods: Molecular community structure of the newly selected thermophilic bacterial ... Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization, Hot spring ... Currently, one.

  3. Clostridium Difficile Infections

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Loss of appetite Nausea Abdominal pain or tenderness C. difficile is more common in people who need ...

  4. Production and Partial Characterization of Cellulases from ...

    The optimum temperature of CCI was 55°C whereas that of CCO was 50°C. The stability of enzymes from 35°C to 70°C was studied. At 70°C, CCO cellulase has lost 45.88% of its original activity while CCI cellulase lost 58.14%. The results show that corn cob could serve as a cheap carbon source for the production of fungi ...

  5. Clostridium XIV Meeting

    Lynd, Lee

    2016-08-28

    The 14th biannual Clostridium meeting was held at Dartmouth College from August 28 through 31, 2016. As noted in the meeting program (http://clostridiumxiv.com/wp-content/uploads/2016/09/Clostridium_XIV_program.pdf). the meeting featured 119 registered attendees, 33 oral presentations, 5 of which were given by younger presenters, 40 posters, and 2 keynote presentations, with strong participation by female and international scientists.

  6. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei.

    Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2016-01-01

    Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.

  7. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli.

    Ko, Chun-Han; Tsai, Chung-Hung; Lin, Po-Heng; Chang, Ko-Cheng; Tu, Jenn; Wang, Ya-Nang; Yang, Chien-Ying

    2010-10-01

    The Cel-BL11 gene from Paenibacillus campinasensis BL11 was cloned and expressed in Escherichia coli as a His-tag fusion protein. Zymographic analysis of the recombinant protein revealed cellulase activity corresponding to a protein with a 38-kDa molecular weight. The optimum temperature and pH for purified cellulase were 60 °C and pH 7.0, respectively. The enzyme retained more than 80% activity after 8h at 60 °C at pH 6 and 7. The cellulase has a Km of 11.25 mg/ml and a Vmax of 1250 μmol/min/mg with carboxylmethyl cellulose (CMC). Then enzyme was active on Avicel, swollen Avicel, CMC, barley β-glucan, laminarin in the presence of 100 mM acetate buffer. It was inhibited by Hg²⁺, Cu²⁺ and Zn²⁺. Significant kraft pulp refining energy saving, 10%, was exhibited by the pretreatment of this cellulase applied at 2 IU per gram of oven-dried pulp. Broad pH and temperature stability render this cellulase a convenient applicability toward current mainstream biomass conversion and other industrial processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics

    Xiao, Y.; Hijum, S.A.F.T. van; Abee, T.; Wells-Bennik, M.H.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse

  9. Genome-wide transcriptional profiling of Clostridium perfringens SM101 during sporulation extends the core of putative sporulation genes and genes determining spore properties and germination characteristics

    Xiao, Y.; Hijum, van S.A.F.T.; Abee, T.; Wells-Bennik, M.H.J.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse

  10. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population

    Marie-Lou Gaucher; Marie-Lou Gaucher; Marie-Lou Gaucher; Gabriel G. Perron; Julie Arsenault; Ann Letellier; Martine Boulianne; Sylvain Quessy

    2017-01-01

    Extensive use of antibiotic growth promoters (AGPs) in food animals has been questioned due to the globally increasing problem of antibiotic resistance. For the poultry industry, digestive health management following AGP withdrawal in Europe has been a challenge, especially the control of necrotic enteritis. Much research work has focused on gut health in commercial broiler chicken husbandry. Understanding the behavior of Clostridium perfringens in its ecological niche, the poultry barn, is k...

  11. Recent advances in cellulase technology

    Mandels, M; Sternberg, D

    1976-01-01

    Interest in studies of cellulase activities of micro-organisms has increased in recent years because it is hoped that such studies may contribute to the solution of some of our current pressing economic problems. Cellulose is the only organic material that is annually replenishable in very large quantities. The utilization of this resource is greatly simplified if cellulose is first hydrolyzed to its monomer, glucose. This conversion could be accomplished by either acid or enzymatic hydrolysis. When using acid, expensive corrosion proof equipment if required. Moreover, the crystalline structure of cellulose makes it very resistant to acid so that the temperature and acid concentration needed to achieve hydrolysis also cause decomposition of the resulting sugars so that yields of glucose are low and the syrups contain unwanted by-products and reversion compounds. The enzymes on the other hand are specific for cellulose and related polysaccharides and they do not react with impurities that may be present in waste cellulose. Moreover, the reaction takes place at moderate conditions so glucose is not degraded and enzymatically produced syrups are fairly pure and constant in composition. This paper is a review of the recent efforts at Natick to develop a practical process for enzymatic saccharification of waste cellulose and produce cheap technical glucose.

  12. cellulase and pectinase production potentials of aspergillus niger

    Prof Oyeleke

    preparation of denim fabrics in textile industries, maceration of protoplasts ... exploitation of cellulase is its high cost of production ... catabolite repression influence economics of cellulase ... of enzyme production is to replace pure cellulose by.

  13. Approaches for improving thermostability characteristics in cellulases.

    Anbar, Michael; Bayer, Edward A

    2012-01-01

    Many efforts have been invested to reduce the cost of biofuel production to substitute renewable sources of energy for fossil-based fuels. At the forefront of these efforts are the initiatives to convert plant-derived cellulosic material to biofuels. Although significant improvements have been achieved recently in cellulase engineering in both efficiency and cost reduction, complete degradation of lignocellulosic material still requires very long periods of time and high enzyme loads. Thermostable cellulases offer many advantages in the bioconversion process, which include increase in specific activity, higher levels of stability, inhibition of microbial growth, increase in mass transfer rate due to lower fluid viscosity, and greater flexibility in the bioprocess. Besides rational design methods, which require deep understanding of protein structure-function relationship, two of the major methods for improvement in specific cellulase properties are directed evolution and knowledge-based library design based on multiple sequence alignments. In this chapter, we provide protocols for constructing and screening of improved thermostable cellulases. Modifications of these protocols may also be used for screening for other improved properties of cellulases such as pH tolerance, high salt, and more. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    2011-01-01

    Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species. PMID:22070776

  15. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  16. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

    Hui Xu

    2015-01-01

    Full Text Available The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA and Csac_1078 (celB from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA and TM0070 (xynB, resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization.

  17. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Zhang, Wenjuan [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Qiu, Jianhui, E-mail: qiu@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Feng, Huixia [College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Zang, Limin; Sakai, Eiichi [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan)

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase.

  18. cellulase and pectinase production potentials of aspergillus niger

    Prof Oyeleke

    Production of pectinase and cellulase by Aspergillus niger from corn cob was examined. ... organism was screened for enzymatic activity using Carboxyl Methyl ... preparation of denim fabrics in textile industries, ... exploitation of cellulase is its high cost of production ... catabolite repression influence economics of cellulase.

  19. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles.

    Ladole, Mayur Ramrao; Mevada, Jayesh Sevantilal; Pandit, Aniruddha Bhalchandra

    2017-09-01

    In the present work, effect of low power, low frequency ultrasound on cellulase immobilized magnetic nanoparticles (cellulase@MNPs) was studied. To gain maximum activity recovery in cellulase@MNPs various parameters viz. ratio of MNPs:cellulase, concentration of glutaraldehyde and cross-linking time were optimized. The influence of ultrasonic power on cellulase@MNPs was studied. Under ultrasonic conditions at 24kHz, 6W power, and 6min of incubation time there was almost 3.6 fold increased in the catalytic activity of immobilized cellulase over the control. Results also indicated that there was improvement in pH and temperature stability of cellulase@MNPs. Furthermore, thermal deactivation energy required was more in cellulase@MNPs than that of the free cellulase. Secondary structural analysis revealed that there were conformational changes in free cellulase and cellulase@MNPs before and after sonication which might be responsible for enhanced activity after ultrasonication. Finally, the influence of ultrasound and cellulase@MNPs for biomass hydrolysis was studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Banana peel: A novel substrate for cellulase production under solid ...

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  1. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-01-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase

  2. Kinetic Studies on Trichoderna Viride Cellulase

    Saw Aung; Oo Aung; Aung Myint

    2002-02-01

    Studies on cellulase enzyme (EC 3.2.1.4), which catalyzes the hydrolysis of. cellulose to yield glucose, were made. Cellulase from a fungus source, Trichoderma viride was cultivated on Czapek's agar medium and enzyme production broth medium was employed for parameter tests. The microscopic examination and cellulase hydrolysis test on subcultured fungi were applied to confirm the T. viride species. A calibration curve for standard glucose was plotted by using visible spectroscopy. Dinitrosalicylic acid was used as enzyme reaction inhibitor and the colour intensity was measured in a UV-visible spectrophotometer at a λ max of 570 nm. The parameters such as optimum pH, optimum temperature, effect of substrate concentration, effect, of enzyme concentration, enzyme unit (EU), reaction order (n), maximum velocity (V max ), Michaelis-Menten constant (K m ) using various substrates, viz., carboxy methylcellulose, cotton fibre and filter paper determined. (author)

  3. Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina) ▿ † §

    Schuster, André; Kubicek, Christian P.; Schmoll, Monika

    2011-01-01

    Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-β-d-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and d-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms. PMID:21602376

  4. Behaviour of the activity of cellulase irradiated under various conditions

    Kumakura, M; Kaetsu, I

    1988-04-18

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 /sup 0/C) increased by heating at 40 /sup 0/C, but that of cellulase irradiated at high temperature above 0 /sup 0/C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme.

  5. Behaviour of the activity of cellulase irradiated under various conditions

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 0 C) increased by heating at 40 0 C, but that of cellulase irradiated at high temperature above 0 0 C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme. (author)

  6. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the

  7. Clostridium difficile Infection

    ... TeensRead MoreBMI Calculator Acute BronchitisHigh Blood PressureBursitis of the HipHigh CholesterolExercise-induced UrticariaMicroscopic HematuriaKidney CystsDe Quervain’s Tenosynovitis Home Diseases and Conditions Clostridium difficile (C. diff.) ...

  8. Carboxymethyl-cellulase from Erwina chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    Erwinia chrysanthemi strain 3665 growing aerobically in a mineral salts medium containing various carbon sources constitutively secreted low levels of carboxymethyl-cellulase activity. Increased production of this activity was triggered by conditions which reduced the growth rate. The results obtained with continuous culture suggested that this production was controlled by a mechanism similar to catabolite repression. However, other factors might be implicated in the regulation of cellulase production.

  9. Engineering Aspergillus oryzae A-4 through the Chromosomal Insertion of Foreign Cellulase Expression Cassette to Improve Conversion of Cellulosic Biomass into Lipids

    Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua

    2014-01-01

    A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (pcellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass. PMID:25251435

  10. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids.

    Lin, Hui; Wang, Qun; Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua

    2014-01-01

    A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (pcellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.

  11. Production and Partial Characterization of Cellulases from ...

    Prof. Ogunji

    fermentation, the organism produced cellulase. Activity ... become of considerable economic interest to develop processes for effective treatment and ... industries such as textile, laundry, pulp and paper and fruit juice extraction. ..... choices for costly enzymes that lose appreciable part of their activity even when stored at low.

  12. Cellulase Inhibition by High Concentrations of Monosaccharides

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...

  13. Updates on the sporulation process in Clostridium species.

    Talukdar, Prabhat K; Olguín-Araneda, Valeria; Alnoman, Maryam; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2015-05-01

    Sporulation is an important strategy for certain bacterial species within the phylum Firmicutes to survive longer periods of time in adverse conditions. All spore-forming bacteria have two phases in their life; the vegetative form, where they can maintain all metabolic activities and replicate to increase numbers, and the spore form, where no metabolic activities exist. Although many essential components of sporulation are conserved among the spore-forming bacteria, there are differences in the regulation and the pathways among different genera, even at the species level. While we have gained much information from the most studied spore-forming bacterial genus, Bacillus, we still lack an in-depth understanding of spore formation in the genus Clostridium. Clostridium and Bacillus share the master regulator of sporulation, Spo0A, and its downstream pathways, but there are differences in the activation of the Spo0A pathway. While Bacillus species use a multi-component phosphorylation pathway for phosphorylation of Spo0A, termed phosphorelay, such a phosphorelay system is absent in Clostridium. On the other hand, a number of genes regulated by the different sporulation-specific transcription factors are conserved between different Clostridium and Bacillus species. In this review, we discuss the recent findings on Clostridium sporulation and compare the sporulation mechanism in Clostridium and Bacillus. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. CELLULASES FROM THE BASIDIO - MYCETES CULTURAL LIQUID

    К. G. Dreval

    2013-04-01

    Full Text Available Adsorption of cellulases on substrate taking place during the cultivation process was determined. Adsorbed enzymes can be eluted by buffer solution with high ionic strength, but for determine their activity they should be transferred into the aqueous solution. On the basis of the results a method for obtaining of cellulases preparations from cultural liquids of basidiomycetes was developed. This method is the elution of cellulases from the cultivation substrate of basidiomycetes. It was found that using of the last allows to obtain enzymatic preparations with a high degree of purification in 3 stages (salting out of proteins — dialysis — gelchromatography. Cellulase preparations received original products of basidiomycetes strains К-1, А-Дон-02, Д-1 Irpex lacteus and AnSc-1 Daedaleopsis confragosa f. confragosa were obtained. They contained different proteins, enzymes with specific peaks out of column and their activity. However, common to them was a distinct maximum of outing from the column by endoglucanases or cellobiases, which may indicate that the studied cellulolytic complexes of basidiomycetes do not contain multiple forms of cellulases with different molecular mass. This method allowed to obtain preparations with different degree of purification in comparing with the original culture filtrate 7,3 for endoglucanase and 33,3 for cellobiase of strain А-Дон-02 I. lacteus; 13,1 for endoglucanase and 25,5 for cellobiase of strain Д-1 I. lacteus; 29,9 for endoglucanase and 90,1 for cellobiase of strain К-1 I. lacteus; 2,1 for endoglucanase and 30,6 for cellobiase of strain AnSc-1 D. confragosa f. confragosa.

  15. Annotation of the Clostridium Acetobutylicum Genome

    Daly, M. J.

    2004-06-09

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  16. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids.

    Hui Lin

    Full Text Available A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05 higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%-133% and 35.22%-59.57% higher amount of lipids than the reference strain A-4 (WT under submerged (SmF conditions and solid-state (SSF conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.

  17. Comparison of Different Methods of Denim Stone Washing by Pumice Stone, Acid Cellulases and Neutral Cellulases

    M. Montazer

    2007-10-01

    Full Text Available Denim is a casual garment normally used by young people and extremely influential in shaping the fashion industry. Among various garments, these garments are subjected to innovations. This work is an attempt to compare the different methods of stone washing using pumice stones, acid cellulases and neutral cellulases or in combination of these methods. The effects of different processing conditions on the garment are compared and reported. Color differences of samples are probed by reflective colorimeter on the front side as well as the backside and also the white pocket of the garment.The abrasion resistance, tensile strength and crease recovery angle of samples are also reported. The XRD spectra are used to calculate the crystalline degrees of the selected samples. Moreover, fiber surfaces of some treated samples have been observed by SEM. The results indicate that treatment of denim with pumice stone with equal weight of garment causes a small color differences. The addition of cellulases to the washing, however, accelerates the color fading. Also, lower staining observed on the white pocket when the garment was treated with cellulases. However, the neutralcellulases increase the garment fading and decrease the staining on the white pocket. It is also observed that pumice stone with cellulases damages the fabric surface, although it is of a minimal damage.

  18. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

  19. Draft Genome Sequence of Clostridium mangenotii TR, Isolated from the Fecal Material of a Timber Rattlesnake

    Cochran, Philip A.; Dowd, Scot E.; Andersen, Kylie; Anderson, Nichole; Brennan, Rachel; Brook, Nicole; Callaway, Tracie; Diamante, Kimberly; Duberstine, Annie; Fitch, Karla; Freiheit, Heidi; Godlewski, Chantel; Gorman, Kelly; Haubrich, Mark; Hernandez, Mercedes; Hirtreiter, Amber; Ivanoski, Beth; Jaminet, Xochitl; Kirkpatrick, Travis; Kratowicz, Jennifer; Latus, Casey; Leable, Tiegen; Lingafelt, Nicole; Lowe, DeAnna; Lowrance, Holly; Malsack, Latiffa; Mazurkiewicz, Julie; Merlos, Persida; Messley, Jamie; Montemurro, Dawn; Nakitare, Samora; Nelson, Christine; Nye, Amber; Pazera, Valerie; Pierangeli, Gina; Rellora, Ashley; Reyes, Angelica; Roberts, Jennifer; Robins, Shadara; Robinson, Jeshannah; Schultz, Alissa; Seifert, Sara; Sigler, Elona; Spangler, Julie; Swift, Ebony; TenCate, Rebecca; Thurber, Jessica; Vallee, Kristin; Wamboldt, Jennifer; Whitten, Shannon; Woods, De’andrea; Wright, Amanda; Yankunas, Darin

    2014-01-01

    Here, we report the draft genome sequence of Clostridium mangenotii strain TR, which was isolated from the fecal material of a timber rattlesnake. This bacterium is nonpathogenic but contains 68 genes involved in virulence, disease, and defense. PMID:24407632

  20. Mutant strain screening and its enzyme production conditions of cellulase

    Dong Zhiyang; Zhu Lingxiang; Yu Wei

    2001-01-01

    Trichoderma koeningii T-801, which can produce relatively high cellulase, was isolated. The ability of producing cellulase of mutant T-801 had increased 1.77 times after treated with nitrous guanide and γ-ray and was higher than that of Trichoderma QM9414. The medium with straw powder as carbon source and peptone as nitrogen source is optimal and the maximum cellulase activity is reached at 30 degree C and pH 5.0 when cultured for 5 days

  1. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  3. Comparison of the thermostability of cellulases from various thermophilic fungi

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  4. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  5. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Hanna Skarin

    Full Text Available Clostridium botulinum (group III, Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  6. Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal

    Isidro, Joana; Santos, Andrea; Nunes, Alexandra; Borges, Vítor; Silva, Catarina; Vieira, Luís; Mendes, Aristides L.; Serrano, Mónica; Henriques, Adriano O.; Gomes, João Paulo

    2018-01-01

    We describe imipenem-resistant and imipenem-susceptible clinical isolates of Clostridium difficile ribotype 017 in Portugal. All ribotype 017 isolates carried an extra penicillin-binding protein gene, pbp5, and the imipenem-resistant isolates had additional substitutions near the transpeptidase active sites of pbp1 and pbp3. These clones could disseminate and contribute to imipenem resistance. PMID:29553322

  7. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction.

    Ivanova, Christa; Ramoni, Jonas; Aouam, Thiziri; Frischmann, Alexa; Seiboth, Bernhard; Baker, Scott E; Le Crom, Stéphane; Lemoine, Sophie; Margeot, Antoine; Bidard, Frédérique

    2017-01-01

    The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei , the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1 , and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose

  8. Production of Cellulases by Rhizopus stolonifer from Glucose-Containing Media Based on the Regulation of Transcriptional Regulator CRE.

    Zhang, Yingyiing; Tang, Bin; Du, Guocheng

    2017-03-28

    Carbon catabolite repression is a crucial regulation mechanism in microorganisms, but its characteristic in Rhizopus is still unclear. We extracted a carbon regulation gene, cre , that encoded a carbon catabolite repressor protein (CRE) from Rhizopus stolonifer TP-02, and studied the regulation of CRE by real-time qPCR. CRE responded to glucose in a certain range, where it could significantly regulate part of the cellulase genes ( eg, bg, and cbh2 ) without cbh1 . In the comparison of the response of cre and four cellulase genes to carboxymethylcellulose sodium and a simple carbon source (lactose), the effect of CRE was only related to the concentration of reducing sugars. By regulating the reducing sugars to range from 0.4% to 0.6%, a glucose-containing medium with lactose as the inducer could effectively induce cellulases without the repression of CRE. This regulation method could potentially reduce the cost of enzymes produced in industries and provide a possible solution to achieve the large-scale synthesis of cellulases.

  9. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).

    Srivastava, Neha; Srivastava, Manish; Kushwaha, Deepika; Gupta, Vijai Kumar; Manikanta, Ambepu; Ramteke, P W; Mishra, P K

    2017-08-01

    In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe 3 O 4 /Alginate nanocomposite (Fe 3 O 4 /Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe 3 O 4 /Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion

    McDougall, G.J.; Fry, S.C.

    1990-01-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose 4 ·xylose 3 (XG7) core. The substituted oligosaccharides XG8 (glucose 4 ·xylose 3 ·galactose) and XG9n (glucose 4 ·xylose 3 ·galactose 2 ) were more effective than XG7 itself and XG9 (glucose 4 ·xylose 3 ·galactose·fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10 -4 molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of [ 3 H]xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products)

  11. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  12. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  13. Production and properties of fungal cellulase from native isolates ...

    Orange bagasse was employed as the sole carbon source for production of cellulase having adapted the organisms on cellulose and on orange bagasse. The extracellular cellulase produced by Aspergillus niger and Rhizopus species were partially purified by ammonium sulphate precipitation in a single step and dialyzed ...

  14. Exploration of indigenous agrowastes for cellulase production by ...

    admin

    2012-05-10

    May 10, 2012 ... However, high lignin content of B. campestris made the cellulose inaccessible and resulted in poor yield of enzyme. Therefore, S. spontaneum has a great potential to serve as a cheaper, easily available and reasonable substrate for cellulase production. Key words: Agrowastes, cellulase, indigenous, ...

  15. Corn stover-enhanced cellulase production by Aspergillus niger ...

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  16. Production Of Cellulase In Plastids Of Transgenic Plants

    Lamppa, Gayle

    2002-08-06

    A genetic construct encoding a fusion protein including endogluconase E1 and a transit peptide is used to transform plants. The plants produce cellulase by expressing the genetic construct. The cellulase is targeted to plastids and can be collected and purified.

  17. Optimization for cellulase production by Aspergillus niger using saw ...

    Cellulases are a group of hydrolytic enzymes and are capable of degrading lignocellulosic materials. Cellulases have wide range of applications. This work focuses on factors relevant for improvement of enzymatic hydrolysis of saw dust by using Aspergillus niger. Different cultural conditions were examined to assess their ...

  18. Studies on the enzymology of cellulose degradation by the anaerobic bacterium Clostridium thermocellum and the anaerobic fungus Neocallimastix frontalis

    Bhat, K.M.; Gow, L.A.; Wilson, C.A.; Wood, T.W. (Rowett Research Inst., Aberdeen (UK))

    1990-01-01

    The extracellular cellulases from the anaerobic bacterium Clostridium thermocellum and the anaerobic rumen fungus Neocallimastix frontalis are very active on crystalline cellulose. In both cases the activity resides in a high molecular weight complex. The complex from C. thermocellum (termed the cellulosome) was found to be readily dissociated at pH 5.0 and at room temperature by a mixture of SDS, EDTA and DTT. Virtually all the activity of the unfractionated cellulosome was recovered when the dissociated enzyme components were reassociated by dialysis. Thus, the route is now established for the first time for a meaningful study of the mechanism of cellulase action of this commercially important enzyme system. Nearly all of the activity to crystalline cellulose shown by the cellulase of N. frontalis was associated with a fraction which comprised only 2% of the extracellular protein, 3% of the endoglucanase and 3% of the {beta}-glucosidase. This fraction, which could be isolated by affinity chromatography on cellulose, was produced in greater quantity when the fungus was grown in co-culture with the methanogen, Methanobrevibacter smithii. The specific activity of the partially purified enzyme for degradation of crystalline cellulose was several-fold greater than that produced by the aerobic fungus T. reesei, which is being developed world-wide for its commercial potential for converting cellulose to fermentable soluble sugars. The cellulase of N. frontalis clearly has great commercial potential. 39 refs., 19 figs., 22 tabs.

  19. Ruminococcus flavefaciens 007C cellulosomes and cellulase consortium

    Maša VODOVNIK

    2015-11-01

    Full Text Available Ruminococcus flavefaciens is among the most important cellulolytic bacterial species in rumen and gastrointestinal tract of monogastric herbivorous animals. Its efficiency in degradation of (hemicellulosic substrates is associated with the production of remarkably intricate extracellular multienzyme complexes, named cellulosomes. In the present work we investigated the cellulolytic system of 007C. The bioinformatic analysis of the draft genome sequence revealed identical organization of sca gene cluster as has previously been found in four other strains of R. flavefaciens. The cluster consists of five genes in the following order: scaC-scaA-scaB-cttA-scaE. The cellulases of R. flavefaciens 007C belong to four families of glycoside hydrolases, namely GH48, GH44, GH9 in GH5. Majority of these enzymes are putative endoglucanases, belonging to families GH5 and GH9, whereas only one gene encoding GH44 and GH48 was found. Apart from catalytic domains, most of these proteins also contain dockerins – signature sequences, which indicate their attachement to cellulosomes. On the other hand, carbohydrate-binding modules were only found coupled to GH9 catalytic domains. Zymogram analysis showed that larger endoglucanases were mostly constitutively expressed, wheras smaller enzymes were only detected in later phases of Avicel-grown cultures.

  20. Pulsed laser deposition and characterization of cellulase thin films

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  1. Exogenous cellulases of thermophilic micromycetes. Pt. 1. Selection of producers

    Kvesitadze, G; Kvachadze, L; Aleksidze, T; Chartishvili, D K

    1986-01-01

    More than 600 micromycetes - representatives of different genera have been investigated for their ability to produce exogenous cellulases. Most of the investigated cultures were found to produce these enzymes, 24 cultures being thermophilic, and 18 thermotolerant. Cellulase or its derivatives proved to be the most favourable carbon source for cellulase secretion. None of the thermophilic cultures studied manifested the ability of exogenous exoglucanase biosynthesis. Using UV-rays as mutagen, a mutant strain A. terreus T-49 has been obtained being characterized by an increased endo-glucanase and cellobiase activity, as compared to the initial strains. The cellulase preparations of thermophilic micromycetes contain one cellulasic component: endo-glucanase, or two: endo-glucanase and cellobiase.

  2. Immobilization of cellulase using porous polymer matrix

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  3. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-09-01

    The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low β-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial application. Thus, there are ongoing interests in research to develop methods to overcome this insufficiency. Moreover, although β-glucosidases have been demonstrated to influence cellulase production and participate in the regulation of cellulase production, the underlying mechanism remains unclear. The T. reesei recombinant strain TRB1 was constructed from T. reesei RUT-C30 by the T-DNA-based mutagenesis. Compared to RUT-C30, TRB1 displays a significant enhancement of extracellular β-glucosidase (BGL1) activity with 17-fold increase, a moderate increase of both the endoglucanase (EG) activity and the exoglucanase (CBH) activity, a minor improvement of the total filter paper activity, and a faster cellulase induction. This superiority of TRB1 over RUT-C30 is independent on carbon sources and improves the saccharification ability of TRB1 cellulase on pretreated corn stover. Furthermore, TRB1 shows better resistance to carbon catabolite repression than RUT-C30. Secretome characterization of TRB1 shows that the amount of CBH, EG and BGL in the supernatant of T. reesei TRB1 was indeed increased along with the enhanced activities of these three enzymes. Surprisingly, qRT-PCR and gene cloning showed that in TRB1 β-glucosidase cel3D was mutated through the random insertion by AMT and was not expressed. The T. reesei recombinant strain TRB1 constructed in this study is more desirable for industrial application than the parental strain RUT-C30, showing extracellular β-glucosidase hyper

  4. Measurement and characterization of cellulase activity in sclerophyllous forest litter.

    Criquet, Stéven

    2002-07-01

    Cellulases are enzymatic proteins which hydrolyze cellulose polymers to smaller oligosaccharides, cellobiose and glucose. They consist in three major types of enzymes: endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) and beta-glucosidases (EC 3.2.1.21) which play an essential role in carbon turnover of forest ecosystem. The aim of this study was firstly to determine the parameters (i.e. buffer type, pH, temperature, quantity of litter, incubation time and reagent type) which affect the measurement of cellulase activity in a sclerophyllous forest litter, and secondly to compare two methods for measuring cellulase activity: a direct method and an extraction method. In the direct method, the litter was directly incubated with a buffered solution containing the enzyme substrate, whereas in the extraction method, the cellulases were firstly extracted before measuring their activity. The results were compared with other studies about soil cellulase activity, and it appeared that several parameters (buffer type, pH, temperature and sample quantity) which influence the measurement of cellulase activity differ according to whether a soil or a litter is considered. Concerning the procedure used for the measurement of cellulase activity, results showed that the activity values were higher when using an extraction procedure than when using a direct procedure. The extraction procedure, combined with a concentration stage of the extract, also allowed electrophoretic analysis (PAGE) of the cellulases extracted from the litter. The electrophoretic pattern revealed two cellulase isoenzymes which may be related to the occurrence of two pH-activity peaks of these enzymes when citrate buffer was used for the measurement of cellulase activity in the litter.

  5. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  6. Cellulase variants with improved expression, activity and stability, and use thereof

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  7. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  8. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  9. Cellulase variants with improved expression, activity and stability, and use thereof

    Aehle, Wolfgang; Bott, Richard R.; Bower, Benjamin S.; Caspi, Jonathan; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus Joannes; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Van Lieshout, Johannes Franciscus Thomas; Nikolaev, Igor; Wallace, Louise; Van Stigt Thans, Sander; Vogtentanz, Gudrun; Sandgren, Mats

    2016-12-20

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  10. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor

    Karube, I; Tanaka, S; Shirai, T; Suzuki, S

    1977-08-01

    Cellulase was immobilized in a collagen fibril matrix, and no leakage of cellulase from the collagen fibril matrix was observed. The immobilized cellulase was more stable than the native cellulase. The substrate cellulose was hydrolyzed quantitatively with immobilized cellulase. The final reaction product was identified as glucose. Immobilized cellulase was used in a fluidized bed reactor where the pressure drop of the fluidized bed reactor was low and constant. Cellulose was hydrolyzed to glucose by the cellulase-bead fluidized bed reactor. The minimum flow velocity (U/sub mf/) was 0.5 cm/sec and the optimum flow velocity of the cellulose hydrolysis was 1 cm/sec.

  11. Optimization of cellulase production by Penicillium sp.

    Prasanna, H N; Ramanjaneyulu, G; Rajasekhar Reddy, B

    2016-12-01

    The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.

  12. Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study.

    Németh, Attila; Kamondi, Szilárd; Szilágyi, András; Magyar, Csaba; Kovári, Zoltán; Závodszky, Péter

    2002-05-02

    Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.

  13. The Clostridium sporulation programs: diversity and preservation of endospore differentiation.

    Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T

    2015-03-01

    Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of a Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σ(F), σ(E), σ(G), and σ(K)) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σ(K), the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation

    Ziyanda Mmango-Kaseke

    2016-11-01

    Full Text Available This paper reports on the optimization of culture conditions for cellulase and xylanase production by bacterial isolate from lignocellulosic biomass. The bacterial isolate was screened for cellulase and xylanase production on carboxyl methyl cellulose (CMC and birch wood xylan as substrates, respectively. One bacterial isolate showing the highest halo zone diameter (isolate PLY1 was selected for detailed studies. The analysis of the 16S ribosomal ribonucleic acid (rRNA gene nucleotide sequence of PLY1 revealed it to have 98% similarity to Micrococcus luteus strain Fse9 and the sequence was deposited in the GenBank as Micrococcus luteus strain SAMRC-UFH3 with accession number KU171371. Cellulase production was achieved in the presence of CMC (1% w/v under an incubation temperature of 25 °C (198 U/mL, pH 5 (173 U/mL, agitation speed 50 rpm (173 U/mL and incubation period of 96 h (102 U/mL. Xylanase was produced maximally when birch wood xylan (1% w/v was used as the substrate at 25 °C (1007 U/mL, pH 10 (2487 U/mL, 200 rpm (1814 U/mL, and under an incubation period of 84 h (1296 U/mL. Our findings showed that Micrococcus sp. SAMRC-UFH3 appears to be a potentially important candidate for lignocellulosic waste degradation and other relevant industrial applications.

  15. Cytochemical localization of cellulases in decayed and nondecayed wood

    Murmanis, L.; Highley, T.L.; Palmer, J.G.

    1987-01-01

    Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum, cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.

  16. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  17. Genetic modification: a tool for enhancing cellulase secretion

    Anusuiya Singh

    2017-06-01

    Full Text Available Lignocellulosic (LC biomass is abundantly available as a low-cost resource on the Earth. LC conversion into energy carriers is the most accepted alternative energy production policy because it is non-competitor to food or feed. LC ethanol has brought cellulases to the forefront which was otherwise lost in oblivion during last decades. LC biomass can be converted into value added products or into sugars by various routes, e.g., thermo-chemical, chemical, or biological methods. Biological route via enzymes is one of the most eco-friendly and feasible method. Both fungi and bacteria are known to degrade biomass. Fungi have been greatly exploited for cellulase production due to their inherent properties of secreting extracellular cellulase. These microorganisms are known as cellulase producers for many decades, however, to bring the enzymatic biomass conversion to an economically feasible status, extensive research efforts have been made in last decade to enhance cellulase titers. Mutations and genetic interventions along with bioprocess development have played a very important role for enhancing cellulase production. This review will present a critical overview of the on-going research towards improving cellulase production for biofuel industry via genetic modification, which will include mutation and genetic engineering employed to exert changes at genetic level in microorganisms.

  18. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  19. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  20. Induction of Cellulase by Gentiobiose and Its Sulfur-Containing Analog in Penicillium purpurogenum

    Kurasawa, Takashi; Yachi, Makoto; Suto, Manabu; Kamagata, Yoichi; Takao, Shoichi; Tomita, Fusao

    1992-01-01

    Cellulase induction by β-glucodisaccharides was investigated by using non-cellulase-induced mycelia of Penicillium purpurogenum P-26, a highly-cellulase-producing fungus. Gentiobiose induced significant amounts of cellulase compared with cellobiose when nojirimycin was added to the induction medium to inhibit extracellular β-glucosidase activity. Thiogentiobiose (6-S-β-d-glucopyranosyl-6-thio-d-glucose), a sulfur-containing analog of gentiobiose, was more effective for cellulase induction tha...

  1. Exogenous cellulases of thermophilic micromycetes. Pt. 2. Thermostability of enzyme preparations

    Kvesitadze, G; Gogilashvili, L; Svanidze, R; Buachidze, T; Chirgadze, L; Nizharadze, D

    1986-01-01

    The ability of a large number of higher fungi to form extracellular cellulases is investigated. Some representatives of these fungi grow at 40-50/sup 0/C, and form extracellular cellulases exceeding cellulases of mesophilic fungi in thermostability. It is shown that cellulases of higher thermophilic fungi differ by their thermostability. The temperature optimum of cellulase action of higher fungi occurs within 60-62/sup 0/C.

  2. Special Concerns for Seniors: Clostridium difficile

    ... and Drugs" Home | Contact Us Special Concerns for Seniors Clostridium difficile - an introduction Clostridium difficile (“C. diff”) ... see APUA’s contribution to CDC’s Vital Signs campaign . Seniors are especially at risk People over the age ...

  3. Clostridium subterminale septicemia in an immunocompetent patient

    Daganou Maria; Kyriakoudi Ann; Moraitou Helen; Pontikis Konstantinos; Avgeropoulou Stavrina; Tripolitsioti Paraskevi; Koutsoukou Antonia

    2016-01-01

    Clostridium subterminale is a Clostridium species that has been rarely isolated in the blood of immunocompromised patients. We report a case of C. subterminale septicemia in an immunocompetent patient who presented with acute mediastinitis following spontaneous esophageal rupture.

  4. Clostridium subterminale septicemia in an immunocompetent patient.

    Daganou, Maria; Kyriakoudi, Ann; Moraitou, Helen; Pontikis, Konstantinos; Avgeropoulou, Stavrina; Tripolitsioti, Paraskevi; Koutsoukou, Antonia

    2016-01-01

    Clostridium subterminale is a Clostridium species that has been rarely isolated in the blood of immunocompromised patients. We report a case of C. subterminale septicemia in an immunocompetent patient who presented with acute mediastinitis following spontaneous esophageal rupture.

  5. Quantitative Detection of Clostridium perfringens in Broiler Chickens by Real-Time PCR Targeting the Alpha-Toxin Gene

    Abildgaard, Lone; Engberg, Ricarda M.; Schramm, Andreas

    2006-01-01

    was developed by sequencing the α-toxin gene from ~60 strains of C. perfringens, isolated from diseased as well as healthy broilers. For its application to the chicken gastrointestinal tract (i.e., ileum), DNA extraction efficiency and potential inhibition of the real-time PCR process by ileum content...

  6. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production.

    Cheng, Chieh-Lun; Chang, Jo-Shu

    2011-09-01

    A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridium pasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Flagellar glycosylation in Clostridium botulinum.

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  8. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  9. The pangenome of the genus Clostridium.

    Udaondo, Zulema; Duque, Estrella; Ramos, Juan-Luis

    2017-07-01

    The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Optimization for cellulase production by Aspergillus niger using saw ...

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Several other parameters like inoculum size, time duration, nitrogen source and its ... β-1,4-D-glycosidic bond (Gielkens et al., 1999; Han et al.,. 1995). Cellulase is a ... management, medical/pharmaceutical industry, proto-.

  11. Comparative Studies on the Amylase and Cellulase Production of ...

    Michael Horsfall

    from different sources and examined for their ability to produce cellulase and amylase. Ten fungal ... microorganisms for enzymes and, eventually, also secondary metabolites with anti-microbial or ... polymer i.e. cellulose to smaller sugar.

  12. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  13. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of cellulase production by carbon sources in two ...

    user7

    2013-11-27

    Nov 27, 2013 ... 7State Key Laboratory of Urban Water Resource and Environment, Harbin ... China. Accepted 28 March, 2012. The induction of cellulase production in two .... prevent the contamination with bacteria, 0.02% sodium azide was.

  15. Biohydrolysis of Saccharum spontaneum for cellulase production by ...

    admin

    2012-03-13

    Mar 13, 2012 ... fermentation (SSF) for economic production of cellulase. ... Lignocellulosic biomass has been regarded as a ... concentration in the pretreated substrate. It can be fairly ... wheat straw, 54% and sorghum straw, 61%) for ethanol.

  16. Cellulase production by a strain of Myrothecium sp

    Kassim, E A

    1982-01-01

    A selected strain of Myrothecium sp. was grown on various carbon sources. Cellulose was found to be the highest inducer of cellulase. CMC resulted in a moderate yield. Cellobiose resulted in a low yield. Glucose, lactose, maltose and soluble starch resulted in negligible amounts. Sucrose, glycerol and salicin were extremely unsuitable. Continuous addition of glucose or cellobiose during fermentation to cellulosic culture media reduced cellulase production, whereas addition of the entire amount of glucose or cellobiose at the beginning did not affect the enzyme production. The enzyme was precipitated from the culture filtrate with ammonium sulfate giving crude cellulase, 3854 units/g. The culture filtrate was concentrated to a one-tenth volume, 97 units/ml. The purified cellulase was prepared by dialysis 6700 units/g of enzyme precipitate.

  17. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.

  18. Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest.

    Paul, Sujay; Zhang, Angel; Ludeña, Yvette; Villena, Gretty K; Yu, Fengan; Sherman, David H; Gutiérrez-Correa, Marcel

    2017-06-10

    Here, we report the complete genome sequence of a high alkaline cellulase producing Aspergillus fumigatus strain LMB-35Aa isolated from soil of Peruvian Amazon rainforest. The genome is ∼27.5mb in size, comprises of 228 scaffolds with an average GC content of 50%, and is predicted to contain a total of 8660 protein-coding genes. Of which, 6156 are with known function; it codes for 607 putative CAZymes families potentially involved in carbohydrate metabolism. Several important cellulose degrading genes, such as endoglucanase A, endoglucanase B, endoglucanase D and beta-glucosidase, are also identified. The genome of A. fumigatus strain LMB-35Aa represents the first whole sequenced genome of non-clinical, high cellulase producing A. fumigatus strain isolated from forest soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  20. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  1. Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana.

    Lü, Ruihua; Zhao, Aichun; Li, Jun; Liu, Changying; Wang, Chuanhong; Wang, Xiling; Wang, Xiaohong; Pei, Ruichao; Lu, Cheng; Yu, Maode

    2015-07-10

    A cellulase gene (KJ700939, CsCelA) from Ciboria shiraiana that is highly expressed during the infection of mulberry fruit was screened by quantitative real-time PCR (qRT-PCR). Using cDNA isolated from infected mulberry fruits as template, the full-length 1170-bp sequence of CsCelA was obtained, which encodes a 390-amino acid protein with a putative signal peptide of 24 amino acids. The 998-bp fragment encoding the mature peptide of CsCelA was cloned into the multiple cloning site of the pPIC9K vector and overexpressed as an active protein of 55.3kDa in the methylotrophic yeast Pichia pastoris. The specific activity of induced supernatants of the recombinant cellulase (CsCelA) was 17.44U/ml and 135U/g for freeze-dried powder. The Kmax and Vmax of CsCelA for sodium carboxymethylcellulose (CMC) were 4.6mg/ml and 107.2U/mg, respectively. The supernatant and freeze-dried powder of the recombinant cellulase exhibited stable activity from pH4.0 to 9.0, and at temperatures ranging from 30°C to 55°C. Finally, the activity of the recombinant cellulase was assessed by enzymatic hydrolysis of the cell walls of mulberry leaves. CsCelA showed an endo-cellulase mode of cleavage, as assessed by thin layer chromatography (TLC). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Clostridium botulinum type E occurs and grows in the alga Cladophora glomerata

    Byappanahalli, M.N.; Whitman, R.L.

    2009-01-01

    In recent years, massive avian die-offs from Clostridium botulinum type E infection have occurred in the Sleeping Bear Dunes National Lakeshore (SLBE) area of Lake Michigan. These outbreaks have been coincidental with massive blooms of the green algae Cladophora, mostly Cladophora glomerata. We tested the hypothesis that Clostridium botulinum type E can grow under suitable conditions in these algal mats. In a lab mesocosm study, Cladophora from four outbreak-impacted beaches from SLBE were compared with four unimpacted beaches in the Milwaukee–Racine area for bontE gene of Clostridium botulinum. Frequency of the bontE gene was higher after incubation (25 °C for up to 6 weeks) of Cladophora from impacted vs. the unimpacted area. Since no type E gene was detected initially in Cladophora from any of the eight locations, we infer that the increased occurrence of type E gene arose from spore germination or vegetative Clostridium growth within the existing algal mats of SLBE. Moreover, we found that the congener Clostridium perfringens readily grows in mesocosms containing Cladophora.

  3. Clostridium difficile Infection in Outpatients

    2011-11-07

    Dr. Jon Mark Hirshon, Associate Professor of Emergency Medicine at the University of Maryland School of Medicine, discusses Clostridium difficile infection in outpatients.  Created: 11/7/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/21/2011.

  4. Optimizing sporulation of Clostridium perfringens

    Jong, de A.E.I.; Beumer, R.R.; Rombouts, F.M.

    2002-01-01

    Many sporulation media have been developed for Clostridium perfringens, but none stimulates sporulation for all strains. The aim of our experiments was to develop a sporulation method using Duncan and Strong (DS) medium, which supports sporulation of a wide variety of strains. Different inoculation

  5. Clostridium difficile in Retail Meats

    Clostridium difficile is a common cause of diarrhea in healthcare settings but little is known about what causes cases in the community. In this podcast, CDC's Dr. L. Clifford McDonald discusses two papers in the May 2009 edition of Emerging Infectious Diseases that explore whether the organism could be found in meat samples purchased in grocery stores in Arizona and Canada.

  6. Advances in Consolidated Bioprocessing Using Clostridium thermocellum and Thermoanaerobacter saccharolyticum

    Lynd, Lee R. [Dartmouth College, Thayer School of Engineering; Guss, Adam M. [ORNL; Himmel, Mike [National Renewable Energy Laboratory (NREL); Beri, Dhananjay [Dartmouth College, Thayer School of Engineering; Herring, Christopher [Mascoma Corporation; Holwerda, Evert [Dartmouth College, Thayer School of Engineering; Murphy, Sean J. [Dartmouth College, Thayer School of Engineering; Olson, Daniel G. [Dartmouth College, Thayer School of Engineering; Paye, Julie [Dartmouth College, Thayer School of Engineering; Rydzak, Thomas [ORNL; Shao, Xiongjun [Dartmouth College, Thayer School of Engineering; Tian, Liang [Dartmouth College, Thayer School of Engineering; Worthen, Robert [Dartmouth College, Thayer School of Engineering

    2016-11-01

    Recent advances are addressed pertaining to consolidated bioprocessing (CBP) of plant cell walls to ethanol using two thermophilic, saccharolytic bacteria: the cellulose-fermenting Clostridium thermocellum and the hemicellulose- fermenting ermoanaerobacterium saccharolyticum. On the basis of the largest comparative dataset assembled to date, it appears that C. thermocellum is substantially more effective at solubilizing unpretreated plant cell walls than industry-standard fungal cellulase, and that this is particularly the case for more recalcitrant feedstocks. e distinctive central metabolism of C. thermocellum appears to involve more extensive energy coupling (e.g., on the order of 5 ATP per glucosyl moiety) than most fermentative anaerobes. Ethanol yields and titers realized by engineered strains of T. saccharolyticum meet standards for industrial feasibility and provide an important proof of concept as well as a model that may be emulated in other organisms. Progress has also been made with C. thermocellum, although not yet to this extent. e current state of strain development is summarized and outstanding challenges for commercial application are discussed. We speculate that CBP organism development is more promising starting with naturally occurring cellulolytic microbes as compared to starting with noncellulolytic hosts.

  7. Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil.

    Silva, Rodrigo Otávio Silveira; D'Elia, Mirella Lauria; Tostes Teixeira, Erika Procópio; Pereira, Pedro Lúcio Lithg; de Magalhães Soares, Danielle Ferreira; Cavalcanti, Álvaro Roberto; Kocuvan, Aleksander; Rupnik, Maja; Santos, André Luiz Quagliatto; Junior, Carlos Augusto Oliveira; Lobato, Francisco Carlos Faria

    2014-08-01

    Despite some case reports, the importance of Clostridium perfringens and Clostridium difficile for wild carnivores remains unclear. Thus, the objective of this study was to identify C. perfringens and C. difficile strains in stool samples from wild carnivore species in Brazil. A total of 34 stool samples were collected and subjected to C. perfringens and C. difficile isolation. Suggestive colonies of C. perfringens were then analyzed for genes encoding the major C. perfringens toxins (alpha, beta, epsilon and iota) and the beta-2 toxin (cpb2), enterotoxin (cpe) and NetB (netb) genes. C. difficile strains were analyzed by multiplex-PCR for toxins A (tcdA) and B (tcdB) and a binary toxin gene (cdtB) and also submitted to a PCR ribotyping. Unthawed aliquots of samples positive for C. difficile isolation were subjected to the detection of A/B toxins by a cytotoxicity assay (CTA). C. perfringens was isolated from 26 samples (76.5%), all of which were genotyped as type A. The netb gene was not detected, whereas the cpb2 and cpe genes were found in nine and three C. perfringens strains, respectively. C. difficile was isolated from two (5.9%) samples. A non-toxigenic strain was recovered from a non-diarrheic maned wolf (Chrysocyon brachyurus). Conversely, a toxigenic strain was found in the sample of a diarrheic ocelot (Leopardus pardallis); an unthawed stool sample was also positive for A/B toxins by CTA, indicating a diagnosis of C. difficile-associated diarrhea in this animal. The present work suggests that wild carnivore species could carry C. difficile strains and that they could be susceptible to C. difficile infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [The isolation and characterization of beta-glucosidase gene and beta-glucosidase of Trichoderma viride]: Progress report

    Stafford, D.W.

    1983-01-01

    Our project was to isolate and characterize the enzyme β-glucosidase and to clone and characterize the β-glucosidase gene; our goal is to clone and characterize each of the cellulase genes from Trichoderma. The induction of the Trichoderma reesei cellulase complex by cellulose and by the soluble inducer, sophorose, has been demonstrated. Although the induction of the cellulase complex has previously been well documented, the induction of β-glucosidase had been questioned. 49 refs., 6 figs., 2 tabs

  9. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    2010-04-01

    ... cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used in food in accordance with the following prescribed conditions: (a) Aspergillus niger is classified as follows: Class, Deuteromycetes; order, Moniliales; family, Moniliaceae...

  10. Processive and nonprocessive cellulases for biofuel production. Lessons from bacterial genomes and structural analysis

    Wilson, David B. [Cornell Univ. Ithaca, New York, NY (United States). Dept. of Molecular Biology and Genetics

    2012-01-15

    Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances. (orig.)

  11. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.

    Xue, Xianli; Wu, Yilan; Qin, Xing; Ma, Rui; Luo, Huiying; Su, Xiaoyun; Yao, Bin

    2016-07-11

    The filamentous fungus Trichoderma reesei has the capacity to secret large amounts of cellulase and is widely used in a variety of industries. However, the T. reesei cellulase is weak in β-glucosidase activity, which results in accumulation of cellobiose inhibiting the endo- and exo-cellulases. By expressing an exogenous β-glucosidase gene, the recombinant T. reesei cellulase is expected to degrade cellulose into glucose more efficiently. The thermophilic β-glucosidase NfBgl3A from Neosartorya fischeri is chosen for overexpression in T. reesei due to its robust activity. In vitro, the Pichia pastoris-expressed NfBgl3A aided the T. reesei cellulase in releasing much more glucose with significantly lower amounts of cellobiose from crystalline cellulose. The NfBgl3A gene was hence fused to the cbh1 structural gene and assembled between the strong cbh1 promoter and cbh1 terminator to obtain pRS-NfBgl3A by using the DNA assembler method. pRS-NfBgl3A was transformed into the T. reesei uridine auxotroph strain TU-6. Six positive transformants showed β-glucosidase activities of 2.3-69.7 U/mL (up to 175-fold higher than that of wild-type). The largely different β-glucosidase activities in the transformants may be ascribed to the gene copy numbers of NfBgl3A or its integration loci. The T. reesei-expressed NfBgl3A showed highly similar biochemical properties to that expressed in P. pastoris. As expected, overexpression of NfBgl3A enhanced the overall cellulase activity of T. reesei. The CBHI activity in all transformants increased, possibly due to the extra copies of cbh1 gene introduced, while the endoglucanase activity in three transformants also largely increased, which was not observed in any other studies overexpressing a β-glucosidase. NfBgl3A had significant transglycosylation activity, generating sophorose, a potent cellulase inducer, and other oligosaccharides from glucose and cellobiose. We report herein the successful overexpression of a thermophilic N

  12. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  13. Intracellular β-Glucosidases CEL1a and CEL1b Are Essential for Cellulase Induction on Lactose in Trichoderma reesei

    Xu, Jintao; Zhao, Guolei; Kou, Yanbo; Zhang, Weixin; Zhou, Qingxin; Chen, Guanjun

    2014-01-01

    Lactose (1,4-O-β-d-galacto-pyranosyl-d-glucose) induces cellulolytic enzymes in Trichoderma reesei and is in fact one of the most important soluble carbon sources used to produce cellulases on an industrial level. The mechanism underlying the induction is, however, not fully understood. In this study, we investigated the cellular functions of the intracellular β-glucosidases CEL1a and CEL1b in the induction of cellulase genes by lactose in T. reesei. We demonstrated that while CEL1a and CEL1b were functionally equivalent in mediating the induction, the simultaneous absence of these intracellular β-glucosidases abolished cbh1 gene expression on lactose. d-Galactose restored the efficient cellulase gene induction in the Δcel1a strain independently of its reductive metabolism, but not in the Δcel1a Δcel1b strain. A further comparison of the transcriptional responses of the Δcel1a Δcel1b strain complemented with wild-type CEL1a or a catalytically inactive CEL1a version and the Δcel1a strain constitutively expressing CEL1a or the Kluyveromyces lactis β-galactosidase LAC4 showed that both the CEL1a protein and its glycoside hydrolytic activity were indispensable for cellulase induction by lactose. We also present evidence that intracellular β-glucosidase-mediated lactose induction is further conveyed to XYR1 to ensure the efficiently induced expression of cellulase genes. PMID:24879125

  14. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  15. Preparation of cellulase concoction using differential adsorption phenomenon.

    Birhade, Sachinkumar; Pednekar, Mukesh; Sagwal, Shilpa; Odaneth, Annamma; Lali, Arvind

    2017-05-28

    Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.

  16. Ethanol from wood. Cellulase enzyme production

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  17. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    Omer, A.M.

    2012-01-01

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  18. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr

    2013-01-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated...... to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose...

  19. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth

    2003-01-01

    Cellulases and hemicellulases are two classes of enzymes produced by filamentous fungi and secreted into the cultivation medium. Both classes of enzymes consist of a subset of classes of which the fungi produce several enzymes with varying molecular mass and pI but similar enzymatic activities....... Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...

  20. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry

    Jarnigan, Alisha [Danisco, US Inc., Copenhagen (Denmark)

    2016-06-07

    Cellulase enzyme loading (Bt-G) for the economic conversion of lignocellulosic biomass to ethanol is on of the key challenges identified in the Biomass Program of DOE/EERE. The goal of Danisco’s project which ran from 2008 to 2012, was to address the technical challenge by creating more efficient enzyme that could be used at lower doses, thus reducing the enzymes’ cost contribution to the conversio process. We took the approach of protein engineering of cellulase enzymes to overcome the enzymati limitations in the system of cellulosic-hydrolyzing enzymes to improve performance in conversion o biomass, thereby creating a more effective enzyme mix.

  1. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant.

    Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin

    2016-12-01

    Natural lactic acid bacteria (LAB) populations in tropical grasses and their fermentation characteristics on silage prepared with cellulase enzyme and LAB inoculants were studied. A commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), a local selected strain Lactobacillus casei TH14 (TH14), and 2 cellulases, Acremonium cellulase (AC) and Maicelase (MC; Meiji Seika Pharma Co. Ltd., Tokyo, Japan), were used as additives to silage preparation with fresh and wilted (6 h) Guinea grass and Napier grass. Silage was prepared using a laboratory-scale fermentation system. Treatments were CH, TH14, AC at 0.01% fresh matter, AC 0.1%, MC 0.01%, MC 0.1%, CH+AC 0.01%, CH+AC 0.1%, CH+MC 0.01%, CH+MC 0.1%, TH14+AC 0.1%, TH14+AC 0.01%, TH14+MC 0.1%, and TH14+MC 0.01%. Microorganism counts of Guinea grass and Napier grass before ensiling were 10 2 LAB and 10 6 aerobic bacteria; these increased during wilting. Based on morphological and biochemical characteristics, and 16S rRNA gene sequence analysis, natural strains from both grasses were identified as L. plantarum, L. casei, Lactobacillus acidipiscis, Leuconostoc pseudomesenteroides, Leuconostoc garlicum, Weissella confusa, and Lactococcus lactis. Lactobacillus plantarum and L. casei are the dominant species and could grow at lower pH and produce more lactic acid than the other isolates. Crude protein and neutral detergent fiber were 5.8 and 83.7% of dry matter (DM) for Guinea grass, and 7.5 and 77.1% of DM for Napier grass. Guinea grass had a low level of water-soluble carbohydrates (0.39% of DM). Guinea grass silage treated with cellulase had a lower pH and higher lactic acid content than control and LAB treatments. The 0.1% AC and MC treatments had the best result for fermentation quality. All high water-soluble carbohydrate (2.38% DM) Napier grass silages showed good fermentation quality. Compared with control and LAB-inoculated silage, the cellulase-treated silages had significantly higher crude protein content and

  2. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  3. Handling Gene and Protein Names in the Age of Bioinformatics: The Special Challenge of Secreted Multimodular Bacterial Enzymes such as the cbhA/cbh9A Gene of Clostridium thermocellum

    Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schwarz, Wolfgang H. [Technical University of Munich; Broeker, Jannis [Technical University of Munich; Liebl, Wolfgang [Technical University of Munich; Zverlov, Vladimir V. [Technical University of Munich; Russian Academy of Science

    2018-02-26

    An increasing number of researchers working in biology, biochemistry, biotechnology, bioengineering, bioinformatics and other related fields of science are using biological molecules. As the scientific background of the members of different scientific communities is more diverse than ever before, the number of scientists not familiar with the rules for non-ambiguous designation of genetic elements is increasing. However, with biological molecules gaining importance through biotechnology, their functional and unambiguous designation is vital. Unfortunately, naming genes and proteins is not an easy task. In addition, the traditional concepts of bioinformatics are challenged with the appearance of proteins comprising different modules with a respective function in each module. This article highlights basic rules and novel solutions in designation recently used within the community of bacterial geneticists, and we discuss the present-day handling of gene and protein designations. As an example we will utilize a recent mischaracterization of gene nomenclature. We make suggestions for better handling of names in future literature as well as in databases and annotation projects. Our methodology emphasizes the hydrolytic function of multi-modular genes and extracellular proteins from bacteria.

  4. Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus

    Tong, C C; Cole, A L; Shepherd, M G

    1980-10-01

    Three cellulases and a beta-glucosidase were purified from the culture filtrate of the thermophilic fungus Thermoascus aurantiacus. The isolated enzymes were all homogenous on polyacrylamide-disc-gel electrophoresis. Data from chromatography on Bio-Gel P-60 and solium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated molecular weights of 87000 (beta-glucosidase), 78000 (cellulase I), 49000 (cellulase II) and 34000 (cellulase III); the carbohydrate contents of the enzymes were 33.0 5.5, 2.6 and 1.8% (w/w) respectively. Although the three purified cellulases were active toward filter paper, only cellulases I and III were active towards CM (Carboxymethyl)-cellulose. Cellulase I was also active towards yeast glucan. The Km and catalytic-centre-activity values for the enzymes were as follows; 0.52 mu mol/ml and 6.5 by 10 to the power of 4 for beta-glucosidase on p-nitrophenyl beta-d-glucoside, 3.9 mg/ml and 6.3 for cellulase I on CM-cellulose, 1.2 mg/ml and 1.1 for cellulase I on yeast glucan, 34.4 mg/ml and 0.34 for cellulase II on filter paper, and 1.9 mg/ml and 33 for cellulase III on CM-cellulose.

  5. Clostridium subterminale septicemia in an immunocompetent patient

    Daganou Maria

    2016-01-01

    Full Text Available Clostridium subterminale is a Clostridium species that has been rarely isolated in the blood of immunocompromised patients. We report a case of C. subterminale septicemia in an immunocompetent patient who presented with acute mediastinitis following spontaneous esophageal rupture.

  6. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.

    Xue, Yiyun; Wang, Xiahui; Chen, Xingxuan; Hu, Jiajun; Gao, Min-Tian; Li, Jixiang

    2017-06-01

    Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Banana peel: A novel substrate for cellulase production under solid ...

    use

    2011-12-05

    Dec 5, 2011 ... The feasibility of using banana peel for the production of cellulase by Trichoderma viride GIM 3.0010 in solid-state fermentation was evaluated in this study. The effect of incubation time, incubation temperature, initial moisture content of the medium, inoculum size and supplementation of carbon sources ...

  9. Fermentative production and kinetics of cellulase protein on ...

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... various carbon sources on the production of cellulase using strains of T. reesei QM 9414, 97.177 and Tm3. Pretreatment of sugarcane ... of cellulose chains; endo-1,4-β-D-glucanses which cleave internal glucosidic bonds ..... production, the Leudeking piret model (Rakshit and Sahai, 1991) was developed.

  10. Importance of cellulase cocktails favoring hydrolysis of cellulose.

    Victoria, Juliet; Odaneth, Annamma; Lali, Arvind

    2017-07-03

    Depolymerization of lignocellulosic biomass is catalyzed by groups of enzymes whose action is influenced by substrate features and the composition of cellulase preparation. Cellulases contain a mixture of variety of enzymes, whose proportions dictate the saccharification of biomass. In the current study, four cellulase preparation varying in their composition were used to hydrolyze two types of alkali-treated biomass (aqueous ammonia-treated rice straw and sodium hydroxide-treated rice straw) to study the effect on catalytic rate, saccharification yields, and sugar release profile. We found that substrate features affected the extent of saccharification but had minimal effect on the sugar release pattern. In addition, complete hydrolysis to glucose was observed with enzyme preparation having at least a cellobiase units (CBU)/carboxymethyl cellulose (CMC) ratio (>0.15), while a modified enzyme ratio can be used for oligosaccharide synthesis. Thus, cellulase preparation with defined ratios of the three main enzymes can improve the saccharification which is of utmost importance in defining the success of lignocellulose-based economies.

  11. Improving cellulase production by Aspergillus niger using adaptive evolution

    Patyshakuliyeva, Aleksandrina; Arentshorst, Mark; Allijn, Iris E; Ram, Arthur F J; de Vries, Ronald P; Gelber, Isabelle Benoit

    OBJECTIVES: To evaluate the potential of adaptive evolution as a tool in generating strains with an improved production of plant biomass degrading enzymes. RESULTS: An Aspergillus niger cellulase mutant was obtained by adaptive evolution. Physiological properties of this mutant revealed a five times

  12. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  13. Chapter Three -- Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels

    Greene, Eric R. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.; Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center; Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center; Tan, Zhongping [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.

    2015-10-24

    Methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.

  14. (Trametes sp.) in the production of cellulase and xylanase

    Nanda

    2016-05-18

    May 18, 2016 ... in solid-sate fermentation (SSF), in this work, the production of cellulase and xylanase by the fungus ... sugars can be converted to ethanol, lactic acid and ... substances; clarification of juices and wines; improving ..... SSF processes has a marked effect on growth kinetics, ..... Overview of applied solid-state.

  15. Endogenous cellulases in stylet secretions of cyst nematodes

    Smant, G.

    1998-01-01

    This thesis describes the identification ofβ-1,4-endoglucanases (cellulases) in stylet secretions of the two cyst nematodes species, Globodera rostochiensis and Heterodera glycines . A novel method was developed to raise monoclonal antibodies that were

  16. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  17. Ecofriendly application of cellulase and xylanase producing marine ...

    windows

    2012-06-05

    Jun 5, 2012 ... producing marine Streptomyces clavuligerus as enhancer in ... pretreatment of cellulase, xylanase and the combination of enzymes. ... Energy from biomass holds a promising scope under ... investment, simplification of the fermentation media, ... biodegradation of lignocellulosic residues and enhanced ...

  18. Biohydrolysis of Saccharum spontaneum for cellulase production by ...

    Saccharum spontaneum, a wasteland weed, is utilized for cellulase production by Aspergillus terreus in solid state fermentation. S. spontaneum served as good carbon source and solid support. Various process parameters including optimal nitrogen source, initial moisture level, incubation time, initial pH, incubation ...

  19. Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 ...

    Bagasse, corncob and sawdust were used as lignocellulosic substrates for the production of cellulase enzyme using Aspergillus flavus after ballmilling and pretreatment with caustic soda. From the fermentation studies, sawdust gave the best result with an enzyme activity value of 0.0743IU/ml while bagasse and corncob ...

  20. Exploration of indigenous agrowastes for cellulase production by ...

    Regional agrowastes such as Vigna mungo, Saccharum spontaneum and Brassica campestris were collected and biohydrolysis of these substrates for cellulase production were carried out by Aspergillus niger. Proximate composition of each agrowastes was analyzed based on dry weight, to have an insight view of their ...

  1. Induction and optimization of cellulases using various agro-wastes ...

    SAM

    2014-08-13

    Aug 13, 2014 ... This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase. (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable.

  2. Induction and optimization of cellulases using various agro-wastes ...

    This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable agro-waste for β ...

  3. CBH1 homologs and varian CBH1 cellulase

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  4. The productive cellulase binding capacity of cellulosic substrates.

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Gupta Munishwar

    2007-06-01

    Full Text Available Abstract Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1 hydrolysis of pectin, 2 hydrolysis of xylan and 3 hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.

  6. Clostridium difficile in Retail Meats

    2009-04-16

    Clostridium difficile is a common cause of diarrhea in healthcare settings but little is known about what causes cases in the community. In this podcast, CDC's Dr. L. Clifford McDonald discusses two papers in the May 2009 edition of Emerging Infectious Diseases that explore whether the organism could be found in meat samples purchased in grocery stores in Arizona and Canada.  Created: 4/16/2009 by Emerging Infectious Diseases.   Date Released: 4/16/2009.

  7. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  8. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  9. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    Amanda Cristina Campos Antoniêto

    Full Text Available Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0, neutral (pH 7.0, and alkaline (pH 10.0 medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  10. Pleiotropic roles of Clostridium difficile sin locus

    Ou, Junjun; Dupuy, Bruno

    2018-01-01

    Clostridium difficile is the primary cause of nosocomial diarrhea and pseudomembranous colitis. It produces dormant spores, which serve as an infectious vehicle responsible for transmission of the disease and persistence of the organism in the environment. In Bacillus subtilis, the sin locus coding SinR (113 aa) and SinI (57 aa) is responsible for sporulation inhibition. In B. subtilis, SinR mainly acts as a repressor of its target genes to control sporulation, biofilm formation, and autolysis. SinI is an inhibitor of SinR, so their interaction determines whether SinR can inhibit its target gene expression. The C. difficile genome carries two sinR homologs in the operon that we named sinR and sinR’, coding for SinR (112 aa) and SinR’ (105 aa), respectively. In this study, we constructed and characterized sin locus mutants in two different C. difficile strains R20291 and JIR8094, to decipher the locus’s role in C. difficile physiology. Transcriptome analysis of the sinRR’ mutants revealed their pleiotropic roles in controlling several pathways including sporulation, toxin production, and motility in C. difficile. Through various genetic and biochemical experiments, we have shown that SinR can regulate transcription of key regulators in these pathways, which includes sigD, spo0A, and codY. We have found that SinR’ acts as an antagonist to SinR by blocking its repressor activity. Using a hamster model, we have also demonstrated that the sin locus is needed for successful C. difficile infection. This study reveals the sin locus as a central link that connects the gene regulatory networks of sporulation, toxin production, and motility; three key pathways that are important for C. difficile pathogenesis. PMID:29529083

  11. Clostridium difficile is an autotrophic bacterial pathogen.

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  12. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.

  14. Formation of cellulases and degradation of cellulose by several fungi

    Herr, D; Luck, G; Dellweg, H

    1978-01-01

    Five strains of fungi (Aspergillus niger, Lenzites trabea, Myrothecium verrucaria, Trichoderma koningii and Trichoderma lignorum) were tested for the production of cellulolytic enzymes on pure glucose and on cellulose media. The most active strains belonging to the genera of Trichoderma, Aspergillus and Myrothecium, also secreting high activities of ..beta..-glucosidase, were grown in a bioreactor under defined conditions. Depending on the strain this procedure resulted in a manifold increase in cellulolytic activities. The culture filtrates were concentrated and standardized with respect to ..beta..-glucosidase activity and used for the hydrolysis of cellulose powder. With Trichoderma-cellulase, 46% conversion of crystalline cellulose to glucose was achieved within 48 h. The ratio of cellobiose to glucose found in the hydrolysate, the amount of high molecular carbohydrates as well as the degree of hydrolysis widely depended on the type of cellulase used.

  15. Biosynthesis and isolation of C1 and Cx cellulases

    Panaiotov, Kh; Cholakov, G

    1981-01-01

    Aspergillus usamii, Aspergillus niger, and Trichoderma viridae were grown on media containing lactose, lignin, (NH4)2SO4, urea, KH2PO4, CaCl2, MgSO4, and yeast extract. Maximum activities of cellulase C1 and Cx in Aspergillus usamii were observed after 76 and 90 h to be approximately 6 and approximately 24 units/mug protein, respectively. Maximum production by Aspergillus niger was 5 units C1/mug at 90h and 44 units Cx/mug at 34 h and Trichoderma produced 32.5 units C1 at 34 h and 16.5 units Cx at 58 h. Thus, Trichoderma viride produces cellulases C1 and Cx in a more balanced ratio than the Aspergillus strains.

  16. Nieuwe mogelijkheden bij Clostridium difficile-infecties

    van Nood, Els; Keller, Josbert J.; Kuijper, Ed J.; Speelman, Peter

    2013-01-01

    Currently available broad spectrum antibiotics are not sufficiently effective against recurrent Clostridium difficile infections (CDI). Donor faecal microbiota transplantation is a very effective treatment for second and recurrent infection but is time-consuming and requires careful screening of

  17. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose

    Li, Yanfei; Sun, Zongping; Ge, Xiaoyan; Zhang, Junhua

    2016-01-01

    Background Considerable works have been reported concerning the obstruction of enzymatic hydrolysis efficiency by lignin. However, there is a lack of information about the influence of lignin on the adsorption of cellulases on cellulose, along with the hydrolytic activity of the cellulases adsorbed on lignin. In addition, limited discovery has been reported about the influence of additives on cellulase desorption from lignin and lignocellulosic materials. In this work, the effects of lignin o...

  18. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups invo...

  19. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  20. Cellulase activity of a thermophilic Aspergillus fumigatus (fresenius) strain

    Vandamme, E J; Logghe, J M; Geeraerts, A M

    1982-10-01

    A thermophilic fungus, isolated from horse manure on Whatman-cellulose CF-11 as sole carbon source was identified as Aspergillus fumigatus. It grew optimally at 45 degrees C and displayed highest cellulase activity at 55 degrees C and pH 5.0 towards a range of soluble and crude insolulble cellulosic substrates. Germination and outgrowth of the spore inoculum in carboxymethylcellulose (CMCellulose) medium was accompanied by high endoglucanase (E.C. 3.2.1.4) activity. The cellulose complex e.g. exo-beta-1,4-glucanase (E.C.3.2.1.-); endo-beta-1,4glucanase (E.C.3.2.1.4.) and beta-glucosidase (E.C.3.2.1.21.) displayed quite different properties depending on whether it was formed on low or highly substituted CMCellulose. Extracellular cellulase formation followed biomass accumulation. Upon prolonged incubation cell lysis occurred which resulted in a further increase in cellulase activity. Ball-milled crude cellulosics, such as newsprint, de-inked newsprint, glossy writing paper, toilet paper and beech sawdust were substantially solubilized with 110 hours of growth. The type of crude cellulosic material greatly influenced the pattern of enzyme production. The enzyme complex formed when A. fumigatus was grown on soluble CMC-4M6F, displayed a different activity spectrum towards crude cellulosics compared with that formed on ball-milled glossy writing paper. The extracellular cellulase of A. fumigatus looks promising for a rapid and substantial solubilisation and saccharification of crude cellulosics. (Refs. 32).

  1. Improvement of halophilic cellulase production from locally isolated fungal strain.

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2015-07-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett-Burman design and the Face Centered Central Composite Design (FCCCD). Plackett-Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization.

  2. Cellulase biosynthesis by trichoderma viride on soluble substrates

    Shin, S B; Kitagawa, Y; Suga, K; Ichikawa, K

    1978-01-01

    Batch and continuous cultures of Trichoderma viride QM 6a were carried out using either glucose or cellobiose as the sole carbon source. From the data obtained in the continuous culture with glucose as substrate, growth parameters of this fungus ..mu../sub m/, K/sub s/, m and Y were identified. In the case of glucose as substrate, there were extremely low levels of cellobiase and no detectable cellulase activity in both batch and continuous cultures. The inducible cellobiase was an intracellular enzyme, produced in association with cell growth in batch culture on cellobiose as substrate. A kinetic model for cellobiose degradation and cell growth is proposed. A significant increase in the extracellular cellulase productivity was obtained in the range of low dilution rates from 0.025 h/sup -1/ to 0.2 h/sup -1/ in the continuous culture on cellobiose. From the results of these experiments, it was concluded that in continuous culture on cellobiose as substrate the cellulase activity was determined by the balance between induction and catabolite repression.

  3. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.

    Saini, Reetu; Saini, Jitendra Kumar; Adsul, Mukund; Patel, Anil Kumar; Mathur, Anshu; Tuli, Deepak; Singhania, Reeta Rani

    2015-01-01

    Present study was focused on cellulase production from an indigenously isolated filamentous fungal strain, identified as Penicillium oxalicum. Initially, cellulase production under submerged fermentation in shake flasks resulted in cellulase activity of 0.7 FPU/mL. Optimization of process parameters enhanced cellulase production by 1.7-fold and resulted in maximum cellulase activity of 1.2 FPU/mL in 8 days. Cellulase production was successfully scaled-up to 7 L fermenter under controlled conditions and incubation time was reduced from 8 days to 4 days for achieving similar cellulase titer. Optimum pH and temperature for activity of the crude enzyme were pH 5 and 50 °C, respectively. At 50 °C the produced cellulase retained approximately 50% and 26% of its activity at 48 h and 72 h, respectively. Hydrolytic efficiency of P. oxalicum was comparable to commercial cellulase preparations which indicate its great potential for application in the lignocellulose hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

    Kumar, Rajeev; Wyman, Charles E

    2014-07-01

    Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and β-xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1 g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and β-glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. © 2014 Wiley Periodicals, Inc.

  5. CRISPR Diversity and Microevolution in Clostridium difficile.

    Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe

    2016-09-19

    Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. CRISPR Diversity and Microevolution in Clostridium difficile

    Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe

    2016-01-01

    Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538

  7. Comparative pathogenomics of Clostridium tetani.

    Jonathan E Cohen

    Full Text Available Clostridium tetani and Clostridium botulinum produce two of the most potent neurotoxins known, tetanus neurotoxin and botulinum neurotoxin, respectively. Extensive biochemical and genetic investigation has been devoted to identifying and characterizing various C. botulinum strains. Less effort has been focused on studying C. tetani likely because recently sequenced strains of C. tetani show much less genetic diversity than C. botulinum strains and because widespread vaccination efforts have reduced the public health threat from tetanus. Our aim was to acquire genomic data on the U.S. vaccine strain of C. tetani to better understand its genetic relationship to previously published genomic data from European vaccine strains. We performed high throughput genomic sequence analysis on two wild-type and two vaccine C. tetani strains. Comparative genomic analysis was performed using these and previously published genomic data for seven other C. tetani strains. Our analysis focused on single nucleotide polymorphisms (SNP and four distinct constituents of the mobile genome (mobilome: a hypervariable flagellar glycosylation island region, five conserved bacteriophage insertion regions, variations in three CRISPR (clustered regularly interspaced short palindromic repeats-Cas (CRISPR-associated systems, and a single plasmid. Intact type IA and IB CRISPR/Cas systems were within 10 of 11 strains. A type IIIA CRISPR/Cas system was present in two strains. Phage infection histories derived from CRISPR-Cas sequences indicate C. tetani encounters phages common among commensal gut bacteria and soil-borne organisms consistent with C. tetani distribution in nature. All vaccine strains form a clade distinct from currently sequenced wild type strains when considering variations in these mobile elements. SNP, flagellar glycosylation island, prophage content and CRISPR/Cas phylogenic histories provide tentative evidence suggesting vaccine and wild type strains share a

  8. Comparative pathogenomics of Clostridium tetani.

    Cohen, Jonathan E; Wang, Rong; Shen, Rong-Fong; Wu, Wells W; Keller, James E

    2017-01-01

    Clostridium tetani and Clostridium botulinum produce two of the most potent neurotoxins known, tetanus neurotoxin and botulinum neurotoxin, respectively. Extensive biochemical and genetic investigation has been devoted to identifying and characterizing various C. botulinum strains. Less effort has been focused on studying C. tetani likely because recently sequenced strains of C. tetani show much less genetic diversity than C. botulinum strains and because widespread vaccination efforts have reduced the public health threat from tetanus. Our aim was to acquire genomic data on the U.S. vaccine strain of C. tetani to better understand its genetic relationship to previously published genomic data from European vaccine strains. We performed high throughput genomic sequence analysis on two wild-type and two vaccine C. tetani strains. Comparative genomic analysis was performed using these and previously published genomic data for seven other C. tetani strains. Our analysis focused on single nucleotide polymorphisms (SNP) and four distinct constituents of the mobile genome (mobilome): a hypervariable flagellar glycosylation island region, five conserved bacteriophage insertion regions, variations in three CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems, and a single plasmid. Intact type IA and IB CRISPR/Cas systems were within 10 of 11 strains. A type IIIA CRISPR/Cas system was present in two strains. Phage infection histories derived from CRISPR-Cas sequences indicate C. tetani encounters phages common among commensal gut bacteria and soil-borne organisms consistent with C. tetani distribution in nature. All vaccine strains form a clade distinct from currently sequenced wild type strains when considering variations in these mobile elements. SNP, flagellar glycosylation island, prophage content and CRISPR/Cas phylogenic histories provide tentative evidence suggesting vaccine and wild type strains share a common ancestor.

  9. Engineering yeast for the expression and secretion of cellulase cocktails

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  10. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass.

    Potprommanee, Laddawan; Wang, Xiao-Qin; Han, Ye-Ju; Nyobe, Didonc; Peng, Yen-Ping; Huang, Qing; Liu, Jing-Yong; Liao, Yu-Ling; Chang, Ken-Lin

    2017-01-01

    A themophilic cellulase-producing bacterium was isolated from a hot spring district and identified as Geobacillus sp. HTA426. The cellulase enzyme produced by the Geobacillus sp. HTA426 was purified through ammonium sulfate precipitation and ion exchange chromatography, with the recovery yield and fold purification of 10.14% and 5.12, respectively. The purified cellulase has a molecular weight of 40 kDa. The optimum temperature and pH for carboxymethyl cellulase (CMCase) activity of the purified cellulase were 60°C and pH 7.0, respectively. The enzyme was also stable over a wide temperature range of 50°C to 70°C after 5 h of incubation. Moreover, the strain HTA426 was able to grow and produce cellulase on alkali-treated sugarcane bagasse, rice straw and water hyacinth as carbon sources. Enzymatic hydrolysis of sugarcane bagasse, which was regarded as the most effective carbon source for cellulase production (CMCase activity = 103.67 U/mL), followed by rice straw (74.70 U/mL) and water hyacinth (51.10 U/mL). This strain producing an efficient thermostable cellulose is a potential candidate for developing a more efficient and cost-effective process for converting lignocellulosic biomass into biofuel and other industrial process.

  11. Global analysis of the sporulation pathway of Clostridium difficile.

    Fimlaid, Kelly A; Bond, Jeffrey P; Schutz, Kristin C; Putnam, Emily E; Leung, Jacqueline M; Lawley, Trevor D; Shen, Aimee

    2013-01-01

    The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σ(F), σ(E), σ(G), and σ(K) are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σ(F), σ(E), σ(G), and σ(K) in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σ(F)-dependent, 169 were σ(E)-dependent, 34 were σ(G)-dependent, and 31 were σ(K)-dependent. In contrast with B. subtilis, C. difficile σ(E) was dispensable for σ(G) activation, σ(G) was dispensable for σ(K) activation, and σ(F) was required for post-translationally activating σ(G). Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.

  12. Postpartum Clostridium sordellii infection associated with fatal toxic shock syndrome

    Rørbye, C; Petersen, Ina Sleimann; Nilas, Lisbeth

    2000-01-01

    Clostridium bacteria are anaerobic Gram positive spore-form-ing bacilli, known to cause distinct clinical syndromes such as botulism, tetanus, pseudomembranous colitis and myonecrosis. The natural habitats of Clostridium species are soil, water and the gastrointestinal tract of animals and humans....... In 5-10% of all women, Clostridium species are also found to be normal inhabitants in the microbial flora of the female genital tract. In case of a non-sexually transmitted genital tract infection, Clostridium species are isolated in 4-20%, and clostridium welchii seems to be the most common isolate....... Clostridium sordellii is rarely encountered in clinical specimens (1% of Clostridium species), but it has been described as a human pathogen with fatal potential. Two toxins, a lethal and a hemorrhagic (that antigenically and pathophysiologically appear similar to Clostridium difficile toxins B and A...

  13. A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase

    Cruys-Bagger, Nicolaj; Tatsumi, Hirosuke; Borch, Kim

    2014-01-01

    Cellulases hydrolyze cellulose to soluble sugars and this process is utilized in sustainable industries based on lignocellulosic feedstock. Better analytical tools will be necessary to understand basic cellulase mechanisms, and hence deliver rational improvements of the industrial process...

  14. Toxinas de Clostridium perfringens Toxins of Clostridium perfringens

    W. E. Morris

    2009-12-01

    Full Text Available Clostridium perfringens es un bacilo grampositivo anaerobio con capacidad de formar esporas. Es uno de los patógenos bacterianos con mayor distribución en el medio ambiente, ya que puede ser aislado de muestras de suelo y de agua y además forma parte de la microbiota intestinal de animales y humanos. Sin embargo, en ciertas ocasiones puede actuar como patógeno oportunista y causar enfermedades como la gangrena gaseosa, la enterotoxemia del ovino y del caprino y la disentería del cordero, entre otras. En humanos, está asociado a enfermedades como la intoxicación por alimentos, la enterocolitis necrotizante en niños y la enteritis necrótica o pigbel de las tribus de Papúa-Nueva Guinea. El renovado interés que existe actualmente en el estudio de C. perfringens como patógeno veterinario y humano, junto con el avance de la biología molecular, han hecho posible que la ciencia tenga hoy un conocimiento más profundo sobre la biología y la patogenia de esta bacteria. En esta revisión bibliográfica se discuten y actualizan los principales aspectos de la patogenia intestinal de C. perfringens teniendo en cuenta las toxinas con mayor importancia médica descritas hasta el presente.Clostridium perfringens is an anaerobic gram-positive spore-forming bacillus. It is one of the pathogens with larger distribution in the environment; it can be isolated from soil and water samples, which also belongs to the intestinal flora of animals and humans. However, on some occasions it can act as an opportunistic pathogen, causing diseases such as gas gangrene, enterotoxemia in sheep and goats and lamb dysentery, among others. In human beings, it is associated to diseases such as food poisoning, necrotic enterocolitis of the infant and necrotic enteritis or pigbel in Papua-New Guinea tribes. The renewed interest existing nowadays in the study of C. perfringens as a veterinarian and human pathogen, together with the advance of molecular biology, had enabled

  15. The complete genome sequence of Clostridium indolis DSM 755(T.).

    Biddle, Amy S; Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Woyke, Tanja; Blanchard, Jeffrey L

    2014-06-15

    Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species.

  16. Molecular diversity of Clostridium botulinum and phenotypically similar strains.

    Grenda, T; Kukier, E; Sieradzki, Z; Goldsztejn, M; Kwiatek, K

    2016-12-01

    This study was undertaken to examine phenotypic and genetic features of strains preliminary classified as Clostridium botulinum species. The phenotypic characteristics were assessed with different culture media and biochemical tests. The genetic characterization included detection of botulinum toxin genes by PCR and macrorestriction analysis with SmaI, XhoI and SacII by PFGE (Pulsed-field Gel Electrophoresis). Despite similar biochemical properties of all analysed strains, only 47% of them contained genes determining toxicity specific to C. botulinum species. The most valuable differentiation of C. botulinum and C. botulinum-like strains was obtained after SmaI digestion. The highest affinity was observed among C. botulinum type B profiles which was even up to 100%. It was found 100% of affinity between C. botulinum and C. botulinum-like strains, however, the similarity among C. botulinum and C. botulinum-like was generally lower than 80%.

  17. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water

    Lu, Xianqin; Zheng, Xiaoju; Li, Xuezhi; Zhao, Jian

    2016-01-01

    Background In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost ...

  18. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  19. Cleanability Improvement of Cotton Fabrics Through Their Topographical Changes Due to the Conditioning with Cellulase Enzyme

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2012-01-01

    In this study, topographical changes of woven cotton fabrics conditioned with a cellulase enzyme during several wash–dry cycles are systematically studied. A recent study of cellulase enzyme effect on cellulose films has proven that this substance selectively attacks amorphous regions of cellulose,

  20. Mechanism of interaction between cellulase action and applied shear force, an hypothesis

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    An overview is given of what is known in literature concerning the structure of both cellulose and cellulase enzymes and the enzymatic degradation of cellulose. Based on this knowledge, a hypothesis is formulated about the relation between cellulase performance and required applied shear force on

  1. 21 CFR 184.1250 - Cellulase enzyme preparation derived from Trichoderma longibrachiatum.

    2010-04-01

    ... Trichoderma longibrachiatum. 184.1250 Section 184.1250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1250 Cellulase enzyme preparation derived from Trichoderma longibrachiatum. (a) Cellulase enzyme preparation is derived from a nonpathogenic, nontoxicogenic strain of Trichoderma longibrachiatum (formerly T...

  2. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  3. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid

    Olsen, Søren Nymand; Bohlin, Christina Helena; Murphy, Leigh

    2011-01-01

    of cellulases to lignin. In the current work we address this hypothesis using tannic acid (TAN) as a general poly-phenolic model compound (for lignin and soluble phenolics) and measure the mutual interactions of cellulases (CBHI, CBHII, EGI, EGII and BG), TAN and NIS (Triton X-100) using isothermal titration...

  5. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  6. Polyclonal Antibody Therapies for Clostridium difficile Infection

    Michael R. Simon

    2014-10-01

    Full Text Available Clostridium difficile infection has emerged as a growing worldwide health problem. The colitis of Clostridium difficile infection results from the synergistic action of C. difficile secreted toxins A and B upon the colon mucosa. A human monoclonal IgG anti-toxin has demonstrated the ability in combination therapy to reduce mortality in C. difficile challenged hamsters. This antibody is currently in a clinical trial for the treatment of human Clostridium difficile infection. More than one group of investigators has considered using polyclonal bovine colostral antibodies to toxins A and B as an oral passive immunization. A significant proportion of the healthy human population possesses polyclonal antibodies to the Clostridium difficile toxins. We have demonstrated that polyclonal IgA derived from the pooled plasma of healthy donors possesses specificity to toxins A and B and can neutralize these toxins in a cell-based assay. This suggests that secretory IgA prepared from such pooled plasma IgA may be able to be used as an oral treatment for Clostridium difficile infection.

  7. Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis*

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-01-01

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement. PMID:24085297

  8. Daily dynamics of cellulase activity in arable soils depending on management practices

    Lavrent'eva, E. V.; Semenov, A. M.; Zelenev, V. V.; Chzhun, Yu.; Semenova, E. V.; Semenov, V. M.; Namsaraev, B. B.; van Bruggen, A. H. C.

    2009-08-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic fertilizers alone) in a microfield experiment. The regular oscillatory dynamics of the cellulase activity were revealed and confirmed by the harmonic (Fourier) analysis. The oscillatory dynamics of the cellulase activity had a self-oscillatory nature and was not directly caused by the disturbing impacts of both the uncontrolled (natural) changes in the temperature and moisture (rainfall) and the controlled ones (the application of different fertilizers). The disturbing impacts affected the oscillation amplitude of the cellulase activity but not the frequency (periods) of the oscillations. The periodic oscillations of the cellulase activity were more significant in the soil under the high-input management compared to the soil under the biological farming system.

  9. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Production of cellulases by fungal cultures isolated from forest litter soil

    A. Sri Lakshmi

    2012-06-01

    Full Text Available The aims of this study were the isolation and screening of fungal cultures from forest litter soil for cellulases production. In the present study, four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Pencillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucose subunits linked by beta-1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp. was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and beta -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA, Carboxy-methly cellulase assay (CMCase and beta -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined.

  11. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation

    Bentil, Joseph A.; Thygesen, Anders; Mensah, Moses

    2018-01-01

    fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production....... on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates......) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated...

  12. Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B

    Gilbert, Michel; Breuil, Colette; Saddler, J N [Forintek Canada Corp., Ottawa, ON (CA). Dept. of Biotechnology and Chemistry

    1992-01-01

    The authors initiated a study of the cellulases from the thermophilic fungus Thielavia terrestris 255B to see how they compared with enzymes derived from mesophilic fungi such as Trichoderma. To try to obtain maximum production of a complete cellulase system, the fungus was first grown on a variety of soluble and insoluble substrates. As well as assaying the culture filtrates for cellulase activity and protein concentration, the enzyme profiles were compared using non-denaturing electrophoretic techniques (IEF and native-PAGE). The separation by native-PAGE and IEF was followed by activity staining methods to detect endoglucanase and xylanase activities. Native-PAGE could not be used to determine accurately the M{sub r} of the cellulases because of possible differences in mass/charge ratios. Bands with apparent M{sub r} values above 200000 were reproducibly detected. This suggested that the various cellulase components may be organized into high molecular weight complexes. (author).

  13. Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology

    P. Saravanan

    2013-01-01

    Full Text Available Optimization of the media components for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using pineapple waste as substrate was performed with statistical methodology based on experimental designs. The screening of nutrients and their influence on the cellulase production was studied using a Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and yeast extract were found to have the positive influence for the production of cellulase. The selected components were optimized using response surface methodology. The optimum concentrations are avicel: 26.5 g/L, soybean cake flour: 22.5 g/L, KH2PO4: 4.5 g/L, and yeast extract: 12.3 g/L. A maximum cellulase activity of 8.61 IU/mL was obtained under the optimized medium in the validation experiment.

  14. Inhibition of lignin-derived phenolic compounds to cellulase.

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  15. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.

    Edwards, Adrianne N; Nawrocki, Kathryn L; McBride, Shonna M

    2014-10-01

    The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Role of collagenase clostridium histolyticum in Peyronie's disease

    Peak TC

    2015-09-01

    Full Text Available Taylor C Peak,1 Gregory C Mitchell,2 Faysal A Yafi,2 Wayne J Hellstrom2 1Department of Urology, Tulane University School of Medicine, 2Section of Andrology, Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA Abstract: Peyronie's disease is a localized connective tissue disease characterized by an active, inflammatory phase and a stable, quiescent phase, with the eventual development of collagenous plaques within the tunica albuginea of the penis. Risk factors primarily associated with Peyronie's disease include Dupuytren's contracture, penile trauma, and family history. A variety of treatment strategies have been utilized, including oral and topical agents, electromotive drug administration, intralesional injections, extracorporeal shockwave therapy, penile traction, and surgery. However, most of these strategies are ineffective, with surgery being the only definitive treatment. Collagenase clostridium histolyticum is a newly US Food and Drug Administration-approved agent for intralesional injection. It is thought to downregulate many of the disease-related genes, cytokines, and growth factors and degrade collagen fibers. It also suppresses cell attachment, spreading, and proliferation. Collagenase clostridium histolyticum has been clinically proven to be a safe and effective therapeutic option, demonstrating decreases in penile curvature and plaque consistency, as well as increases in patient satisfaction. During clinical evaluation, the Peyronie's Disease Questionnaire was validated as an effective tool for assessing treatment outcomes. Keywords: connective tissue disease, CCH, Xiaflex, Peyronie's Disease Questionnaire

  17. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  18. Fungal cellulases as an aid for the saccharification of cassava

    De Menezes, T J.B.; Arakaki, T; DeLamo, P R; Sales, A M

    1978-04-01

    Culture broths of cellulolytic fungi were used together with commercial anylases to enhance the saccharification of cassava starch slurry. It was found that the addition of appropriate concentration of the cellulases Trichoderma viride and a soil isolated Basidiomycete, increased both the rate of sugar formation and the degree of solubilization, and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rheological properties of the must, and the additional sugar produced, an increased ethanol yield would be expected from the alcoholic fermentation of this hydrolyzate.

  19. Cellulase activities in biomass conversion: measurement methods and comparison.

    Dashtban, Mehdi; Maki, Miranda; Leung, Kam Tin; Mao, Canquan; Qin, Wensheng

    2010-12-01

    Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.

  20. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  1. Update on Clostridium difficile infections.

    Le Monnier, A; Zahar, J-R; Barbut, F

    2014-08-01

    Clostridium difficile infections (CDI) occur primarily in hospitalized patients with risk factors such as concomitant or recent use of antibiotics. CDI related additional costs are important for the global population and health-care facilities. CDI epidemiology has changed since 2003: they became more frequent boosted by large outbreaks, more severe, more resistant to antibiotic treatment, and spread to new groups of population without any risk factor. This is partly due to the emergence and worldwide dissemination of new and more virulent C. difficile strains such as the epidemic clone 027/NAP1/BI. The host immune response plays a central role in the pathogenesis of CDI and could also be involved in the occurrence of recurrent or severe forms. New guidelines including new molecular tests (NAAT) have recently clarified and simplified the diagnostic strategies for the microbiological diagnosis of CDI. The CDI incidence was proven to be related to the level of clinical suspicion and the frequency of microbiological screening for C. difficile. The current recommendations for the treatment of CDI mention oral metronidazole as the first line treatment for mild to moderate diarrhea. Oral vancomycin use should be restricted to severe cases. In the absence of consensus, the treatment of multiple recurrences remains a major concern. New and more targeted antibiotics and innovative therapeutic strategies (fecal transplantation, monoclonal antibodies, and vaccination) have emerged as new therapies for CDI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Epidemiology of Clostridium difficile Infection

    DePestel, Daryl D.; Aronoff, David M.

    2014-01-01

    There has been dramatic change in the epidemiology of Clostridium difficile infection (CDI) since the turn of the 21st Century noted by a marked increase in incidence and severity, occurring at a disproportionately higher frequency in older patients. Historically considered a nosocomial infection associated with antibiotic exposure, CDI has now also emerged in the community in populations previously considered low risk. Emerging risk factors and disease recurrence represent continued challenges in the management of CDI. The increased incidence and severity associated with CDI has coincided with the emergence and rapid spread of a previously rare strain, ribotype 027. Recent data from the U.S. and Europe suggest the incidence of CDI may have reached a crescendo in recent years and is perhaps beginning to plateau. The acute-care direct costs of CDI were estimated to be $4.8 billion in 2008. However, nearly all the published studies have focused on CDI diagnosed and treated in acute-care hospital setting and fail to measure the burden outside the hospital, including recently discharged patients, outpatients, and those in long-term care facilities. Enhanced surveillance methods are needed to monitor the incidence, identify populations at risk, and characterize the molecular epidemiology of strains causing CDI. PMID:24064435

  3. Clostridium punense sp. nov., an obligate anaerobe isolated from healthy human faeces.

    Lanjekar, Vikram Bholanath; Marathe, Nachiket Prakash; Shouche, Yogesh Shreepad; Ranade, Dilip Ramchandra

    2015-12-01

    An obligately anaerobic, rod-shaped (0.5-1.0 × 2.0-10.0 μm), Gram-stain-positive bacterium, occurring mainly singly or in pairs, and designated BLPYG-8T, was isolated from faeces of a healthy human volunteer aged 56 years. Cells were non-motile. Oval, terminal spores were formed that swell the cells. The strain was affiliated with the genus Clostridium sensu stricto (Clostridium rRNA cluster I) as revealed by 16S rRNA gene sequence analysis. Strain BLPYG-8T showed 97.3 to 97.4 % 16S rRNA gene sequence similarity with Clostridium sulfidigenes DSM 18982T, Clostridium subterminale DSM 6970T and Clostridium thiosulfatireducens DSM 13105T. DNA-DNA hybridization and phenotypic analysis showed that the strain was distinct from its closest relatives, C. sulfidigenes DSM 18982T, C. subterminale DSM 6970T, C. thiosulfatireducens DSM 13105T with 54.2, 53.9 and 53.3 % DNA-DNA relatedness, respectively. Strain BLPYG-8T grew in PYG broth at temperatures between 20 and 40 °C (optimum 37 °C). The strain utilized a range of amino acids as well as carbohydrates as a source of carbon and energy. Glucose fermentation resulted in the formation of volatile fatty acids mainly acetic acid, n-butyric acid and organic acids such as succinic and lactic acid. The DNA G+C content of strain BLPYG-8T was 44.1 mol%. The major fatty acids (>10 %) were C14 : 0, iso-C15 : 0, C16 : 1ω7c and C16 : 0. Phylogenetic analysis and specific phenotypic characteristics and/or DNA G+C content differentiated the strain from its closest relatives. On the basis of these data, strain BLPYG-8T represents a novel species of the genus Clostridium, for which the name Clostridium punense sp. nov. is proposed. The type strain is BLPYG-8T ( = DSM 28650T = CCUG 64195T = MCC 2737T).

  4. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels

    Isadora Argou-Cardozo

    2018-04-01

    Full Text Available Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD. The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY, a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii we also hypothesize about how environmental GLY levels may deleteriously influence the gut–brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  5. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels.

    Argou-Cardozo, Isadora; Zeidán-Chuliá, Fares

    2018-04-04

    Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD). The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY), a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i) we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii) we also hypothesize about how environmental GLY levels may deleteriously influence the gut-brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  6. First Insights into the Genome Sequence of Clostridium thermopalmarium DSM 5974, a Butyrate-Producing Bacterium Isolated from Palm Wine.

    Poehlein, Anja; Hettwer, Eva; Mohnike, Lennart; Daniel, Rolf

    2018-04-26

    Clostridium thermopalmarium is a moderate thermophilic, rod-shaped, and endospore-forming bacterium, which was isolated from palm wine in Senegal. Butyrate is produced from a broad variety of sugar substrates. Here, we present the draft genome sequence of C. thermopalmarium DSM 5974 (2.822 Mb) containing 2,665 predicted protein-encoding genes. Copyright © 2018 Poehlein et al.

  7. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  8. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  9. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.

    Jeoh, Tina; Ishizawa, Claudia I; Davis, Mark F; Himmel, Michael E; Adney, William S; Johnson, David K

    2007-09-01

    Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.

  10. Effect of exogenous cellulase enzyme on feed digestibility in lamb

    Boonek, Lerchat; Shinkoi, Henrry S; Piadang, Nattayana

    2006-09-01

    The aim of this study was to determine the effect of exogenous enzyme on digestibility and N retention in lamb. Eight lambs were randomly allocated to 2 experiment group in group comparison design trial. Experimental treatments were: 1) CTL (No enzyme) and 2 50NZ (Mixed enzyme with high cellulase at 50g/100kg.feed). The digestibility study showed that Exogenous enzyme increased (P<0.05) dry matter and crude protein digestibility of treated lamb compared to those of control. A similar trend (P=0.11) was observed for the NDF digestibility. Mean values for dry matter digestibility were 57.86 and 69.83% and for protein digestibility were 64.76 and 73.38%, for CTL and 50NZ, respectively). The N intake was similar among treatment, averaging 22.57g/head/day. Percent N retained of 50 NZ treated lambs was higher (P<.05) than those of CTL group (mean value were 47.74 and 59.07 for CTC and 50NZ, respectively). Feed efficiency or feed conversion ratio was numerically improved for enzyme-treated groups. Overall, the results of this study provide evidence that mixed cellulase enzyme can be used to improver performance of lambs as compare to non-enzyme diet.

  11. EPIDEMIOLOGIC INVESTIGATION OF CLOSTRIDIUM DIFFICILE AND CLOSTRIDIUM PERFRINGENS IN HEALTHY HORSES

    Schoster, Angelika; Arroyo, Luis; Staempfli, Henry

    Clostridium difficile and Clostridium perfringens are important causes of equine colitis but can also be found in healthy individuals. Epidemiologic information is restricted to cross-sectional studies of fecal shedding with little information on prevalence in gastrointestinal compartments other ...... supports results of previous studies that indicate this organism is rare in healthy horses.......Clostridium difficile and Clostridium perfringens are important causes of equine colitis but can also be found in healthy individuals. Epidemiologic information is restricted to cross-sectional studies of fecal shedding with little information on prevalence in gastrointestinal compartments other...... than feces and variability in shedding over time. The objectives were to investigate the presence of C. difficile and C. perfringens in healthy horses over time and assess prevalence in different gastrointestinal compartments. Feces were collected monthly from 25 horses for one year. Ingesta were...

  12. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  13. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  14. Description of Clostridium phoceensis sp. nov., a new species within the genus Clostridium

    M. Hosny

    2016-11-01

    Full Text Available Clostridium phoceensis sp. nov., strain GD3T (= CSUR P1929 = DSM 100334 is the type strain of C. phoceensis sp. nov., a new species within the genus Clostridium. This strain was isolated from the gut microbiota of a 28-year-old healthy French man. C. phoceensis is a Gram-negative, spore-forming, nonmotile, strictly anaerobic bacterium. We describe its complete genome sequence and annotation, together with its phenotypic characteristics.

  15. Clostridium difficile infection in Thailand.

    Putsathit, Papanin; Kiratisin, Pattarachai; Ngamwongsatit, Puriya; Riley, Thomas V

    2015-01-01

    Clostridium difficile is the aetiological agent in ca. 20% of cases of antimicrobial-associated diarrhoea in hospitalised adults. Diseases caused by this organism range from mild diarrhoea to occasional fatal pseudomembranous colitis. The epidemiology of C. difficile infection (CDI) has changed notably in the past decade, following epidemics in the early 2000s of PCR ribotype (RT) 027 infection in North America and Europe, where there was an increase in disease severity and mortality. Another major event has been the emergence of RT 078, initially as the predominant ribotype in production animals in the USA and Europe, and then in humans in Europe. Although there have been numerous investigations of the epidemiology of CDI in North America and Europe, limited studies have been undertaken elsewhere, particularly in Asia. Antimicrobial exposure remains the major risk factor for CDI. Given the high prevalence of indiscriminate and inappropriate use of antimicrobials in Asia, it is conceivable that CDI is relatively common among humans and animals. This review describes the level of knowledge in Thailand regarding C. difficile detection methods, prevalence and antimicrobial susceptibility profile, as well as the clinical features of, treatment options for and outcomes of the disease. In addition, antimicrobial usage in livestock in Thailand will be reviewed. A literature search yielded 18 studies mentioning C. difficile in Thailand, a greater number than from any other Asian country. It is possible that the situation in Thailand in relation to CDI may mirror the situation in other developing Asians countries. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Systems Analysis of Lactose Metabolism in Trichoderma reesei Identifies a Lactose Permease That Is Essential for Cellulase Induction

    Ivanova, Christa; Bååth, Jenny A.; Seiboth, Bernhard; Kubicek, Christian P.

    2013-01-01

    Trichoderma reesei colonizes predecayed wood in nature and metabolizes cellulose and hemicellulose from the plant biomass. The respective enzymes are industrially produced for application in the biofuel and biorefinery industry. However, these enzymes are also induced in the presence of lactose (1,4-0-ß-d-galactopyranosyl-d-glucose), a waste product from cheese manufacture or whey processing industries. In fact, lactose is the only soluble carbon source that induces these enzymes in T. reesei on an industrial level but the reason for this unique phenomenon is not understood. To answer this question, we used systems analysis of the T. reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded all glycosyl hydrolases necessary for cellulose degradation and particularly for the attack of monocotyledon xyloglucan, from which ß-galactosides could be released that may act as the inducers of T. reesei’s cellulases and hemicellulases. In addition, lactose also induces a high number of putative transporters of the major facilitator superfamily. Deletion of fourteen of them identified one gene that is essential for lactose utilization and lactose uptake, and for cellulase induction by lactose (but not sophorose) in pregrown mycelia of T. reesei. These data shed new light on the mechanism by which T. reesei metabolizes lactose and offers strategies for its improvement. They also illuminate the key role of ß-D-galactosides in habitat specificity of this fungus. PMID:23690947

  17. Complete genome sequence of Clostridium estertheticum DSM 8809, a microbe identified in spoiled vacuum packed beef

    Zhongyi Yu

    2016-11-01

    Full Text Available Blown pack spoilage (BPS is a major issue for the beef industry. Aetiological agents of BPS involve members of a group of Clostridium species, including Clostridium estertheticum which has the ability to produce gas, mostly carbon dioxide, under anaerobic psychotrophic growth conditions. This spore-forming bacterium grows slowly under laboratory conditions, and it can take up to 3 months to produce a workable culture. These characteristics have limited the study of this commercially challenging bacterium. Consequently information on this bacterium is limited and no effective controls are currently available to confidently detect and manage this production risk. In this study the complete genome of Clostridium estertheticum DSM 8809 was determined by SMRT® sequencing. The genome consists of a circular chromosome of 4.7 Mbp along with a single plasmid carrying a potential tellurite resistance gene tehB and a Tn3-like resolvase-encoding gene tnpR. The genome sequence was searched for central metabolic pathways that would support its biochemical profile and several enzymes contributing to this phenotype were identified. Several putative antibiotic/biocide/metal resistance-encoding genes and virulence factors were also identified in the genome, a feature that requires further research. The availability of the genome sequence will provide a basic blueprint from which to develop valuable biomarkers that could support and improve the detection and control of this bacterium along the beef production chain.

  18. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.

    Wang, Yi; Hu, Qiongzheng; Tian, Tongtong; Gao, Yan'an; Yu, Li

    2016-11-01

    A liquid crystal (LC)-based sensor, which is capable of monitoring enzymatic activity at the aqueous/LC interface and detecting cellulase and cysteine (Cys), was herein reported. When functionalized with a surfactant, dodecyl β-d-glucopyranoside, the 4-cyano-4'-pentylbiphenyl (5CB) displays a dark-to-bright transition in the optical appearance for cellulase. We attribute this change to the orientational transition of LCs, as a result of enzymatic hydrolysis between cellulase and surfactant. Furthermore, by adding cellulase and Cu(2+), our surfactant-LCs system performs an interesting ability to detect Cys, even though Cys could not interact with surfactant or LC directly. Alternatively, through the strong binding between Cys and Cu(2+), cellulase was able to hydrolyze surfactant in the presence of Cu(2+), leading to the transition of LCs from dark to bright. The detection limit of the LC sensor was around 1×10(-5)mg/mL and 82.5μM for cellulase and Cys, respectively. The LC-based sensor may contribute to the development of low-cost, expedient, and label-free detection for cellulase and Cys and the design strategy may also provide a novel way for detecting multiple analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  2. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants

    Xiran Jiang

    2017-01-01

    Full Text Available The production of cellulases in plants is an economical method for the conversion of lignocellulosic biomass into fuels. Herein we report the expressions of two thermostable Acidothermus cellulolyticus cellulases, endo-1,4-β-D-glucanase (E1 and exoglucanase (Gux1, in tobacco and rice. To evaluate the expression of these recombinant cellulases, we expressed the full-length E1, the catalytic domains of E1 (E1cd and Gux1 (Gux1cd, as well as an E1–Gux1cd fusion enzyme in various subcellular compartments. In the case of tobacco, transgenic plants that expressed apoplast-localized E1 showed the highest level of activity, about three times higher than those that expressed the cytosolic E1. In the case of rice, the level of cellulase-specific activity in the transgenic plants ranged from 11 to 20 nmol 4-methylumbelliferone min−1 mg−1 total soluble protein. The recombinant cellulases exhibited good thermostability below 70 °C. Furthermore, transgenic rice leaves that were stored at room temperature for a month lost about 20% of the initial cellulase activity. Taken together, the results suggested that heterologous expression of thermostable cellulases in plants may be a viable option for biomass conversion.

  3. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera.

    Tao, Zhi-Peng; Sun, Le-Chang; Qiu, Xu-Jian; Cai, Qiu-Feng; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2016-07-01

    In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-β-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.

    Wang, Ying; Radosevich, Mark; Hayes, Douglas; Labbé, Nicole

    2011-05-01

    Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL-cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β-glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre-incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL-cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL-cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co-products from the individual biomass components. Copyright © 2010 Wiley Periodicals, Inc.

  6. Behavior of Clostridium perfringens at low temperatures

    Jong, de A.E.I.; Rombouts, F.M.; Beumer, R.R.

    2004-01-01

    Refrigerated storage is an important step in the preparation of foods and inadequate storage is one of the main causes of food poisoning outbreaks of Clostridium perfringens. Therefore, growth and germination characteristics of C. perfringens in a temperature range of 3-42 degreesC were determined

  7. Clostridium difficile and pediatric inflammatory bowel disease

    Martinelli, Massimo; Strisciuglio, Caterina; Veres, Gabor

    2014-01-01

    BACKGROUND: Clostridium difficile infection is associated with pediatric inflammatory bowel disease (IBD) in several ways. We sought to investigate C. difficile infection in pediatric patients with IBD in comparison with a group of children with celiac disease and to evaluate IBD disease course o...

  8. Clostridium cadaveris bacteraemia: two cases and review.

    Schade, R.P.; Rijn, M. Van; Timmers, H.J.L.M.; Dofferhoff, A.S.M.; Klaassen, C.H.W.; Meis, J.F.G.M.

    2006-01-01

    Clostridium cadaveris is a strict anaerobic Gram-positive rod that is the most prominent bacterium during the decay of dead bodies. We present 2 rare cases of bacteraemia with C. cadaveris. The source of both infectious episodes was most probably of gastrointestinal origin.

  9. Clostridium difficile infection : epidemiology, complications and recurrences

    Bauer, Martijn Philippe

    2014-01-01

    Clostridium difficile is a spore-forming bacterium, the toxin-producing strains of which cause colitis. Risk factors are antibiotics, advanced age and severe comorbidity. C. difficile infection (CDI) has been regarded as mostly a hospital-acquired infection. Preventing relapses is considered the

  10. The changing epidemiology of Clostridium difficile infections

    Freeman, J.; Bauer, M. P.; Baines, S. D.; Corver, J.; Fawley, W. N.; Goorhuis, B.; Kuijper, E. J.; Wilcox, M. H.

    2010-01-01

    The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI.

  11. Clostridium difficile infection in returning travellers

    Michal Stevens, A.; Esposito, Douglas H.; Stoney, Rhett J.; Hamer, Davidson H.; Flores-Figueroa, Jose; Bottieau, Emmanuel; Connor, Bradley A.; Gkrania-Klotsas, Effrossyni; Goorhuis, Abraham; Hynes, Noreen A.; Libman, Michael; Lopez-Velez, Rogelio; McCarthy, Anne E.; von Sonnenburg, Frank; Schwartz, Eli; van Genderen, Perry J. J.; Scott Benson, L.; Leung, Daniel T.

    2017-01-01

    There is increasing recognition of the contribution of community-acquired cases to the global burden of Clostridium difficile infection (CDI). The epidemiology of CDI among international travellers is poorly understood, and factors associated with international travel, such as antibiotic use and

  12. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  13. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    2011-01-01

    Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive information about the

  14. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    Mohagheghi Ali

    2011-09-01

    Full Text Available Abstract Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B' exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive

  15. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    2012-01-01

    Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis

  16. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Amore Antonella

    2012-12-01

    Full Text Available Abstract Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose

  17. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains.

    Agi Deguchi

    2009-05-01

    Full Text Available Clostridium perfringens type A, is both a ubiquitous environmental bacterium and a major cause of human gastrointestinal disease, which usually involves strains producing C. perfringens enterotoxin (CPE. The gene (cpe encoding this toxin can be carried on the chromosome or a large plasmid. Interestingly, strains carrying cpe on the chromosome and strains carrying cpe on a plasmid often exhibit different biological characteristics, such as resistance properties against heat. In this study, we investigated the genetic properties of C. perfringens by PCR-surveying 21 housekeeping genes and genes on representative plasmids and then confirmed those results by Southern blot assay (SB of five genes. Furthermore, sequencing analysis of eight housekeeping genes and multilocus sequence typing (MLST analysis were also performed. Fifty-eight C. perfringens strains were examined, including isolates from: food poisoning cases, human gastrointestinal disease cases, foods in Japan or the USA, or feces of healthy humans. In the PCR survey, eight of eleven housekeeping genes amplified positive reactions in all strains tested. However, by PCR survey and SB assay, one representative virulence gene, pfoA, was not detected in any strains carrying cpe on the chromosome. Genes involved in conjugative transfer of the cpe plasmid were also absent from almost all chromosomal cpe strains. MLST showed that, regardless of their geographic origin, date of isolation, or isolation source, chromosomal cpe isolates, i assemble into one definitive cluster ii lack pfoA and iii lack a plasmid related to the cpe plasmid. Similarly, independent of their origin, strains carrying a cpe plasmid also appear to be related, but are more variable than chromosomal cpe strains, possibly because of the instability of cpe-borne plasmid(s and/or the conjugative transfer of cpe-plasmid(s into unrelated C. perfringens strains.

  18. A kinetic model for the burst phase of processive cellulases

    Præstgaard, Eigil; Olsen, Jens Elmerdahl; Murphy, Leigh

    2011-01-01

    . This approach generally accounts well for the initial time course (approximately 1 h) of the hydrolysis. We suggest that the models will be useful in attempts to rationalize the initial kinetics of processive cellulases, and demonstrate their application to some open questions, including the effect of repeated......Cellobiohydrolases (exocellulases) hydrolyze cellulose processively, i.e. by sequential cleaving of soluble sugars from one end of a cellulose strand. Their activity generally shows an initial burst, followed by a pronounced slowdown, even when substrate is abundant and product accumulation...... of the model, which can be solved analytically, shows that the burst and slowdown can be explained by the relative rates of the sequential reactions in the hydrolysis process and the occurrence of obstacles for the processive movement along the cellulose strand. More specifically, the maximum enzyme activity...

  19. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  20. Developing improved MD codes for understanding processive cellulases

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  1. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  2. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    The 2009 Gordon Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes will present cutting-edge research on the enzymatic degradation of cellulose and other plant cell wall polysaccharides. The Conference will feature a wide range of topics that includes the enzymology of plant structural degradation, regulation of the degradative apparatus, the mechanism of protein complex assembly, the genomics of cell wall degrading organisms, the structure of the substrate and the industrial application of the process particularly within the biofuel arena. Indeed the deployment of plant cell wall degrading enzymes in biofuel processes will be an important feature of the meeting. It should be emphasized that the 2009 Conference will be expanded to include, in addition to cellulase research, recent advances in other plant cell wall degrading enzymes, and contributions from people working on hemicellulases and pectinases will be particularly welcome. Invited speakers represent a variety of scientific disciplines, including biochemistry, structural biology, genetics and cell biology. The interplay between fundamental research and its industrial exploitation is a particularly important aspect of the meeting, reflecting the appointment of the chair and vice-chair from academia and industry, respectively. The meeting will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with more established figures in the field. Indeed, some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. The Conference is likely to be heavily subscribed so we would recommend that you submit

  3. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase.

    Li, Mao; Zhou, Hanlin; Zi, Xuejuan; Cai, Yimin

    2017-10-01

    In order to improve the silage fermentation of stylo (Stylosanthes guianensis) in tropical areas, stylo silages were prepared with commercial additives Lactobacillus plantarum Chikuso-1 (CH1), L. rhamnasus Snow Lact L (SN), Acremonium cellulase (CE) and their combination as SN+CE or CH1 + CE, and the fermentation quality, chemical composition and ruminal degradation of these silages were studied. Stylo silages treated with lactic acid bacteria (LAB) or cellulase, the pH value and NH 3 -N ⁄ total-N were significantly (P fermentation and ruminal degradation than SN+CE treatment. The results confirmed that LAB or LAB plus cellulase treatment could improve the fermentation quality, chemical composition and ruminal degradation of stylo silage. Moreover, the combined treatment with LAB and cellulase may have beneficial synergistic effects on ruminal degradation. © 2017 Japanese Society of Animal Science.

  4. Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems

    Saddler, J N

    1982-11-01

    Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase (1,4-(1,3;1,4)-beta-D-glucan 4- glucanohydrolase, EC 3.2.1.4) activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the beta-D-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) activity was approximately six to nine times greater. (Refs. 26).

  5. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  6. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass

    Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH)...

  7. Reliable simultaneous zymographic method of characterization of cellulolytic enzymes from fungal cellulase complex.

    Dojnov, Biljana; Grujić, Marica; Vujčić, Zoran

    2015-08-01

    A method for zymographic detection of specific cellulases in a complex (endocellulase, exocellulase, and cellobiase) from crude fermentation extracts, after a single electrophoretic separation, is described in this paper. Cellulases were printed onto a membrane and, subsequently, substrate gel. Cellobiase isoforms were detected on the membrane using esculine as substrate, endocellulase isoforms on substrate gel with copolymerized carboxymethyl cellulose (CMC), while exocellulase isoforms were detected in electrophoresis gel with 4-methylumbelliferyl-β-d-cellobioside (MUC). This can be a useful additional tool for monitoring and control of fungal cellulase production in industrial processes and fundamental research, screening for particular cellulase producers, or testing of new lignocellulose substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting celluloytic complexes

    Mingardon, F.; Chanal, A.; Lopez Contreras, A.M.; Dray, C.; Bayer, E.A.; Fierobe, H.P.

    2007-01-01

    Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from

  9. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888

    Jørgensen, Henning; Eriksson, T.; Borjesson, J.

    2003-01-01

    The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l(-1) cellulose and 10 g l(-1) xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis...... studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity...... the cellulose-binding domain or an essential part of it. The basic xylanase (pI > 9) was only active towards xylan. Two of the purified cellulases with endoglucanase activity were partly sequenced and based on sequence homology with known enzymes they were classified as belonging to families 5 and 12...

  10. Comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30

    Saddler, J.N.; Hogan, C.M.; Louis-Seize, G.

    1985-06-01

    Nearly all of the filter paper, endoglucanase and ..beta..-glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50/sup 0/C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50 - 60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.

  11. The cellulases of Trichoderma viride : mode of action and application in biomass conversion

    Beldman, G.

    1986-01-01

    Beet pulp and potato fibre were liquefied and saccharified with a combination of cellulase from Trichodermaviride and pectinase from Aspergillusniger . Cell wall polysaccharides were hydrolysed extensively. The application

  12. Exogenous Cellulase Contributes to Mycoherbicidal Activity of Fusarium arthrosporioides on Orobanche aegyptiaca

    Olubukola O. Babalola

    2010-01-01

    Full Text Available This paper investigates an association between the tubercle size of Orobanche aegyptiaca, tubercle death, and days to tubercle death in relation to cellulase-assisted mycoherbicide. Fusarium arthrosporioides killed 56% of tubercles when applied with cellulase compared to 35% when no cellulase was added. Death was inversely correlated with days over the two fungal treatment types. O. aegyptiaca tubercle size significantly correlated with the two other infection parameters studied. For F. arthrosporioides, only 9% (2 of the variation in days to death was explained by variation in tubercle size, whereas with cellulase it reaches 14%. In this study, mycelia of F. arthrosporioides did not show apparent damage to the tomato roots.

  13. The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation

    Guo, Yi-Ping; Fan, Yao-Ting; Pan, Chun-Mei; Hou, Hong-Wei [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Fan, Shao-Qun [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Beijing Alcatel-Lucent R and D Center, Beijing, 100102 (China)

    2010-01-15

    Strategies were adopted to cost-efficiently produce cellulose-hydrogen by anaerobic fermentation in this paper. First, cellulase used for hydrolyzing cellulose was prepared by solid-state fermentation (SSF) on cheap biomass from Trichoderma viride. Several cultural conditions for cellulase production on cheap biomass such as moisture content, inoculum size and culture time were studied. And the components of solid-state medium were optimized using statistical methods to further improve cellulase capability. Second, the crude cellulase was applied to cellulose-hydrogen process directly. The maximal hydrogen yield of 122 ml/g-TVS was obtained at the substrate concentration of 20 g/L and cultured time of 53 h. The value was about 45-fold than that of raw corn stalk wastes. The hydrogen content in the biogas was 44-57%(v/v) and there was no significant methane gas observed. (author)

  14. Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose

    Alftrén, Johan

    feedstocks containing insolubles. This could potentially be overcome by immobilizing the cellulases on magnetically susceptible particles. Consequently, the immobilized cellulases could be magnetically recovered and recycled for a new cycle of enzymatic hydrolysis of cellulose. The main objective...... of this thesis was to examine the possibility of immobilizing cellulases on magnetic particles in order to enable enzyme re-use. Studies at lab and pilot scale (20 L) were conducted using model and real substrates. In paper I and III beta-glucosidase or a whole cellulase mixture was covalently immobilized...... on commercial, but expensive, magnetic particles activated with different chemistries. It was observed that the highest immobilized enzyme activities were obtained using magnetic particles activated with cyanuric chloride. In paper II biotinylated recombinant beta-glucosidase was produced and immobilized...

  15. Initiation of sporulation in Clostridium difficile: a twist on the classic model.

    Edwards, Adrianne N; McBride, Shonna M

    2014-09-01

    The formation of dormant endospores is a complex morphological process that permits long-term survival in inhospitable environments for many Gram-positive bacteria. Sporulation for the anaerobic gastrointestinal pathogen Clostridium difficile is necessary for survival outside of the gastrointestinal tract of its host. While the developmental stages of spore formation are largely conserved among endospore-forming bacteria, the genus Clostridium appears to be missing a number of conserved regulators required for efficient sporulation in other spore-forming bacteria. Several recent studies have discovered novel mechanisms and distinct regulatory pathways that control the initiation of sporulation and early-sporulation-specific gene expression. These differences in regulating the decision to undergo sporulation reflects the unique ecological niche and environmental conditions that C. difficile inhabits and encounters within the mammalian host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs.

    Diniz, Amanda Nadia; Coura, Fernanda Morcatti; Rupnik, Maja; Adams, Vicki; Stent, Thomas L; Rood, Julian I; de Oliveira, Carlos Augusto; Lobato, Francisco Carlos Faria; Silva, Rodrigo Otávio Silveira

    2018-02-01

    The aim of this study was to examine the incidence of Clostridioides (previously Clostridium) difficile and Clostridium perfringens in the feces of diarrheic and non-diarrheic dogs. Also, the presence of other common canine enteropathogens was examined. Toxigenic C. difficile and C. perfringens positive for the NetF-encoding gene (netF) were detected in 11 (11.9%) and seven (7.6%) diarrheic dogs, respectively. Three dogs were diagnosed simultaneously with toxigenic C. difficile and netF-positive C. perfringens. Among other enteropathogens, Giardia sp. was the most common agent detected in dogs positive for toxigenic C. difficile or netF-positive C. perfringens. The results suggest that C. difficile and C. perfringens occur more frequently as a primary cause of diarrhea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Clostridium perfringens and C. difficile in parvovirus-positive dogs.

    Silva, Rodrigo Otávio Silveira; Dorella, Fernanda Alves; Figueiredo, Henrique Cesar Pereira; Costa, Érica Azevedo; Pelicia, Vanessa; Ribeiro, Bruna Letícia Devidé; Ribeiro, Marcio Garcia; Paes, Antonio Carlos; Megid, Jane; Lobato, Francisco Carlos Faria

    2017-12-01

    The aim of this study was to investigate Clostridium difficile and Clostridium perfringens in 82 diarrheic dogs positive for canine parvovirus type 2 (CPV). Enterotoxigenic C. perfringens type A was isolated from three (3.6%) dogs. One (1.2%) strain was also positive for NetE- and NetF-encoding genes, which are commonly associated with diarrhea in dogs. Toxigenic C. difficile was isolated from one animal (1.2%), which was also positive for A/B toxins. The present study identified C. difficile and C. perfringens infection in CPV-positive dogs. Further studies are necessary to clarify if clostridial infections may predispose or potentiate CPV-infection in dogs or vice versa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui; Mansfield, Elisabeth; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd

    2017-04-24

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific

  19. Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer

    Zhang, Yingying; Tang, Bin; Du, Guocheng

    2017-01-01

    Cellulolytic fungi have evolved a sophisticated genetic regulatory network of cellulase synthesis to adapt to the natural environment. Even in the absence of lignocellulose, it still secretes low levels of ?constitutive? cellulase for standby application. However, the mechanisms of this constitutive expression remain incompletely understood. Here we identified a cellobiose synthetase (CBS) from Rhizopus stolonifer, which has the capacity to catalyse the synthesis of cellobiose from uridine di...

  20. Effects of some added carbohydrates on cellulases and ligninase and decomposition of whole bagasse

    Nigam, P; Prabhu, K A

    1986-01-01

    Two basidiomycetes mould isolates were studied for the production of extracellular cellulases and ligninase in submerged shake culture using whole bagasse as substrate. The effects of some added carbohydrates on enzyme production, substrate decomposition and biomass formation were examined. In both cultures the addition of lactose stimulated biomass production and increased the decomposition of total carbohydrate and lignin contents of bagasse. Lactose was the only sugar which stimulated cellulase and ligninase in both cultures. 19 references.

  1. Hydrolysis of cellulose-containing materials by cellulase of the Trichoderma lignorum OM 534 fungus

    Romanov, S L; Lobanok, A G

    1977-01-01

    Of the cellulose containing materials, hydrocellulose was most easily degraded while lignocellulose was hardest to break down with cellulase from T. lignorum grown on lactose or cellulose. Grinding and heat treatment (at 200/sup 0/) of lignocellulose enhanced its enzymic degradability. Hydrolysis was highest by cellulase from lactose-cultured Trichoderma. The hydrolysis products contained glucose, galactose, xylose, and mannose. Filtrates from T. lignorum grown on a lignocellulose were enzymically active after purification.

  2. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    Tamada, M.; Kasai, N.; Kaetsu, I.

    1987-01-01

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  3. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Cellulase Activity in Solid State Fermentation of Palm Kernel Cake with Trichoderma sp.

    Massaud, M. B. N.

    2012-01-01

    Full Text Available Aims: The effect of different types of fungal inocula to the cellulase activity measured on palm kernel cake (PKC was studied. Methodology and Results: Isolate Pro-A1 which was identified as Trichoderma sp. was selected as a potential producer of cellulase via solid state fermentation technique (SSF. Two types of PKCs were used; raw PKC (containing residual oil and defatted PKC. The PKCs were inoculated with different concentrations of conidia and varying amounts (g of solid mycelia plugs (SMP for SSF. The effect of ultrafiltered crude fungal filtrate (CFF as inocula was also being tested. The highest cellulase activity of 2.454 FPU/mL was detected with 60% (wt/wt SMP applied to the raw PKC. Conversely, 2.059 FPU/mL of cellulase activity was measured when 80% (wt/wt of SMP was applied to the defatted PKC which is 62.3% higher than the untreated defatted PKC; and more than 100% increase in enzymatic activity compared to raw PKC. The cellulase activity in the SSF inoculated with 8 x 106 conidia /mL and 12 x 106 conidia /mL were 1.704 FPU/mL for raw PKC and 1.856 FPU/mL for defatted PKC, an enhancement of about 46% from uninoculated batch. Inoculation with CFF bears corresponding maximum improvement of the cellulase activity on both PKCs of 13.58% (raw and 2.86% (defatted. Conclusion, significance and impact of study: The current study proves that Trichoderma sp. in the form of SMP can enhance the cellulase activity on PKCs effectively with more than 100% increment. Fungal conidia are also a better choice in enhancing cellulase activity of Trichoderma sp. permitted that the PKC used is devoid of oil. From this study, Trichoderma sp. holds the potential of converting lignocellulosic materials into products of commercial and industrial values such as glucose and other biofuels.

  5. Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile

    Margaritis, A; Merchant, R; Yaguchi, M

    1983-01-01

    When wheat straw was used as C source, S. thermophile produced large amounts of xylanase extracellularly in addition to CM-cellulase and Avicelase. These enzymes were isolated by alcohol precipitation, desalting, and column chromatography. The molecular weights were estimated to be 25,0065,000 and 84,000 for xylanase, CM-cellulase, and Avicelase, respectively. Serine and threonine were the most abundant amino acids and these enzymes are very acidic proteins.

  6. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  7. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Po-Jung Huang

    2015-01-01

    Full Text Available Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1. Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase.

  8. The Effects of Bioprocess Parameters on Cellulase Production with Trichoderma viride CMIT35

    Teodor Vintila

    2010-05-01

    Full Text Available Fungal cellulases are well-studied, and have various applications in industry, health or agriculture. Species of Trichoderma can produce substantial amounts of endoglucanase, exoglucanase (saccharifying cellulases, and some strains are able to produce important quantities of β-glucosidase. A number of fungi were isolated abroad and screened for cellulolytic potential. In this study, the kinetics of cellulase production from an indigenous strain of T. viride CMIT35 is reported. Product formation parameters of different types of cellulases indicate that the studied strain of T. viride is capable of producing important levels of cellulases when grown on Mandels medium with wheat bran as carbon source. Furthermore, it was observed that production of endoglucanase reaches its maximum during exponential phase of growth, while exoglucanase during the stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be more efficient than liquid state fermentation. High production of cellulase was noted at the following parameters for liquid cultures: 4% wheat bran, 5% inoculum, 180 r.p.m. agitation, pH 5; and 60% humidity in the case of solid state fermentation.

  9. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.

    Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing

    2016-11-01

    Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  11. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  12. Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob

    Du, Ruoyu; Su, Rongxin; Zhang, Mingjia; Qi, Wei; He, Zhimin

    2014-01-01

    Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield twofold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels >40 g/L.

  13. Accelerating effects of cellulase in the removal of denture adhesives from acrylic denture bases.

    Harada-Hada, Kae; Mimura, Sumiyo; Hong, Guang; Hashida, Tatsumi; Abekura, Hitoshi; Murata, Hiroshi; Nishimura, Masahiro; Nikawa, Hiroki

    2017-04-01

    Studies of effective methods for the easy removal of denture adhesives from a denture base are not well represented in the literature. We previously assessed the removability of denture adhesives by immersing within denture cleaners, showing that some cleaners have a weak effect, insufficiently effective in daily use. In this study, we prepared a cellulase, as a potential component for denture adhesive removers, and we examined whether the addition of cellulase to denture cleaners is effective in the removal of cream denture adhesives. We prepared the cellulase Meicelase as one component for the liquefaction of denture adhesives. We used two denture cleaners and two cream adhesives. After the immersion of plates in sample solutions, we evaluated the area of the sample plate still covered with adhesives. Biofilm removal assay was also performed using denture cleaners containing cellulase. The addition of cellulase accelerated the removal of cream adhesives in immersion experiments to a rate faster than that of water and denture cleaners. However, it did not influence the removability of Candida albicans biofilms from acrylic resin specimens. Cellulase hastened the liquefaction of cream adhesives. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Adsorption, immobilization and activity of cellulase in soil: the impacts of maize straw and its humification

    Ali Akbar Safari Sinegani

    2013-12-01

    Full Text Available The present work aimed to study some aspects of sorption and immobilization of cellulase molecules on soil components by the analysis of the reactions of cellulase in a soil treated with different levels of maize residue and incubated for 90 days. The analysis of variance showed that the effects of the treatments of maize straw, incubation time and their interaction on cellulase adsorption, desorption and immobilization were statistically significant. The adsorption and immobilization capacities of soil by application of maize straw increased significantly. However they decreased with decreasing the soil organic matter (SOM after 45 days of incubation. The desorption of adsorbed cellulase molecules from the soil by washing with distilled water depended on the SOM contents and its humification. The binding strength of cellulase molecule with fresh miaze straw was significantly stronger than that with humified maize straw. The immobilized cellulase activity, particularly its specific activity increased significantly by increasing the OC contents in the soil treated with maize straw.

  16. Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob

    Du, Ruoyu [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Su, Rongxin, E-mail: surx@tju.edu.cn [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin (China); Zhang, Mingjia [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Qi, Wei [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin (China); He, Zhimin [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2014-06-26

    Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield twofold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels >40 g/L.

  17. Cellulase recycling after high-solids simultaneous saccharification and fermentation of combined pretreated corncob

    Ruoyu eDu

    2014-06-01

    Full Text Available Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield two-fold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels greater than 40 g/L.

  18. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion

    Junqi Jia

    2017-02-01

    Full Text Available The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs, which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  19. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion.

    Jia, Junqi; Zhang, Weiwei; Yang, Zengjie; Yang, Xianling; Wang, Na; Yu, Xiaoqi

    2017-02-10

    The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs), which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC) was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  20. Effects of different dietary cation-anion balance and cellulase on blood biochemical indexes in sheep

    Niu Xuejia; Sun Yongqiang; Zheng Guoping; Li Mangxue; Liu Dasen

    2007-01-01

    Five sheep with average live weight of 38 kg were selected and fitted with permanent ruminal fistulae for the study of the influence of DCAB and cellulase on blood biochemical indexes in sheep. With the design of 5 x 5 Latin square, the goats were undergone four groups of treatments. As sheep in control group were only fed with basic feed, other treatments were fed with basic feed and additives. Those additives were: treatment 1 with cellulase (0.2% of dietary), treatment 2 with DCAB1 (20 mEq/100g DM), treatment 3 with cellulase (0.2% of dietary) and DCAB1 (20 mEq/100g DM) and treatment 4 with cellulase (0.2% of dietary) and DCAB2 (40 mEq/100 g DM). The results show that different DCAB and cellulase had no apparent influence on the concentrations of T 3 and T 4 (P>0.05), but they had significant influence on the concentration of insulin (P 0.05). The study indicated that addition of 0.2% cellulase to dietary while adjusting DCAB to 0.2-40 mEq/100 g DM respectively did not destroy tissues and organs of sheep. (authors)

  1. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  2. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    Banerjee, A; Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2014-03-25

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.

  3. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    Ueki, Toshiyuki; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis. PMID:24509933

  4. TREATMENT OF CLOSTRIDIUM DIFFICILE- ASSOCIATED DISEASE

    Snezana Antic-Mladenovic

    2007-04-01

    Full Text Available Clostridium difficile is a Gram-positive, spore-forming, anaerobic bacillus that is widely distributed in the environment, but is found as a part of a normal large bowel flora in approximately 3% of normal adults. C. difficile produces two protein exotoxins: toxin A and toxin B. Both toxins are responsible for causing the sings and symptoms of disease.C. difficile is now thought to be responsible for a spectrum of diseases, ranging from asymptomatic colonization to diarrhea of varying severity, life-threatening colitis, often as a consequence of long-term antibiotic exposure. This spectrum has become known as C. difficile-associated disease (CDAD.Treatment of Clostridium difficile-associated disease demand administration of effi-cient antibiotics (vancomycin, metronidazole, anion exchange resins and probiotics (Lactobacillus spp., Saccharomyces boulardii.

  5. A ?-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-01-01

    Background The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ?-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial ...

  6. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  7. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  8. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  9. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.

    Knutsen, Jeffrey S; Davis, Robert H

    2004-01-01

    Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20-25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including beta-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.

  11. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  12. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens.

    Wang, Mingyu; Mu, Ziming; Wang, Junli; Hou, Shaoli; Han, Lijuan; Dong, Yanmei; Xiao, Lin; Xia, Ruirui; Fang, Xu

    2013-04-01

    Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Management of Clostridium difficile diarrhoea in District General ...

    ... four cases of Clostridium difficile in our hospital over duration of three months. We looked into the demographic features of the patient population and compliance with the Trust guidelines for the management of the diarrhoea. Keywords:Diarrhoea, Clostridium difficile, Management. Internet Journal of Medical Update Vol.

  14. Clostridium difficile: A healthcare-associated infection of unknown ...

    Clostridium difficile: A healthcare-associated infection of unknown significance in adults in sub-Saharan Africa. ... Abstract. Background: Clostridium difficile infection (CDI) causes a high burden of disease in high-resource healthcare systems, with significant morbidity, mortality, and financial implications. CDI is a ...

  15. Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries.

    Luo, Yu-heng; Peng, Huan-wei; Wright, André-Denis G; Bai, Shi-ping; Ding, Xue-mei; Zeng, Qiu-feng; Li, Hua; Zheng, Ping; Su, Zhuo-wei; Cui, Ren-yong; Zhang, Ke-ying

    2013-09-01

    Research on the interaction between dietary vitamins and intestinal bacteria is poorly understood. To investigate the effect of dietary vitamins on the cecal bacterial communities, 2 bacterial 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from the cecal digesta of 28-d broilers fed diets with vitamins (V) at the NRC level or with no vitamins (NV). The results showed that BW gain and average feed intake of V broilers was significantly higher (P vitamins can increase the ratio of facultative pathogenic bacteria and decrease the diversity of bacteria in the cecum of broilers. Our results provide new leads for further investigations on the interaction between dietary vitamin additives and the gut health of broilers.

  16. Surface activation of dyed fabric for cellulase treatment.

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cellulase recycling in biorefineries--is it possible?

    Gomes, Daniel; Rodrigues, Ana Cristina; Domingues, Lucília; Gama, Miguel

    2015-05-01

    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.

  18. Interrelationships between cellulase activity and cellulose particle morphology

    Olsen, Johan Pelck; Donohoe, Bryon S.; Borch, Kim

    2016-01-01

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate...... on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases....... depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have...... to observe and quantify structural features at μm and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal...

  19. Genetic engineering of Trichoderma reesei cellulases and their production.

    Druzhinina, Irina S; Kubicek, Christian P

    2017-11-01

    Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.

    Dennis Bakker

    Full Text Available In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis, sometimes resulting in colectomy or death. The main virulence factors of C. difficile are toxin A and toxin B. Besides the genes encoding these toxins (tcdA and tcdB, the pathogenicity locus (PaLoc also contains genes encoding a sigma factor (tcdR and a putative anti-sigma factor (tcdC. The important role of TcdR as a sigma factor for toxin expression is undisputed, whereas the role of TcdC as an anti-sigma factor, inhibiting toxin expression, is currently the subject of debate. To clarify the role of TcdC in toxin expression, we generated an isogenic ClosTron-based mutant of tcdC in Clostridium difficile strain 630Δ Erm (CT::tcdC and determined the transcription levels of the PaLoc genes and the expression levels of the toxins in the wild type strain and the tcdC mutant strain. We found only minor differences in transcription levels of the PaLoc genes between the wild type and CT::tcdC strains and total toxin levels did not significantly differ either. These results suggest that in C. difficile 630Δerm TcdC is not a major regulator of toxin expression under the conditions tested.

  1. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  3. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-01-01

    For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost

    ÉVILIN G. DE MARCO

    2017-10-01

    Full Text Available ABSTRACT During composting processes, the degradation of organic waste is accomplished and driven by a succession of microbial populations exhibiting a broad range of functional competencies. A total of 183 bacteria, isolated from a composting process, were evaluated for cellulase activity at different temperatures (37, 50, 60, and 70°C and pH values. Out of the 22 isolates that showed activity, isolate 380 showed the highest cellulase activity. Its ability to produce cellulase was evaluated in culture medium supplemented with carboxymethyl cellulose, microcrystalline cellulose, wheat straw, and rice husk. The culture medium supplemented with carboxymethyl cellulose induced higher enzyme activity after 6 hours of incubation (0.12 UEA mL-1 min-1. For wheat straw and rice husk, the results were 0.08 UEA mL-1 min-1 for both, while for microcrystalline cellulose, 0.04 UEA mL-1 min-1 were observed. The highest carboxymethyl cellulase activity was observed at 60°C (0.14 UEA mL-1 min-1 for both crude and partially purified enzyme after 30 and 120 min of incubation, respectively. Alkalinization of the medium was observed during cultivation in all substrates. The cellulase had a molecular mass of 20 kDa determined by SDS-Page. Isolate 380 was identified as Bacillus licheniformis. This work provides a basis for further studies on composting optimization.

  6. Application of Statistical Design for the Production of Cellulase by Trichoderma reesei Using Mango Peel

    P. Saravanan

    2012-01-01

    Full Text Available Optimization of the culture medium for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using mango peel as substrate was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on cellulase production is achieved using Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and CoCl2·6H2O were selected based on their positive influence on cellulase production. The composition of the selected components was optimized using Response Surface Methodology (RSM. The optimum conditions are as follows: Avicel: 25.30 g/L, Soybean cake flour: 23.53 g/L, KH2PO4: 4.90 g/L, and CoCl2·6H2O: 0.95 g/L. These conditions are validated experimentally which revealed an enhanced Cellulase activity of 7.8 IU/mL.

  7. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase

    Anna Zimoch-Korzycka

    2016-09-01

    Full Text Available The aim of this study was to evaluate the impact of cellulase (C on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1% was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging effect, the ferric reducing antioxidant power (FRAP, and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction.

  8. Strategies to increase cellulase production with submerged fermentation using fungi isolated from the Brazilian biome

    Genilton da Silva Faheina Junior

    2015-03-01

    Full Text Available Studies on new microbial sources of cellulase and accurate assessment of the steps that increase cellulase production are essential strategies to reduce costs of various processes using such enzymes. This study aimed at the selection of cellulase-producing filamentous fungi, and at the research of parameters involving cellulase production by submerged fermentation. The first test consisted of selecting the best cellulase-producing microorganisms (FPase in Erlenmeyer flasks containing 200 mL of specific growth medium. The next test was designed to further investigate the enzyme production in fermentation with four types of soluble sugars: glucose, lactose, sucrose and xylose. In bioreactor tests, three different inoculation strategies were analyzed. The best FPase activity was presented by the strain Trichoderma sp. CMIAT 041 (49.9 FPU L-1 and CMCase by the fungus Lasiodiplodia theobromae CMIAT 096 (350.0 U L-1. Sucrose proved to be the best option among the soluble sugars tested, with higher rates of FPase activity (49.9 FPU L-1 and CMCase (119.7 U L-1. The best inoculation strategy for the bioreactor was a spore suspension obtained from a semi-solid state fermentation of wheat bran for 72h.

  9. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  10. The incidence and clinical symptomatology of Clostridium difficile infections in a community setting in a cohort of Danish patients attending general practice

    Søes, Lillian Marie; Holt, H M; Böttiger, B

    2014-01-01

    Clostridium difficile infection (CDI) is gradually being recognised as a cause of morbidity in the community. We investigated the incidence and clinical characteristics of CDI in a community setting and characterised the C. difficile strains by toxin gene profiling and polymerase chain reaction (...

  11. Improved soluble expression and characterization of the Hc domain of Clostridium botulinum neurotoxin serotype A in Escherichia coli by using a PCR-synthesized gene and a Trx co-expression strain.

    Chen, Rongchang; Shi, Jing; Cai, Kun; Tu, Wei; Hou, Xiaojun; Liu, Hao; Xiao, Le; Wang, Qin; Tang, Yunming; Wang, Hui

    2010-05-01

    Botulinum neurotoxin serotype A (BoNT/A) is an extremely potent bacterial protein toxin. The Hc fragment of BoNT/A (AHc) was shown to be non-toxic, antigenic, and capable of eliciting a protective immunity in animals challenged with homologous BoNT. In this study, we synthesized AHc gene by using T4 DNA ligase and PCR. The AHc was expressed at a high level in Escherichia coli successfully. Because of using the Trx co-expression strain, the expressed AHc is in a soluble and active form. The yield of the purified AHc was about 70mg/L, and its purity was up to 90% through one-step affinity chromatography. The AHc was positively identified by the antibodies raised against BoNT/A using immunological-dot-blot and Western blot assays. AHc was shown to bind with gangliosides and elicit immunity against BoNT/A, indicating that the expressed and purified AHc protein retains a functionally active conformation. Furthermore, the purified AHc has a strong immunogenicity and can be used as a potential subunit candidate vaccine for botulinum toxin serotype A. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. The History of Collagenase Clostridium Histolyticum.

    Yang, Kevin K; Bennett, Nelson

    2015-10-01

    After its U.S. FDA approval in 2013, Collagenase Clostridium histolyticum (CCh) has seen increasing use as a nonoperative treatment for Peyronie's disease (PD). We review the history of CCh and trials that led to its adoption. To provide a historical and contemporary context for the evolution of Collagenase Clostridium histolyticum as a treatment modality for Peyronie's disease. A comprehensive search of peer-reviewed literature was performed pertaining to CCh and its biochemical and clinical significance. The main outcome studied was the efficacy and safety profile of CCh in PD. CCh use in other diseases processes and its associated outcomes are also described. CCh injection yields objective improvement in penile curvature across multiple trials in PD patients. Recently, level 1 strength of evidence has emerged supporting its widespread use. As such, CCh stands as the only FDA-approved injectable therapy for PD. Adverse events were namely limited to local reactions. Serious systemic complications and need for intervention were rare. CCh is a safe and effective treatment for PD patients with deformities and plaque configuration amenable to injectable therapy. Multiple trials have demonstrated improvements in objective and subjective metrics such as penile curvature and bother scores. However, multiyear follow-up is needed to assess durability and its sustained clinical significance. Currently, refinement in dosing and technique has established a niche for CCh in PD patients who are affected by their symptoms but are not yet committed to surgical intervention. Yang KK and Bennett N. The history of collagenase clostridium histolyticum. Copyright © 2015 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  14. Clostridium Difficile Infection in the Nephrology Ward

    Sylwia Dudzicz

    2017-11-01

    Full Text Available Clostridium difficile is currently the most frequently identified pathogen causing antibiotic-associated diarrhea and the main cause of nosocomial diarrhea. In recent years, increases incidence of infection, severe infection, recurrent infection and mortality from Clostridium difficile infection (CDI have been observed. This may be a consequence of excessive antibiotic use and spread of the hypervirulent epidemic BI/NAP1/027 strain of Clostridium difficile. The main risk factors for CDI are: antibiotic therapy, previous hospitalizations and number of comorbid conditions. Prevention of CDI mainly is focused in two directions: reducing the exposure of patients to the disease pathogen by intensifying hygiene measures, and reducing the impact of risk factors. A meta-analyses of clinical studies (observational, cohort and case control showed significantly higher risk of CDI and CDI recurrence in patients with chronic kidney disease and increased mortality risk in chronic kidney disease patients with CDI comparing those without CDI. Increased risk of CDI in patients with chronic kidney disease can be caused by: frequent antibiotic therapy associated with numerous infections resulting in intestinal microflora dysfunction, frequent hospitalizations, older age of the patients and an impaired immune system. Among preventative measures against CDI, the use of probiotics were also studied. In patients hospitalized in nephrology ward highly significant reduction of the CDI incidence was observed after the introduction of Lactobacillus plantarum 299v as CDI prophylaxis. Therefore, the use of Lactobacillus plantarum 299v seems to be a promising method of CDI prevention in chronic kidney disease patients hospitalized in nephrology ward.

  15. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

  16. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  17. Response to Comment on "Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA".

    Brunecky, Roman; Alahuhta, Markus; Xu, Qi; Donohoe, Bryon S; Crowley, Michael F; Kataeva, Irina A; Yang, Sung-Jae; Resch, Michael G; Adams, Michael W W; Lunin, Vladimir V; Himmel, Michael E; Bomble, Yannick J

    2014-05-09

    Gusakov critiques our methodology for comparing the cellulolytic activity of the bacterial cellulase CelA with the fungal cellulase Cel7A. We address his concerns by clarifying some misconceptions, carefully referencing the literature, and justifying our approach to point out that the results from our study still stand.

  18. Probiotics and prevention of Clostridium difficile infection.

    Goldstein, E J C; Johnson, S J; Maziade, P-J; Evans, C T; Sniffen, J C; Millette, M; McFarland, L V

    2017-06-01

    The role of probiotics as adjunctive measures in the prevention of Clostridium difficile infection (CDI) has been controversial. However, a growing body of evidence has suggested that they have a role in primary prevention of CDI. Elements of this controversy are reviewed and the proposed mechanisms of action, the value and cost effectiveness of probiotics are addressed with a focus on three agents, Saccharomyces boulardii, Lactobacillus rhamnosus GG and the combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, Lactobacillus rhamnosus CLR2 (Bio-K+). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Clostridium difficile in Humans and Food Animals

    2008-06-30

    Clostridium difficile is an antibiotic-resistant bacterium that causes diarrhea and sometimes serious intestinal illnesses. In recent years, C. difficile infections have been increasing in number and severity, including among some people outside healthcare settings. In this podcast, CDC's Dr. Michael Jhung discusses his recent study that looked at a new, increasingly prevalent strain of C. difficile in people and compared it to a strain historically found in animals to see whether the two might be linked. The study is published in the July 2008 issue of Emerging Infectious Diseases.  Created: 6/30/2008 by Emerging Infectious Diseases.   Date Released: 7/3/2008.

  20. Clostridium difficile in Humans and Food Animals

    Clostridium difficile is an antibiotic-resistant bacterium that causes diarrhea and sometimes serious intestinal illnesses. In recent years, C. difficile infections have been increasing in number and severity, including among some people outside healthcare settings. In this podcast, CDC's Dr. Michael Jhung discusses his recent study that looked at a new, increasingly prevalent strain of C. difficile in people and compared it to a strain historically found in animals to see whether the two might be linked. The study is published in the July 2008 issue of Emerging Infectious Diseases.

  1. Clinical features of Clostridium difficile infection and molecular characterization of the isolated strains in a cohort of Danish hospitalized patients

    Søes, Lillian Marie; Brock, Inger; Persson, Søren

    2012-01-01

    The purpose of this study was to compare clinical features of Clostridium difficile infection (CDI) to toxin gene profiles of the strains isolated from Danish hospitalized patients. C. difficile isolates were characterized by PCR based molecular typing methods including toxin gene profiling...... A and B compared to patients infected by C. difficile harbouring only toxin A and B. In conclusion, infection by C. difficile harbouring genes encoding both toxin A, toxin B and the binary toxin were associated with hospital acquisition, higher leukocyte counts and severe clinical disease....

  2. GENOTYPING OF CLOSTRIDIUM PERFRINGENS FROM FRESH WATER FISH AND FISH PICKLES

    Adarsh Jain

    2012-08-01

    Full Text Available This study aims to evaluate the genotypes of Clostridium perfringens in fish and fish based products from Tamil Nadu and Kerala states of India. A total of 301 samples consisting intestinal contents of freshwater fish (234 from various dams, freshwater lakes, ponds, retail shops and markets and fish pickles (67 obtained from randomly selected retail shops and supermarkets were investigated. Bacterial isolations, identifications and phenotypic characterization of virulence factors were carried out as per standard microbiological procedures. Genotyping of the C. perfringens isolates were done by amplifying four major lethal toxin genes namely- alpha toxin gene (cpa, beta toxin gene (cpb, epsilon toxin gene (etx, iota toxin gene (iA in a Thermal Cycler. Isolates were also screened for the presence of enterotoxin gene (cpe and beta2 toxin gene (cpb2 by single step PCR. Biochemical tests and phenotypic determination of virulence factors tentatively identified 82 (27.24% isolates of C. perfringens. In PCR assay, all 82 (100% isolates harbored cpa toxin genes of C. perfringens, however, 65 (79.26% isolates also carried additional cpb2 toxin genes. None of the isolates were found positive for beta, epsilon, iota and enterotoxin genes. Genotyping of the 82 isolates by PCR revealed that all the isolated bacteria were belonged to C. perfringens type A and both cpa and cpb2 toxin genes were prevalent among the isolates of C. perfringens type A, impending the risk of pathogenicity to human via freshwater fish and fish pickles.

  3. Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp.

    Duan, Chao; Wang, Xinqi; Zhang, YanLing; Xu, Yongjian; Ni, Yonghao

    2017-01-01

    The aim of this study was to investigate a combined process involving pulp fractionation and cellulase treatment of each fraction for improving the molecular weight distribution (MWD) and reactivity of a kraft-based dissolving pulp. Three pulp fractions, namely long-fiber, mid-fiber and short-fiber fractions (LF, MF and SF, respectively), were used as the substrates. The results showed that the SF had the highest accessibility, lowest viscosity, and highest cellulase adsorption capacity, while the opposite was true for the LF. At a given viscosity, the combined process led to a lower polydispersity index (3.71 vs 4.98) and a higher Fock reactivity (85.6% vs 76.3%), in comparison to the conventional single-stage cellulase treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cellulase-assisted extraction and antioxidant activity of the polysaccharides from garlic.

    Pan, Saikun; Wu, Shengjun

    2014-10-13

    In the present study, the polysaccharides were prepared from garlic by using a cellulase-assisted extraction method and the antioxidant activity of garlic polysaccharides (GPs) was evaluated. To improve the yield of GPs, the influences of the several factors such as extraction time, temperature, pH, and cellulase amount on the extraction efficiency were studied. The optimal conditions for extraction of GPs were determined as follows: time, 80 min; temperature, 45 °C; pH, 5; cellulase amount, 8000 U/g. Under the optimised extraction conditions, the yield of GPS reached up to 35.34%. The GPs product exhibited strong antioxidant activity including hydroxyl radical scavenging activity, 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity, and reducing power. The results suggest that the GPs could be used as potential antioxidants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface......-biosensor was shown to be anomer unspecific and it can therefore be used in kinetic studies over broad time-scales of both retaining- and inverting cellulases (in addition to enzyme cocktails). The biosensor was used for real-time measurements of the activity of the inverting cellobiohydrolase Cel6A from Hypocrea...... equation for processive cellulases, and it was found that the turnover for HjCel6A at saturating substrate concentration (i.e. maximal apparent specific activity) was similar (0.39–0.40 s−1) for the two substrates. Conversely, the substrate load at half-saturation was much lower for BMCC compared to Avicel...

  6. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  7. Cellulose hydrolysis by fungi. 2. Cellulase production by Trichoderma harzianum in liquid medium fermentation

    Roussos, S.; Raimbault, M. (Laboratoire de Microbiologie ORSTOM, Centre de Recherche IRCHA, 91 - Vert-le-Petit (France))

    Microcrystalline cellulose (cellulose Avicel, Merck) supported growth of Trichoderma harzianum and induced production of cellulases in liquid cultures. After 50 h growth, the total cellulasic activities present in both the supernatant and the mycelium were 3,000 IU/l of carboxymethyl cellulose, 400 IU/l of filter paper activity, and 4 IU/l of cotton activity corresponding to 1.7 g/l of proteins. Cellulase production could be increased by a preliminary treatment of cellulose, and pH regulation during growth. The influence of inoculum concentration was studied and an optimum of 3 X 10/sup 7/ conidia/g dry weight of substrate was demonstrated. Using a synthetic culture medium, a soluble factor of germination was demonstrated which could be leached out by 3 successive washings of conidia.

  8. Adsorption of cellulases onto sugar beet shreds and modeling of the experimental data

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This study investigated the adsorption of cellulases onto sugar beet shreds. The experiments were carried out using untreated, as well as dried and not dried dilute acid and steam pretreated sugar beet shreds at different initial enzyme loads. Both dilute acid and steam pretreatment were beneficial in respect of cellulases adsorption providing 8 and 9 times higher amounts of adsorbed proteins, respectively, in comparison to the results obtained with the untreated substrate. Although the use of higher solids load enabled by drying of pretreated substrates, could be beneficial for process productivity, at the same time it decreases the adsorption of enzymes. The obtained experimental data were fitted to five adsorption models, and the Langmuir model having the lowest residual sum of squares was used for the determination of adsorption parameters which were used to calculate the strength of cellulases binding to the substrates.[Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  9. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...... of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml−1) were obtained...... with media containing soy peptone (3–6 g l−1) and glutamate (3.6 g l−1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control...

  10. Production of cellulases by a thermophilic fungus, Thermoascus aurantiacus A-131

    Kawamori, M; Takayama, K; Takasawa, S

    1987-01-01

    A thermophilic fungus, strain A-131, isolated from a soil sample produced cellulases in the culture fluid. The fungus (strain A-131) was identified as Thermoascus aurantiacus Miehe from its taxonomical characteristics. The cellulases of T. aurantiacus A-131 were produced constitutively without cellulase inducers. Moreover, their production was induced markedly by amorphous polysaccharides containing beta-1, 4 linkages such as alkali-treated bagasse and xylan rather than crystalline cellulose. The cultivation of T. aurantiacus A-131 at 45 degrees C with 4% alkali-treated bagasse led to the production of about 70 U/ml of CMCase after four days. The thermostability of the cellulolytic enzymes of T. aurantiacus A-131 was excellent and virtually no decreases in their activities were seen after preincubation at 60 degrees C for 24 hours. (Refs. 21).

  11. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  12. Laser mutagenesis and producing cellulase condition optimization of Trichoderma virid protoplast

    Chen Shuli; Zhang Qin; Han Jingjing; Lv Jiangtao; Wang Shilong; Yao Side

    2009-01-01

    The protoplast of Trichoderma virid CICC13038 was mutated using Nd:YAG laser of 266 nm light. And a high-cellulase producing strain JG13 was bred by screening with cellulose microcrystalline. Under the condition of 28 degree C, 180 rpm and 72 h of fermentation time, optimal conditions for the celluase ferment by orthogonal experiment were: 2% bran as the carbon source, 1% (NH 4 ) 2 SO 4 as the nitrogen source, 0.5% Tween-80 as a enzyme-promoting agent,and 25 mL of medium volume in a 250 mL bottle. The cellulase activity of the mutant reached 35.68 U/mL, 25.76% higher than that of the original strain under the same conditions. The mutant JG13 has a great potential in industrial production. And it also can be used as the original strain for further mutagenesis to get the strain of higher cellulase activity. (authors)

  13. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  14. Mortality and Clostridium difficile infection in an Australian setting.

    Mitchell, Brett G; Gardner, Anne; Hiller, Janet E

    2013-10-01

    To quantify the risk of death associated with Clostridium difficile infection, in an Australian tertiary hospital. Two reviews examining Clostridium difficile infection and mortality indicate that Clostridium difficile infection is associated with increased mortality in hospitalized patients. Studies investigating the mortality of Clostridium difficile infection in settings outside of Europe and North America are required, so that the epidemiology of Clostridium difficile infection in these regions can be understood and appropriate prevention strategies made. An observational non-concurrent cohort study design was used. Data from all persons who had (exposed) and a matched sample of persons who did not have Clostridium difficile infection, for the calendar years 2007-2010, were analysed. The risk of dying within 30, 60, 90 and 180 days was compared using the two groups. Kaplan-Meier survival analysis and conditional logistic regression models were applied to the data to examine time to death and mortality risk adjusted for comorbidities using the Charlson Comorbidity Index. One hundred and fifty-eight cases of infection were identified. A statistically significant difference in all-cause mortality was identified between exposed and non-exposed groups at 60 and 180 days. In a conditional regression model, mortality in the exposed group was significantly higher at 180 days. In this Australian study, Clostridium difficile infection was associated with increased mortality. In doing so, it highlights the need for nurses to immediately instigate contact precautions for persons suspected of having Clostridium difficile infection and to facilitate a timely faecal collection for testing. Our findings support ongoing surveillance of Clostridium difficile infection and associated prevention and control activities. © 2013 Blackwell Publishing Ltd.

  15. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation.

    Deanne W Sammond

    Full Text Available Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs to carbohydrate-binding modules (CBMs. Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests

  16. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  17. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  18. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  19. Gene

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  20. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial

    Woudstra, C.; Skarin, H.; Anniballi, F.

    2013-01-01

    Two real-time PCR arrays based on the GeneDisc® cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated wi...

  1. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum.

    Mearls, Elizabeth B; Lynd, Lee R

    2014-08-01

    In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C. thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C. thermocellum biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels.

    Elsa Petit

    Full Text Available Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  3. Cadaver Thanatomicrobiome Signatures: The Ubiquitous Nature of Clostridium Species in Human Decomposition

    Gulnaz T. Javan

    2017-10-01

    Full Text Available Human thanatomicrobiome studies have established that an abundant number of putrefactive bacteria within internal organs of decaying bodies are obligate anaerobes, Clostridium spp. These microorganisms have been implicated as etiological agents in potentially life-threatening infections; notwithstanding, the scale and trajectory of these microbes after death have not been elucidated. We performed phylogenetic surveys of thanatomicrobiome signatures of cadavers’ internal organs to compare the microbial diversity between the 16S rRNA gene V4 hypervariable region and V3-4 conjoined regions from livers and spleens of 45 cadavers undergoing forensic microbiological studies. Phylogenetic analyses of 16S rRNA gene sequences revealed that the V4 region had a significantly higher mean Chao1 richness within the total microbiome data. Permutational multivariate analysis of variance statistical tests, based on unweighted UniFrac distances, demonstrated that taxa compositions were significantly different between V4 and V3-4 hypervariable regions (p < 0.001. Of note, we present the first study, using the largest cohort of criminal cases to date, that two hypervariable regions show discriminatory power for human postmortem microbial diversity. In conclusion, here we propose the impact of hypervariable region selection for the 16S rRNA gene in differentiating thanatomicrobiomic profiles to provide empirical data to explain a unique concept, the Postmortem Clostridium Effect.

  4. Key Research Issues in Clostridium difficile

    George Zhanel

    2005-01-01

    Full Text Available Clostridium difficile is an emerging pathogen that causes C difficile-associated diarrhea, an important nosocomial infection. Control of this infection remains a challenge, and much needs to be determined about the antimicrobial resistance of the organism, antibiotic stewardship, contamination of the patient environment, and various host factors that determine susceptibility or resistance to infection. A national symposium focusing on C difficile infections, the Clostridium difficile Symposium on Emerging Issues and Research, was hosted on November 23, 2004, by the Department of Medical Microbiology and Infectious Diseases at the University of Manitoba, Winnipeg, Manitoba, in partnership with the Canadian Institutes of Health Research. This symposium, which aimed to summarize key research issues regarding C difficile infections in Canada, had the following objectives: to provide a forum for learning and discussion about C difficile and its impact on the health of Canadians; to identify the key research issues that should be addressed; and to explore potential research funding opportunities and collaboration. The present report summarizes key research issues identified for C difficile infections in Canada by addressing four major themes: diagnosis and surveillance, infection prevention and control, antibiotic stewardship, and clinical management.

  5. Comparison of five assays for detection of Clostridium difficile toxin.

    Chapin, Kimberle C; Dickenson, Roberta A; Wu, Fongman; Andrea, Sarah B

    2011-07-01

    Performance characteristics of five assays for detection of Clostridium difficile toxin were compared using fresh stool samples from patients with C. difficile infection (CDI). Assays were performed simultaneously and according to the manufacturers' instructions. Patients were included in the study if they exhibited clinical symptoms consistent with CDI. Nonmolecular assays included glutamate dehydrogenase antigen tests, with positive findings followed by the Premier Toxin A and B Enzyme Immunoassay (GDH/EIA), and the C. Diff Quik Chek Complete test. Molecular assays (PCR) included the BD GeneOhm Cdiff Assay, the Xpert C. difficile test, and the ProGastro Cd assay. Specimens were considered true positive if results were positive in two or more assays. For each method, the Youden index was calculated and cost-effectiveness was analyzed. Of 81 patients evaluated, 26 (32.1%) were positive for CDI. Sensitivity of the BD GeneOhm Cdiff assay, the Xpert C. difficile test, the ProGastro Cd assay, C. Diff Quik Chek Complete test, and two-step GDH/EIA was 96.2%, 96.2%, 88.5%, 61.5%, and 42.3%, respectively. Specificity of the Xpert C. difficile test was 96.4%, and for the other four assays was 100%. Compared with nonmolecular methods, molecular methods detected 34.7% more positive specimens. Assessment of performance characteristics and cost-effectiveness demonstrated that the BD GeneOhm Cdiff assay yielded the best results. While costly, the Xpert C. difficile test required limited processing and yielded rapid results. Because of discordant results, specimen processing, and extraction equipment requirements, the ProGastro Cd assay was the least favored molecular assay. The GDH/EIA method lacked sufficient sensitivity to be recommended. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Toxinotyping of Clostridium perfringens strains isolated from packed chicken portions

    Maryam Poursoltani

    2014-06-01

    Full Text Available Background and Aim: Clostridium perfringens are classified into five toxin types A to E, on the basis of production of Alpha, Beta, Epsilon and Iota toxins. Some strains are able to produce enterotoxin, can cause food poisoning in human. The bacteria are able to produce NetB and TpeL toxins which are virulence factors in necrotic enteritis in poultry. The aim of this study was to determine the toxin profile of C. perfringens strains isolated from packed chicken portions using Single and Multiplex PCR assays. Materials and Methods: In a crossectional study, 180 sample of chicken portions including wing (n=50, liver (n=50, neck (n=50 and gizzard (n=30 were collected randomly and examined for C. perfringens contamination. For this purpose all of samples were cultured on the 7% sheep defibrinated blood agar, TSN and TSC culture media. All of the isolates were investigated for the presence of alpha, beta, epsilon, iota toxin and virulence (tpeL and netB genes. Results: In the present study, 6 isolates out of 180 samples, were confirmed as C. perfringens by culture and molecular methods. All of the isolates (100% were confirmed as cpa and cpb positive strains and belong to type C of C. perfringens. The netB gene was detected in 5 isolates (83.33% and tpeL gene in three isolates (50%. Conclusions: Our findings show the majority of C. perfringens in broilers are belong to type C which produce necrotic enteritis in poultry and may be transmitted to human through poultry products.

  7. Comparison of Five Assays for Detection of Clostridium difficile Toxin

    Chapin, Kimberle C.; Dickenson, Roberta A.; Wu, Fongman; Andrea, Sarah B.

    2011-01-01

    Performance characteristics of five assays for detection of Clostridium difficile toxin were compared using fresh stool samples from patients with C. difficile infection (CDI). Assays were performed simultaneously and according to the manufacturers' instructions. Patients were included in the study if they exhibited clinical symptoms consistent with CDI. Nonmolecular assays included glutamate dehydrogenase antigen tests, with positive findings followed by the Premier Toxin A and B Enzyme Immunoassay (GDH/EIA), and the C. Diff Quik Chek Complete test. Molecular assays (PCR) included the BD GeneOhm Cdiff Assay, the Xpert C. difficile test, and the ProGastro Cd assay. Specimens were considered true positive if results were positive in two or more assays. For each method, the Youden index was calculated and cost-effectiveness was analyzed. Of 81 patients evaluated, 26 (32.1%) were positive for CDI. Sensitivity of the BD GeneOhm Cdiff assay, the Xpert C. difficile test, the ProGastro Cd assay, C. Diff Quik Chek Complete test, and two-step GDH/EIA was 96.2%, 96.2%, 88.5%, 61.5%, and 42.3%, respectively. Specificity of the Xpert C. difficile test was 96.4%, and for the other four assays was 100%. Compared with nonmolecular methods, molecular methods detected 34.7% more positive specimens. Assessment of performance characteristics and cost-effectiveness demonstrated that the BD GeneOhm Cdiff assay yielded the best results. While costly, the Xpert C. difficile test required limited processing and yielded rapid results. Because of discordant results, specimen processing, and extraction equipment requirements, the ProGastro Cd assay was the least favored molecular assay. The GDH/EIA method lacked sufficient sensitivity to be recommended. PMID:21704273

  8. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  9. Investigation of Clostridium botulinum group III's mobilome content.

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Anniballi, Fabrizio; Auricchio, Bruna; Bano, Luca; Bayon-Auboyer, Marie-Hélène; Koene, Miriam; Mermoud, Isabelle; Brito, Roseane B; Lobato, Francisco C F; Silva, Rodrigo O S; Dorner, Martin B; Fach, Patrick

    2018-02-01

    Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production.

    Liew, Fungmin; Henstra, Anne M; Kӧpke, Michael; Winzer, Klaus; Simpson, Sean D; Minton, Nigel P

    2017-03-01

    Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks.

    Daisuke Irikura

    Full Text Available There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins' gene(s among the Genus Clostridium.

  12. Toxin genotyping of Clostridium perfringens field strains isolated from healthy and diseased chickens

    Luca Bano

    2010-01-01

    Full Text Available Clostridium perfringens is well known as the aetiological agent of necrotic enteritis in chicken. Type A and type C are considered the C. perfringens toxin types responsible for this disease. The aim of this study was to determine the presence of genes coding for α, β, ε, ι, β2 and enterotoxin in C. perfringens field strains collected from healthy and diseased chickens. Thirty-seven C. perfringens field strains were toxin typed: all strains resulted to be toxin type A and 3 of these tested positive for the presence of the toxin β2 coding gene. Four isolates showed the cpa gene with the insertion of a group II intron. Our findings confirm the most recent results reported from different countries and the data suggest that the role of C. perfringens type C should be revaluated in the etiopathogenesis of necrotic enteritis.

  13. New industrial butanol-producing organism, Clostridium amylovorum

    Cataldi, M S

    1964-01-01

    A new Clostridium was isolated from starch-containing substances; it ferments corn and potato starch and sugar molasses, giving important yields of butanol and acetone; it is gram-positive, strictly anaerobic and sporulates in plectron form.

  14. Clostridium difficile infection in the community: a zoonotic disease?

    Hensgens, M.P.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.J.; de Boer, E.; Lipman, L.J.A.; Kuijper, E.J.

    2012-01-01

    Clostridium difficile infections (CDIs) are traditionally seen in elderly and hospitalized patients who have used antibiotic therapy. In the community, CDIs requiring a visit to a general practitioner are increasingly occurring among young and relatively healthy individuals without known

  15. Clostridium difficile infections in the community: a zoonotic disease?

    Hensgens, M.P.M.; Keessen, A.M.; Squire, M.M.; Riley, T.V.; Koene, M.G.J.; Boer, de E.; Lipman, L.J.; Kuijper, E.J.

    2012-01-01

    Clostridium difficile infections (CDIs) are traditionally seen in elderly and hospitalized patients who have used antibiotic therapy. In the community, CDIs requiring a visit to a general practitioner are increasingly occurring among young and relatively healthy individuals without known

  16. Comparison of media for enumeration of Clostridium perfringens from foods

    Jong, A.E.I. de; Eijhusen, G.P.; Brouwer-Post, E.J.F.; Grand, M.; Johansson, T.; Kärkkäinen, T.; Marugg, J.; Veld, P.H. in 't; Warmerdam, F.H.M.; Wörner, G.; Zicavo, A.; Rombouts, F.M.; Beumer, R.R.

    2003-01-01

    Many media have been developed to enumerate Clostridium perfringens from foods. In this study, six media [iron sulfite (IS) agar, tryptose sulfite cycloserine (TSC) agar, Shahidi Ferguson perfringens (SFP) agar, sulfite cycloserine azide (SCA), differential clostridial agar (DCA), and oleandomycin

  17. effluent by bacillus cereus and clostridium butyricum using

    user

    Double-chambered MFCs was used for the study and operated ..... The third one is wire electron transfer, which uses ... phase indicates that the Bacillus cereus and Clostridium butyricum ..... Improving Start Up Performance With Carbon Mesh.

  18. Clostridium difficile Infection Worsens the Prognosis of Ulcerative Colitis

    María E Negrón

    2014-01-01

    Full Text Available BACKGROUND: The impact of Clostridium difficile infections among ulcerative colitis (UC patients is well characterized. However, there is little knowledge regarding the association between C difficile infections and postoperative complications among UC patients.

  19. Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome.

    Khalili Ghadikolaei, Kamran; Akbari Noghabi, Kambiz; Shahbani Zahiri, Hossein

    2017-09-01

    The camel rumen metagenome is an untapped source of glycoside hydrolases. In this study, novel genes encoding for a modular xylanase (XylC) and a cellulase (CelC) were isolated from a camel rumen metagenome and expressed in Escherichia coli BL21 (DE3). XylC with xylanase (Xyn), CBM, and carbohydrate esterase (CE) domains was characterized as a β-1,4-endoxylanase with remarkable catalytic activity on oat-spelt xylan (K cat  = 2919 ± 57 s -1 ). The implication of XylC's modular structure in its high catalytic activity was analyzed by truncation and fusion construction with CelC. The resulting fusions including Cel-CBM, Cel-CBM-CE, and Xyn-CBM-Cel showed remarkable enhancement in CMCase activity with K cat values of 742 ± 12, 1289 ± 34.5, and 2799 ± 51 s -1 compared to CelC with a K cat of 422 ± 3.5 s -1 . It was also shown that the bifunctional Xyn-CBM-Cel with synergistic xylanase/cellulase activities was more efficient than XylC and CelC in hydrolysis of rice and barley straws.

  20. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement.

    Qian, Yuanchao; Zhong, Lixia; Hou, Yunhua; Qu, Yinbo; Zhong, Yaohua

    2016-01-01

    The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.