DEFF Research Database (Denmark)
Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola
2012-01-01
It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...
Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.
Energy Technology Data Exchange (ETDEWEB)
Kondo, Fumiyoshi (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan); Atmosphere and Ocean Research Inst., Univ. of Tokyo, Tokyo (Japan)), Email: fkondo@aori.u-tokyo.ac.jp; Tsukamoto, Osamu (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan))
2012-04-15
Direct comparison of airsea CO{sub 2} fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO{sub 2} flux by OPEC was larger than the bulk CO{sub 2} flux using the gas transfer velocity estimated by the mass balance technique, while the CO{sub 2} flux by CPEC agreed with the bulk CO{sub 2} flux. We investigated a traditional conflict between the CO{sub 2} flux by the eddy covariance technique and the bulk CO{sub 2} flux, and whether the CO{sub 2} fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO{sub 2} flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO{sub 2} fluctuation over the ocean. Further, the underestimated CO{sub 2} flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H{sub 2}O flux. The CO{sub 2} flux by CPEC agreed with the total CO{sub 2} flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO{sub 2} flux
Directory of Open Access Journals (Sweden)
Fumiyoshi Kondo
2012-04-01
Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.
Directory of Open Access Journals (Sweden)
Masahito Ueyama
2012-07-01
Full Text Available Synthesis studies using multiple-site datasets for eddy covariance potentially contain uncertainties originating from the use of different flux calculation options, because the choice of the process for calculating half-hourly fluxes from raw time series data is left to individual researchers. In this study, we quantified the uncertainties associated with different flux calculation methods at seven sites. The differences in the half-hourly fluxes were small, generally of the order less than a few percentiles, but they were substantial for the annual fluxes. After the standardisation under current recommendations in the FLUXNET communities, we estimated the uncertainties in the annual fluxes associated with the flux calculations to be 2.6±2.7 W m−2 (the mean 90% ± confidence interval for the sensible heat flux, 72±37 g C m−2 yr−1 for net ecosystem exchange (NEE, 12±6% for evapotranspiration, 12±6% for gross primary productivity and 16±10% for ecosystem respiration. The self-heating correction strongly influenced the annual carbon balance (143±93 g C m−2 yr−1, not only for cold sites but also for warm sites, but did not fully account for differences between the open- and closed-path systems (413±189 g C m−2 yr−1.
DEFF Research Database (Denmark)
Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola
2012-01-01
It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...
On the use of the Webb-Pearman-Leuning theory for closed-path eddy correlation measurements
DEFF Research Database (Denmark)
Ibrom, Andreas; Dellwik, Ebba; Larsen, Søren Ejling
2007-01-01
We consider an imperfection of real closed-path eddy correlation systems-the decoupling of the water vapour and CO2 concentrations-with respect to the application of the Webb-Pearman-Leuning (WPL) theory. It is described why and how the current application of the WPL theory needs to be adapted...... into account, over-corrected the annual flux by 21%, or 31 g m(-2) yr(-1), to which the decoupling effect contributed with 7%. We suggest either converting the raw data point-by-point to mixing ratios or using the uncorrected covariances of water vapour mole fractions with the vertical wind velocity that were...
DEFF Research Database (Denmark)
Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.
2007-01-01
datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia
2018-03-01
Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4
Papale, Dario; Fratini, Gerardo
2013-04-01
Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under
Eddy covariance methane measurements at a Ponderosa pine plantation in California
Directory of Open Access Journals (Sweden)
T. Röckmann
2009-11-01
Full Text Available Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane analyzer (FMA from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. The fluctuations of the CH_{4} concentration measured at 10 Hz appear to be small and their standard deviation is comparable to the magnitude of the signal noise (±5 ppbv. Consequently, the power spectra typically have a white noise signature at the high frequency end (a slope of +1. Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH_{4} compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. We furthermore evaluate the complications of combined open and closed-path measurements when applying the Webb-Pearman-Leuning (WPL corrections (Webb et al., 1980 and the consequences of a phase lag between the water vapor and methane signal inside the closed path system. The results of diurnal variations of CH_{4} concentrations and fluxes are summarized and compared to the monthly results of process-based model calculations.
Estimating surface fluxes using eddy covariance and numerical ogive optimization
DEFF Research Database (Denmark)
Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling
2015-01-01
Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency con......Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low...
Eddy Covariance Measurements of the Sea-Spray Aerosol Flu
Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.
2015-12-01
Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.
Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements
Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.
2013-06-01
Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.
Directory of Open Access Journals (Sweden)
S. E. Brown
2018-03-01
Full Text Available Nitrous oxide (N2O fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2. The system features a relatively small, single-pass sample cell (200 mL that provides good frequency response with a lower-powered pump ( ∼ 250 W. A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016 in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: −26.1 to 31.6 °C. The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz and similar to that of a closed-path
DEFF Research Database (Denmark)
McGloin, Ryan; McGowan, Hamish; McJannet, David
2014-01-01
Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...
Directory of Open Access Journals (Sweden)
K. Gerdel
2017-09-01
Full Text Available The trace gas carbonyl sulfide (COS has lately received growing interest from the eddy covariance (EC community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers, QCLAS, a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterisation of the COS measurement with the Aerodyne QCLAS in the context of the EC technique and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed the occurrence of sensor drift under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared with those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that
Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg
2017-09-26
The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO 2 and H 2 O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO 2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this
Arriga, Nicola; Fratini, Gerardo; Forgione, Antonio; Tomassucci, Michele; Papale, Dario
2010-05-01
Eddy covariance is a well established and widely used methodology for the measurement of turbulent fluxes of mass and energy in the atmospheric boundary layer, in particular to estimate CO2/H2O and heat exchange above ecologically relevant surfaces (Aubinet 2000, Baldocchi 2003). Despite its long term application and theoretical studies, many issues are still open about the effect of different experimental set-up on final flux estimates. Open issues are the evaluation of the performances of different kind of sensors (e.g. open path vs closed path infra-red gas analysers, vertical vs horizontal mounting ultrasonic anemometers), the quantification of the impact of corresponding physical corrections to be applied to get robust flux estimates taking in account all processes concurring to the measurement (e.g. the so-called WPL term, signal attenuation due to air sampling system for closed path analyser, relative position of analyser and anemometer) and the differences between several data transmission protocols used (analogue, digital RS-232, SDM). A field experiment was designed to study these issues using several instruments among those most used within the Fluxnet community and to compare their performances under conditions supposed to be critical: rainy and cold weather conditions for open-path analysers (Burba 2008), water transport and absorption at high air relative humidity conditions for closed-path systems (Ibrom, 2007), frequency sampling limits and recorded data robustness due to different transmission protocols (RS232, SDM, USB, Ethernet) and finally the effect of the displacement between anemometer and analyser using at least two identical analysers placed at different horizontal and vertical distances from the anemometer. Aim of this experiment is to quantify the effect of several technical solutions on the final estimates of fluxes measured at a point in the space and if they represent a significant source of uncertainty for mass and energy cycle
An Extensible Processing Framework for Eddy-covariance Data
Durden, D.; Fox, A. M.; Metzger, S.; Sturtevant, C.; Durden, N. P.; Luo, H.
2016-12-01
The evolution of large data collecting networks has not only led to an increase of available information, but also in the complexity of analyzing the observations. Timely dissemination of readily usable data products necessitates a streaming processing framework that is both automatable and flexible. Tower networks, such as ICOS, Ameriflux, and NEON, exemplify this issue by requiring large amounts of data to be processed from dispersed measurement sites. Eddy-covariance data from across the NEON network are expected to amount to 100 Gigabytes per day. The complexity of the algorithmic processing necessary to produce high-quality data products together with the continued development of new analysis techniques led to the development of a modular R-package, eddy4R. This allows algorithms provided by NEON and the larger community to be deployed in streaming processing, and to be used by community members alike. In order to control the processing environment, provide a proficient parallel processing structure, and certify dependencies are available during processing, we chose Docker as our "Development and Operations" (DevOps) platform. The Docker framework allows our processing algorithms to be developed, maintained and deployed at scale. Additionally, the eddy4R-Docker framework fosters community use and extensibility via pre-built Docker images and the Github distributed version control system. The capability to process large data sets is reliant upon efficient input and output of data, data compressibility to reduce compute resource loads, and the ability to easily package metadata. The Hierarchical Data Format (HDF5) is a file format that can meet these needs. A NEON standard HDF5 file structure and metadata attributes allow users to explore larger data sets in an intuitive "directory-like" structure adopting the NEON data product naming conventions.
Toward a Mexican eddy covariance network for carbon cycle science
Vargas, Rodrigo; Yépez, Enrico A.
2011-09-01
First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.
Directory of Open Access Journals (Sweden)
D. M. D. Hendriks
2008-01-01
Full Text Available A Fast Methane Analyzer (FMA is assessed for its applicability in a closed path eddy covariance field set-up in a peat meadow. The FMA uses off-axis integrated cavity output spectroscopy combined with a highly specific narrow band laser for the detection of CH_{4} and strongly reflective mirrors to obtain a laser path length of 2–20×10^{3} m. Statistical testing and a calibration experiment showed high precision (7.8×10^{−3} ppb and accuracy (<0.30% of the instrument, while no drift was observed. The instrument response time was determined to be 0.10 s. In the field set-up, the FMA is attached to a scroll pump and combined with a 3-axis ultrasonic anemometer and an open path infrared gas analyzer for measurements of carbon dioxide and water vapour. The power-spectra and co-spectra of the instruments were satisfactory for 10 Hz sampling rates.
Due to erroneous measurements, spikes and periods of low turbulence the data series consisted for 26% of gaps. Observed CH_{4} fluxes consisted mainly of emission, showed a diurnal cycle, but were rather variable over. The average CH_{4} emission was 29.7 nmol m^{−2} s^{−1}, while the typical maximum CH_{4} emission was approximately 80.0 nmol m^{−2} s^{−1} and the typical minimum flux was approximately 0.0 nmol m^{−2} s^{−1}. The correspondence of the measurements with flux chamber measurements in the footprint was good and the observed CH_{4} emission rates were comparable with eddy covariance CH_{4} measurements in other peat areas.
Additionally, three measurement techniques with lower sampling frequencies were simulated, which might give the possibility to measure CH_{4} fluxes without an external pump and save energy. Disjunct eddy covariance appeared to be the most reliable substitute for 10 Hz eddy covariance, while relaxed eddy accumulation gave
LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX
Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.
2009-12-01
night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant Number DE-FG02-05ER84283.
Predicting deep percolation with eddy covariance under mulch drip irrigation
Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang
2016-04-01
Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.
Regional Scaling of Airborne Eddy Covariance Flux Observation
Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.
2014-12-01
The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The
Yee, Mei Sun; Pauwels, Valentijn R N; Daly, Edoardo; Beringer, Jason; Rü diger, Christoph; McCabe, Matthew; Walker, Jeffrey P.
2015-01-01
with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used
Innovative CO2 Analyzer Technology for the Eddy Covariance Flux Monitor, Phase I
National Aeronautics and Space Administration — We propose to build and evaluate NDIR Analyzers that can observe eddy covariance flux of CO2 from unmanned airborne platforms. For both phases, a total of four...
Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad
2010-05-01
Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by
Eddy covariance measurements of greenhouse gases from a restored and rewetted raised bog ecosystem.
Lee, S. C.; Christen, A.; Black, T. A.; Johnson, M. S.; Ketler, R.; Nesic, Z.; Merkens, M.
2015-12-01
Wetland ecosystems play a significant role in the global carbon (C) cycle. Wetlands act as a major long-term storage of carbon by sequestrating carbon-dioxide (CO2) from the atmosphere. Meanwhile, they can emit significant amounts of methane (CH4) due to anaerobic microbial decomposition. The Burns Bog Ecological Conservancy Area (BBECA) is recognized as one of Canada's largest undeveloped natural areas retained within an urban area. Historically, it has been substantially reduced in size and degraded by peat mining and agriculture. Since 2005, the bog has been declared a conservancy area, and the restoration efforts in BBECA focus on rewetting the disturbed ecosystems to promote a transition back to a raised bog. A pilot study measured CH4, CO2 and N2O exchanges in 2014 and concluded to monitor CO2, CH4 fluxes continuously. From the perspective of greenhouse gas (GHG) emissions, CO2 sequestered in bog needs to be protected and additional CO2 and CH4 emissions due to land-cover change need to be reduced by wise management. In this study, we measured the growing-season (June-September) fluxes of CO2 and CH4 exchange using eddy covariance (EC). A floating platform with an EC system for both CO2 (closed-path) and CH4 (open-path) began operation in June 2015. During the growing-season, gross ecosystem photosynthesis (GEP) and ecosystem respiration (Re) averaged 5.87 g C m-2 day-1 and 2.02 g C m-2 day-1, respectively. The magnitude of GEP and Re were lower than in previous studies of pristine northern peatlands. The daily average CH4 emission was 0.99 (±1.14) g C m-2 day-1 and it was higher than in most previous studies. We also characterized how environmental factors affected the seasonal dynamics of these exchanges in this disturbed peatland. Our measurements showed that soil temperature and soil water content were major drivers of seasonal changes of GHG fluxes. The daily average GHG warming potential (GWP) of the emissions in the growing seasons (from CO2 and CH4
Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model
DEFF Research Database (Denmark)
Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø
2015-01-01
Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...
Estimating local atmosphere-surface fluxes using eddy covariance and numerical Ogive optimization
DEFF Research Database (Denmark)
Sievers, Jakob; Papakyriakou, Tim; Larsen, Søren
2014-01-01
Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low-frequency cont......Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low...
Eddy covariance methane measurements at a Ponderosa pine plantation in California
Smeets, C.J.P.P.; Holzinger, R.; Vigano, I.; Goldstein, A.H.; Röckmann, T.
2009-01-01
Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows
Czech Academy of Sciences Publication Activity Database
Rebmann, C.; Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Carrara, A.; Cescatti, A.; Ceulemans, R.; Clement, R.; Elbers, J. A.; Granier, A.; Grünwald, T.; Guyon, D.; Havránková, Kateřina; Heinesch, B.; Knohl, A.; Laurila, T.; Longdoz, B.; Marcolla, B.; Markkanen, T.; Miglietta, F.; Moncrieff, J.; Montagnani, L.; Moors, E.; Nardino, M.; Ourcival, J.-M.; Rambal, S.; Rannik, Ü.; Rotenberg, E.; Sedlák, Pavel; Unterhuber, G.; Vesala, T.; Yakir, D.
2005-01-01
Roč. 80, - (2005), s. 121-141 ISSN 0177-798X Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Eddy covariance * Quality assurance * Quality control * Footprint modelling * Heterogeneity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.295, year: 2005
Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.
2008-12-01
The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.
DEFF Research Database (Denmark)
Pihlatie, M.; Rinne, J.; Ambus, P.
2005-01-01
Spring time nitrous oxide (N2O) emissions from an old beech (Fagus sylvatica L.) forest were measured with eddy covariance (EC) and chamber techniques. The aim was to obtain information on the spatial and temporal variability in N2O emissions and link the emissions to soil environmental parameters...
Burba, George; Madsen, Rod; Feese, Kristin
2013-04-01
The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals
Eddy-covariance methane flux measurements over a European beech forest
Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander
2015-04-01
The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our
Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo
Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie
2018-05-01
Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.
Czech Academy of Sciences Publication Activity Database
Pokorný, Radek; Slípková, Romana; Havránková, Kateřina; Pavelka, Marian
2012-01-01
Roč. 951, č. 1 (2012), s. 301-308 ISSN 0567-7572. [International Workshop On Sap Flow /8./. Volterra, 08.05.2011-12.05.2011] R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional research plan: CEZ:AV0Z60870520 Keywords : eddy-covariance * evaporation * Picea abies * sap flow * transpiration Subject RIV: EH - Ecology, Behaviour
Ventilation of subterranean CO2 and Eddy covariance incongruities over carbonate ecosystems
Directory of Open Access Journals (Sweden)
F. Domingo
2010-03-01
Full Text Available Measurements of CO2 fluxes with Eddy Covariance (EC systems are ongoing over different ecosystems around the world, through different measuring networks, in order to assess the carbon balance of these ecosystems. In carbonate ecosystems, characterized by the presence of subterranean pores and cavities, ventilation of the CO2 accumulated in these cavities and pores can act as an extra source of CO2 exchange between the ecosystem and the atmosphere. In this work we analyse the effect of the subterranean heterogeneity of a carbonate ecosystem on measurements of CO2 fluxes by comparing measurements from two EC systems with distinct footprints. Results showed that both EC systems agreed for measurements of evapotranspiration and of CO2 in periods when respiratory and photosynthetic processes were dominant (biological periods, with a regression slope of 0.99 and 0.97, respectively. However, in periods when the main source of CO2 comes from the ventilation of subterranean pores and cavities (abiotic periods agreement is not good, with a regression slope of 0.6. Ground-penetrating radar measurements of the sub-surface confirmed the existence of high sub-surface heterogeneity that, combined with different footprints, lead to differences in the measurements of the two EC systems. These results show that measurements of CO2 fluxes with Eddy covariance systems over carbonate ecosystems must be taken carefully, as they may not be representative of the ecosystem under consideration.
Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements
Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.
2017-12-01
Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.
Chasmer, L; Baker, T; Carey, S K; Straker, J; Strilesky, S; Petrone, R
2018-06-12
Time series remote sensing vegetation indices derived from SPOT 5 data are compared with vegetation structure and eddy covariance flux data at 15 dry to wet reclamation and reference sites within the Oil Sands region of Alberta, Canada. This comprehensive analysis examines the linkages between indicators of ecosystem function and change trajectories observed both at the plot level and within pixels. Using SPOT imagery, we find that higher spatial resolution datasets (e.g. 10 m) improves the relationship between vegetation indices and structural measurements compared with interpolated (lower resolution) pixels. The simple ratio (SR) vegetation index performs best when compared with stem density-based indicators (R 2 = 0.65; p 0.02). Fluxes (net ecosystem production (NEP) and gross ecosystem production (GEP)) are most related to NDVI and SAVI when these are interpolated to larger 20 m × 20 m pixels (R 2 = 0.44-0.50; p 3 m 2 m -2 , making this index more appropriate for newly regenerating reclamation areas. For sites with LAI remote sensing in combination with field and eddy covariance data for monitoring and scaling of reclaimed and reference site productivity within and beyond the Oil Sands Region of western Canada. Copyright © 2018 Elsevier B.V. All rights reserved.
Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.
2017-12-01
Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.
VOC emission rates over London and South East England obtained by airborne eddy covariance.
Vaughan, Adam R; Lee, James D; Shaw, Marvin D; Misztal, Pawel K; Metzger, Stefan; Vieno, Massimo; Davison, Brian; Karl, Thomas G; Carpenter, Lucy J; Lewis, Alastair C; Purvis, Ruth M; Goldstein, Allen H; Hewitt, C Nicholas
2017-08-24
Volatile organic compounds (VOCs) originate from a variety of sources, and play an intrinsic role in influencing air quality. Some VOCs, including benzene, are carcinogens and so directly affect human health, while others, such as isoprene, are very reactive in the atmosphere and play an important role in the formation of secondary pollutants such as ozone and particles. Here we report spatially-resolved measurements of the surface-to-atmosphere fluxes of VOCs across London and SE England made in 2013 and 2014. High-frequency 3-D wind velocities and VOC volume mixing ratios (made by proton transfer reaction - mass spectrometry) were obtained from a low-flying aircraft and used to calculate fluxes using the technique of eddy covariance. A footprint model was then used to quantify the flux contribution from the ground surface at spatial resolution of 100 m, averaged to 1 km. Measured fluxes of benzene over Greater London showed positive agreement with the UK's National Atmospheric Emissions Inventory, with the highest fluxes originating from central London. Comparison of MTBE and toluene fluxes suggest that petroleum evaporation is an important emission source of toluene in central London. Outside London, increased isoprene emissions were observed over wooded areas, at rates greater than those predicted by a UK regional application of the European Monitoring and Evaluation Programme model (EMEP4UK). This work demonstrates the applicability of the airborne eddy covariance method to the determination of anthropogenic and biogenic VOC fluxes and the possibility of validating emission inventories through measurements.
NEON's Eddy-Covariance Storage Exchange: from Tower to Data Portal
Durden, N. P.; Luo, H.; Xu, K.; Metzger, S.; Durden, D.
2017-12-01
NEON's eddy-covariance storage exchange system (ECSE) consists of a suite of sensors including temperature sensors, a CO2 and H2O gas analyzer, and isotopic CO2 and H2O analyzers. NEON's ECSE was developed to provide the vertical profile measurements of temperature, CO2 and H2O concentrations, the stable isotope ratios in CO2 (δ13C) and H2O (δ18O and δ2H) in the atmosphere. The profiles of temperature and concentrations of CO2 and H2O are key to calculate storage fluxes for eddy-covariance tower sites. Storage fluxes have a strong diurnal cycle and can be large in magnitude, especially at temporal scales less than one day. However, the storage term is often neglected in flux computations. To obtian accurate eddy-covariance fluxes, the storage fluxes are calculated and incorporated into the calculations of net surface-atmosphere ecosystem exchange of heat, CO2, and H2O for each NEON tower site. Once the ECSE raw data (Level 0, or L0) is retrieved at NEON's headquarters, it is preconditioned through a sequence of unit conversion, time regularization, and plausibility tests. By utilizing NEON's eddy4R framework (Metzger et al., 2017), higher-level data products are generated including: Level 1 (L1): Measurement-level specific averages of temperature and concentrations of CO2 and H2O. Level 2 (L2): Time rate of change of temperature and concentrations of CO2 and H2O over 30 min at each measurement level along the vertical tower profile. Level 3 (L3): Time rate of change of temperature and concentrations of CO2 and H2O over 30 min (L2), spatially interpolated along the vertical tower profile. Level 4 (L4): Storage fluxes of heat, CO2, and H2O calculated from the integrated time rate of change spatially interpolated profile (L3). The L4 storage fluxes are combined with turbulent fluxes to calculate the net surface-atmosphere ecosystem exchange of heat, CO2, and H2O. Moreover, a final quality flag and uncertainty budget are produced individually for each data stream
Mauder, M.; Oncley, S.P.; Vogt, R.; Weidinger, T.; Ribeiro, L.; Bernhofer, C.; Foken, T.; Kohsiek, W.; Bruin, de, H.A.R.; Liu, H.
2007-01-01
The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion¿closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several pos...
DEFF Research Database (Denmark)
Else, B. G T; Rysgaard, S.; Attard, K.
2015-01-01
as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...
Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.
2016-01-01
The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. PMID:27966534
Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.
2016-12-01
The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.
Towards an integrated quality control procedure for eddy-covariance data
Vitale, Domenico; Papale, Dario
2017-04-01
The eddy-covariance technique is nowadays the most reliable and direct way, allowing to calculate the main fluxes of Sensible and Latent Heat and of Net Ecosystem Exchange, this last being the result of the difference between the CO2 assimilated by photosynthetic activities and those released to the atmosphere through the ecosystem respiration processes. Despite the improvements in accuracy of measurement instruments and software development, the eddy-covariance technique is not suitable under non-ideal conditions respect to the instruments characteristics and the physical assumption behind the technique mainly related to the well-developed and stationary turbulence conditions. Under these conditions the calculated fluxes are not reliable and need to be flagged and discarded. In order to discover these unavoidable "bad" fluxes and build dataset with the highest quality, several tests applied both on high-frequency (10-20 Hz) raw data and on half-hourly times series have been developed in the past years. Nevertheless, there is an increasing need to develop a standardized quality control procedure suitable not only for the analysis of long-term data, but also for the near-real time data processing. In this paper, we review established quality assessment procedures and present an innovative quality control strategy with the purpose of integrating the existing consolidated procedures with robust and advanced statistical tests more suitable for the analysis of time series data. The performance of the proposed quality control strategy is evaluated both on simulated and EC data distributed by the ICOS research infrastructure. It is concluded that the proposed strategy is able to flag and exclude unrealistic fluxes while being reproducible and retaining the largest possible amount of high quality data.
Eddy covariance measurements of sea spray particles over the Atlantic Ocean
Directory of Open Access Journals (Sweden)
S. J. Norris
2008-02-01
Full Text Available Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol spectra suitable for direct eddy correlation determination of the sea spray particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP – capable of measuring 8-channel size spectra for mean radii between 0.15 and 3.5 µm at 10 Hz. The first successful measurements were made during the Waves, Air Sea Fluxes, Aerosol and Bubbles (WASFAB field campaign in October 2005 in Duck (NC, USA. The method and initial results are presented and comparisons are made with recent sea spray source functions from the literature.
Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; van den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.
2014-06-01
The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m-2 s-1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m-2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc
Mauder, M.; Oncley, S.P.; Vogt, R.; Weidinger, T.; Ribeiro, L.; Bernhofer, C.; Foken, T.; Kohsiek, W.; Bruin, de H.A.R.; Liu, H.
2007-01-01
The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion¿closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement
Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen
2013-01-01
We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...
Czech Academy of Sciences Publication Activity Database
Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.
2011-01-01
Roč. 8, č. 9 (2011), s. 2523-2534 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011
Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.
2015-01-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.
Gap-filling eddy-covariance data using a complex system of neural networks
Dúbrava, Matúš; Rebok, Tomáš; Havránková, Kateřina; Pavelka, Marian
2014-05-01
The eddy-covariance technique measures the flux of matter and energy between various ecosystems and the atmosphere. The fluxes characterize an interaction of the ecosystems with their surroundings and provide valuable knowledge to Global Climate Change issues. Among the main assets of the method belongs the possible evaluation of the carbon balance, expressed as the Net Ecosystem carbon Exchange (NEE) parameter. However, when unfavorable micro-meteorological conditions (e.g., stable stratification and low turbulent mixing) happen, measured fluxes are inaccurate and need to be corrected and/or gap-filled. Thus, there is a long-term challenge for many research teams from the flux community to develop the most accurate gap-filling method -- many statistical as well as empirical approaches have been proposed so far (e.g., mean replacement, interpolation, extrapolation, regression analysis, methods based on plant physiology depending on meteorological variables, etc.), each of them having its strengths and weaknesses. The artificial neural networks (ANNs) -- purely empirical non-linear regression models generally able to solve any fitness approximation and pattern recognition problem -- were proven as a promising approach and one of the most precise method for gap-filling the eddy-covariance data. However, even though providing encouraging results when considering a prediction error throughout the whole dataset, they considerably fail in fitting inherently present spikes in the NEE values. This drawback results from the nature of ANNs, since their ability to fit spikes is partly in contrast with their ability to reliably approximate previously unseen data -- while the spike fitting can be improved by an increasing number of training epochs, this often leads to ANNs over-fitting and thus losing their generalization ability, resulting in higher overall prediction error. Since the proper generalization ability has greater impact on the precision of the results, current
NEON's eddy-covariance: interoperable flux data products, software and services for you, now
Metzger, S.; Desai, A. R.; Durden, D.; Hartmann, J.; Li, J.; Luo, H.; Durden, N. P.; Sachs, T.; Serafimovich, A.; Sturtevant, C.; Xu, K.
2017-12-01
Networks of eddy-covariance (EC) towers such as AmeriFlux, ICOS and NEON are vital for providing the necessary distributed observations to address interactions at the soil-vegetation-atmosphere interface. NEON, close to full operation with 47 tower sites, will represent the largest single-provider EC network globally. Its standardized observation and data processing suite is designed specifically for inter-site comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, NEON coordinates EC with rich contextual observations such as airborne remote sensing and in-situ sampling bouts. In January 2018 NEON enters its operational phase, and EC data products, software and services become fully available to the science community at large. These resources strive to incorporate lessons-learned through collaborations with AmeriFlux, ICOS, LTER and others, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities. Here, we present an overview of the ongoing product release, alongside efforts to integrate and collaborate with existing infrastructures, networks and communities. Near-real-time heat, water and carbon cycle observations in "basic" and "expanded", self-describing HDF5 formats become accessible from the NEON Data Portal, including an Application Program Interface. Subsequently, they are ingested into the AmeriFlux processing pipeline, together with inclusion in FLUXNET globally harmonized data releases. Software for reproducible, extensible and portable data analysis and science operations management also becomes available. This includes the eddy4R family of R-packages underlying the data product generation, together with the ability to directly participate in open development via GitHub version control and DockerHub image hosting. In addition, templates for science operations management include a web-based field maintenance application and a graphical user interface to simplify
Energy Technology Data Exchange (ETDEWEB)
Taipale, R.
2011-07-01
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in
International Nuclear Information System (INIS)
Kroon, P.S.
2010-09-01
About 30% of the increased greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are related to land use changes and agricultural activities. In order to select effective measures, knowledge is required about GHG emissions from these ecosystems and how these emissions are influenced by management and meteorological conditions. Accurate emission values are therefore needed for all three GHGs to compile the full GHG balance. However, the current annual estimates of CH4 and N2O emissions from ecosystems have significant uncertainties, even larger than 50%. The present study showed that an advanced technique, micrometeorological eddy covariance flux technique, could obtain more accurate estimates with uncertainties even smaller than 10%. The current regional and global trace gas flux estimates of CH4 and N2O are possibly seriously underestimated due to incorrect measurement procedures. Accurate measurements of both gases are really important since they could even contribute for more than two-third to the total GHG emission. For example: the total GHG emission of a dairy farm site was estimated at 16.10 3 kg ha -1 yr -1 in CO2-equivalents from which 25% and 45% was contributed by CH4 and N2O, respectively. About 60% of the CH4 emission was emitted by ditches and their bordering edges. These emissions are not yet included in the national inventory reports. We recommend including these emissions in coming reports.
Directory of Open Access Journals (Sweden)
A. Budishchev
2014-09-01
Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.
Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique
International Nuclear Information System (INIS)
Rinne, Janne.; Pihlatie, Mari; Haapanala, Sami; Vesala, Timo; Riutta, Terhi; Tuittila, Eeva-Stiina; Aurela, Mika; Tuovinen, Juha-Pekka
2007-01-01
The northern wetlands are one of the major sources of methane into the atmosphere. We measured annual methane emission from a boreal minerotrophic fen, Siikaneva, by the eddy covariance method. The average wintertime emissions were below 1 mg/m 2 /h, and the summertime emissions about 3.5 mg/m 2 /h. The water table depth did have any clear effect on methane emissions. During most of the year the emission depended on the temperature of peat below the water table. However, during the high and late summer the emission was independent on peat temperature as well. No diurnal cycle of methane flux was found. The total annual emission from the Siikaneva site was 12.6 g/m 2 . The emissions of the snow free period contributed 91% to the annual emission. The emission pulse during the snow melting period was clearly detectable but of minor importance adding only less than 3% to the annual emission. Over 20% of the carbon assimilated during the year as carbon dioxide was emitted as methane. Thus methane emission is an important component of the carbon balance of the Siikaneva fen. This indicates need of taking methane into account when studying carbon balances of northern fen ecosystems
Ecosystem Phenology from Eddy-covariance Measurements: Spring Photosynthesis in a Cool Temperate Bog
Lafleur, P.; Moore, T. R.; Poon, D.; Seaquist, J.
2005-12-01
The onset and increase of spring photosynthetic flux of carbon dioxide is an important attribute of the carbon budget of northern ecosystems and we used eddy-covariance measurements from March to May over 5 years at the Mer Bleue ombrotrophic bog to establish the important controls. The onset of ecosystem photosynthesis (day-of-year from 86 to 101) was associated with the disappearance on the snow cover and there is evidence that photosynthesis can continue after a thin new snowfall. The growth of photosynthesis during the spring period was partially associated with light (daily photosynthetically active radiation) but primarily with temperature, with the strongest correlation being observed with peat temperature at a depth of 5 and 10 cm, except in one year in which there was a long snow cover. The vegetation comprises mosses, which are able to photosynthesize very early, evergreen shrubs, which appear dependent on soil warming, and deciduous shrubs, which leaf-out only in late spring. We observed changes in shrub leaf colour from brown to green and concomitant increases in foliar nitrogen and chlorophyll concentrations during the spring in this "evergreen" system. We analyzed MODIS images for periods of overlap of tower and satellite data and found a generally strong correlation, though the infrequent satellite measurements were unable to pick out the onset and timing of rapid growth of photosynthesis in this ecosystem.
Challenges and benefits on long-term eddy covariance measurements over lakes
Vesala, Timo; Golub, Malgorzata; Desai, Ankur; Heiskanen, Jouni; Provenzale, Maria; Rantakari, Miitta; Ojala, Anne; Mammarella, Ivan
2017-04-01
Eddy Covariance (EC) data on carbon dioxide fluxes is presently available on about 30 lakes but the time series are mostly short, order of one year. Longer EC series together with chamber measurements and appropriate auxiliary data on water column allow for more accurate estimates of the aquatic component in terrestrial carbon balance and analysis of the environmental controls. We discuss on challenges for long-term EC measurements over freshwater ecosystems and demonstrate the benefits of EC data for carbon cycle studies via examples from long-term sites EC sites in Finland. We discuss on the auxiliary measurements needed and the general design of the whole measurement set-up to get representative information. We discuss on challenges related to the CO2 flux partitioning for freshwater ecosystems and introduce a new method to estimate the net primary productivity (NPP) on EC data, which is superior to more traditional methods (bottle incubations, 14C technique) with a poor temporal resolution. Finally, we collected and analyzed CO2 fluxes from 19 globally distributed lakes and reservoirs representing six climate zones. The mean flux was c. 0.3 micro mole / m2 s. We applied a simple upscaling to the direct observations and ended up to the estimate which is about half of the current emission estimate for lentic systems.
Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation
Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan
2018-06-01
In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.
Using Eddy Covariance Sensors to Quantify Carbon Metabolism of Peatlands: A Case Study in Turkey
Directory of Open Access Journals (Sweden)
Can Ertekin
2011-01-01
Full Text Available Net ecosystem exchange (NEE of carbon dioxide (CO2 was measured in a cool temperate peatland in northwestern Turkey on a continuous basis using eddy covariance (EC sensors and multiple (non-linear regression-M(NLR-models. Our results showed that hourly NEE varied between −1.26 and 1.06 mg CO2 m−2 s−1, with a mean value of 0.11 mg CO2 m−2 s−1. Nighttime ecosystem respiration (RE was on average measured as 0.23 ± 0.09 mg CO2 m−2 s−1. Two best-fit M(NLR models estimated daytime RE as 0.64 ± 0.31 and 0.24 ± 0.05 mg CO2 m−2 s−1. Total RE as the sum of nighttime and daytime RE ranged from 0.47 to 0.87 mg CO2 m−2 s−1, thus yielding estimates of gross primary productivity (GPP at −0.35 ± 0.18 and −0.74 ± 0.43 mg CO2 m−2 s−1. Use of EC sensors and M(NLR models is one of the most direct ways to quantify turbulent CO2 exchanges among the soil, vegetation and atmosphere within the atmospheric boundary layer, as well as source and sink behaviors of ecosystems.
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-06-01
Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
Directory of Open Access Journals (Sweden)
C. Spirig
2005-01-01
Full Text Available Within the framework of the AFO 2000 project ECHO, two PTR-MS instruments were operated in combination with sonic anemometers to determine biogenic VOC fluxes from a mixed deciduous forest site in North-Western Germany. The measurement site was characterised by a forest of inhomogeneous composition, complex canopy structure, limited extension in certain wind directions and frequent calm wind conditions during night time. The eddy covariance (EC technique was applied since it represents the most direct flux measurement approach on the canopy scale and is, therefore, least susceptible to these non-ideal conditions. A specific flux calculation method was used to account for the sequential multi-component PTR-MS measurements and allowing an individual delay time adjustment as well as a rigorous quality control based on cospectral analysis. The validated flux results are consistent with light and temperature dependent emissions of isoprene and monoterpenes from this forest, with average daytime emissions of 0.94 and 0.3µg m-2s-1, respectively. Emissions of methanol reached on average 0.087µg m-2s-1 during daytime, but fluxes were too small to be detected during night time. Upward fluxes of the isoprene oxidation products methyl vinyl ketone (MVK and methacrolein (MACR were also found, being two orders of magnitude lower than those of isoprene. Calculations with an analytical footprint model indicate that the observed isoprene fluxes correlate with the fraction of oaks within the footprints of the flux measurement.
Deriving Daytime Variables From the AmeriFlux Standard Eddy Covariance Data Set
Energy Technology Data Exchange (ETDEWEB)
van Ingen, Catharine [Berkeley Water Center. Berkeley, CA (United States); Microsoft. San Francisco, CA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berkeley Water Center. Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Humphrey, Marty [Univ. of Virginia, Charlottesville, VA (United States); Li, Jie [Univ. of Virginia, Charlottesville, VA (United States)
2008-12-06
A gap-filled, quality assessed eddy covariance dataset has recently become available for the AmeriFluxnetwork. This dataset uses standard processing and produces commonly used science variables. This shared dataset enables robust comparisons across different analyses. Of course, there are many remaining questions. One of those is how to define 'during the day' which is an important concept for many analyses. Some studies have used local time — for example 9am to 5pm; others have used thresholds on photosynthetic active radiation (PAR). A related question is how to derive quantities such as the Bowen ratio. Most studies compute the ratio of the averages of the latent heat (LE) and sensible heat (H). In this study, we use different methods of defining 'during the day' for GPP, LE, and H. We evaluate the differences between methods in two ways. First, we look at a number of statistics of GPP. Second, we look at differences in the derived Bowen ratio. Our goal is not science per se, but rather informatics in support of the science.
Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements
Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario
2017-04-01
Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.
Delta-Flux: An eddy covariance network for a climate-smart Lower Mississippi Basin
Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.
2017-01-01
Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.
Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration
Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy
2017-01-01
Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if â€œcalibratedâ€ to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.
Continuous measurement of air-water gas exchange by underwater eddy covariance
Berg, Peter; Pace, Michael L.
2017-12-01
Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent
Continuous measurement of air–water gas exchange by underwater eddy covariance
Directory of Open Access Journals (Sweden)
P. Berg
2017-12-01
Full Text Available Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air–water interface (∼ 4 cm to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz. By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600 in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes and not by biological activity (primary production and respiration. This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or
Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.
Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel
2015-02-03
A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes
Bohrer, G.; Kenny, W.; Morin, T. H.
2015-12-01
We used the RAMS-based Forest Large Eddy Simulations (RAFLES) to evaluate the sensitivity of eddy covariance measurements to land-surface discontinuity. While the sensitivity of eddy covariance measurements to surface heterogeneity is well known, it is, in most cases, no feasible to restrict measurements only to sites where the surface include undisturbed and homogeneous land cover over vast distances around the observation tower. The common approach to handle surface heterogeneity is to use a footprint model and reject observations obtained while the source of observed signal is from a mixture of land-use types, and maintain only measurements where the signal originates mostly from the land-use type of interest. We simulated two scenarios - measurements of fluxes from a small forest-surrounded lake, and measurements near a forest edge. These are two very common scenarios where measurements are bound to be affected by heterogeneity - measurements in small lakes, will, by definition, be in some non-negligible proximity or the lake edge; forest edges are common in any forest, near the forest patch edge but also around disturbed patches and forest gaps. We identify regions where the surface heterogeneity is creating persistent updraft or downdraft. A non-zero mean vertical wind is typically neglected in eddy-covariance measurements. We find that these circulations lead to both vertical and horizontal advection that cannot be easily measured by a single eddy-covariance tower. We identify downwind effects, which are well known, but also quantify the upwind effects. We find that surface-induced circulations may affect the flux measured from a tower up to several canopy heights ahead of the discontinuity. We used the High-resolution Volatile Organic Compound Atmospheric Chemistry in Canopies (Hi-VACC) model to determine the actual measurement footprints throughout the RAFLES domain. We estimated the land-cover type distribution of the source signal at different virtual
Directory of Open Access Journals (Sweden)
E. M. Mårtensson
2006-01-01
Full Text Available Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m−2 s−1, in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA database, which is based on traffic intensity measurements. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh−1 km−1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=15±18×106 m−2 s−1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF . This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh
Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method
Directory of Open Access Journals (Sweden)
Joulia Meshalkina
2015-07-01
Full Text Available The eddy covariance (EC technique as a powerful statistics-based method of measurement and calculation the vertical turbulent fluxes of greenhouses gases within atmospheric boundary layers provides the continuous, long-term flux information integrated at the ecosystem scale. An attractive way to compare the agricultural practices influences on GHG fluxes is to divide a crop area into subplots managed in different ways. The research has been carried out in the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (RTSAU, Moscow in 2013 under the support of RF Government grant # 11.G34.31.0079, EU grant # 603542 LUС4С (7FP and RF Ministry of education and science grant # 14-120-14-4266-ScSh. Arable Umbric Albeluvisols have around 1% of SOC, 5.4 pH (KCl and NPK medium-enhanced contents in sandy loam topsoil. The CO2 flux seasonal monitoring has been done by two eddy covariance stations located at the distance of 108 m. The LI-COR instrumental equipment was the same for the both stations. The stations differ only by current crop version: barley or vetch and oats. At both sites, diurnal patterns of NEE among different months were very similar in shape but varied slightly in amplitude. NEE values were about zero during spring time. CO2 fluxes have been intensified after crop emerging from values of 3 to 7 µmol/s∙m2 for emission, and from 5 to 20 µmol/s∙m2 for sink. Stabilization of the fluxes has come at achieving plants height of 10-12 cm. Average NEE was negative only in June and July. Maximum uptake was observed in June with average values about 8 µmol CO2 m−2 s−1. Although different kind of crops were planted on the fields A and B, GPP dynamics was quite similar for both sites: after reaching the peak values at the mid of June, GPP decreased from 4 to 0.5 g C CO2 m-2 d-1 at the end of July. The difference in crops harvesting time that was equal two weeks did not significantly influence the daily
Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance
Directory of Open Access Journals (Sweden)
J. G. Barr
2013-03-01
Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE, and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and
Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary
2016-02-01
Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2) year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1) year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2 m(-2) d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. © 2015 John Wiley & Sons Ltd.
Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN above a Ponderosa pine forest
Directory of Open Access Journals (Sweden)
G. M. Wolfe
2009-01-01
Full Text Available During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007, we observed eddy covariance (EC fluxes of speciated acyl peroxy nitrates (APNs, including peroxyacetyl nitrate (PAN, peroxypropionyl nitrate (PPN and peroxymethacryloyl nitrate (MPAN, above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s^{−1}; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15% is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil. Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.
Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF
Directory of Open Access Journals (Sweden)
T. M. Ruuskanen
2011-01-01
Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H^{+} – water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C_{6} leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.
The smallest reliable fluxes we determined were less than 0.1 nmol m^{−2} s^{−1}, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m^{−2} s^{−1} were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.
Towards a network of Urban Forest Eddy Covariance stations: a unique case study in Naples
Guidolotti, Gabriele; Pallozzi, Emanuele; Esposito, Raffaela; Mattioni, Michele; Calfapietra, Carlo
2015-04-01
Urban forests are by definition integrated in highly human-made areas, and interact with different components of our cities. Thanks to those interactions, urban forests provide to people and to the urban environment a number of ecosystem services, including the absorption of CO2 and air pollutants thus influencing the local air quality. Moreover, in urban areas a relevant role is played by the photochemical pollution which is strongly influenced by the interactions between volatile organic compounds (VOC) and nitrogen oxides (NOx). In several cities, a high percentage of VOC is of biogenic origin mainly emitted from the urban trees. Despite their importance, experimental sites monitoring fluxes of trace gases fluxes in urban forest ecosystems are still scarce. Here we show the preliminary results of an innovative experimental site located in the Royal Park of Capodimonte within the city of Naples (40°51'N-14°15'E, 130 m above sea level). The site is mainly characterised by Quercus ilex with some patches of Pinus pinea and equipped with an eddy-covariance tower measuring the exchange of CO2, H2O, N2O, CH4, O3, PM, VOCs and NOx using state-of-the art instrumentations; it is running since the end of 2014 and it is part of the large infrastructural I-AMICA project. We suggest that the experience gained with research networks such as Fluxnet and ICOS should be duplicated for urban forests. This is crucial for carbon as there is now the ambition to include urban forests in the carbon stocks accounting system. This is even more important to understand the difficult interactions between anthropogenic and biogenic sources that often have negative implications for urban air quality. Urban environment can thus become an extraordinary case study and a network of such kind of stations might represent an important strategy both from the scientific and the applicative point of view.
Eddy covariance observations of surface leakage during shallow subsurface CO2 releases
Lewicki, Jennifer L.; Hilley, George E.; Fischer, Marc L.; Pan, Lehua; Oldenburg, Curtis M.; Dobeck, Laura; Spangler, Lee
2009-06-01
We tested the ability of eddy covariance (EC) to detect, locate, and quantify surface CO2 flux leakage signals within a background ecosystem. For 10 days starting on 9 July 2007, and for 7 days starting on 3 August 2007, 0.1 (Release 1) and 0.3 (Release 2) t CO2 d-1, respectively, were released from a horizontal well ˜100 m in length and ˜2.5 m in depth located in an agricultural field in Bozeman, Montana. An EC station measured net CO2 flux (Fc) from 8 June 2006 to 4 September 2006 (mean and standard deviation = -12.4 and 28.1 g m-2 d-1, respectively) and from 28 May 2007 to 4 September 2007 (mean and standard deviation = -12.0 and 28.1 g m-2 d-1, respectively). The Release 2 leakage signal was visible in the Fc time series, whereas the Release 1 signal was difficult to detect within variability of ecosystem fluxes. To improve detection ability, we calculated residual fluxes (Fcr) by subtracting fluxes corresponding to a model for net ecosystem exchange from Fc. Fcr had reduced variability and lacked the negative bias seen in corresponding Fc distributions. Plotting the upper 90th percentile Fcr versus time enhanced the Release 2 leakage signal. However, values measured during Release 1 fell within the variability assumed to be related to unmodeled natural processes. Fcr measurements and corresponding footprint functions were inverted using a least squares approach to infer the spatial distribution of surface CO2 fluxes during Release 2. When combined with flux source area evaluation, inversion results roughly located the CO2 leak, while resolution was insufficient to quantify leakage rate.
Hill, Timothy; Chocholek, Melanie; Clement, Robert
2017-06-01
Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley
Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.
2017-12-01
Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future
Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G
2015-02-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates. © 2014 John Wiley & Sons Ltd.
Gwate, O.; Mantel, Sukhmani K.; Palmer, Anthony R.; Gibson, Lesley A.
2016-10-01
Determining water and carbon fluxes over a vegetated surface is important in a context of global environmental changes and the fluxes help in understanding ecosystem functioning. Pursuant to this, the study measured evapotranspiration (ET) using an eddy covariance (EC) system installed over an intact example of the Albany Thicket (AT) vegetation in the Eastern Cape, South Africa. Environmental constraints to ET were also assessed by examining the response of ET to biotic and abiotic factors. The EC system comprised of an open path Infrared Gas Analyser and Sonic anemometer and an attendant weather station to measure bi-meteorological variables. Post processing of eddy covariance data was conducted using EddyPro software. Quality assessment of fluxes was also performed and rejected and missing data were filled using the method of mean diurnal variations (MDV). Much of the variation in ET was accounted for by the leaf area index (LAI, p water storage capacity of the vegetation and the possibility of vegetation accessing ground water. Most of the net radiation was consumed by sensible heat flux and this means that ET in the area is essentially water limited since abundant energy was available to drive turbulent transfers of energy. Understanding the environmental constraints to ET is crucial in predicting the ecosystem response to environmental forces such as climate change.
Directory of Open Access Journals (Sweden)
J. Sintermann
2011-03-01
Full Text Available A system for fast ammonia (NH_{3} measurements with chemical ionisation mass spectrometry (CIMS based on a commercial Proton Transfer Reaction-Mass Spectrometer (PTR-MS is presented. It uses electron transfer reaction as ionisation pathway and features a drift tube of polyetheretherketone (PEEK and silica-coated steel. Heating the instrumental inlet and the drift tube to 180 °C enabled an effective time resolution of ~1 s and made it possible to apply the instrument for eddy covariance (EC measurements. EC fluxes of NH_{3} were measured over two agricultural fields in Oensingen, Switzerland, following fertilisations with cattle slurry. Air was aspirated close to a sonic anemometer at a flow of 100 STP L min^{−1} and was directed through a 23 m long 1/2" PFA tube heated to 150 °C to an air-conditioned trailer where the gas was sub-sampled from the large bypass stream. This setup minimised damping of fast NH_{3} concentration changes between the sampling point and the actual measurement. High-frequency attenuation loss of the NH_{3} fluxes of 20 to 40% was quantified and corrected for using an empirical ogive method. The instrumental NH_{3} background signal showed a minor interference with H_{2}O which was characterised in the laboratory. The resulting correction of the NH_{3} flux after slurry spreading was less than 1‰. The flux detection limit of the EC system was about 5 ng m^{−2} s^{−1} while the accuracy of individual flux measurements was estimated 16% for the high-flux regime during these experiments. The NH_{3} emissions after broad spreading of the slurry showed an initial maximum of 150 μg m^{−2} s^{−1} with a fast decline in the following hours.
Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes
Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.
2007-12-01
Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the
Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.
Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena
2018-02-01
Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their
Eddy Covariance measurements of stable CO2 and H2O isotopologues
Braden-Behrens, Jelka; Knohl, Alexander
2015-04-01
The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive
On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning
Directory of Open Access Journals (Sweden)
G. Lasslop
2012-12-01
Full Text Available Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP and respiratory fluxes (R_{eco}. The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resulting uncertainties of the partitioned fluxes. The semi-empirical models used in flux partitioning algorithms require temperature observations as input, but as respiration takes place in many parts of an ecosystem, it is unclear which temperature input – air, surface, bole, or soil at a specific depth – should be used. This choice is a source of uncertainty and potential biases. In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration across FLUXNET sites to understand the potential of the different temperature observations as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning algorithms with air and soil temperature. We found the time lag (phase shift between air and soil temperatures explains the differences in the GPP and R_{eco} estimates when using either air or soil temperatures for flux partitioning. The impact of the source of temperature data on other derived ecosystem parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the
Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James
2016-04-01
Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2
Yee, Mei Sun
2015-11-01
Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the
Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana
Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary
2016-04-01
Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave
Fluxes of total reactive atmospheric nitrogen (ΣNr using eddy covariance above arable land
Directory of Open Access Journals (Sweden)
Christophe R. Flechard
2013-02-01
Full Text Available The amount and timing of reactive nitrogen exchange between agricultural land and the atmosphere play a key role in evaluating ecosystem productivity and in addressing atmospheric nitrogen budgets and transport. With the recent development of the Total Reactive Atmospheric Nitrogen Converter (TRANC apparatus, a methodology has been provided for continuous measurement of the sum of all airborne nitrogen containing species (ΣNr allowing for diurnal and seasonal investigations. We present ΣNr concentration and net flux data from an 11-month field campaign conducted at an arable field using the TRANC system within an eddy-covariance setup. Clear diurnal patterns of both ΣNr concentrations and fluxes with significant dependencies on atmospheric stability and stomatal regulation were observed in the growing season. TRANC data were compared with monthly-averaged concentrations and dry deposition rates of selected Nr compounds using DELTA denuders and ensemble-averages of four inferential models, respectively. Similar seasonal trends were found for Nr concentrations from DELTA and TRANC measurements with values from the latter being considerably higher than those of DELTA denuders. The variability of the difference between these two systems could be explained by seasonally changing source locations of NOx contributions to the TRANC signal. As soil and vegetation Nr emissions to the atmosphere are generally not treated by inferential (dry deposition models, TRANC data showed lower monthly deposition rates than those obtained from inferential modelling. Net ΣNr exchange was almost neutral (~0.072 kg N ha−1 at the end of the observation period. However, during most parts of the year, slight but permanent net ΣNr deposition was found. Our measurements demonstrate that fertilizer addition followed by substantial ΣNr emissions plays a crucial role in a site's annual atmospheric nitrogen budget. As long-term Nr measurements with high temporal
Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system
McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.
2011-12-01
Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were
Directory of Open Access Journals (Sweden)
A. J. Dolman
2012-12-01
Full Text Available We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is −342 Tg C yr^{−1} from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem Assessment and inverse models estimates. A lower boundary estimate is provided at −1350 Tg C yr^{−1} from the inversion models. The average of the three methods is −613.5 Tg C yr^{−1}. The methane emission is estimated separately at 41.4 Tg C yr^{−1}.
These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (−692 Tg C yr^{−1} from the LEA. It remains however remarkable that the three methods provide such close estimates (−615, −662, −554 Tg C yr^{–1} for net biome production (NBP, given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs suggest a much lower uptake at −91 Tg C yr^{−1}, and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.
Miller, S. D.; Freitas, H.; Read, E.; Goulden, M. L.; Rocha, H.
2007-12-01
Gas evasion from Amazonian rivers and lakes to the atmosphere has been estimated to play an important role in the regional budget of carbon dioxide (Richey et al., 2002) and the global budget of methane (Melack et al., 2004). These flux estimates were calculated by combining remote sensing estimates of inundation area with water-side concentration gradients and gas transfer rates (piston velocities) estimated primarily from floating chamber measurements (footprint ~1 m2). The uncertainty in these fluxes was large, attributed primarily to uncertainty in the gas exchange parameterization. Direct measurements of the gas exchange coefficient are needed to improve the parameterizations in these environments, and therefore reduce the uncertainty in fluxes. The micrometeorological technique of eddy covariance is attractive since it is a direct measurement of gas exchange that samples over a much larger area than floating chambers, and is amenable to use from a moving platform. We present eddy covariance carbon dioxide exchange measurements made using a small riverboat in rivers and lakes in the central Amazon near Santarem, Para, Brazil. Water-side carbon dioxide concentration was measured in situ, and the gas exchange coefficient was calculated. We found the piston velocity at a site on the Amazon River to be similar to existing ocean-based parameterizations, whereas the piston velocity at a site on the Tapajos River was roughly a factor 5 higher. We hypothesize that the enhanced gas exchange at the Tapajos site was due to a shallow upwind fetch. Our results demonstrate the feasibility of boat-based eddy covariance on these rivers, and also the utility of a mobile platform to investigate spatial variability of gas exchange.
Schipper, L. A.; Liang, L. L.; Wall, A.; Campbell, D.
2017-12-01
New Zealand's greenhouse gas (GHG) inventory is disproportionally dominated by methane and nitrous oxide which account for 54% of emissions. These GHGs are derived from pastoral agriculture that supports dairying and meat production. To date, most studies on quantifying or mitigating agricultural N2O emissions have used flux chamber measurements. Recent advances in detector technology now means that routine field-to-farm scale measurements of N2O emissions might be possible using the eddy covariance technique. In late 2016, we established an eddy covariance tower that measured N2O emissions from a dairy farm under year-round grazing. An Aerodyne quantum cascade laser (QCL) was used to measure N2O, CH4 and H2O concentration at 10 Hz and housed in a weatherproof and insulated enclosure (0.9 m ´ 1.2 m) and powered by mains power (240 VAC). The enclosure maintained a stable setpoint temperature (30±0.2°C) by using underground cooling pipes, fans and recirculating instrument heat. QCL (true 10 Hz digital) and CSAT3B sonic anemometer high frequency data are aligned using Network Time Protocol and EddyPro covariance maximisation during flux processing. Fluxes generally integrated over about 6-8 ha. Stable summertime baseline N2O fluxes (FN2O) were around 12-24 g N2O-N ha-1 d-1 (0.5-1.0 nmol N2O m-2 s-1). Grazing by cows during dry summer resulted in only modest increases in FN2O to 24-48 g N2O-N ha-1 d-1 (1.0-2.0 nmol N2O m-2 s-1). However, the first rain events after grazing resulted in large, short-lived (1-3 days) FN2O pulses reaching peaks of 144-192 g N2O-N ha-1 d-1 (6-8 nmol N2O m-2 s-1). During these elevated N2O emissions, FN2O displayed a significant diurnal signal, with peak fluxes mid-afternoon which was best explained by variation in shallow soil temperature in summer. In winter (both cooler and wetter) FN2O were not as easily explained on a daily basis but were generally greater than summer. Throughout the year, FN2O was strongly dependent on water filled
Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan
2017-04-01
Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white
Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.
2017-12-01
The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.
Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements
Directory of Open Access Journals (Sweden)
A. T. Vermeulen
2007-08-01
Full Text Available A quantum cascade laser spectrometer was evaluated for eddy covariance flux measurements of CH4 and N2O using three months of continuous measurements at a field site. The required criteria for eddy covariance flux measurements including continuity, sampling frequency, precision and stationarity were examined. The system operated continuously at a dairy farm on peat grassland in the Netherlands from 17 August to 6 November 2006. An automatic liquid nitrogen filling system for the infrared detector was employed to provide unattended operation of the system. The electronic sampling frequency was 10 Hz, however, the flow response time was 0.08 s, which corresponds to a bandwidth of 2 Hz. A precision of 2.9 and 0.5 ppb Hz−1/2 was obtained for CH4 and N2O, respectively. Accuracy was assured by frequent calibrations using low and high standard additions. Drifts in the system were compensated by using a 120 s running mean filter. The average CH4 and N2O exchange was 512 ngC m−2 s−1 (2.46 mg m−2 hr−1 and 52 ngN m−2 s−1 (0.29 mg m−2 hr−1. Given that 40% of the total N2O emission was due to a fertilizing event.
Directory of Open Access Journals (Sweden)
Xiaosong Zhao
2015-01-01
Full Text Available Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV, look-up tables (LUT, and nonlinear regression (NLR for estimating missing values of net ecosystem CO2 exchange (NEE in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.
Begashaw, I. G.; Kathilankal, J. C.; Li, J.; Beaty, K.; Ediger, K.; Forgione, A.; Fratini, G.; Johnson, D.; Velgersdyk, M.; Hupp, J. R.; Xu, L.; Burba, G. G.
2014-12-01
The eddy covariance method is widely used for direct measurements of turbulent exchange of gases and energy between the surface and atmosphere. In the past, raw data were collected first in the field and then processed back in the laboratory to achieve fully corrected publication-ready flux results. This post-processing consumed significant amount of time and resources, and precluded researchers from accessing near real-time final flux results. A new automated measurement system with novel hardware and software designs was developed, tested, and deployed starting late 2013. The major advancements with this automated flux system include: 1) Enabling logging high-frequency, three-dimensional wind speeds and multiple gas densities (CO2, H2O and CH4), low-frequency meteorological data, and site metadata simultaneously through a specially designed file format 2) Conducting fully corrected, real-time on-site flux computations using conventional as well as user-specified methods, by implementing EddyPro Software on a small low-power microprocessor 3) Providing precision clock control and coordinate information for data synchronization and inter-site data comparison by incorporating a GPS and Precision Time Protocol. Along with these innovations, a data management server application was also developed to chart fully corrected real-time fluxes to assist remote system monitoring, to send e-mail alerts, and to automate data QA/QC, transfer and archiving at individual stations or on a network level. Combination of all of these functions was designed to help save substantial amount of time and costs associated with managing a research site by eliminating the post-field data processing, reducing user errors and facilitating real-time access to fully corrected flux results. The design, functionality, and test results from this new eddy covariance measurement tool will be presented.
Energy Technology Data Exchange (ETDEWEB)
Stefanicki, G; Geissbuehler, P; Siegwolf, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.
Kirschbaum, Miko U F; Rutledge, Susanna; Kuijper, Isoude A; Mudge, Paul L; Puche, Nicolas; Wall, Aaron M; Roach, Chris G; Schipper, Louis A; Campbell, David I
2015-04-15
We used two years of eddy covariance (EC) measurements collected over an intensively grazed dairy pasture to better understand the key drivers of changes in soil organic carbon stocks. Analysing grazing systems with EC measurements poses significant challenges as the respiration from grazing animals can result in large short-term CO2 fluxes. As paddocks are grazed only periodically, EC observations derive from a mosaic of paddocks with very different exchange rates. This violates the assumptions implicit in the use of EC methodology. To test whether these challenges could be overcome, and to develop a tool for wider scenario testing, we compared EC measurements with simulation runs with the detailed ecosystem model CenW 4.1. Simulations were run separately for 26 paddocks around the EC tower and coupled to a footprint analysis to estimate net fluxes at the EC tower. Overall, we obtained good agreement between modelled and measured fluxes, especially for the comparison of evapotranspiration rates, with model efficiency of 0.96 for weekly averaged values of the validation data. For net ecosystem productivity (NEP) comparisons, observations were omitted when cattle grazed the paddocks immediately around the tower. With those points omitted, model efficiencies for weekly averaged values of the validation data were 0.78, 0.67 and 0.54 for daytime, night-time and 24-hour NEP, respectively. While not included for model parameterisation, simulated gross primary production also agreed closely with values inferred from eddy covariance measurements (model efficiency of 0.84 for weekly averages). The study confirmed that CenW simulations could adequately model carbon and water exchange in grazed pastures. It highlighted the critical role of animal respiration for net CO2 fluxes, and showed that EC studies of grazed pastures need to consider the best approach of accounting for this important flux to avoid unbalanced accounting. Copyright © 2015. Published by Elsevier B.V.
A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes
Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.
2012-12-01
The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.
Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity
Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian
2018-03-01
Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.
Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F.C.; Bulk, van de W.C.M.; Elbers, J.A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A.T.; Mammarella, I.
2014-01-01
The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying
Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; Van Den Bulk, W. C M; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.
2014-01-01
The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying
Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; Van Den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.
2014-01-01
The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimize the effect of varying
International Nuclear Information System (INIS)
Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.
2010-01-01
Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.
International Nuclear Information System (INIS)
Yu, Lingfei; Wang, Hao; Wang, Guangshuai; Song, Weimin; Huang, Yao; Li, Sheng-Gong; Liang, Naishen; Tang, Yanhong; He, Jin-Sheng
2013-01-01
Comparing of different CH 4 flux measurement techniques allows for the independent evaluation of the performance and reliability of those techniques. We compared three approaches, the traditional discrete Manual Static Chamber (MSC), Continuous Automated Chamber (CAC) and Eddy Covariance (EC) methods of measuring the CH 4 fluxes in an alpine wetland. We found a good agreement among the three methods in the seasonal CH 4 flux patterns, but the diurnal patterns from both the CAC and EC methods differed. While the diurnal CH 4 flux variation from the CAC method was positively correlated with the soil temperature, the diurnal variation from the EC method was closely correlated with the solar radiation and net CO 2 fluxes during the daytime but was correlated with the soil temperature at nighttime. The MSC method showed 25.3% and 7.6% greater CH 4 fluxes than the CAC and EC methods when measured between 09:00 h and 12:00 h, respectively. -- Highlights: •Chamber and eddy covariance methods showed similar seasonal CH 4 flux patterns. •Chamber and eddy covariance methods showed different diurnal CH 4 flux patterns. •Static chamber methods gave a higher magnitude of CH 4 flux. -- The chamber-based methods and the eddy covariance method showed similar seasonal CH 4 flux patterns, but the manual static chamber method resulted in a higher CH 4 flux measurement
Soil carbon dioxide (CO2) fluxes are typically measured by eddy-covariance (EC) or chamber (Ch) methods, but a long-term comparison has not been undertaken. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 flux during fallow periods of a corn-soybean r...
Graf, Alexander; van de Boer, Anneke; Schüttemeyer, Dirk; Moene, Arnold; Vereecken, Harry
2013-04-01
The displacement height d and roughness length z0 are parameters of the logarithmic wind profile and as such these are characteristics of the surface, that are required in a multitude of meteorological modeling applications. Classically, both parameters are estimated from multi-level measurements of wind speed over a terrain sufficiently homogeneous to avoid footprint-induced differences between the levels. As a rule-of thumb, d of a dense, uniform crop or forest canopy is 2/3 to 3/4 of the canopy height h, and z0 about 10% of canopy height in absence of any d. However, the uncertainty of this rule-of-thumb becomes larger if the surface of interest is not "dense and uniform", in which case a site-specific determination is required again. By means of the eddy covariance method, alternative possibilities to determine z0 and d have become available. Various authors report robust results if either several levels of sonic anemometer measurements, or one such level combined with a classic wind profile is used to introduce direct knowledge on the friction velocity into the estimation procedure. At the same time, however, the eddy covariance method to measure various fluxes has superseded the profile method, leaving many current stations without a wind speed profile with enough levels sufficiently far above the canopy to enable the classic estimation of z0 and d. From single-level eddy covariance measurements at one point in time, only one parameter can be estimated, usually z0 while d is assumed to be known. Even so, results tend to scatter considerably. However, it has been pointed out, that the use of multiple points in time providing different stability conditions can enable the estimation of both parameters, if they are assumed constant over the time period regarded. These methods either rely on flux-variance similarity (Weaver 1990 and others following), or on the integrated universal function for momentum (Martano 2000 and others following). In both cases
Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio
2014-05-01
Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position
Flanagan, L. B.; Geske, N.; Emrick, C.; Johnson, B. G.
2006-12-01
Grassland ecosystems typically exhibit very large annual fluctuations in above-ground biomass production and net ecosystem productivity (NEP). Eddy covariance flux measurements, plant stable isotope analyses, and canopy spectral reflectance techniques have been applied to study environmental constraints on grassland ecosystem productivity and the acclimation responses of the ecosystem at a site near Lethbridge, Alberta, Canada. We have observed substantial interannual variation in grassland productivity during 1999-2005. In addition, there was a strong correlation between peak above-ground biomass production and NEP calculated from eddy covariance measurements. Interannual variation in NEP was strongly controlled by the total amount of precipitation received during the growing season (April-August). We also observed significant positive correlations between a multivariate ENSO index and total growing season precipitation, and between the ENSO index and annual NEP values. This suggested that a significant fraction of the annual variability in grassland productivity was associated with ENSO during 1999-2005. Grassland productivity varies asymmetrically in response to changes in precipitation with increases in productivity during wet years being much more pronounced than reductions during dry years. Strong increases in plant water-use efficiency, based on carbon and oxygen stable isotope analyses, contribute to the resilience of productivity during times of drought. Within a growing season increased stomatal limitation of photosynthesis, associated with improved water-use efficiency, resulted in apparent shifts in leaf xanthophyll cycle pigments and changes to the Photochemical Reflectance Index (PRI) calculated from hyper-spectral reflectance measurements conducted at the canopy-scale. These shifts in PRI were apparent before seasonal drought caused significant reductions in leaf area index (LAI) and changes to canopy-scale "greenness" based on NDVI values. With
Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2
Directory of Open Access Journals (Sweden)
S. van der Laan
2016-11-01
Full Text Available We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC, to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn surface flux is calculated from short-term changes in ambient (222Rn activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels and space (i.e. over the footprint of the observations. The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW and Lutjewad station (LUT. For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02 atoms cm−2 s−1 with values > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04 atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include
Smidt, J.; Ingwersen, J.; Streck, T.
2015-12-01
The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap
Felber, Raphael; Neftel, Albrecht; Münger, Andreas; Ammann, Christof
2014-05-01
The eddy covariance (EC) technique has been extensively used for CO2 and energy exchange measurements over different ecosystems. For some years, it has been also becoming widely used to investigate CH4 and N2O exchange over ecosystems including grazing systems. EC measurements represent a spatially integrated flux over an upwind area (footprint). Whereas for extended homogenous areas EC measurements work well, the animals in a grazing system are a challenge as they represent moving point sources that create inhomogeneous conditions in space and time. The main issues which have to be taken into account when applying EC flux measurements over a grazed system are: i) In the presence of animals the high time resolution concentration measurements show large spikes in the signal. These spikes may be filtered/reduced by standard quality control software in order to avoid wrong measurements. ii) Data on the position of the animals relative to the flux footprint is needed to quantify the contribution of the grazing animals to the measured flux. For one grazing season we investigated the ability of EC flux measurements to reliably quantify the contribution of the grazing animals to the CH4 and CO2 exchange over pasture systems. For this purpose, a field experiment with a herd of twenty dairy cows in a full-day rotational grazing system was carried out on the Swiss central plateau. Net CH4 and CO2 exchange of the pasture system was measured continuously by the eddy covariance technique (Sonic Anemometer HS-50, Gill Instruments Ltd; FGGA, Los Gatos Research Inc.). To quantify the contribution of the animals to the net flux, the position of the individual cows was recorded using GPS (5 s time resolution) on each animal. An existing footprint calculation tool (ART footprint tool) was adapted and CH4 emissions of the cows were calculated. CH4 emissions from cows could be used as a tracer to investigate the quality of the evaluation of the EC data, since the background exchange of
MacKellar, M.; McGowan, H. A.; Phinn, S. R.
2011-12-01
Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram
2015-04-01
Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate
Directory of Open Access Journals (Sweden)
P. Alekseychik
2017-08-01
Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.
Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander
2016-04-01
Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.
Directory of Open Access Journals (Sweden)
T. G. Karl
2002-01-01
Full Text Available A `virtual' disjunct eddy covariance (vDEC device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the USA. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO, methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.
Energy Technology Data Exchange (ETDEWEB)
Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.
Du, Junping; Timmermans, Wim J.; Ma, Yaoming; Su, Bob; Pema, Tsering
2017-04-01
Urbanization leads to modifications of surface energy balance which governs the momentum, heat and mass transfer between urban canopy layer and the atmosphere, thus impacts dynamic processes in the urban ABL and ultimately influence the local, regional and even global climate. It is essential to obtain accurate urban ABL observations to enhance our understanding of land-atmosphere interaction process over the urban area and help to improve the prediction ability of numerical model. However, up to now, there are rarely observations in high latitude cities. In one of the highest cities in the world, Lhasa, Eddy Covariance (EC) measurements have been ongoing since 10 August 2016 and a Large Aperture Scintillometer (LAS) started to work on 12 November 2016, in addition to a UHI network which has been running since 2012. Taking advantage of these observations, this poster will estimate and analyze the surface energy balance in the winter of 2016 in Lhasa, with an emphasis on sensible heat flux. An analytical footprint model and the radiative surface temperature retrieved from Landsat 8 will be employed to compare EC and LAS measurements.
Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.
2007-12-01
In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.
Ibrahim, Anis; Haniff Harun, Mohd; Yusup, Yusri
2017-04-01
A study presents the measurements of carbon dioxide and latent and sensible heat fluxes above a mature oil palm plantation on mineral soil in Keratong, Pahang, Peninsular Malaysia. The sampling campaign was conducted over an 25-month period, from September 2013 to February 2015 and May 2016 to November 2016, using the eddy covariance method. The main aim of this work is to assess carbon dioxide and energy fluxes over this plantation at different time scales, seasonal and diurnal, and determine the effects of season and relevant meteorological parameters on the latter fluxes. Energy balance closure analyses gave a slope between latent and sensible heat fluxes and total incoming energy to be 0.69 with an R2 value of 0.86 and energy balance ratio of 0.80. The averaged net radiation was 108 W m-2. The results show that at the diurnal scale, carbon dioxide, latent and sensible heat fluxes exhibited a clear diurnal trend where carbon dioxide flux was at its minimum - 3.59 μmol m-2 s-1 in the mid-afternoon and maximum in the morning while latent and sensible behaved conversely to the carbon dioxide flux. The average carbon dioxide flux was - 0.37 μmol m-2 s-1. At the seasonal timescale, carbon dioxide fluxes did not show any apparent trend except during the Northeast Monsoon where the highest variability of the monthly means of carbon dioxide occurred.
Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements
International Nuclear Information System (INIS)
Schrier-Uijl, A.P.; Veenendaal, E.M.; Kroon, P.S.; Hensen, A.; Jonker, H.J.J.
2010-10-01
Annual terrestrial balances of methane (CH4) and nitrous oxide (N2O) are presented for a managed fen meadow in the Netherlands for 2006, 2007 and 2008, using eddy covariance (EC) flux measurements. Annual emissions derived from different methods are compared. The most accurate annual CH4 flux is achieved by gap filling EC fluxes with an empirical multivariate regression model, with soil temperature and mean wind velocity as driving variables. This model explains about 60% of the variability in observed daily CH4 fluxes. Annual N2O emissions can be separated into background emissions and event emissions due to fertilization. The background emission is estimated using a multivariate regression model also based on EC flux data, with soil temperature and mean wind velocity as driving variables. The event emissions are estimated using emission factors. The minimum direct emission factor is derived for six fertilization events by subtracting the background emission, and the IPCC default emission factor of 1% is used for the other events. In addition, the maximum direct emission factors are determined for the six events without subtracting the background emission. The average direct emission factor ranges from 1.2 to 2.8%, which is larger than the IPCC default value. Finally, the total terrestrial greenhouse gas balance is estimated at 16 Mg ha -1 year -1 in CO2-equivalents with contributions of 30, 25 and 45% by CO2, CH4 and N2O, respectively.
Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry
2016-01-01
Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.
Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang
2017-02-01
Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.
Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang
2017-01-01
Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459
Directory of Open Access Journals (Sweden)
D. J. Bolinius
2016-04-01
Full Text Available Semi-volatile persistent organic pollutants (POPs cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.
Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby
2015-04-01
Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.
Heusinger, Jannik; Weber, Stephan
2017-01-15
Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day βurban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
J. P. DiGangi
2011-10-01
Full Text Available We report the first observations of formaldehyde (HCHO flux measured via eddy covariance, as well as HCHO concentrations and gradients, as observed by the Madison Fiber Laser-Induced Fluorescence Instrument during the BEACHON-ROCS 2010 campaign in a rural, Ponderosa Pine forest northwest of Colorado Springs, CO. A median noon upward flux of ~80 μg m^{−2} h^{−1} (~24 ppt_{v} m s^{−1} was observed with a noon range of 37 to 131 μg m^{−2} h^{−1}. Enclosure experiments were performed to determine the HCHO branch (3.5 μg m^{-2} h^{−1} and soil (7.3 μg m^{−2} h^{−1} direct emission rates in the canopy. A zero-dimensional canopy box model, used to determine the apportionment of HCHO source and sink contributions to the flux, underpredicted the observed HCHO flux by a factor of 6. Simulated increases in concentrations of species similar to monoterpenes resulted in poor agreement with measurements, while simulated increases in direct HCHO emissions and/or concentrations of species similar to 2-methyl-3-buten-2-ol best improved model/measurement agreement. Given the typical diurnal variability of these BVOC emissions and direct HCHO emissions, this suggests that the source of the missing flux is a process with both a strong temperature and radiation dependence.
Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance
Directory of Open Access Journals (Sweden)
G. Fratini
2007-06-01
Full Text Available Mineral dust emission accounts for a substantial portion of particles present in the troposphere. It is emitted mostly from desert areas, mainly through intense storm episodes. The aim of this work was to quantify size-segregated fluxes of mineral dust particles emitted during storm events occurring in desert areas of northern China (Alashan desert, Inner Mongolia, known to act as one of the strongest sources of mineral dust particles in the Asian continent. Long-range transport of mineral dust emitted in this area is responsible for the high particle concentrations reached in densely populated areas, including the city of Beijing. Based on a theoretical analysis, an eddy covariance system was built to get size-segregated fluxes of mineral dust particles with optical diameters ranging between 0.26 and 7.00 µm. The system was optimised to measure fluxes under intense storm event conditions. It was tested in two sites located in the Chinese portion of the Gobi desert. During the field campaign, an intense wind erosion event, classified as a "weak dust storm", was recorded in one of them. Data obtained during this event indicate that particle number fluxes were dominated by the finer fraction, whereas in terms of mass, coarser particle accounted for the largest portion. It was found that during the storm event, ratios of size-segregated particle mass fluxes remained substantially constant and a simple parameterization of particle emission from total mass fluxes was possible. A strong correlation was also found between particle mass fluxes and the friction velocity. This relationship is extremely useful to investigate mechanisms of particle formation by wind erosion.
Sun, X.; Zou, C.; Wilcox, B. P.; Stebler, E.
2017-12-01
Whole-year measurement with eddy covariance system was carried out over two adjoining plots with contrasting vegetation coverage in tallgrass prairie, one was treated with herbicide and mowing while the other one kept as undisturbed control. The magnitude and phase difference between soil heat storage and ground heat flux were explicitly examined for its relative weights and energy balance. Surface turbulent flux (sensible heat and latent heat) accounted for about 85% of available energy at both sites, implying that vegetation coverage didn't significantly influence the closure scenario of energy imbalance. The seasonal and daily pattern of energy partitioning were dramatically different between the contrasting sites during growing season. The treated site received slightly lower net radiation due to high albedo, had higher sensible heat, and reduced latent heat due to reduction on transpiration. Annual evapotranspiration (ET) in treated site was only accounts for about 73% of annual ET in control. Meanwhile, lower surface conductance and decoupling factor showed that vegetation removal would increase the sensibility of ET to vapor pressure deficit and soil drought. ET dynamics is controlled by leaf area and net radiation when soil moisture is high, while soil drought caused stomata closure and subdued ET during drought. Stomata closure and transpiration reduction caused decline in ET, surface conductance, and decoupling factor. Soil moisture storage served as an important reservoir to meet peak ET demand during growing season. In summary, ET was the dominant component of water balance in tallgrass prairie, and any land management alterring the albedo, soil mositure storage, or canopy phenology (e.g., NDVI) could significantly affect energy and water budgets in .
Schafer, K. V.; Duman, T.
2017-12-01
The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.
Directory of Open Access Journals (Sweden)
B. Langford
2009-03-01
Full Text Available Mixing ratios and fluxes of six selected volatile organic compounds (VOCs were measured above the city of Manchester (UK during the summer of 2006. A proton transfer reaction-mass spectrometer was used for the measurement of mixing ratios, and fluxes were calculated from these using both the disjunct and the virtual disjunct eddy covariance techniques. The two flux systems, which operated in alternate half hours, showed good agreement, with R^{2} values ranging between 0.74 and 0.9 for the individual analytes. On average, fluxes measured in the disjunct mode were approximately 20% lower than those measured in the virtual mode. This difference is due to both the dampening of the VOC signal by the disjunct flux sampler and carry over from one sample to the next. Correcting for these effects reduced the difference to less than 7%. Observed fluxes are thought to be largely controlled by anthropogenic sources, with vehicle emissions the major contributor. However, both evaporative and biogenic emissions may account for some of the VOCs present. Concentrations and fluxes of the oxygenated compounds were highest on average, ranging between 0.15 to 1 mg m^{−2} h^{−1}; the fluxes of aromatic compounds were lower, between 0.12 to 0.28 mg m^{−2} h^{−1}. The observed fluxes were up-scaled to give city wide emission estimates for each compound and the results compared to estimates made by the National Atmospheric Emission Inventory (NAEI for the same flux footprint. Fluxes of toluene and benzene compared most closely differing by approximately 50%, while in contrast the oxygenated fluxes were found to be between 3.6–6.3 times larger than the annual average predicted by the NAEI.
Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.
2017-11-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27
Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.
2017-01-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The
Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya
2016-04-01
Despite the fact that in Russia cropland's soils carbon loses 9 time higher than forest's soils ones (Stolbovoi, 2002), agroecosystems were not given sufficient attention and most of the papers are devoted to forestry and natural ecosystems. Carbon balance was calculated at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia, for two agroecosystems with different crops from the same crop rotation studied for 2 years. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Vertical fluxes of carbon dioxide were measured with eddy covariance technique, statistical method to measure and calculate turbulent fluxes within atmospheric boundary layers (Burba, 2013). Crop rotation included potato, winter wheat, barley and vetch and oat mix. Two fields of the same crop rotation were studied in 2013-2014. One of the fields (A) was used in 2013 for barley planting (Hordeum vulgare L.). The field B was in 2013 used for planting together vetch (Vicia sativa L.) and oats (Avena sativa L.). Inversely oats and vetch grass mixt was sown in 2014 on field A. Winter wheat was sown on field A in the very beginning of September. On the second field (B) in 2014 winter wheat occurred from under the snow in the phase of tillering, after harvesting it in mid of July, white mustard (Sinapis alba) was sown for green manure. Carbon uptake (NEE negative values) was registered only for the field with winter wheat and white mustard; perhaps because the two crops were cultivated on the field within one growing season. Three other cases showed CO2 emission. Great difference in 82 g C m-2 per year in NEE between two fields with vetch and oat mix was related to higher difference in grass yields. NEE for barley field was positive during the whole year; considering only the growing season, NEE for barley was 100 g C m-2 lower and was negative. Closed
International Nuclear Information System (INIS)
Caire, Francois
2014-01-01
This PhD work concerns the development of fast numerical tools, dedicated to the computation of the electromagnetic interaction between a low frequency 3D current source and a complex conductor, presenting rough interfaces and/or conductivity variations. The main application concerns the simulation of the Eddy Current nondestructive testing process applied to complex specimens. Indeed, the semi-analytical models available today are restricted to canonical geometries. The proposed method is based on the covariant form of Maxwell's equations, which translates the physical equations and relationships in a non-orthogonal coordinate system depending on the geometry of the specimen. Historically, this method (Curvilinear Coordinate Method, CCM or C-method) has been developed in the framework of optical applications, particularly for the characterization of diffraction gratings. Here, we transpose this formalism into the quasi-static regime and we extend the Second Order Vector Potential formalism, initially dedicated to orthonormal curvilinear coordinates systems, to general curvilinear coordinate systems. Thanks to this change of base, we are able to determine numerically a set of modal solutions of the source-free Maxwell equations in the new coordinate system introduced, and this allows us to represent the unknown fields as modal expansions in source-free domains. Then, the coefficients of these expansions are computed by introducing the source fields and by enforcing the boundary conditions that the total fields must verify at interfaces between the different media. In order to tackle the case of a layered conductor presenting rough interfaces, the generalized SOVP formalism is coupled with a recursive routine called the S-matrix algorithm. On the other hand, the application case of a complex shape specimen with depth-varying physical properties is treated by coupling the modal method we developed with a high-order numerical method: pseudo-spectral method. The
Directory of Open Access Journals (Sweden)
K.-M. Erkkilä
2018-01-01
Full Text Available Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2 and methane (CH4 to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998, for calculating diffusive flux with the boundary layer method (BLM. We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE, which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC and floating chamber (FC fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference
Wyatt, A. S. J.; Miyajima, T.; Leichter, J.; Naruse, T.; Kuwae, T.; Yamamoto, S.; Satoh, N.; Nagata, T.
2016-02-01
-specific isotope analyses of amino acids (CSIA-AA), depth-specific radioisotope markers such as radiocarbon and iodine ratios (129I/127I), and eddy covariance experiments offers a promising path towards elucidating the functional importance of internal waves in the development and persistence of MCE at local to regional scales.
Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph
2018-02-01
The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0
Kozlov, Daniil
2014-05-01
The topographical, soil and vegetation maps of FLUXNET study areas are widely used for interpretation of eddy covariance measurements, for calibration of biogeochemical models and for making regional assessments of carbon balance. The poster presents methodological problems and results of ecosystem mapping using GIS, remote sensing, statistical and field methods on the example of two RusFluxNet sites in the Central Forest (33° E, 56°30'N) and Central Chernozem (36°10' E, 51°36'N) reserves. In the Central Forest reserve tacheometric measurements were used for topographical and peat surveys of bogged sphagnum spruce forest of 20-hectare area. Its common borders and its areas affected by windfall were determined. The supplies and spatial distribution of organic matter were obtained. The datasets of groundwater monitoring measurements on ten wells were compared with each other and the analysis of spatial and temporal groundwater variability was performed. The map of typical ecosystems of the reserve and its surroundings was created on the basis of analysis of multi-temporal Landsat images. In the Central Chernozem reserve the GNSS topographical survey was used for flux tower footprint mapping (22 ha). The features of microrelief predetermine development of different soils within the footprint. Close relationship between soil (73 drilling site) and terrain attributes (DEM with 2.5 m) allowed to build maps of soils and soil properties: carbon content, bulk density, upper boundary of secondary carbonates. Position for chamber-based soil respiration measurements was defined on the basis of these maps. The detailed geodetic and soil surveys of virgin lands and plowland were performed in order to estimate the effect of agrogenic processes such as dehumification, compaction and erosion on soils during the whole period of agricultural use of Central Chernozem reserve area and around. The choice of analogous soils was based on the similarity of their position within the
Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C
2016-01-01
Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.
Mauder, Matthias; Oncley, Steven P.; Vogt, Roland; Weidinger, Tamas; Ribeiro, Luis; Bernhofer, Christian; Foken, Thomas; Kohsiek, Wim; de Bruin, Henk A. R.; Liu, Heping
2007-04-01
The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion—closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several post-field data processing methods were compared. The differences in methodology resulted in deviations of 10% for the sensible heat flux and of 15% for the latent heat flux for an averaging time of 30 min. These disparities were mostly due to different sensor separation corrections and a linear detrending of the data. The impact of different instrumentation on the resulting heat flux estimates was significantly higher. Large deviations from the reference system of up to 50% were found for some sensor combinations. However, very good measurement quality was found for a CSAT3 sonic together with a KH20 krypton hygrometer and also for a UW sonic together with a KH20. If these systems are well calibrated and maintained, an accuracy of better than 5% can be achieved for 30-min values of sensible and latent heat flux measurements. The results from the sonic anemometers Gill Solent-HS, ATI-K, Metek USA-1, and R.M. Young 81000 showed more or less larger deviations from the reference system. The LI-COR LI-7500 open-path H2O/CO2 gas analyser in the test was one of the first serial numbers of this sensor type and had technical problems regarding direct solar radiation sensitivity and signal delay. These problems are known by the manufacturer and improvements of the sensor have since been made.
Tsokankunku, Anywhere; Wolff, Stefan; Sörgel, Matthias; Berger, Martina; Zelger, Michael; Dlugi, Ralf
2017-04-01
Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, thus contributes to oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the exchange fluxes of these species between the atmosphere and the biosphere are important for atmospheric chemistry and ecosystem research as well. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, being largely undisturbed by anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (radiation. Vertical concentration profile measurements of NO, NO2 and O3 were available at 8 levels on the INSTANT tower from a reactive trace gas profile system which has been operational at the site since 2012. From these measurements, we present eddy covariance fluxes of the NO-O3-NO2 triad. We relate the fluxes to the canopy
Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2013-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water
Surface Conductance of Five Different Crops Based on 10 Years of Eddy-Covariance Measurements
Directory of Open Access Journals (Sweden)
Uwe Spank
2016-06-01
Full Text Available The Penman-Monteith (PM equation is a state-of-the-art modelling approach to simulate evapotranspiration (ET at site and local scale. However, its practical application is often restricted by the availability and quality of required parameters. One of these parameters is the canopy conductance. Long term measurements of evapotranspiration by the eddy-covariance method provide an improved data basis to determine this parameter by inverse modelling. Because this approach may also include evaporation from the soil, not only the ‘actual’ canopy conductance but the whole surface conductance (gc$g_{c}$ is addressed. Two full cycles of crop rotation with five different crop types (winter barley, winter rape seed, winter wheat, silage maize, and spring barley have been continuously monitored for 10 years. These data form the basis for this study. As estimates of gc$g_{c}$ are obtained on basis of measurements, we investigated the impact of measurements uncertainties on obtained values of gc$g_{c }$. Here, two different foci were inspected more in detail. Firstly, the effect of the energy balance closure gap (EBCG on obtained values of gc$g_{c}$ was analysed. Secondly, the common hydrological practice to use vegetation height (hc$h_{c}$ to determine the period of highest plant activity (i.e., times with maximum gc$g_{c}$ concerning CO2-exchange and transpiration was critically reviewed. The results showed that hc$h_{c}$ and gc$g_{c}$ do only agree at the beginning of the growing season but increasingly differ during the rest of the growing season. Thus, the utilisation of hc$h_{c}$ as a proxy to assess maximum gc$g_{c}$ (gc,max$g_{c,\\text{max}}$ can lead to inaccurate estimates of gc,max$g_{c,\\text{max}}$ which in turn can cause serious shortcomings in simulated ET. The light use efficiency (LUE is superior to hc$h_{c}$ as a proxy to determine periods with maximum gc$g_{c}$. Based on this proxy, crop specific estimates of gc
Kotthaus, S.; Grimmond, S.
2013-12-01
all year round, even at night. QH systematically exceeds input from net all-wave radiation (Q*), probably sustained by a both storage and anthropogenic heat fluxes (QF). Model estimates suggest QF can exceed the Q* nearly all year round. The positive QH inhibits stable conditions, but the stability classification is determined predominantly by the pattern of friction velocity over the rough urban surface. Turbulent latent heat flux variations are controlled (beyond the available energy) by rainfall due to the small vegetation cover. The Bowen ratio is mostly larger than one. Analysis of the eddy covariance footprint surface controls for the different land cover types by flow patterns for measurements at the two heights suggests the spatial variations of the sensible heat flux observed are partly related to changes in surface roughness, even at the local scale. Where the source areas are most homogeneous, flow conditions are vertically consistent - even if initial morphometric parameters suggested the measurements may be below the blending height. Turbulence statistics and momentum flux patterns prove useful for the interpretation of turbulent heat exchanges observed.
Peltoniemi, Mikko; Pulkkinen, Minna; Kolari, Pasi; Mäkelä, Annikki
2010-05-01
Production efficiency models aim at explaining variation of vegetation productivity with climatic input and information on vegetation cover often obtained from satellite observations. It has been acknowledged that different plant species differ in their potential to assimilate carbon dioxide per unit of PAR (i.e light use efficiency, LUE). Subsequently, some LUE-based models apply different LUE-coefficients for different plant functional types. Leaf N concentrations differ between plant species, and related differences in light saturated photosynthesis rate (A_max) have been detected. How much these differences affect the ecosystem production or LUE is more obscure. Canopies acclimate to prevailing environmental conditions, which causes variation e.g. in the proportion of leaves exposed to direct sunlight, leaf morphology, structure,orientation, and vertical N distibution. Furthermore, a fair proportion of photosynthesis occurs during cloudy days, in which case high A_max is unessential, and number of these days differs by location. We studied if canopy mean N concentration could explain differences in LUE derived for 14 forest sites using eddy-covariance measurements. The largest actual LUE was estimated for each site directly as an upper percentile of the ratio of Gross Primary Production (GPP) to absorbed PAR. Potential LUE for each site, on the other hand, was estimated by parameterising a LUE-based production efficiency model (Prelued), which accounts for daily changes in weather (temperature, VPD, PAR). In this model structure, the LUE-parameter for each site, can be interpreted as the potential LUE under optimal environmental conditions, i.e when the environment is not limiting production at all. Averages of the largest actual LUE and potential LUE were higher in deciduous sites than in conifer sites. Canopy mean N correlated weakly with both the largest actual and potential LUE, and the correlation was also significant in conifer subset in the former case
Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.
2013-12-01
To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.
Markwitz, Christian; Knohl, Alexander; Siebicke, Lukas
2017-04-01
The inclusion of trees into the agricultural landscape of Europe is gaining popularity as a source for energy production. Fast growing tree species such as poplar or willow are included as short rotation coppice or alley cropping systems, which consist of tree alleys interleaved by annual rotating crops or perennial grasslands. Estimating turbulent fluxes of those systems using the eddy-covariance- (ECEB) and bowen-ratio energy-balance (BREB) method is challenging due to the methods limitation to horizontally homogeneous terrain and steady state conditions. As the conditions are not fulfilled for those systems the energy-balance is commonly not fully closed, with the non-closure being site specific. An underestimation of measured heat fluxes leads to an overestimation of the latent heat fluxes inferred from the ECEB method. The aim of our study is to 1) quantify the site specific non-closure of the energy-balance and 2) characterize the performance of both methods, compared to direct eddy-covariance measurements using a high frequency infra-red gas analyzer (LI-7200, Licor Inc.). To assess continuous evapotranspiration (ET) rates on a 30-minute time scale we installed a combined ECEB and BREB system at five alley cropping and five agricultural reference sites across Germany. For time periods of four weeks we performed direct eddy covariance flux measurements for H2O and CO2 over one crop- and one grassland alley cropping- and their respective reference systems during the growing season of 2016. We found a non-closure between 21 and 26 % for all sites, considering all day- and night-time data. The residual energy was highest during the morning and lowest in the afternoon. Related to that the energy-balance ratio (EBR), i.e. the ratio between the turbulent heat fluxes and available energy, was below one in the morning hours and increased slightly during the day up to 1.8, until the EBR decreased sharply after sunset. The EBR correlated to the daily cycle of solar
Kittler, F.; Heimann, M.; Goeckede, M.; Zimov, S. A.; Zimov, N.
2014-12-01
Permafrost regions in the Northern high latitudes play a key role in the carbon budget of the earth system because of their massive carbon reservoir and the uncertain feedback processes with future climate change. For an improved understanding of mechanisms and drivers dominating permafrost carbon cycling, more observations in high-latitude regions are needed. Particularly the contribution of wintertime fluxes to the annual carbon budget and the impact of disturbances on biogeochemical and biogeophysical ecosystem properties, and the resulting modification of the carbon cycle, have rarely been studied to date. In summer of 2013, we established a new eddy-covariance station for continuous, year-round monitoring of carbon fluxes and their environmental drivers near Cherskii in Northeast Siberia (68.75°N, 161.33°E). Parts of the observation area have been disturbed by drainage since 2004, altering the soil water conditions in a way that is expected for degrading ice-rich permafrost under a warming climate. With two eddy-covariance towers running in parallel over the disturbed (drained) area and a reference area nearby, respectively, we can directly infer the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. This study presents findings based on 16 months of continuous eddy-covariance CO2 flux measurements (July 2013 - October 2014) for both observation areas. At both towers, we observed systematic, non-zero flux contributions outside the growing seasons that significantly altered annual CO2 budgets. A direct comparison of fluxes between the two disturbance regimes indicates a net reduction of the sink strength for CO2 in the disturbed area during the growing season, mostly caused by reduced CO2 uptake with low water levels in late summer. Moreover, shifts in soil temperatures and snow cover caused by reduced soil water levels result in lower net CO2 emissions during the winter at the drained area, which is partly
Tsokankunku, A.; Wolff, S.; Berger, M.; Zelger, M.; Dlugi, R. J. W.; Andreae, M. O.; Sörgel, M.
2017-12-01
Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are therefore often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, therefore resulting in oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the biosphere-atmosphere exchange fluxes of these species is important for atmospheric chemistry and ecosystem research. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments with the required high time resolution. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, because of the absence of nearby anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope GmbH). Additionally, a suite of micrometeorological instruments was installed, including a profile of 3-dimensional sonic anemometers and meteorological sensors. Vertical concentration profile measurements of NO, NO2 and O
Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.
2015-12-01
Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a
DEFF Research Database (Denmark)
Collalti, A.; Marconi, S.; Ibrom, Andreas
2016-01-01
This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. A new carbon allocation module, coupled with new both phenological...... over Europe without a site-related calibration, the model has been deliberately parametrized with a single set of species-specific parametrizations for each forest ecosystem. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites...... sites we evaluate whether a more accurate representation of forest structural characteristics (i.e. cohorts, forest layers) and species composition can improve model results. In two of the three sites results reveal that model slightly increases its performances although, statistically speaking...
Energy Technology Data Exchange (ETDEWEB)
Aalto, Tuula [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Research; Ciais, Philippe; Moulin, Cyril [UMR CEA-CNRS, Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l' Environnement; Chevillard, Anne [CEA, Fontenay-aux-Roses (France). DPRE/SERGD/LEIRPA
2004-04-01
Ecosystem CO{sub 2} flux measurements using the eddy covariance method were compared with the biospheric CO{sub 2} exchange estimates of a regional scale atmospheric model. The model described the seasonal patterns quite well, but underestimated the amplitude of the fluxes, especially at the northern sites. Two model parameters, photosynthetic efficiency for light use and Q{sub 10} for soil respiration, were re-evaluated on a diurnal and seasonal basis using the results from flux measurements. In most cases the photosynthetic efficiency was higher than the earlier estimate. The resulting flux was very sensitive to the value of photosynthetic efficiency, while changes in Q{sub 10} did not have a significant effect.
Connan, O; Maro, D; Hébert, D; Solier, L; Caldeira Ideas, P; Laguionie, P; St-Amant, N
2015-10-01
The behaviour of tritium in the environment is linked to the water cycle. We compare three methods of calculating the tritium evapotranspiration flux from grassland cover. The gradient and eddy covariance methods, together with a method based on the theoretical Penmann-Monteith model were tested in a study carried out in 2013 in an environment characterised by high levels of tritium activity. The results show that each of the three methods gave similar results. The various constraints applying to each method are discussed. The results show a tritium evapotranspiration flux of around 15 mBq m(-2) s(-1) in this environment. These results will be used to improve the entry parameters for the general models of tritium transfers in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Luyssaert, S.; Reichstein, M.; Schulze, E.-D.
2009-01-01
Quantification of an ecosystem's carbon balance and its components is pivotal for understanding both ecosystem functioning and global cycling. Several methods are being applied in parallel to estimate the different components of the CO2 balance. However, different methods are subject to different...... sources of error. Therefore, it is necessary that site level component estimates are cross-checked against each other before being reported. Here we present a two-step approach for testing the accuracy and consistency of eddy covariance–based gross primary production (GPP) and ecosystem respiration (Re...
Directory of Open Access Journals (Sweden)
D. K. Farmer
2011-06-01
Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM_{1} fluxes. Average deposition velocities for total NR-PM_{1} aerosol at noon were 2.05 ± 0.04 mm s^{−1}. Using a high resolution measurement of the NH_{2}^{+} and NH_{3}^{+} fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s^{−1} and are dominated by deposition of ammonium sulphate.
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
Metzger, Stefan; Durden, David; Sturtevant, Cove; Luo, Hongyan; Pingintha-Durden, Natchaya; Sachs, Torsten; Serafimovich, Andrei; Hartmann, Jörg; Li, Jiahong; Xu, Ke; Desai, Ankur R.
2017-08-01
Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC) data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps) approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON) field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2 = 1.0 for CO2 flux). In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC and more generally builds
Directory of Open Access Journals (Sweden)
S. Metzger
2017-08-01
Full Text Available Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2 = 1.0 for CO2 flux. In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC
Turbulent fluxes by "Conditional Eddy Sampling"
Siebicke, Lukas
2015-04-01
for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.
Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per
2014-05-01
Nitrous oxide (N2O) fluxes from soils are characterised by their high spatial and temporal variability. The fluxes depend on the availability of the substrates for nitrification and denitrification and soil physical and chemical conditions that control the metabolic microbial activity. The sporadic nature of the fluxes and their high sensitivity to alterations of the soil climate put very high demands on measurement approaches. Laser spectroscopy enables accurate and fast response detection of atmospheric N2O concentrations and is used for eddy covariance (EC) flux measurements. Alternatively N2O fluxes can be measured with chambers together with high precision analysers. Differences in the measurement approaches and system designs are expected to have a considerable influence on the accuracy of the flux estimation. This study investigates how three different eddy covariance systems perform in a situation of low N2O fluxes from a flat surface. Chamber flux measurements with differing chamber and analyser designs are used for comparison. In April 2013, the EU research infrastructure project InGOS (http://www.ingos-infrastructure.eu/) organised a campaign of N2O flux measurements in a willow plantation close to the Risø Campus of the Technical University of Denmark. The willow field was harvested in February 2013 and received mineral fertiliser equivalent to 120 kg N ha-1 before the campaign started. Three different eddy covariance systems took part in the campaign: two Aerodyne quantum cascade laser (QCL) based systems and one Los Gatos Research off-axis integrated-cavity-output spectroscopy (ICOS) system for N2O and CO. The sonic anemometers were all installed at 2 m height above the bare ground. Gill R3 type sonic anemometers were used with QCL systems and a Gil HS-50 with the ICOS system. The 10 Hz raw data were analysed with group specific softwares and procedures. The local conditions in the exceptionally cold and dry spring 2013 did not lead to large N2O flux
Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier
2017-04-01
Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).
Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.
2015-12-01
The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre
Directory of Open Access Journals (Sweden)
A. Schmidt
2008-12-01
Full Text Available During summer 2007, turbulent vertical particle mass and number fluxes were measured for a period of 98 days near the city centre of Münster in north-west Germany. For this purpose, a valve controlled disjunct eddy covariance system was mounted at 65 m a.g.l. on a military radio tower. The concentration values for 11 size bins with aerodynamic diameters (D50 from 0.03 to 10 μm were measured with an electrical low pressure impactor. After comparison with other fluxes obtained from 10 Hz measurements with the classical eddy covariance method, the loss of information concerning high frequent parts of the flux could be stated as negligible. The results offer an extended insight in the turbulent atmospheric exchange of aerosol particles by highly size-resolved particle fluxes covering 11 size bins and show that the city of Münster acts as a relevant source for aerosol particles.
Significant differences occur between the fluxes of the various particle size classes. While the total particle number flux shows a pattern which is strictly correlated to the diurnal course of the turbulence regime and the traffic intensity, the total mass flux exhibits a single minimum in the evening hours when coarse particles start to deposit.
As a result, a mean mass deposition of about 10 mg m^{−2} per day was found above the urban test site, covering the aerosol size range from 40 nm to 2.0 μm. By contrast, the half-hourly total number fluxes accumulated over the lower ELPI stages range from −4.29×10^{7} to +1.44×10^{8} particles m^{−2} s^{−1} and are clearly dominated by the sub-micron particle fraction of the impactor stages with diameters between 40 nm and 320 nm. The averaged number fluxes of particles with diameters between 2.0 and 6.4 μm show lower turbulent dynamics during daytime and partially remarkably high negative fluxes with mean deposition velocities of 2×10^{−3} m
Corona, R.; Montaldo, N.
2017-12-01
Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and
Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.
2014-05-01
Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the
Nemitz, Eiko; Famulari, Daniela; Ibrom, Andreas; Vermeulen, Alex; Hensen, Arjan; van den Bulk, Pim; Loubet, Benjamin; Laville, Patricia; Mammarella, Ivan; Haapanala, Sami; Lohila, Annalea; Laurila, Tuomas; Eva, Rabot; Laborde, Marie; Cowan, Nicholas; Anderson, Margaret; Helfter, Carole
2015-04-01
Nitrous oxide (N2O) is the third most important greenhouse gas and its terrestrial budget remains poorly constraint, with bottom up and top down estimates of country emissions often disagreeing by more than a factor of two. Whilst the measurements of the biosphere / atmosphere exchange of CO2 with micrometeorological methods is commonplace, emissions of CH4 and N2O are more commonly measured with enclosure techniques due to limitations in fast-response sensors with good signal-to-noise characteristics. Recent years have seen the development of a range of instruments based on optical spectroscopy. This started in the early 1990s with instruments based on lead salt lasers, which had temperamental long-term characteristics. More recent developments in quantum cascade lasers has lead to increasingly stable instruments, initially based on pulsed, later on continuous wave lasers. Within the context of the European FP7 Infrastructure Project InGOS ('Integrated non-CO2 Greenhouse gas Observing System'), we conducted an intercomparison of six fast response sensors for N2O: three more or less identical instruments based on off-axis Integrated Cavity Optical Spectrocopy (ICOS) (Los Gatos Research Inc.) and three instruments based on quantum cascade laser absorption spectrometry (Aerodyne Research Inc.): one older generation pulsed instrument (p-QCL) and two of the latest generation of compact continuous wave instruments (cw-QCL), operating at two different wavelengths. One of the ICOS instruments was operated with an inlet drier. In addition, the campaign was joined by a relaxed eddy-accumulation system linked to a FTIR spectrometer (Ecotech), a gradient system based on a home-built slower QCL (INRA Orleans) and a fast chamber system. Here we present the results of the study and a detailed examination of the various corrections and errors of the different instruments. Overall, with the exception of the older generation QCL, the average fluxes based on the different fast
Morales-Rincon, L. A.; Jimenez-Pizarro, R.; Rodríguez, N.
2016-12-01
The Orinoco River basin is expected to become Colombia's largest farming belt in the near future. Agriculture and land use change are the most important greenhouse gas (GHG) source in Colombia and one of the most important globally. At the same time, agriculture is one of the few economic sectors that is also able to act as a sink, e.g. through soil carbon storage. Emissions are largely determined by agricultural practices, thus practice identification and C flux monitoring are of paramount importance for mitigation alternative identification. During second semester of 2015, we measured CO2 fluxes over a commercial corn filed the Colombian Orinoco River Region using enclosed-path eddy covariance. The plot behaved as a CO2 sink during crop development. We found that inter-crop activities played a key role in defining whether the area acted as a net source or sink. Quantifying C fluxes at under local soil and meteorological conditions provides new high quality scientific information, which could be incorporated into a wider evaluation of agroindustry process, e.g. through the C footprint. We will also present ongoing carbon flux measurements in a native savanna and will discuss on the possibility of extrapolating our result to wider areas using process based models.
International Nuclear Information System (INIS)
Balzarolo, M.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Maignan, F.; Chevallier, F.; Poulter, B.
2014-01-01
This paper reports a comparison between large scale simulations of three different land surface models (LSMs), ORCHIDEE, ISBA-A-gs and CTESSEL, forced with the same meteorological data, and compared with the carbon fluxes measured at 32 eddy covariance (EC) flux tower sites in Europe. The results show that the three simulations have the best performance for forest sites and the poorest performance for cropland and grassland sites. In addition, the three simulations have difficulties capturing the seasonality of Mediterranean and sub-tropical biomes, characterized by dry summers. This reduced simulation performance is also reflected in deficiencies in diagnosed light-use efficiency (LUE) and vapour pressure deficit (VPD) dependencies compared to observations. Shortcomings in the forcing data may also play a role. These results indicate that more research is needed on the LUE and VPD functions for Mediterranean and sub-tropical biomes. Finally, this study highlights the importance of correctly representing phenology (i.e. leaf area evolution) and management (i.e. rotation-irrigation for cropland, and grazing-harvesting for grassland) to simulate the carbon dynamics of European ecosystems and the importance of ecosystem-level observations in model development and validation. (authors)
Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David
2014-03-01
• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.
2018-01-01
The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.
Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan
2010-05-01
Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without
Hurkuck, M.; Marsh, P.; Quinton, W. L.; Humphreys, E.; Lafleur, P.; Helbig, M.; Hould Gosselin, G.; Sonnentag, O.
2017-12-01
Given their large areal coverage, high carbon densities, unique land surface properties, and disturbance regimes, Canada's diverse high-latitude ecosystems across its multiple Arctic, subarctic and boreal ecozones are integral components of the global and regional climate systems. In northwestern Canada, large portions of these ecozones contain permafrost, i.e., perennially cryotic ground. Here, we describe efforts towards a meso-network of nine eddy covariance towers to measure carbon, water and energy fluxes across the Northwest Territories to shed light on high-latitude carbon and water budgets and their rapidly changing biotic and abiotic controls in response to increasing natural and anthropogenic pressures. Distributed across six research sites (Trail Valley Creek, 68.7°N, 133.3°W; Havikpak Creek, 68.3°N, 133.3°W; Daring Lake, 64.8°N, 111.5°W; Smith Creek, 63.1°N, 123.2°W; Scotty Creek, 63.1°N, 123.2°W; Yellowknife, 62.5°N, 114.4°W), the meso-network spans the central portion of the extended ABoVE Study Domain, covering two ecozones (Taiga Plains, Southern Arctic) with differing permafrost regimes (sporadic, discontinuous, continuous), climatic settings (coastal, interior), and seven high-latitude ecosystem types: forested permafrost peat plateau, permafrost-free collapse-scar bog, subarctic woodland, mixed and dwarf-shrub tundra, and sedge fen. With our contribution, we report on the current status of the meso-network development and present results from various synthesis activities examining the role of climatic setting and resulting tundra carbon and water budgets, quantifying the impact of permafrost thaw and associated wetland expansion on boreal forest carbon and water budgets, and determining the relative importance of treeline advance compared to shrub proliferation on tundra carbon and water budgets.
Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.
2017-12-01
Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.
Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.
2015-12-01
Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.
International Nuclear Information System (INIS)
Schrier-Uijl, A.P.; Berendse, F.; Veenendaal, E.M.; Kroon, P.S.; Hensen, A.; Leffelaar, P.A.
2010-08-01
Fluxes of methane (CH4) and carbon dioxide (CO2) estimated by empirical models based on small-scale chamber measurements were compared to large-scale eddy covariance (EC) measurements for CH4 and to a combination of EC measurements and EC-based models for CO2. The experimental area was a flat peat meadow in the Netherlands with heterogeneous source strengths for both greenhouse gases. Two scenarios were used to assess the importance of stratifying the landscape into landscape elements before up-scaling the fluxes measured by chambers to landscape scale: one took the main landscape elements into account (field, ditch edge ditch), the other took only the field into account. Non-linear regression models were used to up-scale the chamber measurements to field emission estimates. EC CO2 respiration consisted of measured night time EC fluxes and modeled day time fluxes using the Arrhenius model. EC CH4 flux estimate was based on daily averages and the remaining data gaps were filled by linear interpolation. The EC and chamber-based estimates agreed well when the three landscape elements were taken into account with 16.5% and 13.0% difference for CO2 respiration and CH4, respectively. However, both methods differed 31.0% and 55.1% for CO2 respiration and CH4 when only field emissions were taken into account when up-scaling chamber measurements to landscape scale. This emphasizes the importance of stratifying the landscape into landscape elements. The conclusion is that small-scale chamber measurements can be used to estimate fluxes of CO2 and CH4 at landscape scale if fluxes are scaled by different landscape elements.
Ichii, Kazuhito; Ueyama, Masahito; Kondo, Masayuki; Saigusa, Nobuko; Kim, Joon; Alberto, Ma. Carmelita; Ardö, Jonas; Euskirchen, Eugénie S.; Kang, Minseok; Hirano, Takashi; Joiner, Joanna; Kobayashi, Hideki; Marchesini, Luca Belelli; Merbold, Lutz; Miyata, Akira; Saitoh, Taku M.; Takagi, Kentaro; Varlagin, Andrej; Bret-Harte, M. Syndonia; Kitamura, Kenzo; Kosugi, Yoshiko; Kotani, Ayumi; Kumar, Kireet; Li, Sheng-Gong; Machimura, Takashi; Matsuura, Yojiro; Mizoguchi, Yasuko; Ohta, Takeshi; Mukherjee, Sandipan; Yanagi, Yuji; Yasuda, Yukio; Zhang, Yiping; Zhao, Fenghua
2017-04-01
The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
Directory of Open Access Journals (Sweden)
Yi-Ying Chen Ming-Hsu Li
2012-01-01
Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xingchang; Wang, Chuankuan; Bond-Lamberty, Benjamin
2017-12-15
Carbon dioxide (CO_{2}) fluxes between terrestrial ecosystems and the atmosphere are primarily measured with eddy covariance (EC), biometric, and chamber methods. However, it is unclear why the estimates of CO_{2}-fluxes, when measured using these different methods, converge at some sites but diverge at others. We synthesized a novel global dataset of forest CO_{2}-fluxes to evaluate the consistency between EC and biometric or chamber methods for quantifying CO_{2} budget in forests. The EC approach, comparing with the other two methods, tended to produce 25% higher estimate of net ecosystem production (NEP, 0.52Mg C ha-1 yr-1), mainly resulting from lower EC-estimated Re; 10% lower ecosystem respiration (Re, 1.39Mg C ha-1 yr-1); and 3% lower gross primary production (0.48 Mg C ha-1 yr-1) The discrepancies between EC and the other methods were higher at sites with complex topography and dense canopies versus those with flat topography and open canopies. Forest age also influenced the discrepancy through the change of leaf area index. The open-path EC system induced >50% of the discrepancy in NEP, presumably due to its surface heating effect. These results provided strong evidence that EC produces biased estimates of NEP and Re in forest ecosystems. A global extrapolation suggested that the discrepancies in CO_{2} fluxes between methods were consistent with a global underestimation of Re, and overestimation of NEP, by the EC method. Accounting for these discrepancies would substantially improve the our estimates of the terrestrial carbon budget .
Lee, Jae Seong; Kang, Dong-Jin; Hineva, Elitsa; Slabakova, Violeta; Todorova, Valentina; Park, Jiyoung; Cho, Jin-Hyung
2017-06-01
We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.
Hurdebise, Quentin; Heinesch, Bernard; De Ligne, Anne; Vincke, Caroline; Aubinet, Marc
2017-04-01
Long-term data series of carbon dioxide and other gas exchanges between terrestrial ecosystems and atmosphere become more and more numerous. Long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) an ICOS candidate site located in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardenne. Fluxes of momentum, carbon dioxide and sensible heat have been continuously measured there by eddy covariance for more than 20 years. During this period, changes in canopy height and measurement height occurred. The correlation coefficients (for momemtum, sensible heat and CO2) and the normalized standard deviations measured for the past 20 years at the Vielsalm Terrestrial Observatory (VTO) were analysed in order to define how the fluxes, independently of climate conditions, were affected by the surrounding environment evolution, including tree growth, forest thinning and tower height change. A relationship between canopy aerodynamic distance and the momentum correlation coefficient was found which is characteristic of the roughness sublayer, and suggests that momentum transport processes were affected by z-d. In contrast, no relationship was found for sensible heat and CO2 correlation coefficients, suggesting that the z-d variability observed did not affect their turbulent transport. There were strong differences in these coefficients, however, between two wind sectors, characterized by contrasted stands (height differences, homogeneity) and different hypotheses were raised to explain it. This study highlighted the importance of taking the surrounding environment variability into account in order to ensure the spatio
Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora
2017-04-01
The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration
Directory of Open Access Journals (Sweden)
D. Zanotelli
2013-05-01
Full Text Available Carbon use efficiency (CUE, the ratio of net primary production (NPP over gross primary production (GPP, is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010. We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71
Li, X.; Xiao, J.; He, B.
2017-12-01
Solar-induced chlorophyll fluorescence (SIF) opens a new perspective on the monitoring of vegetation photosynthesis from space, and has been recently used to estimate gross primary productivity (GPP). However, previous studies on SIF were mainly based on satellite observations from the Greenhouse Gases Observing Satellite (GOSAT) and Global Ozone Monitoring Experiment-2 (GOME-2), and the evaluation of these coarse-resolution SIF measurements using GPP derived from eddy covariance (EC) flux towers has been hindered by the scale mismatch between satellite and tower footprints. We use new far-red SIF observations from the Orbiting Carbon Observatory-2 (OCO-2) satellite with much finer spatial resolution and GPP data from EC flux towers from 2014 to 2016 to examine the relationship between GPP and SIF for temperate forests. The OCO-2 SIF tracked tower GPP fairly well, and had strong correlation with tower GPP at both retrieval bands (757nm and 771nm) and both instantaneous (mid-day) and daily timescales. Daily SIF at 757nm (SIF757) exhibited much stronger correlation with tower GPP compared to MODIS enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) derived from either Terra or Aqua and had a similarly strong relationship as EVI based on the bidirectional reflectance distribution function (BRDF) corrected reflectance product (Terra+Aqua). Absorbed photosynthetically active radiation (APAR) explained 85% of the variance in SIF757, while the product of APAR and two environmental scalars - fTmin and fVPD (representing minimum temperature stress and water stress) explained slightly higher variance (92%) in SIF757. This suggests that SIF mainly depends on APAR and also contains information on light use efficiency (LUE) reflecting environmental stresses and physiological or biochemical variations of vegetation. The hyperbolic model based on SIF757 estimated GPP well (R2=0.81, pmodel - the MODSI GPP algorithm. Our findings demonstrate the strong
Directory of Open Access Journals (Sweden)
S. Sobek
2011-09-01
Full Text Available Greenhouse gas budgets quantified via land-surface eddy covariance (EC flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4 fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level. Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth, temperature at depth (10 m deep in front of the dam, atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2012-10-01
Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2013-05-01
Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher
Runkle, B.; Suvocarev, K.; Reba, M. L.; Novick, K. A.; White, P.; Anapalli, S.; Locke, M. A.; Rigby, J.; Bhattacharjee, J.
2016-12-01
Agriculture is unique as an anthropogenic activity that plays both a large role in carbon and water cycling and whose management activities provide a key opportunity for responses to climate change. It is therefore especially crucial to bring field observations into the modeling community, test remote sensing products, encourage policy debate, and enable carbon offsets markets that generate revenue and fund climate-smart activities. The accurate measurement of agricultural CO2 exchange - both primary productivity and ecosystem respiration - in concert with evapotranspiration provides crucial information on agro-ecosystem functioning and improves our predictive capacity for estimating the impacts of climate change. In this study we report field measurements from more than 10 eddy covariance towers in the Lower Mississippi River Basin taken during the summer months of 2016. Many towers, some recently deployed, are being aggregated into a regional network known as Delta-Flux, which will ultimately include 15-20 towers by 2017. Set in and around the Mississippi Delta Region within Louisiana, Arkansas, and Mississippi, the network will collect flux, micrometeorological, and crop yield data in order to construct estimates of regional CO2 exchange. These time-series data are gap-filled using statistical and process-based models to generate estimates of summer CO2 flux. The tower network is comprised of sites representing widespread agriculture production, including rice, cotton, corn, soybean, and sugarcane; intensively managed pine forest; and bottomland hardwood forest. Unique experimental production practices are represented in the network and include restricted water use, bioenergy, and by-product utilization. Several towers compose multi-field sites testing innovative irrigation or management practices. Current mapping of agricultural carbon exchange - based on land cover layers and fixed crop emission factors - suggests an unconstrained carbon flux estimate in this
Jérôme, Elisabeth; Aubinet, Marc; Heinesch, Bernard
2010-05-01
(annual temperature sensitivity larger than short-term temperature sensitivity). Results suggested also that, for both approaches, regressions based on soil temperature gave more robust results than those based on air temperature. Furthermore, the comparison showed that the night-time and the daytime approaches give disagreeing pictures of TER inter annual variability which suggested that the choice of the approach is critical in order to correctly depict TER inter annual variability. Finally, at this stage, TER inter annual variability cannot be explained by variability of climatic conditions. References Reichstein M., Falge E., Baldocchi D., Papale D., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Gilmanov T., Granier A., Grunwald T., Havrankova K., Ilvesniemi H., Janous D., Knohl A., Laurila T., Lohila A., Loustau D., Matteucci G., Meyers T., Miglietta F., Ourcival J.M., Pumpanen J., Rambal S., Rotenberg E., Sanz M., Tenhunen J., Seufert G., Vaccari F., Vesala T., Yakir D., Valentini R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. Wohlfahrt G., Anfang C., Bahn M., Haslwanter A., Newesely C., Schmitt M., Drösler M., Pfadenhauer J. and Cernusca A., 2005a. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agricultural and Forest Meteorology, 128, 141-162. Wohlfahrt G., Bahn M., Haslwanter A., Newesely C., Cernusca A., 2005b. Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agricultural and Forest Meteorology, 130, 13-25.
Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer
Energy Technology Data Exchange (ETDEWEB)
Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)
2012-02-01
Robust, economical, low-power and reliable closed-path methane (CH_{4}), carbon dioxide (CO_{2}), and water vapor (H_{2}O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH_{4} and CO_{2} released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO_{2} budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been
Directory of Open Access Journals (Sweden)
D. K. Farmer
2006-01-01
Full Text Available Nitrogen exchange between the atmosphere and biosphere directly influences atmospheric composition. While much is known about mechanisms of NO and N2O emissions, instrumentation for the study of mechanisms contributing to exchange of other major nitrogen species is quite limited. Here we describe the application of a new technique, thermal dissociation-laser induced fluorescence (TD-LIF, to eddy covariance measurements of the fluxes of NO2, total peroxy acyl and peroxy nitrates, total alkyl and multifunctional alkyl nitrates, and nitric acid. The technique offers the potential for investigating mechanisms of exchange of these species at the canopy scale over timescales from days to years. Examples of flux measurements at a ponderosa pine plantation in the mid-elevation Sierra Nevada Mountains in California are reported and used to evaluate instrument performance.
Open-path, closed-path and reconstructed aerosol extinction at a rural site.
Gordon, Timothy D; Prenni, Anthony J; Renfro, James R; McClure, Ethan; Hicks, Bill; Onasch, Timothy B; Freedman, Andrew; McMeeking, Gavin R; Chen, Ping
2018-04-09
The Handix Scientific Open-Path Cavity Ringdown Spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's Cavity Attenuated Phase Shift Particulate Matter Extinction Monitor, CAPS PMex). Derived hygroscopicity (RH 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern U.S. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high time resolution OPCRDS+CAPS PMex data, and the K ext model was more accurate than the γ model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of
Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.
2015-12-01
We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1
Hember, R. A.; Kurz, W. A.; Coops, N. C.; Black, T. A.
2010-12-01
Temperate-maritime forests of coastal British Columbia store large amounts of carbon (C) in soil, detritus, and trees. To better understand the sensitivity of these C stocks to climate variability, simulations were conducted using a hybrid version of the model, Physiological Principles Predicting Growth (3-PG), combined with algorithms from the Carbon Budget Model of the Canadian Forest Sector - version 3 (CBM-CFS3) to account for full ecosystem C dynamics. The model was optimized based on a combination of monthly CO2 and H2O flux measurements derived from three eddy-covariance systems and multi-annual stemwood growth (Gsw) and mortality (Msw) derived from 1300 permanent sample plots by means of Markov chain Monte Carlo sampling. The calibrated model serves as an unbiased estimator of stemwood C with enhanced precision over that of strictly-empirical models, minimized reliance on local prescriptions, and the flexibility to study impacts of environmental change on regional C stocks. We report the contribution of each dataset in identifying key physiological parameters and the posterior uncertainty in predictions of net ecosystem production (NEP). The calibrated model was used to spin up pre-industrial C pools and estimate the sensitivity of regional net carbon balance to a gradient of temperature changes, λ=ΔC/ΔT, during three 62-year harvest rotations, spanning 1949-2135. Simulations suggest that regional net primary production, tree mortality, and heterotrophic respiration all began increasing, while NEP began decreasing in response to warming following the 1976 shift in northeast-Pacific climate. We quantified the uncertainty of λ and how it was mediated by initial dead C, tree mortality, precipitation change, and the time horizon in which it was calculated.
Watanabe, Atsushi; Shiga, Hiroshi; Kobayashi, Yoshinori
2011-10-01
To clarify the difference in the state of occlusal contact and masticatory function between two patterns of masticatory movement path that differed in the closing path. Fifteen healthy subjects with Pattern I (a linear or concave opening path and a convex closing path) and Pattern II (similar opening path to that in Pattern I and a concave closing path) were selected. The state of occlusal contact on the working and balancing sides and the masticatory function (integral value of the masseter muscular activity, gape, masticatory width, cycle time, indicators representing the stability of the path and rhythm, and glucose extraction) were compared between the two patterns. The occlusal contact on the working side was about the same. For the balancing side, occlusal contact at the molar region was observed for Pattern II in most cases, whereas no occlusal contact was observed for Pattern I. The integral value of the masseter muscular activity and the glucose extraction were greater for Pattern I. The gape was not different between the two patterns. Pattern I had a wide masticatory width and a short cycle time. The values of the indicators representing the stability of the path and rhythm were smaller for Pattern I. It was suggested that Pattern I with a convex closing path had a functional difference and a superior masticatory function from Pattern II with a concave closing path, and the difference in the occlusal contact on the balancing side was related. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Kisil, Vladimir V.
2010-01-01
The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H_2, Banach spaces, covariant functional calculus and many others. Keywords: Wavelets, cohe...
Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions
Waterman, S.; Lilly, J. M.
2014-12-01
Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Energy Technology Data Exchange (ETDEWEB)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and t...
International Nuclear Information System (INIS)
Emson, C.R.I.
1988-11-01
The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)
Vahter, Jenni
2008-01-01
Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun âdinerâ franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...
DEFF Research Database (Denmark)
Järvi, L.; Mammarella, I.; Eugster, W.
2009-01-01
and their suitability to accurately measure CO2 exchange in such non-ideal landscape. In addition, this study examined the effect of open-path sensor heating on measured fluxes in urban terrain, and these results were compared with similar measurements made above a temperate beech forest in Denmark. The correlation...... between the two fluxes was good (R2 = 0.93) at the urban site, but during the measurement period the open-path net surface exchange (NSE) was 17% smaller than the closed-path NSE, indicating apparent additional uptake of CO2 by open-path measurements. At both sites, sensor heating corrections evidently...... improved the performance of the open-path analyzer by reducing discrepancies in NSE at the urban site to 2% and decreasing the difference in NSE from 67% to 7% at the forest site. Overall, the site-specific approach gave the best results at both sites and, if possible, it should be preferred in the sensor...
Eddy covariance based methane flux in Sundarbans mangroves, India
Indian Academy of Sciences (India)
present study is part of Indian Space Research Organisation–Geosphere Biosphere Program (ISRO–GBP) initiative under .... gap filled data is used and weekly average flux. 22. 24. 26 .... et al. 2002). The data analysis showed the presence of.
Open software tools for eddy covariance flux partitioning
Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...
FLUXNET: A Global Network of Eddy-Covariance Flux Towers
Cook, R. B.; Holladay, S. K.; Margle, S. M.; Olsen, L. M.; Gu, L.; Heinsch, F.; Baldocchi, D.
2003-12-01
The FLUXNET global network was established to aid in understanding the mechanisms controlling the exchanges of carbon dioxide, water vapor, and energy across a variety of terrestrial ecosystems. Flux tower data are also being used to validate ecosystem model outputs and to provide information for validating remote sensing based products, including surface temperature, reflectance, albedo, vegetation indices, leaf area index, photosynthetically active radiation, and photosynthesis derived from MODIS sensors on the Terra and Aqua satellites. The global FLUXNET database provides consistent and complete flux data to support global carbon cycle science. Currently FLUXNET consists of over 210 sites, with most flux towers operating continuously for 4 years or longer. Gap-filled data are available for 53 sites. The FLUXNET database contains carbon, water vapor, sensible heat, momentum, and radiation flux measurements with associated ancillary and value-added data products. Towers are located in temperate conifer and broadleaf forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra on five continents. Selected MODIS Land products in the immediate vicinity of the flux tower are subsetted and posted on the FLUXNET Web site for 169 flux-towers. The MODIS subsets are prepared in ASCII format for 8-day periods for an area 7 x 7 km around the tower.
International Nuclear Information System (INIS)
Kawano, Toshihiko; Shibata, Keiichi.
1997-09-01
A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of 238 U reaction cross sections were calculated with this system. (author)
Scalar Similarity for Relaxed Eddy Accumulation Methods
Ruppert, Johannes; Thomas, Christoph; Foken, Thomas
2006-07-01
The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.
Energy Technology Data Exchange (ETDEWEB)
Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)
2004-02-15
Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.
International Nuclear Information System (INIS)
Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil
2004-02-01
Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants
Székely, Gábor J.; Rizzo, Maria L.
2010-01-01
Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Covariant representations of nuclear *-algebras
International Nuclear Information System (INIS)
Moore, S.M.
1978-01-01
Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations
Owen, Hazel
2013-01-01
Eddie Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Covariance data processing code. ERRORJ
International Nuclear Information System (INIS)
Kosako, Kazuaki
2001-01-01
The covariance data processing code, ERRORJ, was developed to process the covariance data of JENDL-3.2. ERRORJ has the processing functions of covariance data for cross sections including resonance parameters, angular distribution and energy distribution. (author)
Energy Technology Data Exchange (ETDEWEB)
Mukhutdinov, R.Kh.; Prokopov, O.I.
1982-01-01
An eddy energy separator is proposed which contains a chamber with nozzle input of compressed air and sleeves for cold and hot streams. In order to increase productivity, the chamber is cylindrical and the nozzle input is arranged along its axis. Coaxially to the input, there is an adaptor forming an annular channel with its end arranged in an angle to the axis of the chamber. The nozzle input and the adaptor are installed with the possibility of relative movement.
2003-01-01
We were saddened to learn that Eddy Powell had passed away on Saturday 26 July after a long illness. Eddy had so many friends at CERN and made such a contribution to the Organisation that it is impossible that his passing goes without comment. Eddy was born in England on 4 August 1939 and, after serving his apprenticeship with the U.K. Ministry of Defence, he joined CERN in September 1965. As an electrical design draftsman with the Synchro-cyclotron Division he played an important role in the upgrades of that machine in the early 1970's, particularly on the RF systems and later on the development of the ISOLDE facility. This brought him into close contact with many of the technical support services in CERN and, unlike many of his compatriots, he acquired a remarkably good fluency in French. Always inquisitive on the physics carried out at CERN, he spent a great deal of time learning from physicists and engineers at all levels. When he felt sufficiently confident he became a CERN Guide for general public visit...
Pozsgay, Victor; Hirsch, Flavien; Branciard, Cyril; Brunner, Nicolas
2017-12-01
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as "shared randomness witnesses": specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.
Energy Technology Data Exchange (ETDEWEB)
Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)
2016-03-23
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
EDDIE RICKENBACKER: RACETRACK ENTREPRENEUR
Directory of Open Access Journals (Sweden)
W. David Lewis
2000-01-01
Full Text Available Edward V. (Eddie Rickenbacker (1890-1973 is best remembered for hisrecord as a combat pilot in World War I, in which he shot down 26 Germa naircraft and won fame as America’s "Ace of Aces." From 1934 until 1963 he was general manager, president, and board chairman of Eastern Air Lines, which was for a time the most profitable air carrier in the United States. This paper shows how Rickenbacker’s fiercely entrepreneurial style of management was born in his early involvement in the automobile industry, and particularly in his career as an automobile racing driver from 1909 through 1916.
Covariant field equations in supergravity
Energy Technology Data Exchange (ETDEWEB)
Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2017-12-15
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Covariant field equations in supergravity
International Nuclear Information System (INIS)
Vanhecke, Bram; Proeyen, Antoine van
2017-01-01
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1984-09-01
This report on eddy current testing is divided into three sections: (a) Demonstration of Basic Principles, (b) Practical (Laboratory) Tests and, (c) Typical Certification Questions. It is intended to be used as a supplement to ΣEddy Current Manual, Volume 1Σ (AECL-7523) during CSNDT Foundation Level II and III courses
The Bayesian Covariance Lasso.
Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G
2013-04-01
Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.
Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate
Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario
2010-01-01
Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests
Lorentz Covariance of Langevin Equation
International Nuclear Information System (INIS)
Koide, T.; Denicol, G.S.; Kodama, T.
2008-01-01
Relativistic covariance of a Langevin type equation is discussed. The requirement of Lorentz invariance generates an entanglement between the force and noise terms so that the noise itself should not be a covariant quantity. (author)
Canuto, V. M.; Dubovikov, M. S.
Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale
Distance covariance for stochastic processes
DEFF Research Database (Denmark)
Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady
2017-01-01
The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...
Experiments with eddy currents: the eddy current brake
International Nuclear Information System (INIS)
Gonzalez, Manuel I
2004-01-01
A moderate-cost experimental setup is presented to help students to understand some qualitative and quantitative aspects of eddy currents. The setup operates like an eddy current brake, a device commonly used in heavy vehicles to dissipate kinetic energy by generating eddy currents. A set of simple experiments is proposed to measure eddy current losses and to relate them to various relevant parameters. Typical results for each of the experiments are presented, and comparisons with theoretical predictions are included. The experiments, which are devoted to first-year undergraduate students, deal also with other pedagogically relevant topics in electricity and magnetism, such as basic laws, electrical measurement techniques, the sources of the magnetic field and others
Earth Observing System Covariance Realism
Zaidi, Waqar H.; Hejduk, Matthew D.
2016-01-01
The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.
Contributions to Large Covariance and Inverse Covariance Matrices Estimation
Kang, Xiaoning
2016-01-01
Estimation of covariance matrix and its inverse is of great importance in multivariate statistics with broad applications such as dimension reduction, portfolio optimization, linear discriminant analysis and gene expression analysis. However, accurate estimation of covariance or inverse covariance matrices is challenging due to the positive definiteness constraint and large number of parameters, especially in the high-dimensional cases. In this thesis, I develop several approaches for estimat...
International Nuclear Information System (INIS)
Ginelli, Francesco; Politi, Antonio; Chaté, Hugues; Livi, Roberto
2013-01-01
Recent years have witnessed a growing interest in covariant Lyapunov vectors (CLVs) which span local intrinsic directions in the phase space of chaotic systems. Here, we review the basic results of ergodic theory, with a specific reference to the implications of Oseledets’ theorem for the properties of the CLVs. We then present a detailed description of a ‘dynamical’ algorithm to compute the CLVs and show that it generically converges exponentially in time. We also discuss its numerical performance and compare it with other algorithms presented in the literature. We finally illustrate how CLVs can be used to quantify deviations from hyperbolicity with reference to a dissipative system (a chain of Hénon maps) and a Hamiltonian model (a Fermi–Pasta–Ulam chain). This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Deriving covariant holographic entanglement
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)
2016-11-07
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Networks of myelin covariance.
Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2018-04-01
Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Eddy Correlation Flux Measurement System Handbook
Energy Technology Data Exchange (ETDEWEB)
Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.
General Galilei Covariant Gaussian Maps
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Fast Computing for Distance Covariance
Huo, Xiaoming; Szekely, Gabor J.
2014-01-01
Distance covariance and distance correlation have been widely adopted in measuring dependence of a pair of random variables or random vectors. If the computation of distance covariance and distance correlation is implemented directly accordingly to its definition then its computational complexity is O($n^2$) which is a disadvantage compared to other faster methods. In this paper we show that the computation of distance covariance and distance correlation of real valued random variables can be...
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea
Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.
2012-08-01
The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.
Covariation in Natural Causal Induction.
Cheng, Patricia W.; Novick, Laura R.
1991-01-01
Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)
Remote field eddy current testing
International Nuclear Information System (INIS)
Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M.
2001-03-01
The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included
Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2017-01-01
Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053
Eddy currents in accelerator magnets
Moritz, G
2010-01-01
This paper covers the main eddy current effects in accelerator magnets - field modification (time delay and field quality) and resistive power losses. In the first part, starting from the Maxwell equations, a basic understanding of the processes is given and explained with examples of simple geometry and time behaviour. Useful formulas are derived for an analytic estimate of the size of the effects. In the second part the effects in real magnets are analysed and described in comparison with numerical and measured results. Finally, based on the previous parts, design recommendations are given regarding how to minimize eddy current effects.
Eddy current inspection of tubing
International Nuclear Information System (INIS)
Bauza, J. L. R.; Herrero, J.; Diaz, J.
1966-01-01
The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
Covariance Manipulation for Conjunction Assessment
Hejduk, M. D.
2016-01-01
The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.
Covariance matrices of experimental data
International Nuclear Information System (INIS)
Perey, F.G.
1978-01-01
A complete statement of the uncertainties in data is given by its covariance matrix. It is shown how the covariance matrix of data can be generated using the information available to obtain their standard deviations. Determination of resonance energies by the time-of-flight method is used as an example. The procedure for combining data when the covariance matrix is non-diagonal is given. The method is illustrated by means of examples taken from the recent literature to obtain an estimate of the energy of the first resonance in carbon and for five resonances of 238 U
Evaluation and processing of covariance data
International Nuclear Information System (INIS)
Wagner, M.
1993-01-01
These proceedings of a specialists'meeting on evaluation and processing of covariance data is divided into 4 parts bearing on: part 1- Needs for evaluated covariance data (2 Papers), part 2- generation of covariance data (15 Papers), part 3- Processing of covariance files (2 Papers), part 4-Experience in the use of evaluated covariance data (2 Papers)
Large Eddy Simulation of turbulence
International Nuclear Information System (INIS)
Poullet, P.; Sancandi, M.
1994-12-01
Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1983-09-01
This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and signal interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of Σphase lagΣ in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals
Eddy current testing, volume 1
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1981-11-01
This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals
On Galilean covariant quantum mechanics
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna
1991-08-01
Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)
Development of Multichannel Eddy Current Testing Instrument
International Nuclear Information System (INIS)
Lee, Hee Jong; Cho, Chan Hee; Nam, Min Woo; Yoon, Byung Sik; Yoo, Hyun Joo
2010-01-01
Four main techniques of electromagnetic testing are used for commercial applications: eddy current testing, alternating current field testing, magnetic flux leakage testing and remote field testing. Eddy current testing is a nondestructive evaluation method, which makes eddy current flow on a specimen by applying driving pulse to eddy current probe coil, by using eddy current testing device, and makes the change of eddy current which is dependently caused by flaws, material characteristics, testing condition, receiving through eddy current, and analyzes material properties, flaws, status on the specimen. Application of EC instrumentation varies widely in industry from the identification of metal heat treatment to the inspection of steam generator tubing in nuclear power plants. In this study, we have designed multichannel EC instrument which can be applicable to the NDE of the tube in heat exchanger for electric power facility, chemistry, and military industry, and finally confirmed the proper function of EC instrumentation
Climatic feedbacks between stationary and transient eddies
International Nuclear Information System (INIS)
Branscome, L.E.
1994-01-01
Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies
Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems
DEFF Research Database (Denmark)
Chipman, Lindsay; Huettel, Markus; Berg, Peter
2012-01-01
The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors...... that combine the advantages of noninvasive measurements and integration of fluxes over a large footprint area, using a relatively rugged and less expensive sensor....
Quantitative pulsed eddy current analysis
International Nuclear Information System (INIS)
Morris, R.A.
1975-01-01
The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)
High resolution eddy current microscopy
Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.
2001-01-01
We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.
Flexible eddy current coil arrays
International Nuclear Information System (INIS)
Krampfner, Y.; Johnson, D.P.
1987-01-01
A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
GLq(N)-covariant quantum algebras and covariant differential calculus
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1992-01-01
GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations are considered. It is that, up to some innessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. 25 refs
GLq(N)-covariant quantum algebras and covariant differential calculus
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1993-01-01
We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is discussed. (orig.)
A class of covariate-dependent spatiotemporal covariance functions
Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.
2014-01-01
In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199
Cosmic censorship conjecture revisited: covariantly
International Nuclear Information System (INIS)
Hamid, Aymen I M; Goswami, Rituparno; Maharaj, Sunil D
2014-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general locally rotationally symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible. (paper)
Covariance matrix estimation for stationary time series
Xiao, Han; Wu, Wei Biao
2011-01-01
We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Covariant Gauss law commutator anomaly
International Nuclear Information System (INIS)
Dunne, G.V.; Trugenberger, C.A.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
Using a (fixed-time) hamiltonian formalism we derive a covariant form for the anomaly in the commutator algebra of Gauss law generators for chiral fermions interacting with a dynamical non-abelian gauge field in 3+1 dimensions. (orig.)
Covariant gauges for constrained systems
International Nuclear Information System (INIS)
Gogilidze, S.A.; Khvedelidze, A.M.; Pervushin, V.N.
1995-01-01
The method of constructing of extended phase space for singular theories which permits the consideration of covariant gauges without the introducing of a ghost fields, is proposed. The extension of the phase space is carried out by the identification of the initial theory with an equivalent theory with higher derivatives and applying to it the Ostrogradsky method of Hamiltonian description. 7 refs
Uncertainty covariances in robotics applications
International Nuclear Information System (INIS)
Smith, D.L.
1984-01-01
The application of uncertainty covariance matrices in the analysis of robot trajectory errors is explored. First, relevant statistical concepts are reviewed briefly. Then, a simple, hypothetical robot model is considered to illustrate methods for error propagation and performance test data evaluation. The importance of including error correlations is emphasized
Local eddy current measurements in pulsed fields
Energy Technology Data Exchange (ETDEWEB)
Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)
2008-07-15
This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.
DESY: Handling persistent eddy currents
Energy Technology Data Exchange (ETDEWEB)
Anon.
1990-04-15
The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic fields far beyond those of saturated iron is the main motivation behind the push to use superconducting technology in big new proton accelerators. But this advantage can turn into a drawback at low excitations when the eddy currents - induced in any electromagnet when the field is changed - do not decay, but continue to flow. Preparations for the proton ring of the HERA electron-proton collider nearing completion at the German DESY Laboratory in Hamburg have borne this in mind.
DESY: Handling persistent eddy currents
International Nuclear Information System (INIS)
Anon.
1990-01-01
The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic fields far beyond those of saturated iron is the main motivation behind the push to use superconducting technology in big new proton accelerators. But this advantage can turn into a drawback at low excitations when the eddy currents - induced in any electromagnet when the field is changed - do not decay, but continue to flow. Preparations for the proton ring of the HERA electron-proton collider nearing completion at the German DESY Laboratory in Hamburg have borne this in mind
Groenendijk, M.; Dolman, A.J.; Ammann, C.; Arneth, A.; Cescatti, A.; Molen, van der M.K.; Moors, E.J.
2011-01-01
Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (a) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a
Evaluation of MODIS gross primary productivity for Africa using eddy covariance data
CSIR Research Space (South Africa)
Sjöström, M
2013-04-01
Full Text Available MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon...
Nieveen, J.P.
1999-01-01
Introduction and objectives
Good comprehension of the energy and mass cycles and their effect on climate dynamics is crucial to understanding, predicting and anticipating ecological changes due to possible future climate perturbations. Here direct and long-term flux
Uncertainty in eddy covariance measurements and its application to physiological models
D.Y. Hollinger; A.D. Richardson; A.D. Richardson
2005-01-01
Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled andmeasured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements from two...
Groenendijk, M.; Dolman, A. J.; Ammann, C.; Arneth, A.; Cescatti, A.; Dragoni, D.; Gash, J. H. C.; Gianelle, D.; Gioli, B.; Kiely, G.; Knohl, A.; Law, B. E.; Lund, M.; Marcolla, B.; van der Molen, M. K.; Montagnani, L.; Moors, E.; Richardson, A. D.; Roupsard, O.; Verbeeck, H.; Wohlfahrt, G.
2011-12-01
Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (α) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a seasonally varying leaf area index (LAI) explains the parameter variation within and between PFTs. Using Fluxnet data, we simulate a seasonally variable LAIF for a large range of sites, comparable to the LAIM derived from MODIS. There are discrepancies when LAIF reach zero levels and LAIM still provides a small positive value. We find that temperature is the most common constraint for LAIF in 55% of the simulations, while global radiation and vapor pressure deficit are the key constraints for 18% and 27% of the simulations, respectively, while large differences in this forcing still exist when looking at specific PFTs. Despite these differences, the annual photosynthesis simulations are comparable when using LAIF or LAIM (r2 = 0.89). We investigated further the seasonal variation of ecosystem-scale parameters derived with LAIF. Vcm has the largest seasonal variation. This holds for all vegetation types and climates. The parameter α is less variable. By including ecosystem-scale parameter seasonality we can explain a considerable part of the ecosystem-scale parameter variation between PFTs. The remaining unexplained leaf-scale PFT variation still needs further work, including elucidating the precise role of leaf and soil level nitrogen.
Directory of Open Access Journals (Sweden)
Chiara Corbari
2017-11-01
Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.
On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning
DEFF Research Database (Denmark)
Lasslop, G.; Migliavacca, M.; Bohrer, G.
2012-01-01
be used. This choice is a source of uncertainty and potential biases.In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration) across FLUXNET sites to understand the potential of the different temperature observations...... as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning...... parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the choice between soil or air temperature must be made on site-by-site basis by analysing the correlation between temperature and nighttime NEE. We recommend using an ensemble...
Czech Academy of Sciences Publication Activity Database
Nestola, E.; Calfapietra, Carlo; Emmerton, C. A.; Wrong, Ch. Y. S.; Thayer, D. R.; Gamon, J. A.
2016-01-01
Roč. 8, č. 3 (2016), č. článku 260. ISSN 2072-4292 Institutional support: RVO:67179843 Keywords : grassland * NDVI * CO2 flux * optical remote sensing * LUE model * gap filling Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016
Evaluation of MODIS gross primary productivity for Africa using eddy covariance data
Sjostrom, M.; Zhao, M.; Archibald, S.; Veenendaal, E.M.
2013-01-01
MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon assimilation per unit photosynthetically active
Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco
2017-11-18
The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.
Wind changes above warm Agulhas Current eddies
CSIR Research Space (South Africa)
Rouault, M
2016-01-01
Full Text Available speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase...
Oceanic eddies in synthetic aperture radar images
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
determining mechanism of eddy formation in this case is the vorticity (shear) of the currents or devi- ation of one current by another. Figure 10 shows the ERS-1 SAR image with a couple of cyclonic eddies that is supposedly located in the area of confluence of oppositely directed currents in the central part of the Japan Sea.
Mesoscale Eddies in the Solomon Sea
Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.
2011-12-01
Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).
Group covariance and metrical theory
International Nuclear Information System (INIS)
Halpern, L.
1983-01-01
The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references
Phenotypic covariance at species' borders.
Caley, M Julian; Cripps, Edward; Game, Edward T
2013-05-28
Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.
Eddy current analysis in fusion devices
International Nuclear Information System (INIS)
Turner, L.R.
1988-06-01
In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs
Eddy Current Flaw Characterization Using Neural Networks
International Nuclear Information System (INIS)
Song, S. J.; Park, H. J.; Shin, Y. K.
1998-01-01
Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw
Eddy-kovarianční měření v agroekosystému v Křešíně u Pacova
Czech Academy of Sciences Publication Activity Database
Havránková, K.; Šigut, L.; Sedlák, Pavel; Pavelka, M.
25 /45/, č. 5 (2013), s. 27-30 ISSN 1211-0337 Institutional support: RVO:68378289 Keywords : eddy-covariance * agroecosystem * wind analysis * footprint * CO2 flux Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.ochrana-ovzdusi.cz/r13.htm
Modeling Covariance Breakdowns in Multivariate GARCH
Jin, Xin; Maheu, John M
2014-01-01
This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...
Conformable eddy current array delivery
Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes
2016-02-01
The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.
Proofs of Contracted Length Non-covariance
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1994-01-01
Different proofs of contracted length non covariance are discussed. The way based on the establishment of interval inconstancy (dependence on velocity) seems to be the most convincing one. It is stressed that the known non covariance of the electromagnetic field energy and momentum of a moving charge ('the problem 4/3') is a direct consequence of contracted length non covariance. 8 refs
Structural Analysis of Covariance and Correlation Matrices.
Joreskog, Karl G.
1978-01-01
A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…
Construction of covariance matrix for experimental data
International Nuclear Information System (INIS)
Liu Tingjin; Zhang Jianhua
1992-01-01
For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained
Lorentz covariant theory of gravitation
International Nuclear Information System (INIS)
Fagundes, H.V.
1974-12-01
An alternative method for the calculation of second order effects, like the secular shift of Mercury's perihelium is developed. This method uses the basic ideas of thirring combined with the more mathematical approach of Feyman. In the case of a static source, the treatment used is greatly simplified. Besides, Einstein-Infeld-Hoffmann's Lagrangian for a system of two particles and spin-orbit and spin-spin interactions of two particles with classical spin, ie, internal angular momentum in Moller's sense, are obtained from the Lorentz covariant theory
International Nuclear Information System (INIS)
Sebestyen, A.
1975-07-01
The principle of covariance is extended to coordinates corresponding to internal degrees of freedom. The conditions for a system to be isolated are given. It is shown how internal forces arise in such systems. Equations for internal fields are derived. By an interpretation of the generalized coordinates based on group theory it is shown how particles of the ordinary sense enter into the model and as a simple application the gravitational interaction of two pointlike particles is considered and the shift of the perihelion is deduced. (Sz.Z.)
Covariant gauges at finite temperature
Landshoff, Peter V
1992-01-01
A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler to use than the conventional one.
Covariance Evaluation Methodology for Neutron Cross Sections
Energy Technology Data Exchange (ETDEWEB)
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Poincare covariance and κ-Minkowski spacetime
International Nuclear Information System (INIS)
Dabrowski, Ludwik; Piacitelli, Gherardo
2011-01-01
A fully Poincare covariant model is constructed as an extension of the κ-Minkowski spacetime. Covariance is implemented by a unitary representation of the Poincare group, and thus complies with the original Wigner approach to quantum symmetries. This provides yet another example (besides the DFR model), where Poincare covariance is realised a la Wigner in the presence of two characteristic dimensionful parameters: the light speed and the Planck length. In other words, a Doubly Special Relativity (DSR) framework may well be realised without deforming the meaning of 'Poincare covariance'. -- Highlights: → We construct a 4d model of noncommuting coordinates (quantum spacetime). → The coordinates are fully covariant under the undeformed Poincare group. → Covariance a la Wigner holds in presence of two dimensionful parameters. → Hence we are not forced to deform covariance (e.g. as quantum groups). → The underlying κ-Minkowski model is unphysical; covariantisation does not cure this.
2014-09-30
alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes
Eddy current testing with high penetration
International Nuclear Information System (INIS)
Becker, R.; Kroening, M.
1999-01-01
The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de
ECAPS - Eddy Current Approach and Proximity Satellites
National Aeronautics and Space Administration — Multiple, energized coils in a small satellite will generate eddy currents in the skin of the International Space Station (ISS). This will create repulsive forces...
Observed eddy dissipation in the Agulhas Current
CSIR Research Space (South Africa)
Braby, L
2016-08-01
Full Text Available (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current....
Eddy current testing device using unbalance bridge
International Nuclear Information System (INIS)
Hoshikawa, H.; Koido, J.; Ishibashi, Y.
1976-01-01
An easily readjustable unbalance bridge has been invented and in utilizing the same, an eddy current testing equipment excellent in suppression of the lift-off effect and high in the detection sensitivity has been developed
Thin film eddy current impulse deicer
Smith, Samuel O.; Zieve, Peter B.
1990-01-01
Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.
Recognizing limitations in eddy current testing
International Nuclear Information System (INIS)
Van Drunen, G.; Cecco, V.S.
1981-11-01
This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified
COVARIANCE ASSISTED SCREENING AND ESTIMATION.
Ke, By Tracy; Jin, Jiashun; Fan, Jianqing
2014-11-01
Consider a linear model Y = X β + z , where X = X n,p and z ~ N (0, I n ). The vector β is unknown and it is of interest to separate its nonzero coordinates from the zero ones (i.e., variable selection). Motivated by examples in long-memory time series (Fan and Yao, 2003) and the change-point problem (Bhattacharya, 1994), we are primarily interested in the case where the Gram matrix G = X ' X is non-sparse but sparsifiable by a finite order linear filter. We focus on the regime where signals are both rare and weak so that successful variable selection is very challenging but is still possible. We approach this problem by a new procedure called the Covariance Assisted Screening and Estimation (CASE). CASE first uses a linear filtering to reduce the original setting to a new regression model where the corresponding Gram (covariance) matrix is sparse. The new covariance matrix induces a sparse graph, which guides us to conduct multivariate screening without visiting all the submodels. By interacting with the signal sparsity, the graph enables us to decompose the original problem into many separated small-size subproblems (if only we know where they are!). Linear filtering also induces a so-called problem of information leakage , which can be overcome by the newly introduced patching technique. Together, these give rise to CASE, which is a two-stage Screen and Clean (Fan and Song, 2010; Wasserman and Roeder, 2009) procedure, where we first identify candidates of these submodels by patching and screening , and then re-examine each candidate to remove false positives. For any procedure β̂ for variable selection, we measure the performance by the minimax Hamming distance between the sign vectors of β̂ and β. We show that in a broad class of situations where the Gram matrix is non-sparse but sparsifiable, CASE achieves the optimal rate of convergence. The results are successfully applied to long-memory time series and the change-point model.
Eddies off the Queen Charlotte Islands
2002-01-01
The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of eddies visible in the Pacific Ocean in this pseudo-color scene. The eddies are formed by strong outflow currents from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the eddies. (For more details, read Tracking Eddies that Feed the Sea.) To the west of the eddies in the water, another type of eddy-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Non-Critical Covariant Superstrings
Grassi, P A
2005-01-01
We construct a covariant description of non-critical superstrings in even dimensions. We construct explicitly supersymmetric hybrid type variables in a linear dilaton background, and study an underlying N=2 twisted superconformal algebra structure. We find similarities between non-critical superstrings in 2n+2 dimensions and critical superstrings compactified on CY_(4-n) manifolds. We study the spectrum of the non-critical strings, and in particular the Ramond-Ramond massless fields. We use the supersymmetric variables to construct the non-critical superstrings sigma-model action in curved target space backgrounds with coupling to the Ramond-Ramond fields. We consider as an example non-critical type IIA strings on AdS_2 background with Ramond-Ramond 2-form flux.
International Nuclear Information System (INIS)
Kincaid, T.G.; McCary, R.O.
1983-01-01
This paper describes theoretical and experimental work directed toward finding the optimum probe dimensions and operating frequency for eddy current detection of half-penny surface cracks in nonmagnetic conducting materials. The study applies to probes which excite an approximately uniform spatial field over the length of the crack at the surface of the material. In practical terms, this means that the probe is not smaller than the crack length in any of its critical dimensions. The optimization of a simple coil probe is first analyzed in detail. It is shown that signal-to-noise ratio and lift-off discrimination are maximized by a pancake coil with mean radius not greater than the crack length, operated at a frequency which gives a skin depth equal to the crack depth. The results obtained for the simple coil are then used as a basis for discussion of the design of coils with ferrite cores and shields, and for the design of recording head type probes
ISSUES IN NEUTRON CROSS SECTION COVARIANCES
Energy Technology Data Exchange (ETDEWEB)
Mattoon, C.M.; Oblozinsky,P.
2010-04-30
We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)
2017-05-30
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2017-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Improvement of covariance data for fast reactors
International Nuclear Information System (INIS)
Shibata, Keiichi; Hasegawa, Akira
2000-02-01
We estimated covariances of the JENDL-3.2 data on the nuclides and reactions needed to analyze fast-reactor cores for the past three years, and produced covariance files. The present work was undertaken to re-examine the covariance files and to make some improvements. The covariances improved are the ones for the inelastic scattering cross section of 16 O, the total cross section of 23 Na, the fission cross section of 235 U, the capture cross section of 238 U, and the resolved resonance parameters for 238 U. Moreover, the covariances of 233 U data were newly estimated by the present work. The covariances obtained were compiled in the ENDF-6 format. (author)
ANL Critical Assembly Covariance Matrix Generation - Addendum
Energy Technology Data Exchange (ETDEWEB)
McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)
2014-01-13
In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.
Neutron spectrum adjustment. The role of covariances
International Nuclear Information System (INIS)
Remec, I.
1992-01-01
Neutron spectrum adjustment method is shortly reviewed. Practical example dealing with power reactor pressure vessel exposure rates determination is analysed. Adjusted exposure rates are found only slightly affected by the covariances of measured reaction rates and activation cross sections, while the multigroup spectra covariances were found important. Approximate spectra covariance matrices, as suggested in Astm E944-89, were found useful but care is advised if they are applied in adjustments of spectra at locations without dosimetry. (author) [sl
DeepEddy : a simple deep architecture for mesoscale oceanic eddy detection in SAR images
Huang, Dongmei; Du, Yanling; He, Qi; Song, Wei; Liotta, Antonio
2017-01-01
Automatic detection of mesoscale oceanic eddies is in great demand to monitor their dynamics which play a significant role in ocean current circulation and marine climate change. Traditional methods of eddies detection using remotely sensed data are usually based on physical parameters, geometrics,
Study, design and manufacture eddy current probes for industry applications
International Nuclear Information System (INIS)
Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung
2016-01-01
This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)
Modifications of Sp(2) covariant superfield quantization
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Moshin, P.Yu
2003-12-04
We propose a modification of the Sp(2) covariant superfield quantization to realize a superalgebra of generating operators isomorphic to the massless limit of the corresponding superalgebra of the osp(1,2) covariant formalism. The modified scheme ensures the compatibility of the superalgebra of generating operators with extended BRST symmetry without imposing restrictions eliminating superfield components from the quantum action. The formalism coincides with the Sp(2) covariant superfield scheme and with the massless limit of the osp(1,2) covariant quantization in particular cases of gauge-fixing and solutions of the quantum master equations.
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...
Activities of covariance utilization working group
International Nuclear Information System (INIS)
Tsujimoto, Kazufumi
2013-01-01
During the past decade, there has been a interest in the calculational uncertainties induced by nuclear data uncertainties in the neutronics design of advanced nuclear system. The covariance nuclear data is absolutely essential for the uncertainty analysis. In the latest version of JENDL, JENDL-4.0, the covariance data for many nuclides, especially actinide nuclides, was substantialy enhanced. The growing interest in the uncertainty analysis and the covariance data has led to the organisation of the working group for covariance utilization under the JENDL committee. (author)
Eddies in the Red Sea: A statistical and dynamical study
Zhan, Peng
2014-06-01
Sea level anomaly (SLA) data spanning 1992–2012 were analyzed to study the statistical properties of eddies in the Red Sea. An algorithm that identifies winding angles was employed to detect 4998 eddies propagating along 938 unique eddy tracks. Statistics suggest that eddies are generated across the entire Red Sea but that they are prevalent in certain regions. A high number of eddies is found in the central basin between 18°N and 24°N. More than 87% of the detected eddies have a radius ranging from 50 to 135 km. Both the intensity and relative vorticity scale of these eddies decrease as the eddy radii increase. The averaged eddy lifespan is approximately 6 weeks. AEs and cyclonic eddies (CEs) have different deformation features, and those with stronger intensities are less deformed and more circular. Analysis of long-lived eddies suggests that they are likely to appear in the central basin with AEs tending to move northward. In addition, their eddy kinetic energy (EKE) increases gradually throughout their lifespans. The annual cycles of CEs and AEs differ, although both exhibit significant seasonal cycles of intensity with the winter and summer peaks appearing in February and August, respectively. The seasonal cycle of EKE is negatively correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.
Ocean eddies and climate predictability.
Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo
2017-12-01
A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.
General covariance and quantum theory
International Nuclear Information System (INIS)
Mashhoon, B.
1986-01-01
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Eddy currents in pulsed field measurements
International Nuclear Information System (INIS)
Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.
2002-01-01
Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)
Parameters of the covariance function of galaxies
International Nuclear Information System (INIS)
Fesenko, B.I.; Onuchina, E.V.
1988-01-01
The two-point angular covariance functions for two samples of galaxies are considered using quick methods of analysis. It is concluded that in the previous investigations the amplitude of the covariance function in the Lick counts was overestimated and the rate of decrease of the function underestimated
Covariance Function for Nearshore Wave Assimilation Systems
2018-01-30
which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE
Treatment Effects with Many Covariates and Heteroskedasticity
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Jansson, Michael; Newey, Whitney K.
The linear regression model is widely used in empirical work in Economics. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results...
Covariance and sensitivity data generation at ORNL
International Nuclear Information System (INIS)
Leal, L. C.; Derrien, H.; Larson, N. M.; Alpan, A.
2005-01-01
Covariance data are required to assess uncertainties in design parameters in several nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the US Evaluated Nuclear Data Library, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. In this paper we address the generation of covariance data in the resonance region done with the computer code SAMMY. SAMMY is used in the evaluation of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on the generalised least-squares formalism (Bayesian theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, it provides the resonance parameter covariances. For resonance parameter evaluations where there are no resonance parameter covariance data available, the alternative is to use an approach called the 'retroactive' resonance parameter covariance generation. In this paper, we describe the application of the retroactive covariance generation approach for the gadolinium isotopes. (authors)
Position Error Covariance Matrix Validation and Correction
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
Quality Quantification of Evaluated Cross Section Covariances
International Nuclear Information System (INIS)
Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.
2015-01-01
Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations
On the algebraic structure of covariant anomalies and covariant Schwinger terms
International Nuclear Information System (INIS)
Kelnhofer, G.
1992-01-01
A cohomological characterization of covariant anomalies and covariant Schwinger terms in an anomalous Yang-Mills theory is formulated and w ill be geometrically interpreted. The BRS and anti-BRS transformations are defined as purely differential geometric objects. Finally the covariant descent equations are formulated within this context. (author)
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2016-10-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
On estimating cosmology-dependent covariance matrices
International Nuclear Information System (INIS)
Morrison, Christopher B.; Schneider, Michael D.
2013-01-01
We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys
Covariance descriptor fusion for target detection
Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih
2016-05-01
Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.
Experimental modeling of eddy current inspection capabilities
International Nuclear Information System (INIS)
Junker, W.R.; Clark, W.G.
1984-01-01
This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques
Solitonlike solutions in loop current eddies
Nakamoto, Shoichiro
1989-01-01
The application of the nonlinear quasi-geostrophic equations to an isolated eddy in the western continental slope region in the Gulf of Mexico is examined for a two-layer ocean model with bottom topography. In the linear limit, solutions are topographic nondispersive waves. Form-preserving solutions, or solitons, have been found. The solution is shown to be a limiting form for a nonlinear dispersive system propagating northward along the topographic waveguide in the western continental slope region in the Gulf of Mexico. Using satellite-tracked drifter data, a linear relationship is found between the amplitude of the deduced stream function of the eddy and its observed translational velocity over the continental slope, which supports the hypothesis that some mesoscale eddies interacting with the continental slope behave as solitons.
Lateral resolution of eddy current imaging
International Nuclear Information System (INIS)
Hassan, W.; Blodgett, M.; Nagy, P.B.
2002-01-01
Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys
Transmit-receive eddy current probes
International Nuclear Information System (INIS)
Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.
1997-01-01
In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)
MASCOTTE: analytical model of eddy current signals
International Nuclear Information System (INIS)
Delsarte, G.; Levy, R.
1992-01-01
Tube examination is a major application of the eddy current technique in the nuclear and petrochemical industries. Such examination configurations being specially adapted to analytical modes, a physical model is developed on portable computers. It includes simple approximations made possible by the effective conditions of the examinations. The eddy current signal is described by an analytical formulation that takes into account the tube dimensions, the sensor conception, the physical characteristics of the defect and the examination parameters. Moreover, the model makes it possible to associate real signals and simulated signals
Casimir Interaction from Magnetically Coupled Eddy Currents
Intravaia, Francesco; Henkel, Carsten
2009-09-01
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
About Eddy Currents in Induction Melting Processes
Directory of Open Access Journals (Sweden)
Gafiţa Nicolae-Bogdan
2008-05-01
Full Text Available In this paper we present a method forcomputing the eddy currents in induction meltingprocesses for non-ferrous alloys. We take intoconsideration the situation when only the crucible ismoving, inside the coils. This fact makes differentialcomputation methods to be hard to apply, because isnecessary to generate a new mesh and a new systemmatrix for every for every new position of the cruciblerelated to the coils. Integral methods cancel thisdrawback because the mesh is generated only for thedomains with eddy currents. For integral methods, themesh and the inductance matrix remain unchangedduring the movement of the crucible; only the free termsof the equation system will change.
Eddy current standards - Cracks versus notches
Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.
1992-10-01
Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.
Eddy current inspection of mildly ferromagnetic tubing
International Nuclear Information System (INIS)
Mayo, W.R.; Carter, J.R.
1984-02-01
The past decade has seen the development of eddy current probes for inspection of the mildly ferro-magnetic alloy Monel 400. Due to the rapid advances in permanent magnet technology similar probes have been upgraded to magnetically saturate, and hence inspect, the duplex stainless steel Sandvik 3RE60, which has saturation induction more than twice that of Monel 400. Prototypes of these probes have been tested in three ways: saturation capability, quality of typical eddy current data, and ability to eliminate permeability induced signals. Successful laboratory testing, potential applications, and limitations of these type probes are discussed
Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem
Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.
2017-12-01
The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.
The eddy kinetic energy budget in the Red Sea
Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim
2016-01-01
The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum
Visualization and analysis of eddies in a global ocean simulation
Energy Technology Data Exchange (ETDEWEB)
Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS
2010-10-15
Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.
Eddies in the Red Sea: A statistical and dynamical study
Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Hoteit, Ibrahim
2014-01-01
correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.
Tools and Methods for Visualization of Mesoscale Ocean Eddies
Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.
2017-12-01
Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available
Problems and limitations of eddy current tube inspection
International Nuclear Information System (INIS)
Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni
2003-01-01
Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)
Covariant quantizations in plane and curved spaces
International Nuclear Information System (INIS)
Assirati, J.L.M.; Gitman, D.M.
2017-01-01
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Covariant quantizations in plane and curved spaces
Energy Technology Data Exchange (ETDEWEB)
Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)
2017-07-15
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
76 FR 59394 - Big Eddy-Knight Transmission Project
2011-09-26
... DEPARTMENT OF ENERGY Bonneville Power Administration Big Eddy-Knight Transmission Project AGENCY... Eddy-Knight Transmission Project in Wasco County, Oregon and Klickitat County, Washington. Construction of the Big Eddy-Knight Transmission Project will accommodate long-term firm transmission requests...
Eddy properties in the Southern California Current System
Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent
2018-05-01
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.
Cycloidal meandering of a mesoscale anticyclonic eddy
Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael
2017-08-01
By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.
A probe for Eddy current inspection devices
International Nuclear Information System (INIS)
1974-01-01
The invention relates to a surface probe for Eddy current inspection devices. According to the invention, said probe comprises two magnetic core windings, with their axes in parallel relationship and at right angles to the surface of the part to be inspected. This can be applied to the nondestructive inspection of reactor components [fr
Eddy current testing of heat exchangers tubes
International Nuclear Information System (INIS)
Gouez, J.F.; Rieusset, A.; Groix, F.
An automatic system for Eddy Current testing of heat exchangers tubes of warships was developed. The advantages are an exposure of the controller limited at the time required to put in place the system and a reduced time of control [fr
Wind changes above warm Agulhas Current eddies
CSIR Research Space (South Africa)
Roualt, M
2016-10-01
Full Text Available Sea-surface temperature (SST), altimetry derived sea-level anomalies (SLA) and surface current are used south of the Agulhas Current to identify warm core mesoscale ocean eddies presenting a distinct SST perturbation superior to 1(supo...
Oceanic eddies in synthetic aperture radar images
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
2000) can be carried out in two different ways. The first one is ..... mushroom-like currents forming composite multi- .... eddies. Combination of SAR, IR and color data will ... Fu L-L and Holt B 1982 Seasat views oceans and sea ice with.
Detached Eddy Simulations of Hypersonic Transition
Yoon, S.; Barnhardt, M.; Candler, G.
2010-01-01
This slide presentation reviews the use of Detached Eddy Simulation (DES) of hypersonic transistion. The objective of the study was to investigate the feasibility of using CFD in general, DES in particular, for prediction of roughness-induced boundary layer transition to turbulence and the resulting increase in heat transfer.
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
Large Eddy Simulations using oodlesDST
2016-01-01
Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes
International Nuclear Information System (INIS)
Clark, R.
1989-01-01
The increasing sophistication of eddy current signal interpretation in steam generator tubing has improved capabilities, but has also made the process of analysis more complex and time consuming. Westinghouse has developed an intelligent computerised tool - the IEDA (Intelligent Eddy Current Data Analysis) system, to lighten the load on analysts. Since 1985, 44 plants have been inspected with IEDA, representing over 400,000 tubes. The system has provided a repeatability and a consistency not achieved by human operators. (U.K.)
Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng
2017-12-01
The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.
Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik
2017-12-01
The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.
Obituary: John Allen Eddy (1931-2009)
Gingerich, Owen
2011-12-01
Jack Eddy, who was born 25 March 1931 in Pawnee City in southeastern Nebraska, died after a long battle with cancer in Tucson, Arizona, on 10 June 2009. Best known for his work on the long-term instability of the sun, described in a landmark paper in Science titled "The Maunder Minimum," he also deserves recognition as one of the triumvirate who founded the Historical Astronomy Division of the AAS. His father ran a cooperative farm store where Jack worked as a teenager; his parents were of modest means and there were concerns whether he could afford college, but one of the state senators, also from Pawnee City, nominated him for the U.S. Naval Academy. A course in celestial navigation gave him a love of the sky. After graduation in 1953, he served four years on aircraft carriers in the Pacific during the Korean War and then as a navigator and operations officer on a destroyer in the Persian Gulf. In 1957, he left the Navy and entered graduate school at the University of Colorado in Boulder, where in 1962 he received a Ph.D. in astro-geophysics. His thesis, supervised by Gordon Newkirk, dealt with light scattering in the upper atmosphere, based on data from stratospheric balloon flights. He then worked as teacher and researcher at the High Altitude Observatory in Boulder. Always adventuresome and willing to explore new frontiers, on his own time Eddy examined an Amerindian stone circle in the Big Horn mountains of Wyoming, a so-called medicine wheel, concluding that there were alignments with both the solstitial sun and Aldebaran. His conjectures became a cover story on Science magazine in June of 1974. In 1971 Jack privately reproduced for his friends a small collection of his own hilarious cartoons titled "Job Opportunities for Out-of-work Astronomers," with an abstract beginning, "Contrary to popular belief, a PhD in Astronomy/Astrophysics need not be a drawback in locating work in this decade." For example, under merchandising, a used car salesman advertises
Students’ Covariational Reasoning in Solving Integrals’ Problems
Harini, N. V.; Fuad, Y.; Ekawati, R.
2018-01-01
Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.
Covariant Quantization with Extended BRST Symmetry
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1999-01-01
A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.
Covariant extensions and the nonsymmetric unified field
International Nuclear Information System (INIS)
Borchsenius, K.
1976-01-01
The problem of generally covariant extension of Lorentz invariant field equations, by means of covariant derivatives extracted from the nonsymmetric unified field, is considered. It is shown that the contracted curvature tensor can be expressed in terms of a covariant gauge derivative which contains the gauge derivative corresponding to minimal coupling, if the universal constant p, characterizing the nonsymmetric theory, is fixed in terms of Planck's constant and the elementary quantum of charge. By this choice the spinor representation of the linear connection becomes closely related to the spinor affinity used by Infeld and Van Der Waerden (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.; 9:380 (1933)) in their generally covariant formulation of Dirac's equation. (author)
Covariance Spectroscopy for Fissile Material Detection
International Nuclear Information System (INIS)
Trainham, Rusty; Tinsley, Jim; Hurley, Paul; Keegan, Ray
2009-01-01
Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Covariance upperbound controllers for networked control systems
International Nuclear Information System (INIS)
Ko, Sang Ho
2012-01-01
This paper deals with designing covariance upperbound controllers for a linear system that can be used in a networked control environment in which control laws are calculated in a remote controller and transmitted through a shared communication link to the plant. In order to compensate for possible packet losses during the transmission, two different techniques are often employed: the zero-input and the hold-input strategy. These use zero input and the latest control input, respectively, when a packet is lost. For each strategy, we synthesize a class of output covariance upperbound controllers for a given covariance upperbound and a packet loss probability. Existence conditions of the covariance upperbound controller are also provided for each strategy. Through numerical examples, performance of the two strategies is compared in terms of feasibility of implementing the controllers
Forecasting Covariance Matrices: A Mixed Frequency Approach
DEFF Research Database (Denmark)
Halbleib, Roxana; Voev, Valeri
This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...
Covariance data evaluation for experimental data
International Nuclear Information System (INIS)
Liu Tingjin
1993-01-01
Some methods and codes have been developed and utilized for covariance data evaluation of experimental data, including parameter analysis, physical analysis, Spline fitting etc.. These methods and codes can be used in many different cases
Earth Observing System Covariance Realism Updates
Ojeda Romero, Juan A.; Miguel, Fred
2017-01-01
This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.
Laser Covariance Vibrometry for Unsymmetrical Mode Detection
National Research Council Canada - National Science Library
Kobold, Michael C
2006-01-01
Simulated cross - spectral covariance (CSC) from optical return from simulated surface vibration indicates CW phase modulation may be an appropriate phenomenology for adequate classification of vehicles by structural mode...
Error Covariance Estimation of Mesoscale Data Assimilation
National Research Council Canada - National Science Library
Xu, Qin
2005-01-01
The goal of this project is to explore and develop new methods of error covariance estimation that will provide necessary statistical descriptions of prediction and observation errors for mesoscale data assimilation...
Eddy-induced salinity pattern in the North Pacific
Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.
2017-12-01
This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.
Heteroscedasticity resistant robust covariance matrix estimator
Czech Academy of Sciences Publication Activity Database
Víšek, Jan Ámos
2010-01-01
Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf
Phase-covariant quantum cloning of qudits
International Nuclear Information System (INIS)
Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin
2003-01-01
We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation
Noncommutative Gauge Theory with Covariant Star Product
International Nuclear Information System (INIS)
Zet, G.
2010-01-01
We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.
Covariant phase difference observables in quantum mechanics
International Nuclear Information System (INIS)
Heinonen, Teiko; Lahti, Pekka; Pellonpaeae, Juha-Pekka
2003-01-01
Covariant phase difference observables are determined in two different ways, by a direct computation and by a group theoretical method. A characterization of phase difference observables which can be expressed as the difference of two phase observables is given. The classical limits of such phase difference observables are determined and the Pegg-Barnett phase difference distribution is obtained from the phase difference representation. The relation of Ban's theory to the covariant phase theories is exhibited
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-07
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-05
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Covariate analysis of bivariate survival data
Energy Technology Data Exchange (ETDEWEB)
Bennett, L.E.
1992-01-01
The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Covariant perturbations of Schwarzschild black holes
International Nuclear Information System (INIS)
Clarkson, Chris A; Barrett, Richard K
2003-01-01
We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of
Vacuum stress and closed paths in rectangles, pistons and pistols
International Nuclear Information System (INIS)
Fulling, S A; Kaplan, L; Kirsten, K; Liu, Z H; Milton, K A
2009-01-01
Rectangular cavities are solvable models that nevertheless touch on many of the controversial or mysterious aspects of the vacuum energy of quantum fields. This paper is a thorough study of the two-dimensional scalar field in a rectangle by the method of images, or closed classical (or optical) paths, which is exact in this case. For each point r and each specularly reflecting path beginning and ending at r, we provide formulae for all components of the stress tensor T μν (r), for all values of the curvature coupling constant ξ and all values of an ultraviolet cutoff parameter. Arbitrary combinations of Dirichlet and Neumann conditions on the four sides can be treated. The total energy is also investigated, path by path. These results are used in an attempt to clarify the physical reality of the repulsive (outward) force on the sides of the box predicted by calculations that neglect both boundary divergences and the exterior of the box. Previous authors have studied 'piston' geometries that avoid these problems and have found the force to be attractive. We consider a 'pistol' geometry that comes closer to the original problem of a box with a movable lid. We find again an attractive force, although its origin and detailed behavior are somewhat different from the piston case. However, the pistol (and the piston) model can be criticized for extending idealized boundary conditions into short distances where they are physically implausible. Therefore, it is of interest to see whether leaving the ultraviolet cutoff finite yields results that are more plausible. We then find that the force depends strongly on a geometrical parameter; it can be made repulsive, but only by forcing that parameter into the regime where the model is least convincing physically
Closed Paths of Light Trapped in a Closed Fermat Curve
Dana-Picard, Thierry; Naiman, Aaron
2002-01-01
Geometric constructions have previously been shown that can be interpreted as rays of light trapped either in polygons or in conics, by successive reflections. The same question, trapping light in closed Fermat curves, is addressed here. Numerical methods are used to study the behaviour of the reflection points of a triangle when the degree of the…
Eddy-kovarianční měření v agroekosystému v Křešíně u Pacova
Czech Academy of Sciences Publication Activity Database
Havránková, Kateřina; Šigut, Ladislav; Sedlák, Pavel; Pavelka, Marian
2013-01-01
Roč. 25, č. 5 (2013), s. 27-30 ISSN 1211-0337 R&D Projects: GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : eddy-covariance * agroecosystem * wind analysis * footprint * CO2 flux Subject RIV: EH - Ecology, Behaviour
Ole E. Barndorff-Nielsen; Neil Shephard
2002-01-01
This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...
A special covariance structure for random coefficient models with both between and within covariates
International Nuclear Information System (INIS)
Riedel, K.S.
1990-07-01
We review random coefficient (RC) models in linear regression and propose a bias correction to the maximum likelihood (ML) estimator. Asymmptotic expansion of the ML equations are given when the between individual variance is much larger or smaller than the variance from within individual fluctuations. The standard model assumes all but one covariate varies within each individual, (we denote the within covariates by vector χ 1 ). We consider random coefficient models where some of the covariates do not vary in any single individual (we denote the between covariates by vector χ 0 ). The regression coefficients, vector β k , can only be estimated in the subspace X k of X. Thus the number of individuals necessary to estimate vector β and the covariance matrix Δ of vector β increases significantly in the presence of more than one between covariate. When the number of individuals is sufficient to estimate vector β but not the entire matrix Δ , additional assumptions must be imposed on the structure of Δ. A simple reduced model is that the between component of vector β is fixed and only the within component varies randomly. This model fails because it is not invariant under linear coordinate transformations and it can significantly overestimate the variance of new observations. We propose a covariance structure for Δ without these difficulties by first projecting the within covariates onto the space perpendicular to be between covariates. (orig.)
Are your covariates under control? How normalization can re-introduce covariate effects.
Pain, Oliver; Dudbridge, Frank; Ronald, Angelica
2018-04-30
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.
Thin tube testing by eddy currents
International Nuclear Information System (INIS)
David, Bernard; Pigeon, Michel
1981-01-01
It is often necessary to define test conditions in eddy current testing, in consequence rules and laws allowing a rapid choice of these conditions are welcome. The similarity law, given by Forster, using the reduced frequency f/fg, allows extrapolation of results from an object to one another, if these two objects are similar (i.e. all their dimensions are proportional). In a particular case, often met, a law going further is given to describe, in a sole way, eddy current behaviour using the reduced frequency in all thin tubes (internal to external diameter ratio between 0.85 to 1). For instance working at f/fe=2 defines the same verification leading to identical results, whatever the nature, the diameter or the thickness may be, if the tubes are thin. A diagram is given and a slide-rule, based on this principle, has been realized [fr
Computer modelling of eddy current probes
International Nuclear Information System (INIS)
Sullivan, S.P.
1992-01-01
Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs
Large Eddy Simulation for Compressible Flows
Garnier, E; Sagaut, P
2009-01-01
Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...
Pulsed eddy currents: principle and applications
International Nuclear Information System (INIS)
Bernard, A.; Coutanceau, N.
1993-04-01
Eddy currents are widely used as a non destructive testing technique specially for heat exchanger testing. The specificities of pulsed eddy current testing are analyzed in terms of probe design and signal processing. The specific applications are detailed. They are divided in two parts. First part, deals with the two main applications of the high peak energy supplied to the probe. One concerns the design of focused probes used for the detection of small defects in irradiated fuel rods. The other concerns the saturation of ferromagnetic materials in order to test the full thickness of the exchanger tubes. Second part, deals with applications of the wide and low frequency spectrum generated by the pulse source. It enables the testing of thick materials, and the detection of sub-surface defects. It has been tested on austenitic steel (nuclear pressure vessel nozzle), multilayered structures of aluminium alloys (aeronautics) and sleeved structures (nuclear pressure vessel head penetrations through thermal sleeves)
Nuclear data covariances in the Indian context
International Nuclear Information System (INIS)
Ganesan, S.
2014-01-01
The topic of covariances is recognized as an important part of several ongoing nuclear data science activities, since 2007, in the Nuclear Data Physics Centre of India (NDPCI). A Phase-1 project in collaboration with the Statistics department in Manipal University, Karnataka (Prof. K.M. Prasad and Prof. S. Nair) on nuclear data covariances was executed successfully during 2007-2011 period. In Phase-I, the NDPCI has conducted three national Theme meetings sponsored by the DAE-BRNS in 2008, 2010 and 2013 on nuclear data covariances. In Phase-1, the emphasis was on a thorough basic understanding of the concept of covariances including assigning uncertainties to experimental data in terms of partial errors and micro correlations, through a study and a detailed discussion of open literature. Towards the end of Phase-1, measurements and a first time covariance analysis of cross-sections for 58 Ni (n, p) 58 Co reaction measured in Mumbai Pelletron accelerator using 7 Li (p,n) reactions as neutron source in the MeV energy region were performed under a PhD programme on nuclear data covariances in which enrolled are two students, Shri B.S. Shivashankar and Ms. Shanti Sheela. India is also successfully evolving a team of young researchers to code nuclear data of uncertainties, with the perspectives on covariances, in the IAEA-EXFOR format. A Phase-II DAE-BRNS-NDPCI proposal of project at Manipal has been submitted and the proposal is undergoing a peer-review at this time. In Phase-2, modern nuclear data evaluation techniques that including covariances will be further studied as a research and development effort, as a first time effort. These efforts include the use of techniques such as that of the Kalman filter. Presently, a 48 hours lecture series on treatment of errors and their propagation is being formulated under auspices of the Homi Bhabha National Institute. The talk describes the progress achieved thus far in the learning curve of the above-mentioned and exciting
Multi-frequency eddy current testing method
International Nuclear Information System (INIS)
Levy, R.; Gallet, G.
1980-01-01
Monitoring by multi-frequency eddy currents has been used since 1975 in French nuclear stations; this method applies perfectly to examinations in non-irradiated surroundings. The restrictions connected with operations in controlled zones (radioactivity) have led to the development of a delayed analysis device which in no way changes the principle of the method, but allows greater flexibility of use by reducing the volume of equipment needed and by limiting the intervention of personnel to a strict minimum [fr
Parameterized and resolved Southern Ocean eddy compensation
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
Cross-covariance functions for multivariate geostatistics
Genton, Marc G.
2015-05-01
Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.
Schroedinger covariance states in anisotropic waveguides
International Nuclear Information System (INIS)
Angelow, A.; Trifonov, D.
1995-03-01
In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs
Form of the manifestly covariant Lagrangian
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
Cross-covariance functions for multivariate geostatistics
Genton, Marc G.; Kleiber, William
2015-01-01
Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
Eddy current inspection of stationary blade rings
International Nuclear Information System (INIS)
Krzywosz, K.J.; Hastings, S.N.
1994-01-01
Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings
Large eddy simulation of bundle turbulent flows
International Nuclear Information System (INIS)
Hassan, Y.A.; Barsamian, H.R.
1995-01-01
Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)
Eddy current testing using digital technology
International Nuclear Information System (INIS)
Houseman, H.E.; Lamb, L.T.; Kitson, B.
1985-01-01
Eddy current inspection techniques have been used extensively in industry as an accepted method of non-destructive testing. The application of this technology has proven invaluable for both the control of product quality during the manufacturing process as well as the verification of material integrity throughout the life of a given component. One of the major areas in the power industry where eddy current techniques have been used is for the inspection of installed tubing in various heat exchangers including the steam generators of pressurized water reactor (PWR) nuclear steam supply systems. As increased emphasis is placed upon the operability and safety of these components, test instrumentation has been advanced to improve the efficiency and reliability of inservice inspections. At the same time, plant owners along with manufacturers and inspection service vendors are developing analytical tools for assessing the inspection results. One of the techniques that offers significant potential has been made possible by recent advances in digital technology. The application of digital techniques to the eddy current method offers not only a means to improve the test instrumentation but also an environment whereby other facets of the inservice inspection effort can be enchanced
Progress on Nuclear Data Covariances: AFCI-1.2 Covariance Library
International Nuclear Information System (INIS)
Oblozinsky, P.; Oblozinsky, P.; Mattoon, C.M.; Herman, M.; Mughabghab, S.F.; Pigni, M.T.; Talou, P.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Young, P.G
2009-01-01
Improved neutron cross section covariances were produced for 110 materials including 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Improved covariances were organized into AFCI-1.2 covariance library in 33-energy groups, from 10 -5 eV to 19.6 MeV. BNL contributed improved covariance data for the following materials: 23 Na and 55 Mn where more detailed evaluation was done; improvements in major structural materials 52 Cr, 56 Fe and 58 Ni; improved estimates for remaining structural materials and fission products; improved covariances for 14 minor actinides, and estimates of mubar covariances for 23 Na and 56 Fe. LANL contributed improved covariance data for 235 U and 239 Pu including prompt neutron fission spectra and completely new evaluation for 240 Pu. New R-matrix evaluation for 16 O including mubar covariances is under completion. BNL assembled the library and performed basic testing using improved procedures including inspection of uncertainty and correlation plots for each material. The AFCI-1.2 library was released to ANL and INL in August 2009.
ACORNS, Covariance and Correlation Matrix Diagonalization
International Nuclear Information System (INIS)
Szondi, E.J.
1990-01-01
1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
Group covariant protocols for quantum string commitment
International Nuclear Information System (INIS)
Tsurumaru, Toyohiro
2006-01-01
We study the security of quantum string commitment (QSC) protocols with group covariant encoding scheme. First we consider a class of QSC protocol, which is general enough to incorporate all the QSC protocols given in the preceding literatures. Then among those protocols, we consider group covariant protocols and show that the exact upperbound on the binding condition can be calculated. Next using this result, we prove that for every irreducible representation of a finite group, there always exists a corresponding nontrivial QSC protocol which reaches a level of security impossible to achieve classically
The covariant entropy bound in gravitational collapse
International Nuclear Information System (INIS)
Gao, Sijie; Lemos, Jose P. S.
2004-01-01
We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Remarks on Bousso's covariant entropy bound
Mayo, A E
2002-01-01
Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Covariant n2-plet mass formulas
International Nuclear Information System (INIS)
Davidson, A.
1979-01-01
Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n 2 -plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n 2 -1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Activities on covariance estimation in Japanese Nuclear Data Committee
Energy Technology Data Exchange (ETDEWEB)
Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
Described are activities on covariance estimation in the Japanese Nuclear Data Committee. Covariances are obtained from measurements by using the least-squares methods. A simultaneous evaluation was performed to deduce covariances of fission cross sections of U and Pu isotopes. A code system, KALMAN, is used to estimate covariances of nuclear model calculations from uncertainties in model parameters. (author)
Covariant canonical quantization of fields and Bohmian mechanics
International Nuclear Information System (INIS)
Nikolic, H.
2005-01-01
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)
Eddy current inspection on heat exchanger tubes - problems and limitations
International Nuclear Information System (INIS)
Ilham Mukriz; Zainal Abidin Mohamed; Hairul Hasmoni Khairul Anuar; Mohd Salleh; Mahmood Dollah
2005-01-01
This paper focus on problems associated to eddy current inspection of heat exchanger tubes. A brief review on heat exchanger design and operation is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The limitation of the eddy current probe and equipment pertinent to the inspection are identified and areas of improvement are discussed. (Author)
Eddy current detection of corrosion damage in heat exchanger tubes
International Nuclear Information System (INIS)
Van Drunen, G.; Cecco, V.S.; Carter, J.R.
1980-05-01
Eddy current is often the most effective nondestructive test method available for in-service inspection of small bore tubing in heat exchangers. The basic principles, advantages and shortcomings of the technique are outlined. Typical eddy current indications from corrosion-related defects such as stress corrosion cracks, pitting and tube denting under support plates are presented. Eddy current signals from features such as magnetite deposits and ferromagnetic inclusions which might be mistaken for defects are also discussed. (auth)
Observations of near-inertial kinetic energy inside mesoscale eddies.
Garcia Gomez, B. I.; Pallas Sanz, E.; Candela, J.
2016-02-01
The near-nertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoescale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 30 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical cross-sections of the KEi-composites show that the KEi is mainly located near the surface and at the edge of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center and near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. A relative maximum in the upper anticyclonic eddy is also observed. The cyclonic eddies present a maximum of KEi near to the surface at 70 m, while the maximum of KEi in the anticyclonic eddies occurs between 800 and 1000 m. It is also shown the dependence between the distribution and magnitude of the KEi and the eddy's characteristics such as radius, vorticity, and amplitude.
Eddy current seminar, 24-26 Mar 1986
International Nuclear Information System (INIS)
Emson, C.R.I.
1986-06-01
The paper concerns the Eddy Current Seminars, held at the Rutherford Appleton Laboratory, United Kingdom, March 1986. Twenty two papers were presented on eddy current phenomena, and two of the papers are indexed separately. The first deals with a finite difference scheme for time dependent eddy currents in Tokamaks, the second is an analysis of the FELIX experiments with cantilevered beams and hollow cylinders. (UK)
Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions
Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.
2011-12-01
Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.
Dispersion of tracers by the oceanic eddy field modelling programme
International Nuclear Information System (INIS)
Richards, K.J.
1986-01-01
A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The study is designed to investigate the horizontal and vertical structure of the eddies and how this structure is influenced by the bottom topography. It is found that hills and valleys have a strong effect on the eddies above them. The flow close to the bottom has a tendency to be steered by the height contours. The surface and bottom flows become decorrelated and the vertical variation of the kinetic energy of the eddies is increased with higher topographic features. (author)
Eddy Current Assessment of Engineered Components Containing Nanofibers
Ko, Ray T.; Hoppe, Wally; Pierce, Jenny
2009-03-01
The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying
2015-01-01
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Zero curvature conditions and conformal covariance
International Nuclear Information System (INIS)
Akemann, G.; Grimm, R.
1992-05-01
Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs
On superfield covariant quantization in general coordinates
International Nuclear Information System (INIS)
Gitman, D.M.; Moshin, P. Yu.; Tomazelli, J.L.
2005-01-01
We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)
On superfield covariant quantization in general coordinates
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Moshin, P. Yu. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomazelli, J.L. [UNESP, Departamento de Fisica e Quimica, Campus de Guaratingueta (Brazil)
2005-12-01
We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)
Covariant field theory of closed superstrings
International Nuclear Information System (INIS)
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Conformally covariant composite operators in quantum chromodynamics
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.; Todorov, I.T.
1983-03-01
Conformal covariance is shown to determine renormalization properties of composite operators in QCD and in the C 6 3 -model at the one-loop level. Its relevance to higher order (renormalization group improved) perturbative calculations in the short distance limit is also discussed. Light cone operator product expansions and spectral representations for wave functions in QCD are derived. (author)
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Covariant differential calculus on the quantum hyperplane
International Nuclear Information System (INIS)
Wess, J.
1991-01-01
We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)
Covariant single-hole optical potential
International Nuclear Information System (INIS)
Kam, J. de
1982-01-01
In this investigation a covariant optical potential model is constructed for scattering processes of mesons from nuclei in which the meson interacts repeatedly with one of the target nucleons. The nuclear binding interactions in the intermediate scattering state are consistently taken into account. In particular for pions and K - projectiles this is important in view of the strong energy dependence of the elementary projectile-nucleon amplitude. Furthermore, this optical potential satisfies unitarity and relativistic covariance. The starting point in our discussion is the three-body model for the optical potential. To obtain a practical covariant theory I formulate the three-body model as a relativistic quasi two-body problem. Expressions for the transition interactions and propagators in the quasi two-body equations are found by imposing the correct s-channel unitarity relations and by using dispersion integrals. This is done in such a way that the correct non-relativistic limit is obtained, avoiding clustering problems. Corrections to the quasi two-body treatment from the Pauli principle and the required ground-state exclusion are taken into account. The covariant equations that we arrive at are amenable to practical calculations. (orig.)
Nonlinear realization of general covariance group
International Nuclear Information System (INIS)
Hamamoto, Shinji
1979-01-01
The structure of the theory resulting from the nonlinear realization of general covariance group is analysed. We discuss the general form of free Lagrangian for Goldstone fields, and propose as a special choice one reasonable form which is shown to describe a gravitational theory with massless tensor graviton and massive vector tordion. (author)
Covariant quantum mechanics on a null plane
International Nuclear Information System (INIS)
Leutwyler, H.; Stern, J.
1977-03-01
Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-11-30
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Approximate methods for derivation of covariance data
International Nuclear Information System (INIS)
Tagesen, S.
1992-01-01
Several approaches for the derivation of covariance information for evaluated nuclear data files (EFF2 and ENDF/B-VI) have been developed and used at IRK and ORNL respectively. Considerations, governing the choice of a distinct method depending on the quantity and quality of available data are presented, advantages/disadvantages are discussed and examples of results are given
Optimal covariate designs theory and applications
Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar
2015-01-01
This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...
Asymptotics for the minimum covariance determinant estimator
Butler, R.W.; Davies, P.L.; Jhun, M.
1993-01-01
Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown
EQUIVALENT MODELS IN COVARIANCE STRUCTURE-ANALYSIS
LUIJBEN, TCW
1991-01-01
Defining equivalent models as those that reproduce the same set of covariance matrices, necessary and sufficient conditions are stated for the local equivalence of two expanded identified models M1 and M2 when fitting the more restricted model M0. Assuming several regularity conditions, the rank
Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z
2015-11-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.
ENDF-6 File 30: Data covariances obtained from parameter covariances and sensitivities
International Nuclear Information System (INIS)
Muir, D.W.
1989-01-01
File 30 is provided as a means of describing the covariances of tabulated cross sections, multiplicities, and energy-angle distributions that result from propagating the covariances of a set of underlying parameters (for example, the input parameters of a nuclear-model code), using an evaluator-supplied set of parameter covariances and sensitivities. Whenever nuclear data are evaluated primarily through the application of nuclear models, the covariances of the resulting data can be described very adequately, and compactly, by specifying the covariance matrix for the underlying nuclear parameters, along with a set of sensitivity coefficients giving the rate of change of each nuclear datum of interest with respect to each of the model parameters. Although motivated primarily by these applications of nuclear theory, use of File 30 is not restricted to any one particular evaluation methodology. It can be used to describe data covariances of any origin, so long as they can be formally separated into a set of parameters with specified covariances and a set of data sensitivities
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2015-01-01
between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations......We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields....... Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies...
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2004-01-01
This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....
Essential parameters in eddy current inspection
International Nuclear Information System (INIS)
Stepinski, T.
2000-05-01
Our aim was to qualitatively analyze a number of variables that may affect the result of eddy current (EC) inspection but because of various reasons are not considered as essential in common practice. In the report we concentrate on such variables that can vary during or between inspections but their influence is not determined during routine calibrations. We present a qualitative analysis of the influence of the above-mentioned variables on the ability to detect and size flaws using mechanized eddy current testing (ET). ET employs some type of coil or probe, sensing magnetic flux generated by eddy currents induced in the tested specimen. An amplitude-phase modulated signal (with test frequency f0 ) from the probe is sensed by the EC instrument. The amplitude-phase modulated signal is amplified and demodulated in phase-sensitive detectors removing carrier frequency f0 from the signal. The detectors produce an in-phase and a quadrature component of the signal defining it as a point in the impedance plane. Modern instruments are provided with a screen presenting the demodulated and filtered signal in complex plane. We focus on such issues, related to the EC equipment as, probe matching, distortion introduced by phase discriminators and signal filters, and the influence of probe resolution and lift-off on sizing. The influence of different variables is investigated by means of physical reasoning employing theoretical models and demonstrated using simulated and real EC signals. In conclusion, we discuss the way in which the investigated variables may affect the result of ET. We also present a number of practical recommendations for the users of ET and indicate the areas that are to be further analyzed
EddyOne automated analysis of PWR/WWER steam generator tubes eddy current data
International Nuclear Information System (INIS)
Nadinic, B.; Vanjak, Z.
2004-01-01
INETEC Institute for Nuclear Technology developed software package called Eddy One which has option of automated analysis of bobbin coil eddy current data. During its development and on site use, many valuable lessons were learned which are described in this article. In accordance with previous, the following topics are covered: General requirements for automated analysis of bobbin coil eddy current data; Main approaches to automated analysis; Multi rule algorithms for data screening; Landmark detection algorithms as prerequisite for automated analysis (threshold algorithms and algorithms based on neural network principles); Field experience with Eddy One software; Development directions (use of artificial intelligence with self learning abilities for indication detection and sizing); Automated analysis software qualification; Conclusions. Special emphasis is given on results obtained on different types of steam generators, condensers and heat exchangers. Such results are then compared with results obtained by other automated software vendors giving clear advantage to INETEC approach. It has to be pointed out that INETEC field experience was collected also on WWER steam generators what is for now unique experience.(author)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Inverse source problems for eddy current equations
International Nuclear Information System (INIS)
Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika
2012-01-01
We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)
Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies
Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.
2016-12-01
The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
2015-11-03
buildings); (2) high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) suburban mesic landscape (turf grass with...University campuses: (1) xeric landscape (gravel cover and palo verde trees with drip-irrigation systems near tall buildings); (2) high-density urban site...classification of each source area. The xeric site and high-density urban site behave like a semiarid landscape , with high Bowen ratios (~3 and ~8 respectively
Cleverly, J. R.; Thibault, J. R.; Dahm, C. N.; Allred Coonrod, J. E.; Slusher, M.; Teet, S.; Schuetz, J.
2008-12-01
Some of the highest rates of water and energy fluxes between terrestrial ecosystems and the atmosphere occur over large floodplains in arid and semiarid areas. Often located in high-pressure zones near 35 degrees latitude, abundant radiation and easily accessible groundwater contribute few limitations on growth and production in desert phreatophytes. Desert regions typically undergo cycles of drought and floods, and phreatophytic communities wax or wane in cover, density, and structure with cumulative species responses to timing and severity in these regional weather cycles. The Rio-ET Laboratory at the University of New Mexico has been collecting long-term data from a flux network of riparian monitoring stations, mounted on towers along the Middle Rio Grande. Ongoing measurements of energy, water and carbon dioxide fluxes, groundwater dynamics, meteorology, leaf area index, and community dynamics began at some locations in 1999. Recent reanalysis of the flux dataset was performed in which error correction procedures were compared to each and other and in relation to an irrigated crop under advection. Most riparian sites exhibited stable atmospheric stratification and an energy balance consistent with evaporative cooling. Evaporative cooling was more prominent in the late afternoon and evening, during wet conditions. Reduced latent heat fluxes were observed in a cottonwood forest following restoration and fire, but only in years when the forest floor was not re-vegetated by opportunistic annuals or target removal species. Water use by riparian phreatophytes was 1) non-responsive to drought during the monsoon season (non-native Russian olive and monospecific saltcedar communities), 2) responded negatively to monsoon-season drought (xeroriparian saltcedar and saltgrass mosaic community), or 3) responded positively to monsoon-season drought (cottonwood forests). Water salvage related to ecological restoration is dependent upon restoration strategy, emphasizing the importance of due diligent followup to prevent unintentional re-vegetation of the site. Restoration of monospecific saltcedar provides the greatest opportunity for water salvage although restoration of cottonwood forests through removal of densely-packed non-native understory results in marginal water salvage. Benefits of ecosystem restoration increase with drought and during the period of explosive growth following a period of prolonged drought.
Luyssaert, S.; Reichstein, M.; Schulze, E.D.; Janssens, I.A.; Law, B.E.; Papale, D.; Dragoni, D.; Goulden, M.L.; Granier, A.; Kutch, W.L.; Linder, S.; Matteucci, G.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Saunders, M.; Falge, E.M.
2009-01-01
Quantification of an ecosystem's carbon balance and its components is pivotal for understanding both ecosystem functioning and global cycling. Several methods are being applied in parallel to estimate the different components of the CO2 balance. However, different methods are subject to different
Wang, T.; Brender, P.; Ciais, P.; Piao, S.; Mahecha, M.D.; Chevallier, F.; Reichstein, M.; Ottle, C.; Maignan, F.; Arain, A.; Bohrer, G.; Cescatti, A.; Kiely, G.; Law, B.E.; Lutz, M.; Montagnani, L.; Moors, E.J.
2012-01-01
Characterization of state-dependent model biases in land surface models can highlight model deficiencies, and provide new insights into model development. In this study, artificial neural networks (ANNs) are used to estimate the state-dependent biases of a land surface model (ORCHIDEE: ORganising
Directory of Open Access Journals (Sweden)
W. Eugster
2007-10-01
Full Text Available Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N_{2}O, CO_{2}, and H_{2}O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N_{2}O fluxes we quantified the mean efflux at 0.8±0.4 μmol m^{−2} h^{−1} (mean ± standard error. Most of the contribution to the N_{2}O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N_{2}O effluxes as does below-ground microbial activity. It is speculated that above-ground N_{2}O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event may be responsible for part of the measured flux.
Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang
2013-01-01
In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging, our approach further revealed the spatial heterogeneity of fire impact on GPP, allowing one to examine the spatially explicit GPP change caused by fires.
DEFF Research Database (Denmark)
Zöll, Undine; Brümmer, Christian; Schrader, Frederik
2016-01-01
Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentratio...
Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data
DEFF Research Database (Denmark)
Lagergren, F.; Lindroth, A.; Dellwik, Ebba
2008-01-01
Six to nine years of net ecosystem carbon exchange (NEE) data from forests in Hyytiala in Finland, Soro in Denmark and Norunda in Sweden were used to evaluate the interannual variation in the carbon balance. For half-monthly periods, average NEE was calculated for the night-time data....... The start date could explain some of the variation in yearly total NEE and gross primary productivity (GPP) in Hyytiala and Soro, but the average maximum photosynthetic capacity in summer explained more of the variation in annual GPP for all sites than start, end or length of the growing season....
International Nuclear Information System (INIS)
Gorsel, Eva Van.; Leuning, Ray; Cleugh, Helen A.; Suni, Tanja; Keith, Heather
2007-01-01
Micro meteorological measurements made on single towers often underestimate nighttime respiration of terrestrial ecosystems because they cannot account for vertical and horizontal advection, thereby causing systematic errors in estimates of net ecosystem carbon exchange. We show that there is a maximum in the sum of the turbulent flux and change in storage of CO 2 in the early evening, R max , that is in close agreement with concurrent and independent estimates of net carbon exchange from soil and plant chambers. We hypothesize that the peak occurs because there is a time delay between the onset of radiative cooling and the development of temperature gradients that are strong enough to initiate thermally-driven horizontal and vertical flows that remove the stored CO 2 . We propose taking advantage of this time delay to develop relationships between R max and soil temperature and moisture. The new parameterization leads to realistic values of nighttime respiration, and therefore to improved estimates of net ecosystem exchange
Groenendijk, M.; Dolman, A.J.; Molen, van der M.K.; Leuning, R.; Arneth, A.; Delpierre, N.; Gash, J.H.C.; Lindroth, A.; Richardson, A.D.; Verbeeck, H.; Wohlfahrt, G.
2011-01-01
The vegetation component in climate models has advanced since the late 1960s from a uniform prescription of surface parameters to plant functional types (PFTs). PFTs are used in global land-surface models to provide parameter values for every model grid cell. With a simple photosynthesis model we
Eddy current testing of composite pressure vessels
Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.
2018-04-01
The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.
Large-Eddy Simulation of Subsonic Jets
International Nuclear Information System (INIS)
Vuorinen, Ville; Wehrfritz, Armin; Yu Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan
2011-01-01
The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.
Mesoscale eddies are oases for higher trophic marine life
Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.
2012-01-01
Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.
Automatic analysis of signals during Eddy currents controls
International Nuclear Information System (INIS)
Chiron, D.
1983-06-01
A method and the corresponding instrument have been developed for automatic analysis of Eddy currents testing signals. This apparatus enables at the same time the analysis, every 2 milliseconds, of two signals at two different frequencies. It can be used either on line with an Eddy Current testing instrument or with a magnetic tape recorder [fr
Mesoscale eddies are oases for higher trophic marine life.
Directory of Open Access Journals (Sweden)
Olav R Godø
Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.
Mesoscale eddies are oases for higher trophic marine life
Godø, Olav R.
2012-01-17
Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Signal processing of eddy current three-dimensional maps
International Nuclear Information System (INIS)
Birac, C.; David, D.; Lamant, D.
1987-01-01
Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes
Eddy energy sources and flux in the Red Sea
Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim
2015-01-01
the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied
Determination of covariant Schwinger terms in anomalous gauge theories
International Nuclear Information System (INIS)
Kelnhofer, G.
1991-01-01
A functional integral method is used to determine equal time commutators between the covariant currents and the covariant Gauss-law operators in theories which are affected by an anomaly. By using a differential geometrical setup we show how the derivation of consistent- and covariant Schwinger terms can be understood on an equal footing. We find a modified consistency condition for the covariant anomaly. As a by-product the Bardeen-Zumino functional, which relates consistent and covariant anomalies, can be interpreted as connection on a certain line bundle over all gauge potentials. Finally the covariant commutator anomalies are calculated for the two- and four dimensional case. (orig.)
Paragrassmann analysis and covariant quantum algebras
International Nuclear Information System (INIS)
Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.; Pyatov, P.N.
1993-01-01
This report is devoted to the consideration from the algebraic point of view the paragrassmann algebras with one and many paragrassmann generators Θ i , Θ p+1 i = 0. We construct the paragrassmann versions of the Heisenberg algebra. For the special case, this algebra is nothing but the algebra for coordinates and derivatives considered in the context of covariant differential calculus on quantum hyperplane. The parameter of deformation q in our case is (p+1)-root of unity. Our construction is nondegenerate only for even p. Taking bilinear combinations of paragrassmann derivatives and coordinates we realize generators for the covariant quantum algebras as tensor products of (p+1) x (p+1) matrices. (orig./HSI)
Covariant holography of a tachyonic accelerating universe
Energy Technology Data Exchange (ETDEWEB)
Rozas-Fernandez, Alberto [Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Fundamental, Madrid (Spain); University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom)
2014-08-15
We apply the holographic principle to a flat dark energy dominated Friedmann-Robertson-Walker spacetime filled with a tachyon scalar field with constant equation of state w = p/ρ, both for w > -1 and w < -1. By using a geometrical covariant procedure, which allows the construction of holographic hypersurfaces, we have obtained for each case the position of the preferred screen and have then compared these with those obtained by using the holographic dark energy model with the future event horizon as the infrared cutoff. In the phantom scenario, one of the two obtained holographic screens is placed on the big rip hypersurface, both for the covariant holographic formalism and the holographic phantom model. It is also analyzed whether the existence of these preferred screens allows a mathematically consistent formulation of fundamental theories based on the existence of an S-matrix at infinite distances. (orig.)
On covariance structure in noisy, big data
Paffenroth, Randy C.; Nong, Ryan; Du Toit, Philip C.
2013-09-01
Herein we describe theory and algorithms for detecting covariance structures in large, noisy data sets. Our work uses ideas from matrix completion and robust principal component analysis to detect the presence of low-rank covariance matrices, even when the data is noisy, distorted by large corruptions, and only partially observed. In fact, the ability to handle partial observations combined with ideas from randomized algorithms for matrix decomposition enables us to produce asymptotically fast algorithms. Herein we will provide numerical demonstrations of the methods and their convergence properties. While such methods have applicability to many problems, including mathematical finance, crime analysis, and other large-scale sensor fusion problems, our inspiration arises from applying these methods in the context of cyber network intrusion detection.
Properties, Mechanisms and Predictability of Eddies in the Red Sea
Zhan, Peng
2018-04-01
Eddies are one of the key features of the Red Sea circulation. They are not only crucial for energy conversion among dynamics at diﬀerent scales, but also for materials transport across the basin. This thesis focuses on studying the characteristics of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation techniques were employed in this thesis. The eddies in the Red Sea were ﬁrst identiﬁed using altimeter data by applying an improved winding-angle method, based on which the statistical properties of those eddies were derived. The results suggested that eddies occur more frequently in the central basin of the Red Sea and exhibit a signiﬁcant seasonal variation. The mechanisms of the eddies’ evolution, particularly the eddy kinetic energy budget, were then investigated based on the outputs of a long-term eddy resolving numerical model conﬁgured for the Red Sea with realistic forcing. Examination of the energy budget revealed that the eddies acquire the vast majority of kinetic energy through conversion of eddy available potential energy via baroclinic instability, which is intensiﬁed during winter. The possible factors modulating the behavior of the several observed eddies in the Red Sea were then revealed by conducting a sensitivity analysis using the adjoint model. These eddies were found to exhibit diﬀerent sensitivities to external forcings, suggesting diﬀerent mechanisms for their evolution. This is the ﬁrst known adjoint sensitivity study on speciﬁc eddy events in the Red Sea and was hitherto not previously appreciated. The last chapter examines the predictability of Red Sea eddies using an ensemble-based forecasting and assimilation system. The forecast sea surface height was used to evaluate the overall performance of the short-term eddy
Twisted covariant noncommutative self-dual gravity
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.