WorldWideScience

Sample records for closed-cycle capillary polymerase

  1. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  2. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    International Nuclear Information System (INIS)

    Liu Dayu; Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei; Zhou Xiaomian

    2012-01-01

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil–water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: ► Droplet formation in a capillary. ► Transport the droplet using oscillation-flow. ► Oscillation droplet PCR. ► Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil–water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current

  3. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  4. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  5. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  6. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  7. Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)

  8. Parametric study of a capillary tube-suction line heat exchanger in a transcritical CO2 heat pump cycle

    International Nuclear Information System (INIS)

    Agrawal, Neeraj; Bhattacharyya, Souvik

    2008-01-01

    The capillary tube in a transcritical CO 2 system behaves differently as temperature and pressure are two independent parameters unlike those in a sub-critical cycle. A capillary tube-suction line heat exchanger (CL-SLHX) in a transcritical vapour compression cycle considering homogeneous two-phase flow is modelled in this study based on mass, energy and momentum equations. Effects of gas cooler temperature, evaporator temperature and internal diameter of capillary tube are investigated. Heat transfer rate is observed to be influenced by refrigerant quality, mass flow rate and the prevailing temperature difference. Heat transfer rate variation with gas cooler temperature is unique, recording an initial increase followed by a decrease. Frictional pressure drop influences the heat transfer; consequently, chances of re-condensation of refrigerant vapour are very marginal. Larger diameter of capillary tube leads to increase in refrigerant mass flow rate and increase in heat transfer rate as well. Shorter inlet adiabatic capillary length with larger heat exchanger length is better for heat transfer. This study is an attempt to dispel the scepticism prevailing in transcritical CO 2 system community overemphasising the need for a throttle valve to control the optimum discharge pressure

  9. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1991-01-01

    the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples......Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... not detect Chlamydia trachomatis after sufficient antibiotic treatment of the chlamydial infections....

  10. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1993-01-01

    the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples......Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... not detect Chlamydia trachomatis after sufficient antibiotic treatment of the chlamydial infections....

  11. Development of closed cycle infrastructure at VNIPIET

    International Nuclear Information System (INIS)

    Onufrienko, S.V.; Kuzin, A.S.; Shafrova, N.P.; Zavadskij, M.I.

    2012-01-01

    Background to the creation of a closed nuclear fuel cycle is described. Achievements and future development projects of the Leading Institute VNIPIET are listed. The diagram of the closed nuclear fuel cycle in Russia with separate uranium and plutonium recycling is given. The major milestones of the VNIPIET history are reported [ru

  12. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  13. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shun, E-mail: shun.yokoyama.c2@tohoku.ac.jp; Motomiya, Kenichi; Takahashi, Hideyuki; Tohji, Kazuyuki [Tohoku University, Graduate School of Environmental Studies (Japan)

    2016-11-15

    Films made of closely packed Cu nanoparticles (NPs) were obtained by drop casting Cu NP inks. The capillary immersion force exerted during the drying of the inks caused the Cu NPs to attract each other, resulting in closely packed Cu NP films. The apparent density of the films was found to depend on the type of solvent in the ink because the capillary immersion force is affected by the solvent surface tension and dispersibility of Cu NPs in the solvent. The closely packed particulate structure facilitated the sintering of Cu NPs even at low temperature, leading to low-resistivity Cu films. The sintering was also enhanced with a decrease in the size of NPs used. We demonstrated that a closely packed particulate structure using Cu NPs with a mean diameter 61.7 nm showed lower resistivity (7.6 μΩ cm) than a traditionally made Cu NP film (162 μΩ cm) after heat treatment.

  14. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  15. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  16. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  17. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  18. Closed cycle MHD specialist meeting. Progress report, 1971--1972

    International Nuclear Information System (INIS)

    Rietjens, L.H.

    1972-04-01

    Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)

  19. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  20. Closing the nuclear fuel cycle: the impact of indecision

    International Nuclear Information System (INIS)

    Schubert, A.E.

    1976-01-01

    The supply-demand reprocessing capacity problem caused by failure to close the ''back end'' of the fuel cycle is discussed. An economic study was conducted by Allied-General of the effects of ''throwaway'' fuel cycle; results show that the reprocessing alternative with U and Pu recycle is clearly superior economically to the ''throwaway'' alternative, with a net benefit of $10 million per year per reactor. Obstacles to private enterprise in reprocessing and recycle are next considered, and some possible solutions to delays in closing the ''back end'' of the fuel cycle are discussed

  1. Closed-cycle gas turbine working fluids

    International Nuclear Information System (INIS)

    Lee, J.C.; Campbell, J. Jr.; Wright, D.E.

    1981-01-01

    Characteristic requirements of a closed-cycle gas turbine (CCGT) working fluid were identified and the effects of their thermodynamic and transport properties on the CCGT cycle performance, required heat exchanger surface area and metal operating temperature, cycle operating pressure levels, and the turbomachinery design were investigated. Material compatibility, thermal and chemical stability, safety, cost, and availability of the working fluid were also considered in the study. This paper also discusses CCGT working fluids utilizing mixtures of two or more pure gases. Some mixtures of gases exhibit pronounced synergetic effects on their characteristic properties including viscosity, thermal conductivity and Prandtl number, resulting in desirable heat transfer properties and high molecular weights. 21 refs

  2. Rapsodie: A closed fuel cycle

    International Nuclear Information System (INIS)

    Levallet, E.H.; Costa, L.; Mougniot, J.C.; Robin, J.

    1977-01-01

    The Fortissimo Version of the core of the RAPSODIE fast reactor produces 40 MWTh. Since its start up in May 1970 in the CEN-CADARACHE its availability has stayed around 85%. Some of the mixed oxyde fuel pins UO 2 - 30% PuO 2 have already reached 150.000 MWd/t. The reprocessing is done in the pilot plant located in the La Hague Center and the plutonium obtained has already been re-used in the reactor. The Rapsodie-Fortissimo cycle is therefore now a closed cycle. This cycle is quite representative of fast reactor cycle characteristics and thus provides a remarkable research and development tool for the study of fabrication, in-reactor performances, transport, storage and reprocessing. These studies concern in particular the evolution of fission products and heavy isotopes content in fuel which controls both reprocessing schemes and intensity of emitted radiations. A program for the analysis of irradiated fuel has been developed either using samples collected all along the cycle, or following the actual reprocessing subassemblies. A set of basic data and calculation models has been established with two objectives: to give a better interpretation of the experimental program on one hand, and to extrapolate these results to the fuel cycle of fast reactors in general on the other hand. The first results have been quite encouraging up to now [fr

  3. Detection of clonal immunoglobulin heavy chain gene rearrangements by the polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although well-established diagnostic criteria exist for mature B-cell neoplasms, a definitive diagnosis of a B-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because B-cell malignancies contain identically rearranged immunoglobulin heavy chain genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal B-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal immunoglobulin heavy chain (IGH) variable and joining region (VH-JH) gene rearrangements (IGH VH-JH PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol involves the use of three separate master mix tubes that target the conserved framework (FR1, FR2, and FR3) and joining (J) regions of the IGH gene. Analysis of these three framework regions can detect approximately 88% of clonal IGH gene rearrangements.

  4. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  5. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.; Judson, B.F.

    1984-01-01

    The possibilities for closing the fuel cycle in today's nuclear climate in the US are compared with those envisioned in 1977. Reprocessing, the fast breeder reactor program, and the uranium supply are discussed. The conclusion drawn is that the nuclear world is less healthy and less stable than the one previously envisioned and that the major task before the international nuclear community is to develop technologies, institutions, and accepted procedures that will allow to economically provide the huge store of energy from reprocessing and the breeder that it appears the world will desperately need

  6. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens.

    Science.gov (United States)

    Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li

    2015-07-01

    Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Performance review: PBMR closed cycle gas turbine power plant

    International Nuclear Information System (INIS)

    Pradeep Kumar, K.N.; Tourlidakis, A.; Pilidis, P.

    2001-01-01

    Helium is considered as one of the ideal working fluid for closed cycle using nuclear heat source due to its low neutron absorption as well as high thermodynamic properties. The commercial viability of the Helium turbo machinery depends on operational success. The past attempts failed due to poor performances manifested in the form of drop in efficiency, inability to reach maximum load, slow response to the transients etc. Radical changes in the basic design were suggested in some instances as possible solutions. A better understanding of the operational performance is necessary for the detailed design of the plant and the control systems. This paper describes the theory behind the off design and transient modelling of a closed cycle gas turbine plant. A computer simulation model has been created specifically for this cycle. The model has been tested for various turbine entry temperatures along the steady state and its replications at various locations were observed. The paper also looks at the various control methods available for a closed cycle and some of the options were simulated. (author)

  8. Closed cycle gas dynamic laser

    International Nuclear Information System (INIS)

    Pinsley, E.A.

    1975-01-01

    The device includes a closed cycle gasdynamic laser wherein the lasing fluid is recirculated in a closed loop. The closed loop includes a nozzle array, a lasing cavity and a diffuser. The exit of the diffuser is connected to the inlet to the nozzle array with a fuel heat exchanger located in the lasing flow and a pumping means located between the heat exchanger and the nozzle array. To provide for cooling of the pumping means and to improve diffuser performance, gas bled from the diffuser is cooled by two heat exchangers and pumped into cooling passages in the pumping means. The heat exchangers for cooling the flow to the pumping means are located in series and carry fuel from a supply to an injector in said combustor and the heat exchanger in the lasing flow cools the fluid and carries the fuel from a supply to an injector in said combustor. (U.S.)

  9. Report on studies on closed cycle MHD power generation; Closed cycle MHD hatsuden kento hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    Summarized herein are results of the studies on closed cycle MHD (CCMHD) power generation by the study committee. The studied system is based on the MHD gas turbine combined Brayton cycle of about 500,000 kW in output power, firing natural gas as the fuel, and the conceptual design works therefor are completed. The major findings are: the overall plant efficiency: 54.2% at the power transmission side, plot area required per unit power output: 0.04 m{sup 2}/KW, unit construction cost: 251,000 yen/KW, and unit power generation cost: 10.2 yen/KWh. This system will be more operable than the gas turbine combined cycle with steam system, because start-up time, output change rate, optimum load and so on are constrained not on the power generator side but on the gas turbine side. The expected environmental effects include the exhaust gas NOX concentration being equivalent with that associated with the conventional power generator of 2-stage combustion system, quantity of combustion gases to be treated being approximately 40% of that associated with the gas turbine combined cycle, and reduced CO2 gas emissions, resulting from enhanced power generation efficiency. It is expected that the CCMHD system can exhibit higher efficiency than the high-temperature gas turbine combined cycle system. (NEDO)

  10. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  11. General characteristics and technical subjects on helium closed cycle gas turbine

    International Nuclear Information System (INIS)

    Shimomura, Hiroaki

    1996-06-01

    Making the subjects clarified on nuclear-heated gas turbine that will apply the inherent features of HTGR, the present paper discusses the difference of the helium closed cycle gas turbine, which is a candidate of nuclear gas turbine, with the open cycle gas turbine and indicates inherent problems of closed cycle gas turbine, its effects onto thermal efficiency and turbine output and difficulties due to the pressure ratio and specific speed from use of helium. The paper also discusses effects of the external pressure losses onto the efficiencies of compressor and turbine that are major components of the gas turbine. According to the discussions above, the paper concludes indicating the key idea on heat exchangers for the closed cycle gas turbine and design basis to solve the problems and finally offers new gas turbine conception using nitrogen or air that is changeable into open cycle gas turbine. (author)

  12. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  13. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  14. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  15. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  16. Partially closed fuel cycle of WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2002-01-01

    Position of nuclear energy at the energy sources competition is characterised briefly. Multi-tier transmutation system is outlined out as effective back-end solution and consequently as factor that can increase nuclear energy competitiveness. LWR and equivalent WWER are suggested as a first tier reactors. Partially closed fuel cycle with combined fuel assemblies is briefed. Main back-end effects are characterised (Authors)

  17. Some conditions and prospects of transition to closed fuel cycle in Russia

    International Nuclear Information System (INIS)

    Lependin, A.V.; Oussanov, V.I.; Lependina, E.V.; Ioughai, S.V.

    2001-01-01

    Nuclear policy of Russia is based on the necessity of closure of nuclear fuel cycle. But at the same time schedule of such a going is not defined. In this study some conditions and possible time-frames of going the nuclear fuel cycle of Russia to closure are discussed. Naturally, the main condition is revival of Russian economy wherein nuclear power will turn to be necessary in a number of Russian regions. But the question is whether closure of nuclear cycle strategy will be implemented in the near future or nuclear power will develop based on open fuel cycle over a long period of time? at present economic circumstances in Russia has formed in such a way that economics of current projects is not favourable to going to closure of cycle due to high capital investment cost and low fuel component of costs, due to low cost of natural uranium. Ecological analysis performed within the framework of external cost model also does not suggest that closed cycle has essential advantages at present, but also in sight. The authors have considered a model including not only external costs but also total resources expenditures with long-term power development. In the framework of such a method it can be demonstrated that closed fuel cycle has some important advantages taking into account not only tasks of immediate future, but power development strategy for the period of 30-50 years. Under conditions of nuclear capacities increase (to 30-50 GW) limitation of cheap uranium resources available in Russia will assume a new significance. Approach of prices at the back-end stages of nuclear fuel cycle to West Europe level also will favour to going to a closed fuel cycle. More severe ecological requirements answering to a sustainable development concept also will make a contribution. Closure of fuel cycle can be significantly accelerated in the case of implementation of weapon plutonium utilization program. The factors mentioned above facilitate evenly to going to a closed nuclear fuel

  18. Ion guiding and losses in insulator capillaries

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Vikor, Gy.; Biri, S.; Fekete, E.; Ivan, I.; Gall, F.; Toekesi, K.; Matefi-Tempfli, S.; Matefi-Tempfli, M.

    2007-01-01

    Complete text of publication follows. Not long ago it was discovered that insulating capillaries can guide slow ions, so that the ions avoid close contact with the capillary walls and preserve their initial charge state. This phenomenon did not only give a new puzzle for theoreticians but opened the way for new possible applications where ions are manipulated (deflected, focused and directed to different patterns on the irradiated media) with small capillary devices. The most important question for such applications is how large fraction of the ions can be guided to the desired direction. It is already known that the ion guiding is due to the charging up of the inner capillary walls by earlier ion impact events. In tilted capillaries one side of the capillary walls charges up. This deflects the later arriving ions, so that some of them pass through the capillaries nearly parallel with respect to their axes. The angle where the transmission drops to 1/e of the direct transmission at 0 deg is the guiding angle, which characterize the guiding ability. At 0 deg the ideal 100 percent transmission for the ions, which enter the capillaries, is reduced due to the mirror charge attraction and geometrical imperfections. These losses appear in the transmission for tilted capillaries with similar magnitude, since after the deflection region, which usually restricted to the close surroundings of the capillary openings, the guided ions pass through the rest of the capillaries as in non-tilted samples. In our experimental studies with Al 2 O 3 capillaries we found that around 90 percent of the incoming ions are lost. To understand these significant losses, the effects of the mirror charge attraction and geometrical imperfections have been calculated classically. The mirror charge potential was taken from.The model of the capillaries used in the calculations can be seen in Figure 1. The calculations have shown that the effects of mirror charge attraction and the angular

  19. Closed cycle electric discharge laser design investigation

    Science.gov (United States)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  20. Distinct energetics and closing pathways for DNA polymerase β with 8-oxoG template and different incoming nucleotides

    Directory of Open Access Journals (Sweden)

    Wang Yanli

    2007-02-01

    Full Text Available Abstract Background 8-Oxoguanine (8-oxoG is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase β (pol β. To interpret in atomic and energetic detail how pol β processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol β 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues. Results Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 kBT, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP. Conclusion These results suggest that the lower insertion efficiency (larger Km for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol β, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G.

  1. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  2. Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models.

    Directory of Open Access Journals (Sweden)

    Hongcai Wang

    Full Text Available In Parkinson's disease (PD, neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN of rats following stereotactic (ST infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc and the substantia nigra pars reticulate (SNr of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.

  3. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  4. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  5. Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol, E-mail: csy@kaeri.re.kr; Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr; Ko, Won Il, E-mail: nwiko@kaeri.re.kr

    2014-10-01

    Highlights: • Dynamic behavior of system costs, both reactor and fuel cycle costs, is analyzed. • Relative economics of once-through and closed fuel cycles is explored. • Probabilistic approaches are adopted for levelized electricity generation costs. • Main cost drivers for cost gaps between once-through and closed cycles are identified. - Abstract: Although no consensus about the best approach to manage spent fuels has been achieved, economics is one of the major criteria for assessing and selecting acceptable management options. This study compares the reactor and fuel cycle costs of the closed system associated with sodium-cooled fast reactors and pyroprocessing versus the once-through system. We specifically investigated the fuel cycle transition cases of the Republic of Korea from 2013 to 2100. The results revealed that the closed system (34.00 mills/kWh as a mean value) could be more expensive than the once-through system (32.75 mills/kWh). In contrast, the once-through fuel cycle costs (8.31 mills/kWh), excluding reactor costs, were projected to be greater than the closed fuel cycle costs (7.77 mills/kWh) because of the increased costs of interim storage estimated by the Korean government and the limited contribution of backend fuel cycle components to the discounted costs. The capital cost of sodium-cooled fast reactor is the largest component contributing to the cost gap between the two systems. Among fuel cycle components, pyroprocessing has the largest uncertainty contribution to the cost gap. We also calculated the breakeven unit costs of SFR capital cost and PWR spent fuel pyroprocessing cost.

  6. Energy and entropy analysis of closed adiabatic expansion based trilateral cycles

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero

    2016-01-01

    Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which

  7. Cationic polyelectrolyte functionalized magnetic particles assisted highly sensitive pathogens detection in combination with polymerase chain reaction and capillary electrophoresis.

    Science.gov (United States)

    Chen, Jia; Lin, Yuexin; Wang, Yu; Jia, Li

    2015-06-01

    Pathogenic bacteria cause significant morbidity and mortality to humans. There is a pressing need to establish a simple and reliable method to detect them. Herein, we show that magnetic particles (MPs) can be functionalized by poly(diallyl dimethylammonium chloride) (PDDA), and the particles (PDDA-MPs) can be utilized as adsorbents for capture of pathogenic bacteria from aqueous solution based on electrostatic interaction. The as-prepared PDDA-MPs were characterized by Fourier-transform infrared spectroscopy, zeta potential, vibrating sample magnetometry, X-ray diffraction spectrometry, scanning electron microscopy, and transmission electron microscopy. The adsorption equilibrium time can be achieved in 3min. According to the Langmuir adsorption isotherm, the maximum adsorption capacities for E. coli O157:H7 (Gram-negative bacteria) and L. monocytogenes (Gram-positive bacteria) were calculated to be 1.8×10(9) and 3.1×10(9)cfumg(-1), respectively. The bacteria in spiked mineral water (1000mL) can be completely captured when applying 50mg of PDDA-MPs and an adsorption time of 5min. In addition, PDDA-MPs-based magnetic separation method in combination with polymerase chain reaction and capillary electrophoresis allows for rapid detection of 10(1)cfumL(-1) bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    Science.gov (United States)

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  9. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Yonghe Qi

    2016-10-01

    Full Text Available Hepatitis B virus (HBV infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP, followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK, a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  10. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  11. To capabilities of heat engines with gas working medium in closed cycle

    International Nuclear Information System (INIS)

    Kotov, V.M.; Tikhomirov, L.N.; Rajkhanov, N.A.; Kotov, S.V.

    2003-01-01

    The effort gives analysis of performance of engines and heat pumps with closed cycles based on use of well practiced adiabatic and isobaric processes. Advantages of theses cycles are demonstrated as compared to Stirling engines, and capabilities of their application in piston machines. (author)

  12. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  13. Clinical utility of capillary polymerase chain reaction for diagnosis of Cytomegalovirus pneumonia.

    Science.gov (United States)

    Honda, J; Yonemitsu, J; Kitajima, H; Yosida, N; Fumirori, T; Oizumi, K

    2001-01-01

    The purpose of this retrospective study was to assess the diagnostic efficacy of CMV DNA detection by capillary PCR in patients with interstitial pneumonia. Of 882 samples taken from 363 patients, 317 were obtained from sputum, 94 from BAL fluid, 291 from blood and 180 from urine. PCR for CMV was positive in 58 samples (6.6%), with positive detection for 6.9% of sputum, 10.6% of BAL fluid, 4.1% of blood and 7.8% of urine samples. CMV pneumonia was diagnosed retrospectively in 34 (9.4%) of the 363 patients by demonstration of CMV antigen-positive cytomegalic inclusion bodies in lung tissue sections. The positive and negative predictive values were 100% (10/10) and 98.8% (83/84) for the BAL fluid samples and 95.5% (21/22) and 99.7% (294/295) for the sputum samples, respectively. Clinical sensitivity and specificity were 90.9% (10/11) and 100% (83/83) for the BAL fluid samples and 95.5% (21/22) and 99.7% (294/295) for the sputum samples, respectively. However, the blood and urine samples showed poor clinical sensitivity and low positive predictive values. We suggest that the use of capillary PCR for BAL fluid and sputum samples is very useful for diagnosing CMV pneumonia in patients with interstitial pneumonia in whom CMV pneumonia is suspected.

  14. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  15. Combination closed-cycle refrigerator/liquid-He4 cryostat for e- damage of bulk samples

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1987-01-01

    A closed-cycle refrigerator/cryostat system for use in ultrasonic studies of electron irradiation damaged bulk specimens is described. The closed-cycle refrigerator provides a convenient means for long-term (several days) sample irradiation at low temperatures. A neon filled ''thermal diode'' is employed to permit efficient cooling, via liquid helium, of the sample below the base temperature of the refrigerator

  16. Multitube coaxial closed cycle gas laser system

    International Nuclear Information System (INIS)

    Davis, J.W.; Walch, A.P.

    1975-01-01

    A gas laser design capable of long term reliable operation in a commercial environment is disclosed. Various construction details which insulate the laser optics from mechanical distortions and vibrations inevitably present in the environment are developed. Also, a versatile optical cavity made up of modular units which render the basic laser configuration adaptable to alternate designs with different output capabilities is shown in detail. The system built around a convection laser operated in a closed cycle and the working medium is a gas which is excited by direct current electric discharges. (auth)

  17. Forty years of experience on closed-cycle gas turbines

    International Nuclear Information System (INIS)

    Keller, C.

    1978-01-01

    Forty years of experience on closed-cycle gas turbines (CCGT) is emphasized to substantiate the claim that this prime-mover technology is well established. European fossil-fired plants with air as the working fluid have been individually operated over 100,000 hours, have demonstrated very high availability and reliability, and have been economically successful. Following the initial success of the small air closed cycle gas turbine plants, the next step was the exploitation of helium as the working fluid for plants above 50 MWe. The first fossil fired combined power and heat plant at Oberhausen, using a helium turbine, plays an important role for future nuclear systems and this is briefly discussed. The combining of an HTGR and an advanced proven power conversion system (CCGT) represents the most interesting and challenging project. The key to acceptance of the CCGT in the near term is the introduction of a small nuclear cogeneration plant (100 to 300 MWe) that utilizes the waste heat, demonstrating a very high fuel utilization efficiency: aspects of such a plant are outlined. (author)

  18. The closed fuel cycle

    International Nuclear Information System (INIS)

    Froment, Antoine; Gillet, Philippe

    2007-01-01

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  19. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  20. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  1. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  2. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  3. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  4. Detection of clonal T-cell receptor beta and gamma chain gene rearrangement by polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although established diagnostic criteria exist for mature T-cell neoplasms, a definitive diagnosis of a T-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because T-cell malignancies contain identically rearranged T-cell receptor gamma (TCRG) and/or beta (TCRB) genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal T-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal TCRB and TCRG gene rearrangements (TCRB and TCRG PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol for the TCRB assay involves the use of three separate multiplex master mix tubes. Tubes A and B target the framework regions within the variable and joining regions of the TCRB gene, and Tube C targets the diversity and joining regions of the TCRB gene. The core protocol for the TCRG assay utilizes two multiplex master mix tubes (Tubes A and B) that target the variable and joining regions of the TCRG gene. Use of the five BIOMED-2 TCRB and TCRG PCR multiplex tubes in parallel can detect approximately 94% of clonal TCR gene rearrangements.

  5. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  6. Capillary condensation hysteresis in overlapping spherical pores: a Monte Carlo simulation study.

    Science.gov (United States)

    Gor, Gennady Yu; Rasmussen, Christopher J; Neimark, Alexander V

    2012-08-21

    The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks.

  7. Driver-witness electron beam acceleration in dielectric mm-scale capillaries

    Science.gov (United States)

    Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.

    2018-05-01

    We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.

  8. Delayed post-traumatic capillary haemangioma of the spine.

    Science.gov (United States)

    Shilton, Hamish; Goldschlager, Tony; Kelman, Anthony; Xenos, Chris

    2011-11-01

    Capillary haemangiomas are well-circumscribed aggregates of closely packed, thin-walled capillaries separated by connective tissue stroma. In subcutaneous tissue they are termed pyogenic granuloma and commonly follow trauma. They rarely occur in the spine. We present a 43-year-old woman with a 6-week history of thoracic myelopathy and back pain on a background of T7 and T8 vertebral compression fractures from a motor vehicle accident 10 years previously. MRI demonstrated a posteriorly based extradural homogeneously enhancing mass at this level. The lesion was resected and diagnosed histopathologically as a capillary haemangioma. The patient's symptoms resolved and she made an uneventful recovery. The literature is reviewed and the possible pathogenesis is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Closing the fuel cycle: A superior option for India

    International Nuclear Information System (INIS)

    Balu, K.; Purushotham, D.S.C.; Kakodkar, A.

    1999-01-01

    The closed fuel cycle option with reprocessing and recycle of uranium and plutonium (U and Pu) for power generation allows better utilization of the uranium resources. On its part, plutonium is a unique energy source. During the initial years of nuclear fuel cycle activities, reprocessing and recycle of uranium and plutonium for power generation was perceived by many countries to be among the best of long term strategies for the management of spent fuel. But, over the years, some of the countries have taken a position that once-through fuel cycle is both economical and proliferation-resistant. However, such perceptions do vary as a function of economic growth and energy security of a given country. This paper deals with techno-economic perspectives of reprocessing and recycling in the Indian nuclear power programme. Experience of developing Mixed Oxide UO 2 -PuO 2 (MOX) fuel and its actual use in a power reactor (BWR) is presented. The paper further deals with the use of MOX in PHWRs in the future and current thinking, in the Indian context, in respect of advanced fuel cycles for the future. From environmental safety considerations, the separation of long-lived isotopes and minor actinides from high level waste (HLW) would enhance the acceptability of reprocessing and recycle option. The separated actinides are suitable for recycling with MOX fuel. However, the advanced fuel cycles with such recycling of Uranium and transuranium elements call for additional sophisticated fuel cycle activities which are yet to be mastered. India is interested in both uranium and thorium fuel cycles. This paper describes the current status of the Indian nuclear power scenario with reference to the program on reactors, reprocessing and radioactive waste management, plutonium recycle options, thorium-U233 fuel cycle studies and investigations on partitioning of actinides from Purex HLW as relevant to PHWR spent fuels. (author)

  10. A proliferation-resistant closed nuclear fuel cycle with radiation-equivalent disposal of radioactive waste

    International Nuclear Information System (INIS)

    Adamov, E.O.; Gabaraev, B.A.; Ganev, I.K.; Lopatkin, A.V.; Orlov, V.V.

    1998-01-01

    The growing energy demand in the next century can be met by large-scale nuclear power that can be deployed around fast reactors operating in a closed U-Pu cycle. The main requirements to the future fuel cycle are 1) reduction of the radiation risk from radioactive waste owing to transmutation of the most hazardous long-lived actinides and fission products in reactors and due to thorough treatment of radwaste to remove these elements, with provision of a balance between the activity of waste put to final disposal and that of uranium extracted from earth; 2) no possibility to use closed cycle facilities for Pu extraction from spent fuel for the purpose of weapons production; physical protection of fuel against thefts (nonproliferation). (author)

  11. Hysteretic capillary condensation in a porous material

    International Nuclear Information System (INIS)

    Lilly, M.P.; Hallock, R.B.

    1995-01-01

    The authors report on the behavior of hysteresis subloops in the capillary condensation of 4 He in the porous material Nuclepore. For hysteretic systems composed of many independent elements, the Preisach model may be used to predict the behavior of the resulting hysteresis. One prediction is that subloops with common chemical potential endpoints will be congruent. The observations of such subloops show that the prediction of congruence fails for this capillary condensation system. To understand deviations from Preisach behavior the authors modify the model to account for intersections among the pores. The modified model is in close agreement with the experimental results

  12. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  13. Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update

    Science.gov (United States)

    Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2008-01-01

    The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.

  14. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms.

    Science.gov (United States)

    Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan

    2009-12-01

    A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.

  15. The human RNA polymerase II-associated factor 1 (hPaf1: a new regulator of cell-cycle progression.

    Directory of Open Access Journals (Sweden)

    Nicolas Moniaux

    2009-09-01

    Full Text Available The human PAF (hPAF complex is part of the RNA polymerase II transcription apparatus and regulates multiple steps in gene expression. Further, the yeast homolog of hPaf1 has a role in regulating the expression of a subset of genes involved in the cell-cycle. We therefore investigated the role of hPaf1 during progression of the cell-cycle.Herein, we report that the expression of hPaf1, a subunit of the hPAF complex, increases with cell-cycle progression and is regulated in a cell-cycle dependant manner. hPaf1 specifically regulates a subclass of genes directly implicated in cell-cycle progression during G1/S, S/G2, and G2/M. In prophase, hPaf1 aligns in filament-like structures, whereas in metaphase it is present within the pole forming a crown-like structure, surrounding the centrosomes. Moreover, hPaf1 is degraded during the metaphase to anaphase transition. In the nucleus, hPaf1 regulates the expression of cyclins A1, A2, D1, E1, B1, and Cdk1. In addition, expression of hPaf1 delays DNA replication but favors the G2/M transition, in part through microtubule assembly and mitotic spindle formation.Our results identify hPaf1 and the hPAF complex as key regulators of cell-cycle progression. Mutation or loss of stoichiometry of at least one of the members may potentially lead to cancer development.

  16. Final environmental statement for selection of the preferred closed cycle cooling system at Indian Point Unit No. 3, Docket No. 50-286

    International Nuclear Information System (INIS)

    1979-12-01

    The environmental statement includes information concerning the alternative closed cycle cooling systems; schedule and permits; environmental impacts of feasible alternative closed cycle cooling systems; socio-economic impact of closed cycle cooling systems; and evaluation of proposed action

  17. Separation of intron 22 inversion type 1 and 2 of hemophilia A by modified inverse-shifting polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Pan, Tzu-Yu; Chiou, Shyh-Shin; Wang, Chun-Chi; Wu, Shou-Mei

    2014-12-01

    An inverse-shifting polymerase chain reaction (IS-PCR) combined with short-end capillary gel electrophoresis (CGE) was developed for genotyping of intron 22 inversion Type 1 (Inv22-1) and Type 2 (Inv22-2) of hemophilia A (HA). Severe HA cases are affected by intron 22 inversion around 45-50%. Inv22-1 has higher frequency than Inv22-2. The aim of this study is to distinguish them by genotyping. In order to improve Inv22 genotyping efficiency, five primers were designed and applied to differentiate the wild type, Inv22-1, Inv22-2 and carrier. Three amplicons of 405, 457 and 512 bp were recognized for wild type; 333, 457 and 584 bp for Inv22-1; 385, 405 and 584 bp for Inv22-2. The Inv22-1 carrier has 5 amplicons including 333, 405, 457, 512, 584 bp and Inv22-2 carrier is differentiated by 385, 405, 457, 512 and 584 bp. The amplicons between Inv22-1 and Inv22-2 carriers are only different in 333 bp for Inv22-1 carrier and 385 bp for Inv22-2 carrier. Capillary gel electrophoresis (CGE) was used for separation within 5 min. The separation voltage was set at 8 kV (cathode at detector), and the temperature was kept at 25°C. The sieving matrix was 89 mM Tris, 89 mM boric acid, 2mM EDTA containing 0.4% (w/v) HPMC and 1 μM of YO-PRO(®)-1 Iodide. Total of 50 HA patients (including 35 non-Inv22, 14 Inv22-1, and one Inv22-2 patients) and 7 HA carriers were diagnosed in the application. Seven random samples (5 patients and 2 carriers) were subjected to comparison and gave identical results of DNA sequencing and this modified IS-PCR. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  19. Definition of breeding gain for the closed fuel cycle and application to a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Kloosterman, J. L.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2006-01-01

    In this paper a definition is given for the Breeding Gain (BG) of a nuclear reactor, taking into account compositional changes of the fuel during irradiation, cool down and reprocessing. A definition is given for the reactivity weights required to calculate BG. To calculate the effects of changes in the initial fuel composition on BG, first order nuclide perturbation theory is used. The theory is applied to the fuel cycle of GFR600, a 600 MWth Generation IV Gas Cooled Fast Reactor. This reactor should have a closed fuel cycle, with a BG equal to zero, breeding just enough new fuel during irradiation to allow refueling by only adding fertile material. All Heavy Metal is recycled in the closed fuel cycle. The result is that a closed fuel cycle is possible if the reprocessing has low losses ( 238 U, 15% Pu, and low amounts of the Minor Actinides. (authors)

  20. Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis

    OpenAIRE

    Xu, Cuiling; Maxwell, Brian A.; Suo, Zucai

    2014-01-01

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme c...

  1. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.

    Science.gov (United States)

    Korsgren, Erik; Korsgren, Olle

    2016-04-01

    The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection

    Science.gov (United States)

    Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan

    2011-01-01

    Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830

  3. Water cycles in closed ecological systems: effects of atmospheric pressure.

    Science.gov (United States)

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  4. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  5. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  6. Capillary-based integrated digital PCR in picoliter droplets.

    Science.gov (United States)

    Chen, Jinyu; Luo, Zhaofeng; Li, Lin; He, Jinlong; Li, Luoquan; Zhu, Jianwei; Wu, Ping; He, Liqun

    2018-01-30

    The droplet digital polymerase chain reaction (ddPCR) is becoming more and more popular in diagnostic applications in academia and industry. In commercially available ddPCR systems, after they have been made by a generator, the droplets have to be transferred manually to modules for amplification and detection. In practice, some of the droplets (∼10%) are lost during manual transfer, leading to underestimation of the targets. In addition, the droplets are also at risk of cross-contamination during transfer. By contrast, in labs, some chip-based ddPCRs have been demonstrated where droplets always run in channels. However, the droplets easily coalesce to large ones in chips due to wall wetting as well as thermal oscillation. The loss of droplets becomes serious when such ddPCRs are applied to absolutely quantify rare mutations, such as in early diagnostics in clinical research or when measuring biological diversity at the cell level. Here, we propose a capillary-based integrated ddPCR system that is used for the first time to realize absolute quantification in this way. In this system, a HPLC T-junction is used to generate droplets and a long HPLC capillary connects the generator with both a capillary-based thermocycler and a capillary-based cytometer. The performance of the system is validated by absolute quantification of a gene specific to lung cancer (LunX). The results show that this system has very good linearity (0.9988) at concentrations ranging from NTC to 2.4 × 10 -4 copies per μL. As compared to qPCR, the all-in-one scheme is superior both in terms of the detection limit and the smaller fold changes measurement. The system of ddPCR might provide a powerful approach for clinical or academic applications where rare events are mostly considered.

  7. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    Science.gov (United States)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  8. The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.; Iora, Paolo

    2016-01-01

    The world trade in LNG (liquefied natural gas) has tripled in the last 15 years and the forecasts are for its further rapid expansion. Although the cryogenic exergy of the LNG could be used in many industrial processes, it is recognized also as a source for power cycles. When using the low temperature capacity of LNG for power production, several thermodynamic cycles can be considered. This paper reports the state-of-the art of the most relevant solutions based on conventional and non-conventional thermodynamic closed cycles. Moreover, a novel metrics framework, suitable for a fairer comparison among the energy recovery performances of the different technologies is proposed. According to the defined indicators the compounds plants with gas turbine and closed Brayton cycles perform really better, with an almost full use of LNG available cold temperature and a fuel consumption with an efficiency better than that of the current combined cycles. The Rankine cycles with organic working fluids (pure fluids or non-azeotropic mixtures) using seawater or heat available at low temperature (for instance at 150 °C) also perform in a very satisfactory way. Real gas Brayton cycles and carbon dioxide condensation cycles work with very good thermal efficiency also at relatively low maximum temperatures (300 ÷ 600 °C) and could have peculiar applications. - Highlights: • A review of systems for the combined re-gasification of LNG and generation of power. • The considered systems are: closed Brayton cycles, condensation cycles, gas turbines. • Definition of new parameters for an energy assessment of the systems? performances. • A comparison among the various systems from the energy point of view.

  9. 3D capillary valves for versatile capillary patterning of channel walls

    NARCIS (Netherlands)

    Papadimitriou, Vasileios; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We demonstrate passive capillary patterning of channel walls with a liquid in situ. Patterning is performed using a novel 3D capillary valve system combining three standard capillary stop valves. A range of different patterns is demonstrated in three channel walls. Capillary patterning was designed

  10. Power generation from a 7700C heat source by means of a main steam cycle, a topping closed gas cycle and a ammonia bottoming cycle

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1981-03-01

    For power generation, steam cycles make an efficient use of medium temperature heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by 'Electricite de France'. As far as heat sources at higher temperatures are concerned, particularly related to coal-fired or nuclear power plants, a more efficient way of converting energy is at first to expand a hot working fluid through a gas turbine. It is shown in this paper that a satisfactory result, for heat sources of about 770 0 C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to this gas cycle waste heat recovery and to the coupling of the gas and steam cycles. This concept drastically reduces the importance of new technology components. The use and the significance of an ammonia bottoming cycle in this case are investigated

  11. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  12. Polymerase chain reaction: Theory, practice and application: A review

    Directory of Open Access Journals (Sweden)

    S E Atawodi

    2010-01-01

    Full Text Available Polymerase Chain Reaction (PCR is a rapid procedure for in vitro enzymatic amplification of specific DNA sequences using two oligonucleotide primers that hybridize to opposite strands and flank the region of interest in the target DNA. Repetitive cycles involving template denaturation, primer annealing and the extension of the annealed primers by DNA polymerase, result in the exponential accumulation of a specific fragment whose termini are defined by 5′ end of the primers. The primer extension products synthesized in one cycle can serve as a template in the next. Hence the number of target DNA copies approximately doubles at every cycle. Since its inception, PCR has had an enormous impact in both basic and diagnostic aspects of molecular biology. Like the PCR itself, the number of applications has been accumulating exponentially. It is therefore recommended that relevant scientists and laboratories in developing countries like Nigeria should acquire this simple and relatively inexpensive, but rather robust technology.

  13. An advanced conceptual Tokamak fusion power reactor utilizing closed cycle helium gas turbines

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    UWMAK-III is a conceptual Tokamak reactor designed to study the potential and the problems associated with an advanced version of Tokamaks as power reactors. Design choices have been made which represent reasonable extrapolations of present technology. The major features are the noncircular plasma cross section, the use of TZM, a molybdenum based alloy, as the primary structural material, and the incorporation of a closed-cycle helium gas turbine power conversion system. A conceptual design of the turbomachinery is given together with a preliminary heat exchanger analysis that results in relatively compact designs for the generator, precooler, and intercooler. This paper contains a general description of the UWMAK-III system and a discussion of those aspects of the reactor, such as the burn cycle, the blanket design and the heat transfer analysis, which are required to form the basis for discussing the power conversion system. The authors concentrate on the power conversion system and include a parametric performance analysis, an interface and trade-off study and a description of the reference conceptual design of the closed-cycle helium gas turbine power conversion system. (Auth.)

  14. Analysis of redox relationships in the plant cell cycle: determinations of ascorbate, glutathione and poly (ADPribose)polymerase (PARP) in plant cell cultures.

    Science.gov (United States)

    Foyer, Christine H; Pellny, Till K; Locato, Vittoria; De Gara, Laura

    2008-01-01

    Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signaling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced reactive oxygen species accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly (ADP-ribose) polymerase during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.

  15. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  16. Closed cycle high-repetition-rate pulsed HF laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1997-04-01

    The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.

  17. New exergy analysis of a regenerative closed Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2017-01-01

    Highlights: • The maximum power is studied relating to time and size constraints variations. • The influence of time and size constraints on exergy destruction are investigated. • The definitions of heat exergy, and second law efficiency are modified. - Abstract: In this study, the optimal performance of a regenerative closed Brayton cycle is sought through power maximization. Optimization is performed on the output power as the objective function using genetic algorithm. In order to take into account the time and the size constraints in current problem, the dimensionless mass-flow parameter is used. The influence of the unavoidable exergy destruction due to finite-time constraint is taken into account by developing the definition of heat exergy. Finally, the improved definitions are proposed for heat exergy, and the second law efficiency. Moreover, the new definitions will be compared with the conventional ones. For example, at a specified dimensionless mass-flow parameter, exergy overestimation in conventional definition, causes about 31% lower estimation of the second law efficiency. These results could be expected to be utilized in future solar thermal Brayton cycle assessment and optimization.

  18. Experimental submarine with closed cycle diesel engine. Final report. Experimentaltauchboot mit Argon-Kreislaufdieselmotor. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.

    1990-08-01

    The Experimental Submarine SEAHORSE-KD is a fully operational autonomous test platform for an air independent propulsion system based on a closed cycle diesel engine. The Argon-Diesel known as MOTARK was a contribution from MAN Technologie AG, Munich, which also included process technology and control. Within the Argon cycle the exhaust gas is cooled down, cleaned from CO{sub 2} in a rotary scrubber and fed into the engine again after addition of oxygen. On surface, the engine can be operated on ambient air. During closed cycle operation, no media are exchanged with the ambient. The process works independently from the depth. Bruker Meerestechnik GmbH had to define the complete vehicle, developed and integrated the subsystems such as the LOX-system, the chemical and condensate plant, the fuel system, the propulsion and the electric system, etc. and carried out extensive workshop tests, shallow water and sea trials. The reliable functioning of the CCD-plant and of the complete Experimental Submarine could be convincingly demonstrated. A certificate has been issued by the Germanischer Lloyd. (orig.) With 90 refs., 15 figs.

  19. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  20. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence......We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...

  1. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    Science.gov (United States)

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  2. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  3. Investigation of X-ray lasing in a capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; E. Louis,

    2001-01-01

    Using a new technique of an induced MHD instability in a capillary made of polyacetal we observed an intense spike (signal) of the Balmer-a line of C VI at 18.22 nm during the second half cycle of the discharge. The spike is identified as Amplified Spontaneous Emission (ASE), and enhancements are

  4. Review: Authentication and traceability of foods from animal origin by polymerase chain reaction-based capillary electrophoresis.

    Science.gov (United States)

    Rodríguez-Ramírez, Roberto; González-Córdova, Aarón F; Vallejo-Cordoba, Belinda

    2011-01-31

    This work presents an overview of the applicability of PCR-based capillary electrophoresis (CE) in food authentication and traceability of foods from animal origin. Analytical approaches for authenticating and tracing meat and meat products and fish and seafood products are discussed. Particular emphasis will be given to the usefulness of genotyping in food tracing by using CE-based genetic analyzers. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Liquid air fueled open-closed cycle Stirling engine and its exergy analysis

    International Nuclear Information System (INIS)

    Wang, Jia; Xu, Weiqing; Ding, Shuiting; Shi, Yan; Cai, Maolin; Rehman, Ali

    2015-01-01

    An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as a pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, a closed cycle structure of Stirling engine is added to combine with the open cycle structure of a conventional cryogenic heat engine to achieve high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. Besides, the theoretical analysis of the proposed engine is performed. The Schmidt theory is modified to model temperature variation in the cold space of the engine, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The modeling results show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Composition of exergy loss in the proposed engine is analyzed. - Highlights: • Cryogenic energy is better exploited by the open-closed cycle Stirling mechanism. • The Schmidt theory is modified to model temperature variation. • Irreversible characteristics are incorporated in the thermodynamic model. • Composition of exergy loss in proposed engine is analyzed.

  6. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature dependent fluorescence......We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...

  7. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  8. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  9. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    Science.gov (United States)

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Physics studies of weapons plutonium disposition in the IFR closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1994-01-01

    The core performance impact of weapons plutonium introduction into the IFR closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode all at a constant heat rating of 840 MWt. For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode, and recycle corns using weapons material only as required for a make-up feed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium feed does not have an adverse impact on IFR core performance characteristics

  11. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Science.gov (United States)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  12. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  13. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  14. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  15. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  16. Comparative analysis of methods and tools for open and closed fuel cycles modeling: MESSAGE and DESAE

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Korovin, Yu.A.; Murogov, V.M.; Fedorova, E.V.; Fesenko, G.A.

    2006-01-01

    Comparative analysis of optimization and simulation methods by the example of MESSAGE and DESAE programs is carried out for nuclear power prospects and advanced fuel cycles modeling. Test calculations for open and two-component nuclear power and closed fuel cycle are performed. Auxiliary simulation-dynamic model is developed to specify MESSAGE and DESAE modeling approaches difference. The model description is given [ru

  17. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  18. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  19. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  20. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On...

  2. Monitored Retrievable Storage conceptual system studies: closed-cycle vault

    International Nuclear Information System (INIS)

    Washington, J.A.; Ganley, J.T.

    1984-02-01

    The Nuclear Waste Policy Act of 1982 requires the DOE to submit a proposal to Congress by June 1985 for the construction of one or more Monitored Retrieval Storage (MRS) facilities. In response, the DOE initiated studies to develop system descriptions and cost estimates for preconceptual designs of storage concepts suitable for use at MRS facilities. This report provides a system description and cost estimates for a Closed-Cycle Vault (CCV) MRS facility. The facility description is divided into four parts: (1) the R and H area, (2) the interface facility, (3) the on-site transport system, and (4) the storage system. The MRS facility has been designed to meet handling rates of 1800 and 3000 MTU/yr. The corresponding peak inventories are 15,000 and 72,000 MTU. Three types of cases were considered, based on the material to be stored: (1) Spent fuel only; (2) HLW and TRU waste; and (3) HLW only. For each of these three types, a cost estimate was done for a 15,000 and a 72,000 MTU facility, resulting in six different cost estimates. Section 4 presents the cost analysis of the CCV MRS system. Tables 4-2 through 4-7 give the construction or capital costs for the six cases. Tables 4-8 through 4-13 show the total discounted life-cycle costs for each of the six cases. These life-cycle costs include operating and decommissioning costs. These tables also show the time distribution of the capital costs. Table 2-1 summarizes the capital, operating, and discounted costs for the six cases studied. 2 references, 15 figures, 18 tables

  3. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    Science.gov (United States)

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    International Nuclear Information System (INIS)

    Gurin, Andrey V.; Alekseev, P.N.

    2017-01-01

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  5. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, Andrey V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Alekseev, P.N.

    2017-09-15

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  6. Molecular typing for blood group antigens within 40 min by direct polymerase chain reaction from plasma or serum.

    Science.gov (United States)

    Wagner, Franz F; Flegel, Willy A; Bittner, Rita; Döscher, Andrea

    2017-03-01

    Determining blood group antigens by serological methods may be unreliable in certain situations, such as in patients after chronic or massive transfusion. Red cell genotyping offers a complementary approach, but current methods may take much longer than conventional serological typing, limiting their utility in urgent situations. To narrow this gap, we devised a rapid method using direct polymerase chain reaction (PCR) amplification while avoiding the DNA extraction step. DNA was amplified by PCR directly from plasma or serum of blood donors followed by a melting curve analysis in a capillary rapid-cycle PCR assay. We evaluated the single nucleotide polymorphisms underlying the clinically relevant Fy a , Fy b , Jk a and Jk b antigens, with our analysis being completed within 40 min of receiving a plasma or serum sample. The positive predictive value was 100% and the negative predictive value at least 84%. Direct PCR with melting point analysis allowed faster red cell genotyping to predict blood group antigens than any previous molecular method. Our assay may be used as a screening tool with subsequent confirmatory testing, within the limitations of the false-negative rate. With fast turnaround times, the rapid-cycle PCR assay may eventually be developed and applied to red cell genotyping in the hospital setting. © 2016 John Wiley & Sons Ltd.

  7. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  8. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  9. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  10. Estimation of the reaction efficiency in polymerase chain reaction

    NARCIS (Netherlands)

    Lalam, N.

    2006-01-01

    Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR technique has

  11. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  12. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  13. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    International Nuclear Information System (INIS)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-01

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR

  14. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-15

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR.

  15. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  16. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  17. An analytical model for enantioseparation process in capillary electrophoresis

    Science.gov (United States)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  18. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  19. Capillary haemangioma involving the middle and external ear: radiotherapy as a treatment method

    International Nuclear Information System (INIS)

    Pavamani, S.P.; Ram, T.S.; Viswanathan, P.N.; Viswanathan, F.R.; Surendrababu, N.R.S.; Thomas, M.

    2007-01-01

    Capillary haemangiomas rarely occur in the auditory canal and have mainly been managed with surgical excision or kept on close follow up for development of symptoms. Radiotherapy, as a treatment method, has not been reported previously in the published work. We describe a study of a capillary haemangioma in the auditory canal of a 26-year-old woman who presented with bleeding. She was treated with radiotherapy, after the lesion was found to be unsuitable for surgery and embolization. The patient remains well 5 years after completion of treatment

  20. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  1. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  2. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  3. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  4. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia.

    Science.gov (United States)

    Walker, D C; Behzad, A R; Chu, F

    1995-11-01

    The purpose of this study was to determine whether or not there are preexisting holes in the endothelial and epithelial basal laminae of alveolar walls and to determine the path taken by neutrophils as they migrate from the capillaries to the airspace of the alveoli during inflammation. Using transmission electron microscopy and serial thin sections of normal rabbit and mouse lung, we have demonstrated the presence of slit-like holes in the capillary basal laminae and round holes in the basal laminae of type 2 pneumocytes. The slits in the capillary basal laminae were observed at the intersection of the thick and thin walls where endothelium, pericytes, and fibroblasts make close contact. The round holes in the type 2 cell basal laminae were observed at sites of close contact with fibroblasts. Neutrophils were observed to migrate through these slits and holes during streptococcal pneumonia in rabbit lungs. We conclude that during inflammation in the lung, migrating neutrophils displace pericytes and fibroblasts from the slits in the capillary basal lamina and then crawl through these slits into the alveolar interstitium. We postulate that neutrophils find their way to type 2 pneumocytes by following interstitial fibroblasts. We believe that neutrophils displace fibroblasts from their close contacts with the type 2 cells and then crawl through the holes in the basal lamina into the basal lateral space of the type 2 cells. From there, neutrophils migrate into the alveolar airspace.

  5. The Fast and Non-capillary Fluid Filling Mechanism in the Hummingbird's Tongue

    Science.gov (United States)

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret

    2014-03-01

    Hummingbirds gather nectar by inserting their beaks inside flowers and cycling their tongues at a frequency of up to 20 Hz. It is unclear how they achieve efficiency at this high licking rate. Ever since proposed in 1833, it has been believed that hummingbird tongues are a pair of tiny straws filled with nectar by capillary rise. Our discoveries are very different from this general consensus. The tongue does not draw up floral nectar via capillary action under experimental conditions that resemble natural ones. Theoretical models based on capillary rise were mistaken and unsuitable for estimating the fluid intake rate and to support foraging theories. We filmed (up to 1265 frames/s) the fluid uptake in 20 species of hummingbirds that belong to 7 out of the 9 main hummingbird clades. We found that the fluid filling within the portions of the tongue that remain outside the nectar is about five times faster than capillary filling. We present strong evidence to rule out the capillarity model. We introduce a new fluid-structure interaction and hydrodynamic model and compare the results with field experimental data to explain how hummingbirds actually extract fluid from flowers at the lick level.

  6. Energy expenditure, aerodynamics and medical problems in cycling. An update.

    Science.gov (United States)

    Faria, I E

    1992-07-01

    The cyclist's ability to maintain an extremely high rate of energy expenditure for long durations at a high economy of effort is dependent upon such factors as the individual's anaerobic threshold, muscle fibre type, muscle myoglobin concentration, muscle capillary density and certain anthropometric dimensions. Although laboratory tests have had some success predicting cycling potential, their validity has yet to be established for trained cyclists. Even in analysing the forces producing propulsive torque, cycling effectiveness cannot be based solely on the orientation of applied forces. Innovations of shoe and pedal design continue to have a positive influence on the biomechanics of pedalling. Although muscle involvement during a complete pedal revolution may be similar, economical pedalling rate appears to differ significantly between the novice and racing cyclist. This difference emanates, perhaps, from long term adaptation. Air resistance is by far the greatest retarding force affecting cycling. The aerodynamics of the rider and the bicycle and its components are major contributors to cycling economy. Correct body posture and spacing between riders can significantly enhance speed and efficiency. Acute and chronic responses to cycling and training are complex. To protect the safety and health of the cyclist there must be close monitoring and cooperation between the cyclist, coach, exercise scientist and physician.

  7. Low-temperature measurement system based on a closed-cycle refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-05-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within {+-}0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa{sub 2}Cu{sub 4}O{sub 8} successfully even at 1.6 K.

  8. Low-temperature measurement system based on a closed-cycle refrigerator

    International Nuclear Information System (INIS)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-01-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within ±0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa 2 Cu 4 O 8 successfully even at 1.6 K

  9. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  10. Thermodynamics of a closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    van den Bosch, P.J.; van den Bosch, P.J.; ter Brake, Hermanus J.M.; van den Eijkel, G.C.; Boelens, J.P.; Holland, Herman J.; Verberne, J.F.C.; Rogalla, Horst

    1994-01-01

    A multichannel high-Tc dc-SQUID based heart-magnetometer is currently under development in our laboratory. The system is cooled by a cooler that, due to its magnetic interference, has to be separated from the SQUID unit. In the present prototype system a closed-cycle gas flow was chosen as the

  11. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  12. Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts.

    Science.gov (United States)

    Caudron-Herger, Maïwen; Pankert, Teresa; Rippe, Karsten

    2016-05-03

    The nucleolus is a nuclear subcompartment for tightly regulated rRNA production and ribosome subunit biogenesis. It also acts as a cellular stress sensor and can release enriched factors in response to cellular stimuli. Accordingly, the content and structure of the nucleolus change dynamically, which is particularly evident during cell cycle progression: the nucleolus completely disassembles during mitosis and reassembles in interphase. Although the mechanisms that drive nucleolar (re)organization have been the subject of a number of studies, they are only partly understood. Recently, we identified Alu element-containing RNA polymerase II transcripts (aluRNAs) as important for nucleolar structure and rRNA synthesis. Integrating these findings with studies on the liquid droplet-like nature of the nucleolus leads us to propose a model on how RNA polymerase II transcripts could regulate the assembly of the nucleolus in response to external stimuli and during cell cycle progression.

  13. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  14. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  15. Viscosity of particulate soap films: approaching the jamming of 2D capillary suspensions.

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-05-14

    We compute the effective viscosity of particulate soap films thanks to local velocity fields obtained by Particle Image Velocimetry (PIV) during film retraction experiments. We identify the jamming of these 2D capillary suspensions at a critical particle surface fraction (≃0.84) where effective viscosity diverges. Pair correlation function and number of neighbors in contact or close to contact reveal the cohesive nature of this 2D capillary granular media. The experimental 2D dynamic viscosities can be predicted by a model considering viscous dissipation at the liquid interfaces induced by the motion of individual particles.

  16. Improvement in recuperative gas cycles by means of a heat generator partly by-passing the recuperator. Application to open and closed cycles and to various kinds of energy

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1979-01-01

    A particular arrangement applicable to open or closed recuperative gas cycles and consisting of a heat generator partly by-passing the low pressure side of the recuperator is proven to enhance advantages of gas cycles for energy production. The cogeneration of both power with a high efficiency owing to the recuperator and high temperature process heat becomes possible and economically attractive. Furthermore, additional possibilities appear for power generation by combined gas and steam or ammonia cycles. In any case the overall utilization coefficient of the primary energy is increased and the combined production of low or medium temperature heat can also be improved. The great operation flexibility of the system for combined energy generation is worth being emphasized: the by-pass arrangement involves no significant change in the operation conditions of the main turbocompressor as the heat output varies. Applications of this arrangement are made to: - open and closed gas cycle, power plants; - fossil, nuclear and solar energies. The overall heat conversion efficiency is tentatively estimated in order to appreciate the energy conversion capability of the investigated power plants

  17. EBV DNA polymerase inhibition of tannins from Eugenia uniflora.

    Science.gov (United States)

    Lee, M H; Chiou, J F; Yen, K Y; Yang, L L

    2000-06-30

    Nasopharyngeal carcinoma (NPC) is one of the high population malignant tumors among Chinese in southern China and southeast Asia. Epstein-Barr virus (EBV) is a human B lymphotropic herpes virus which is known to be closely associated with NPC. EBV DNA polymerase is a key enzyme during EBV replication and is measured by its radioactivity. The addition of phorbol 12-myristate 13-acetate to Raji cell cultures led to a large increase in EBV DNA polymerase, which was purified by sequential DEAE-cellulose, phosphocellulose and DNA-cellulose column chromatography. Four tannins were isolated from the active fractions of Eugenia uniflora L., which were tested for the inhibition of EBV DNA polymerase. The results showed the 50% inhibitory concentration (IC(50)) values of gallocatechin, oenothein B, eugeniflorins D(1) and D(2) were 26.5 62.3, 3.0 and 3.5 microM, respectively. Furthermore, when compared with the positive control (phosphonoacetic acid), an inhibitor of EBV replication, the IC(50) value was 16.4 microM. In view of the results, eugeniflorins D(1) and D(2) are the potency principles in the inhibition of EBV DNA polymerase from E. uniflora.

  18. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  19. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shwartz, H.; Livneh, Z.

    1987-01-01

    During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini

  20. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    Science.gov (United States)

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  1. ECOFERM. The closed-cycle farm; ECOFERM. De kringloopboerderij

    Energy Technology Data Exchange (ETDEWEB)

    Van Liere, J. [Van Liere Management, Utrecht (Netherlands); Boosten, G. [Stichting DOTank, Bussum (Netherlands); Van Dijk, L. [Sustec Consulting Contracting, Wageningen (Netherlands); Hemke, G. [Hemke Nutriconsult, Best (Netherlands); Verschoor, A. [Ingrepro, Borculo (Netherlands); Van Kasteren, J. (ed.)

    2011-06-15

    The Dutch pig farming sector is under pressure. Social resistance is growing and protests against factory farming in general and 'megastalls' in particular are becoming more vociferous. Individuals and social organizations - with policy-makers and politicians following in their wake - are pressing for more dignified living conditions for the animals. Animal health issues and the frequent use of antibiotics are raising questions, partly because of concerns over antibiotic resistance and the consequences for human health. The effects of manure and greenhouse gases on the environment and climate are also high on the agenda. The massive importation of soy as animal feed is having a destructive impact on nature and biodiversity in the production countries, and in the Netherlands it has created a persistent manure surplus. These problems are closely interconnected, which entails that fundamental changes are necessary on many fronts. InnovationNetwork has developed an idea to make pig farming more sustainable and to close the cycles involved. This concept is called ECOFERM Central to the ECOFERM concept is the principle of closed cycles. The 'waste' products from pig farming (manure, ammonia, water vapour, CO2 and residual heat) are used for the production of algae, biogas, electricity and clean water. It starts with the daily and separate removal of the manure from the stalls. This reduces the release of ammonia and other harmful substances, leading to a much more agreeable stall climate for the animals and the farmer. The CO2, water vapour and body heat produced by the animals are fed, together with the ammonia emissions in the stalls, through a reactor and used for algae cultivation. The removed, partially dehydrated manure, goes to a central fermenter for the production of biogas and electricity in a CHP facility. The thin manure fraction and the treated digestate yield the minerals (mainly nitrogen and phosphorus) required for algae cultivation

  2. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  3. Structure of Polymer Fibers Fabricated by Electrospinning Method Utilizing a Metal Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Shinbo, Kazunari; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    We fabricated electrospun poly (vinylalcohol) (PVA) fibers using a copper wire electrode in Teflon capillary tube, and the SEM images were observed. The apparatus in this method is reasonable, and needed volume of polymer solution and distance between the electrodes can be largely reduced compared to conventional method. The wire electrode tip position in the capillary tube is also important in this method and should be close to the polymer solution surface.

  4. Effect of replacing nitrogen with helium on a closed cycle diesel engine performance

    Directory of Open Access Journals (Sweden)

    Alaa M. Abo El Ela

    2016-09-01

    Full Text Available One of most important problems of closed cycle diesel engine is deterioration of cylinder pressure and consequently the engine power. Therefore this research aimed to establish a multi zone model using Computational Fluid Dynamic (CFD code; ANSYS Fluent 14.0 to enhance the closed cycle diesel engine performance. The present work investigates the effect of replacing nitrogen gas with helium gas in different concentration under different engine load and equivalence ratios. The numerical model results were validated with comparing them with those obtained from the previous experimental results. The engine which was used for the simulation analysis and the previous experimental work was a single cylinder with a displacement volume of 825 cm3, compression ratio of 17 and run at constant speed of 1500 RPM. The numerical results showed that replacing nitrogen with helium resulted in increasing the in-cylinder pressure. The results showed also that a percentage of 0.5–10% of helium on mass basis is sufficient in the recovery needed to overcome the drop in-cylinder pressure and hence power due to the existence of CO2 in the recycled gas up to 25%. When the CO2 % reaches 25%, it is required to use at least 10% of He as replacement gas to achieve the required recovery.

  5. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  6. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  7. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  8. Capillary gas-solid chromatography

    International Nuclear Information System (INIS)

    Berezkin, V.G.

    1996-01-01

    Modern state of gas adsorption chromatography in open capillary columns has been analyzed. The history of the method development and its role in gas chromatography, ways to construct open adsorptional capillary columns, foundations of the theory of retention and washing of chromatographic regions in gas adsorption capillary columns have been considered. The fields is extensively and for analyzing volatile compounds of different isotopic composition, inorganic and organic gases, volatile organic polar compounds, aqueous solutions of organic compounds. Separation of nuclear-spin isomers and isotopes of hydrogen is the first illustrative example of practical application of the adsorption capillary chromatography. It is shown that duration of protium and deuterium nuclear isomers may be reduced if the column temperature is brought to 47 K

  9. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  11. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  12. Increased presence of capillaries next to remodeling sites in adult human cancellous bone

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjoerg; Andersen, Thomas Levin; Marcussen, Niels

    2013-01-01

    and at the level of the light-microscopically assessed contact of these three entities with the bone or canopy surfaces. Between 51 and 100 microm, their densities leveled to that found above quiescent surfaces. Electron microscopy asserted the close proximity between BRC canopies and capillaries lined...

  13. Nuclear track evolution by capillary condensation during etching in SSNT detectors

    International Nuclear Information System (INIS)

    Martín-Landrove, R.; Sajo-Bohus, L.; Palacios, D.

    2013-01-01

    The microscopic process taking place during chemical etching is described in terms of a dynamic framework governed by capillary condensation. The aim is to obtain physical information on how the cone shaped tracks with curved walls evolve during chemical etching under a close examination of first principles. The results obtained with the proposed theory are compared with published values to establish their range of validity. - Highlights: ► Capillary condensation seems to play a role at early etched track evolution. ► The etched track shape and the first principles behind it are easily related. ► In spite of its simplicity, theory was able to pass stringent experimental tests. ► Theory results have a simple analytical form which includes etch induction time

  14. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction.

    Science.gov (United States)

    Elshawadfy, Ashraf M; Keith, Brian J; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A

    2014-01-01

    The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the "forked-point" (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the "forked-point" and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.

  15. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  16. Neovascularization of the corpus luteum of rats during the estrus cycle.

    Science.gov (United States)

    Tsukada, K; Matsushima, T; Yamanaka, N

    1996-06-01

    In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.

  17. Radiation-cytogenetic study of the mechanism of formation of chromosome aberations in Crepis capillaris cells

    International Nuclear Information System (INIS)

    Belyaev, I.Ya.; Semakin, A.B.; Grigorova, N.V.; Akif'ev, A.P.; AN SSSR, Moscow. Inst. Khimicheskoj Fiziki)

    1986-01-01

    Incomplete chromatid exchanges induced by γ-quanta at G 2 stage of Crepis capillaris meristem cells are transformed into complete chromosome exchanges during the second nuclear cycle. After the combined effect of γ-quanta and DNA synthesis inhibitor 5-fluoro-2-deoxyridine, the exchange aberrations disappear. During the second nuclear cycle, the chromatid exchanges, which were not realized in the presence of 5-fluro-2-deoxyuridne and regarded as potential ones, are transformed into chromosome exchanges. The breaks induced by 5-fluoro-2-deoxyuridine at G 2 stage are repaired after one nuclear cycle

  18. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  19. The measurement of capillary waves on a weldpool formed by a Nd:YAG laser

    International Nuclear Information System (INIS)

    Deam, R.T.; Brandt, M.; Harris, J.

    2002-01-01

    Experiments were performed using an on-line pyrometer to measure the capillary waves on a weldpool formed by a Nd: YAG laser. The surface temperature measurements taken from the weldpool revealed strong temporal fluctuations. Fourier transform of the pyrometer data revealed distinct peaks, consistent with calculated resonant frequencies for capillary surface waves on the weldpool formed by the laser. The possibility of using on-line measurement of surface temperature fluctuations to control weldpool depth in laser welds is discussed. The work forms part of an on-going programme to develop closed loop control for laser processing at Swinburne University

  20. Capillary fringe and tritium and nitrogen tracing history in the Senonian chalk of Champagne

    International Nuclear Information System (INIS)

    Ballif, J.L.

    1998-01-01

    In the middle of Champagne-Ardenne area, a chalky zone is located, directly on top of which lies the soil and in which the water table is relatively close the soil; which allows for capillary direction to the surface horizons and the renewal of water reserve. After the presentation of the hydrological characteristics, the total porosity of chalk, the pores distribution, the capillary attraction is shown by the hydrological comportment of the soil and the upper part of the unsaturated zone of chalk. In the homogeneous rock, the tritium and nitrogen transfers reveal the historical tracks. (authors)

  1. Determination of capillary permeability with labeled human albumin

    International Nuclear Information System (INIS)

    Behar, A.; Tournoux, A.; Baillet, J.; Lagrue, G.

    1976-01-01

    We propose a new test for measuring the 'capillary permeability' with labeled albumin, with simpler methods, satisfactory results and good discrimination between normal subjects and pathological patients. In normal subjects, after the removal of the tourniquet, the radioactivity returns to former values (under 10% of this figure). In pathological patients, even after the 3 min following the removal of the tourniquet, there is no return to the former value (the retention of labeled albumin is always over 10%). It is in cycle oedema that the test provides the most interesting results. (orig) [de

  2. Capillary concentrators for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Heald, S.M.; Brewe, D.L.; Kim, K.H.; Brown, F.C.; Barg, B.; Stern, E.A.

    1996-01-01

    Capillary concentrators condense x-rays by multiple reflections down a gradually tapering capillary. They can provide sub-micron beam spots, and are promising candidates for use in the next generation x-ray microprobe beamlines. The weak energy dependence of their properties make them especially useful for energy scanning applications such as micro-XAFS. This paper examines the potential performance of capillary optics for an x-ray microprobe, as well as some practical issues such as fabrication and alignment. Best performance at third generation sources requires long capillaries, and the authors have been using fiber optics techniques to fabricate capillaries up to one meter in length. The performance of shorter (less than about 0.5 m) capillaries has often been found to agree well with theoretical calculations, indicating the inner surface is a high quality x-ray reflector. These capillaries have been tested at the NSLS for imaging and micro-XAFS down to 2.6 microm resolution with excellent results. On an unfocused bend magnet line flux density approaching 10 6 ph/sec/microm 2 has been achieved. While nearly optimum profiles have been achieved for longer capillaries, the results have been disappointing, and alignment problems are suspected. The dramatic improvement in performance possible at third generation synchrotrons such as the APS is discussed along with improvements possible by using the capillaries in conjunction with coupling optics

  3. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    Science.gov (United States)

    Cline, J; Braman, J C; Hogrefe, H H

    1996-09-15

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.

  4. Dependence of cycle optimal configuration for closed gas turbines on thermodynamic properties of working fluids

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Dubinin, A.B.; Krylov, E.E.

    1988-01-01

    The problem of choice of working fluids for NPP closed gas turbines (CGT) is discussed. Thermostable in the working temperature range, chemically inert relatively to structural materials, fire- and explosion - proof substances, radiation-resistant and having satisfactory neutron-physical characteristics are used as the working fluids. Final choice of a gas as a working fluid is exercised based on technical and economic comparison of different variants at optimum thermodynamic cycle and parameters for each gas. The character and degree of the effect of thermodynamic properties of gases on configuration of reference cycles of regenerative CGT are determined. It is established that efficiency and optimum parameters in nodal points of the reference cycle are specified by the degree of removing the compression processes from the critical point. Practical importance of the obtained results presupposes the possibility of rapid estimation of the efficiency of using a gas without multiparametric optimization

  5. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  6. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs.

  7. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  8. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications.

    Directory of Open Access Journals (Sweden)

    Rodrigo Jácome

    Full Text Available The crystal structures of monomeric RNA-dependent RNA polymerases and reverse transcriptases of more than 20 different viruses are available in the Protein Data Bank. They all share the characteristic right-hand shape of DNA- and RNA polymerases formed by the fingers, palm and thumb subdomains, and, in many cases, "fingertips" that extend from the fingers towards the thumb subdomain, giving the viral enzyme a closed right-hand appearance. Six conserved structural motifs that contain key residues for the proper functioning of the enzyme have been identified in all these RNA-dependent polymerases. These enzymes share a two divalent metal-ion mechanism of polymerization in which two conserved aspartate residues coordinate the interactions with the metal ions to catalyze the nucleotidyl transfer reaction. The recent availability of crystal structures of polymerases of the Orthomyxoviridae and Bunyaviridae families allowed us to make pairwise comparisons of the tertiary structures of polymerases belonging to the four main RNA viral groups, which has led to a phylogenetic tree in which single-stranded negative RNA viral polymerases have been included for the first time. This has also allowed us to use a homology-based structural prediction approach to develop a general three-dimensional model of the Ebola virus RNA-dependent RNA polymerase. Our model includes several of the conserved structural motifs and residues described in other viral RNA-dependent RNA polymerases that define the catalytic and highly conserved palm subdomain, as well as portions of the fingers and thumb subdomains. The results presented here help to understand the current use and apparent success of antivirals, i.e. Brincidofovir, Lamivudine and Favipiravir, originally aimed at other types of polymerases, to counteract the Ebola virus infection.

  9. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    Science.gov (United States)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  10. Field Evaluation of Capillary Blood Samples as a Collection Specimen for the Rapid Diagnosis of Ebola Virus Infection During an Outbreak Emergency.

    Science.gov (United States)

    Strecker, Thomas; Palyi, Bernadett; Ellerbrok, Heinz; Jonckheere, Sylvie; de Clerck, Hilde; Bore, Joseph Akoi; Gabriel, Martin; Stoecker, Kilian; Eickmann, Markus; van Herp, Michel; Formenty, Pierre; Di Caro, Antonino; Becker, Stephan

    2015-09-01

    Reliable reverse transcription polymerase chain reaction (RT-PCR)-based diagnosis of Ebola virus infection currently requires a blood sample obtained by intravenous puncture. During the current Ebola outbreak in Guinea, we evaluated the usability of capillary blood samples collected from fingersticks of patients suspected of having Ebola virus disease (EVD) for field diagnostics during an outbreak emergency. A total of 120 venous and capillary blood samples were collected from 53 patients admitted to the Ebola Treatment Centre in Guéckédou, Guinea, between July and August 2014. All sample specimens were analyzed by RT-PCR using the RealStar Filovirus Screen RT-PCR Kit 1.0 from altona Diagnostics (Germany). We compared samples obtained by venipuncture and those obtained by capillary blood sampling absorbed onto swab devices. The resulting sensitivity and specificity of tests performed with capillary blood samples were 86.8% (95% confidence interval [CI], 71.9%-95.6%; 33/38 patients) and 100% (95% CI, 84.6%-100%; 22/22 patients), respectively. Our data suggest that capillary blood samples could serve as an alternative to venous blood samples for the diagnosis of EVD in resource-limited settings during a crisis. This can be of particular advantage in cases when venipuncture is difficult to perform-for example, with newborns and infants or when adult patients reject venipuncture for cultural or religious reasons. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  11. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58 Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  12. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  13. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  14. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Rantamäki, A. H.; Duša, Filip; Wiedmer, S. K.

    2016-01-01

    Roč. 37, 7-8 (2016), s. 880-912 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : capillary electrochromatography * capillary liquid chromatography * mass spec- trometry * monolithic columns Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  15. A closed cycle-cryostat for high-field Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Janoschka, A; Schuenemann, V; Svenconis, G

    2010-01-01

    A closed cycle-cryostat coupled to a Moessbauer spectrometer has been installed at the University of Kaiserslautern and is in full operation since march 2007. The setup is equipped with a low vibrating two-stage pulse tube cooler and has a cool down time of 48 h. The sample can be top loaded without the need to shut off the refrigerator. With the static helium exchange gas in the variable temperature insert the sample may be cooled down from room temperature to 50 K within several hours. Dynamic exchange gas with external supply of gaseous helium is used to cool the sample down to 2 K. The superconducting self-shielding split-coil generates a magnetic field of up to 5 Tesla and a stray field of ca. 60 mT at the outer cryostat walls. Moessbauer measurements can be performed in perpendicular or parallel field orientations. The sample holder and the Moessbauer drive are rigidly connected to the cryostat. In this way a line width of the two inner α-Fe lines of 0.32 mm/s has been currently achieved.

  16. The benefits of a fast reactor closed fuel cycle in the UK

    International Nuclear Information System (INIS)

    Gregg, R.; Hesketh, K.

    2013-01-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size, so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the

  17. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  18. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction-Based Threshold Cycle Value and Virus Isolation From Human Plasma.

    Science.gov (United States)

    Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F

    2015-10-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Interaction of gold nanoparticles with Pfu DNA polymerase and effect on polymerase chain reaction.

    Science.gov (United States)

    Sun, L-P; Wang, S; Zhang, Z-W; Ma, Y-Y; Lai, Y-Q; Weng, J; Zhang, Q-Q

    2011-03-01

    The interaction of gold nanoparticles with Pfu DNA polymerase has been investigated by a number of biological, optical and electronic spectroscopic techniques. Polymerase chain reaction was performed to show gold nanoparticles' biological effect. Ultraviolet-visible and circular dichroism spectra analysis were applied to character the structure of Pfu DNA polymerase after conjugation with gold nanoparticles. X-ray photoelectron spectroscopy was used to investigate the bond properties of the polymerase-gold nanoparticles complex. The authors demonstrate that gold nanoparticles do not affect the amplification efficiency of polymerase chain reaction using Pfu DNA polymerase, and Pfu DNA polymerase displays no significant changes of the secondary structure upon interaction with gold nanoparticles. The adsorption of Pfu DNA polymerase to gold nanoparticles is mainly through Au-NH(2) bond and electrostatic interaction. These findings may have important implications regarding the safety issue as gold nanoparticles are widely used in biomedical applications.

  1. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  2. Capillary electrophoresis fragment analysis and clone sequencing in detection of dynamic mutations of spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Yuan-yuan CHEN

    2018-04-01

    Full Text Available Objective To estimate the accuracy and stability of capillary electrophoresis fragment analysis and clone sequencing in detecting dynamic mutations of spinocerebellar ataxia (SCA. Methods Capillary electrophoresis fragment analysis and clone sequencing were used in detecting trinucleotide repeated sequence of 14 SCA patients (3 cases of SCA2, 2 cases of SCA7, 7 cases of SCA8 and 2 cases of SCA17. Results Capillary electrophoresis fragment analysis of 3 SCA2 cases showed the expanded cytosine-adenine-guanine (CAG repeats were 31, 30 and 32, and the copy numbers of 3 clone sequencing for 3 colonies in each case were 37/40/40, 37/38/39 and 38/39/40 respectively. Capillary electrophoresis fragment analysis of 2 SCA7 cases showed the expanded CAG repeats were 57 and 34, and the copy numbers of repeats were 69, 74, 75 in 3 colonies of one case, and was 45 in the other case. For the 7 SCA8 cases with the expanded cytosine-thymine-adenine (CTA/cytosine-thymine-guanine (CTG repeats of 99, 111, 104, 92, 89, 104 and 75, the results of clone sequencing were 97, 116, 104, 90, 90, 102 and 76 respectively. For 2 SCA17 cases with the short/expanded CAG repeats of 37/50 and 36/45, the results of clone sequencing were 51/50/52 and 45/44 for 3 and 2 colonies. Conclusions Although the higher mobility of polymerase chain reaction (PCR products containing dynamic mutation in the capillary electrophoresis fragment analysis might cause the deviation for analysis of copy numbers, the deviation was predictable and the results were repeatable. The clone sequencing results showed obvious instability, especially for SCA2 and SCA7 genes, which might owing to their simple CAG repeats. Consequently, clone sequencing is not suited for detection of dynamic mutation, not to mention the quantitative criteria of dynamic mutation sequencing. DOI: 10.3969/j.issn.1672-6731.2018.03.008

  3. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  4. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  5. Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2013-01-01

    Full Text Available Nasal lobular capillary hemangioma is a rare benign tumor of the paranasal sinuses. This lesion is believed to grow rapidly in size over time. The exact etiopathogenesis is still a dilemma. We discuss a case of nasal lobular capillary hemangioma presenting with a history of epistaxis. Contrast enhanced computed tomography of paranasal sinuses revealed an intensely enhancing soft-tissue mass in the left nasal cavity and left middle and inferior meati with no obvious bony remodeling or destruction. We present imaging and pathologic features of nasal lobular capillary hemangioma and differentiate it from other entities like nasal angiofibroma.

  6. Theoretical investigation of adiabatic capillary tubes working with propane/n-butane/iso-butane blends

    International Nuclear Information System (INIS)

    Fatouh, M.

    2007-01-01

    In this paper, a theoretical model is developed to predict the refrigerant flow characteristics in adiabatic capillary tubes using propane/n-butane/iso-butane mixtures as working fluids in a domestic refrigerator. This model is based on the mass, energy and momentum conservation equations for a homogeneous refrigerant flow under different inlet conditions, such as subcooled, saturated and two phase flow. The effects of the inlet pressure (8-16 bar), inlet vapor quality (0.001-15%), inlet subcooling degree (1-15 o C), mass flow rate (1-5 kg/h), propane mass fraction (0.5-0.7), capillary tube inner diameter (0.6-1.0 mm) and the tube surface roughness on the capillary tube length are predicted. The results showed that the present model predicts data that are very close to the available experimental data in the literature with an average error of 2.65%. The pressure of the hydrocarbon mixture (HCM) decreases, while its vapor quality, specific volume and Mach number increase along the capillary tube. Also, the results indicated that the capillary tube length is largely dependent on the capillary tube diameter. Other parameters such as mass flow rate, inlet pressure, subcooling degree (or quality) and relative roughness influence the capillary tube length in that order. The capillary tube length as a function of the significant parameters is presented in equation form. Also, capillary tube selection charts either to predict the mass flow rates of propane/n-butane/iso-butane mixtures through adiabatic capillary tubes or to select the capillary tube size according to the required applications are developed. The comparison between R12, R134a and the hydrocarbon mixture (HCM) of propane/n-butane/iso-butane indicated that for a given mass flow rate, the pressure drop per unit length is about 4.13, 5.0 and 12.0 bar/m for R12, R134a and HCM, respectively. The ratios of the average mass flow rate of the HCM with a propane mass fraction of 0.6 to those of R12 and R134a are about

  7. Fission yeast shelterin regulates DNA polymerases and Rad3(ATR kinase to limit telomere extension.

    Directory of Open Access Journals (Sweden)

    Ya-Ting Chang

    2013-11-01

    Full Text Available Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3(ATR/Tel1(ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1(TERT, DNA polymerases, Replication Protein A (RPA complex, Rad3(ATR-Rad26(ATRIP checkpoint kinase complex, Tel1(ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1 and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε and lagging (Polα strand DNA polymerases at telomeres to modulate Rad3(ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment.

  8. The Phase Envelope of Multicomponent Mixtures in the Presence of a Capillary Pressure Difference

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2016-01-01

    for test mixtures with wide ranges of compositions at different capillary radii and vapor fractions. The calculation results show that the phase envelope changes everywhere except at the critical point. The bubble point and the lower branch of the dew point show a decrease in the saturation pressure......, whereas the upper branch of the dew point shows an increase. The cricondentherm is shifted to a higher temperature. We also presented a mathematical analysis of the phase envelope shift due to capillary pressure based on linear approximations. The resulting linear approximation equations can predict...... the magnitude of shift, and the approximation is close for the change in the bubble point pressure....

  9. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  10. Closed fuel cycle and contemporary tendencies of the nuclear facilities development

    International Nuclear Information System (INIS)

    Lelek, V.; Hron, M.

    2003-01-01

    The decision to develop nuclear facility is given not only through technical and financial arguments, but sometimes even the greater weight is on political, general safety and public acceptance reasons. Moreover a responsible statement about financial needs is at the beginning of the study possible only with a great error (roughly speaking - factor of two) and a time estimation up to the industrial facilities is about fifteen or even more years. If the technical development and realization is successful, we can express a more responsible conclusion only in such long time intervals. During such long periods, the criteria for political and financial decisions could be changed and the technical development will necessary follow the new situation with a change in the stream of money. On the other side, the stream of money into technology leads to a more precise forecast and a more responsible decision for future realizations. We shall try, in the paper, to reflect technical problems in the closed fuel cycle (like solid and liquid fuel options) with the public demands (refusing of nuclear energy and spent fuel disposal generally, preferring waste less technologies) and political safety aspects (nonproliferation, spent fuel storages). There will be a special attention devoted to such problems in smaller countries, where demands for energy cannot be covered by local classical sources and nuclear energy and spent fuel are already long time reality. The organizational measures and tendencies will be analyzed how to compose sufficiently great and qualified collectives to be able to overcome from the local final disposal development to the common technology realizing practically closed fuel cycle and enabling decomposition of water for the hydrogen production during the first half of this century. Overview information will be given about the Czech national technical program within the EU Program (MOST Project) and within the cooperation with Russian institutes in the molten

  11. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  12. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  13. Surfing with capillary waves: a survival strategy for trapped bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2017-11-01

    Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  15. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  16. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    International Nuclear Information System (INIS)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F.

    2017-01-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  17. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F., E-mail: falcao@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avançacados (IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  18. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    Science.gov (United States)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  20. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  1. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  2. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  3. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  4. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  5. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  6. Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics

    Science.gov (United States)

    Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza

    2017-06-01

    This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.

  7. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  8. Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

    International Nuclear Information System (INIS)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1998-01-01

    A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO 2 -fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO 2 fuel cycle

  9. The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    The cycling time of DNA polymerase III holoenzyme during replication of UV-irradiated single-stranded (ss) DNA was longer than with unirradiated DNA (8 versus 3 min, respectively), most likely due to slow dissociation from lesion-terminated nascent DNA strands. Initiation of elongation on primed ssDNA was not significantly inhibited by the presence of UV lesions as indicated by the identical distribution of replication products synthesized at early and late reaction times and by the identical duration of the initial synthesis bursts on both unirradiated and UV-irradiated DNA templates. When replication was performed with DNA polymerase III* supplemented with increasing quantities of purified beta 2 subunit, the cycling time on UV-irradiated DNA decreased from 14.8 min at 1.7 nM beta 2 down to 6 min at 170 nM beta 2, a concentration in which beta 2 was in large excess over the polymerase. In parallel to the reduction in cycling time, also the bypass frequency of cyclobutane-photodimers decreased with increasing beta 2 concentration, and at 170 nM beta 2, bypass of photodimers was essentially eliminated. It has been shown that polymerase complexes with more than one beta 2 per polymerase molecule were formed at high beta 2 concentrations. It is plausible that polymerase complexes obtained under high beta 2 concentration dissociate from lesion-terminated primers faster than polymerase complexes formed at a low beta 2 concentration. This is expected to favor termination over bypass at pyrimidine photodimers and thus decrease their bypass frequency. These results suggest that the beta 2 subunit might act as a sensor for obstacles to replication caused by DNA damage, and that it terminates elongation at these sites by promoting dissociation. The intracellular concentration of beta 2 was estimated to be 250 nM

  10. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  12. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2017-12-01

    Full Text Available Background: Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc. Methods: Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Results: Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Conclusion: Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. Impact of the study: This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing. Keywords: Epoc, Capillary, Transport, Blood gas, Point of care

  13. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  14. Catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Sidney, Barry D.; Miller, Irvin M.; Hess, Robert V.; Wood, George M.; Batten, Carmen E.; Burney, Lewis G.; Hoyt, Ronald F.; Paulin, Patricia A.; Brown, Kenneth G.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst.

  15. DNA polymerase. beta. reaction with ultraviolet-irradiated DNA incised by correndonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, R; Zarebska, Z [Instytut Onkologii, Warsaw (Poland); Zmudzka, B [Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki

    1980-09-19

    Covalently closed circular Col E1 DNA was ultraviolet-irradiated with a dose of 60 J/m/sup 2/, thus introducing about 3.2 pyrimidine dimers per DNA molecule. Treatment of irradiated Col E1 DNA with Micrococcus luteus correndonuclease resulted, in the vicinity of pyrimidine dimers, in an average of 3.3 incisions per DNA molecule, and converted DNA to the open circular form. Incised Col E1 DNA stimulated no reaction with calf thymus DNA polymerase ..cap alpha.. but was recognized as a template by DNA polymerase ..beta... The latter enzyme incorporated about 1.6 molecules of dTMP (corresponding to 6 molecules of dNMP) per one correndonuclease incision. The length of the DNA polymerase ..beta.. product was comparable to the anticipated length of the DNA region within which the hydrogen bonds were disrupted owing to dimer formation. The enzyme required Mg/sup 2 +/ and four dNTPs for reaction and was resistant to N-ethylmaleimide or p-mercuribenzoate.

  16. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  17. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  18. Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrée-Anne Berthiaume

    2018-01-01

    Full Text Available Summary: Direct contact and communication between pericytes and endothelial cells is critical for maintenance of cerebrovascular stability and blood-brain barrier function. Capillary pericytes have thin processes that reach hundreds of micrometers along the capillary bed. The processes of adjacent pericytes come in close proximity but do not overlap, yielding a cellular chain with discrete territories occupied by individual pericytes. Little is known about whether this pericyte chain is structurally dynamic in the adult brain. Using in vivo two-photon imaging in adult mouse cortex, we show that while pericyte somata were immobile, the tips of their processes underwent extensions and/or retractions over days. The selective ablation of single pericytes provoked exuberant extension of processes from neighboring pericytes to contact uncovered regions of the endothelium. Uncovered capillary regions had normal barrier function but were dilated until pericyte contact was regained. Pericyte structural plasticity may be critical for cerebrovascular health and warrants detailed investigation. : Pericyte-endothelial contact is important for many aspects of cerebrovascular health. Berthiaume et al. use longitudinal two-photon imaging to show that the processes of brain capillary pericytes are structurally plastic in vivo. Their processes can grow hundreds of micrometers to ensure contact with exposed endothelium following ablation of a single pericyte. Keywords: capillary, pericyte, endothelium, blood-brain barrier, blood flow, plasticity, two-photon imaging, Alzheimer’s disease, dementia, stroke

  19. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  20. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system.

    Science.gov (United States)

    Cao, Jing; Edwards, Rachel; Chairez, Janette; Devaraj, Sridevi

    2017-12-01

    Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc). Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory) was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics) was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer) for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing.

  1. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  2. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, S.; Takatsu, A.; Yarita, T.; Zhu, Y.; Chiba, K.

    2009-01-01

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H 2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  3. X-ray focusing using capillary arrays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Chapman, H.N.

    1990-01-01

    A new form of X-ray focusing device based on glass capillary arrays is presented. Theoretical and experimental results for array of circular capillaries and theoretical and computational results for square hole capillaries are given. It is envisaged that devices such as these will find wide applications in X-ray optics as achromatic condensers and collimators. 3 refs., 4 figs

  4. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  5. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Real-time observation of the initiation of RNA polymerase II transcription.

    Science.gov (United States)

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  7. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  8. Ellipsoidal capillary as condenser for the BESSY full-field x-ray microscope

    International Nuclear Information System (INIS)

    Guttmann, P; Heim, S; Schneider, G; Zeng, X; Feser, M; Yun, W

    2009-01-01

    The BESSY x-ray microscopy group has developed a new full-field x-ray microscope which employs an advanced x-ray optical concept. Traditionally, zone plate based condensers are used in x-ray microscopes providing an energy resolution of only E/ΔE ≤ 500. In addition, this conventional monochromator concept requires a pinhole close to the sample restricting the available space for tomography applications. In our new BESSY microscope, a standard monochromator beam line provides a high energy resolution of up to 10,000 which permits NEXAFS studies. An elliptically shaped mono-capillary is used to form the hollow cone illumination necessary for sample illumination and to match the aperture of the objective. Calculations regarding the performance and accuracies needed are presented and characterizations of capillaries especially made for the BESSY soft x-ray microscope are shown. For the first time, we demonstrate that glass capillaries are well suited as condensers in the soft x-ray energy domain. Their focusing efficiency was measured to be 80% which is about an order of magnitude higher than the diffraction efficiency of zone plate based condensers.

  9. Design of Capillary Flows with Spatially Graded Porous Films

    Science.gov (United States)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  10. Periocular capillary hemangioma: management practices in recent years

    Directory of Open Access Journals (Sweden)

    Hernandez JA

    2013-06-01

    Full Text Available Jo Anne Hernandez,1,3,4 Audrey Chia,2 Boon Long Quah,1,2 Lay Leng Seah1,2 1Department of Ophthalmology, Kandang Kerbau Women's and Children's Hospital, Singapore; 2Singapore National Eye Centre, Singapore; 3National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; 4Department of Ophthalmology, Cardinal Santos Medical Center, San Juan, Manila, Philippines Purpose: To present a case series on the management options for capillary hemangiomas involving the eyelid and orbit. Methods: This is a retrospective chart review of clinically diagnosed capillary hemangioma cases involving the periocular region treated at two local eye institutions. The patients' demographics and clinical presentation – including visual acuity, refractive error, periorbital and orbital examinations, and ultrasound and magnetic resonance imaging findings – were reviewed. The clinical progression, modalities of treatment, and treatment outcomes were studied. Results: Sixteen cases of capillary hemangiomas involving the eyelid and orbit were studied. The mean age at consultation was 9.6 months (range: 1 month–72 months. The majority were females (75%, with 50% presenting as upper-eyelid hemangiomas and the remaining as lower-eyelid (38% and glabellar (12% lesions. Combined superficial and deep involvement was common (64%. Cases whose lesions were located at the upper eyelid or superior orbit led to amblyopia (25%. Fifty-six percent of cases (9/16 were managed conservatively, and 44% (7/16 underwent treatment with either single-agent (n = 4 or combined treatments (n = 3. Conclusion: Close monitoring of visual development and prompt institution of amblyopia therapy for children with periocular capillary hemangiomas generally preserve vision. Extensive lesions that affect the visual axis require local and systemic treatments, alone or in combination, in order to reduce the size and impact of lesions on the eyeball, to reduce induced refractive error and

  11. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  12. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    Science.gov (United States)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  13. Investigation of the output pulse characteristics of a 46.9 nm Ar capillary discharge soft x-ray laser

    International Nuclear Information System (INIS)

    Ritucci, A.; Tomassetti, G.; Palladino, L.; Reale, A.; Gaeta, G.; Limongi, T.; Flora, F.; Mezi, L.; Kukhlevsky, S.V.; Kaiser, J.; Faenov, A.; Pikuz, T.; Reale, L.

    2002-01-01

    In this paper, we report on the realization of a capillary discharge soft x-ray laser operating at 46.9 nm pumped by a 30 kA peak value, 150 ns half cycle duration current pulse (corresponding to a mean current slope of about 5 1011 A/s). The slope of the pumping current is sufficiently high to produce the plasma compression and laser amplification on the 3p-3s, J=0-1 transition of Ne-like Ar, in 2.4-4 mm in diameter alumina capillary channels. We have analyzed the output pulse characteristics of the produced laser beam, such as the lasing time and the pulse duration, the saturation and the output pulse energy, the near field image as a function of different experimental parameters. Using the same current pulse, the lasing effect has not been observed in polyacetal capillaries, demonstrating the damning role of the wall capillary ablation in the heating and in the stability of the plasma column during the z-pinch compression

  14. Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Guimarães, Lamartine N.F.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differ strongly from usual ground-based power systems regarding the importance of overall size and mass. For propulsion power systems, size and mass are essential drivers that should be minimized during conception processes. Considering this aspect, this paper aims the development of a design-based model of a Closed Regenerative Brayton Cycle that applies the thermal conductance of the main components in order to predict the energy conversion performance, allowing its use as a preliminary tool for heat exchanger and radiator panel sizing. The centrifugal-flow turbine and compressor characterizations were achieved using algebraic equations from literature data. A binary mixture of Helium–Xenon with molecular weight of 40 g/mole is applied and the impact of the components sizing in the energy efficiency is evaluated in this paper, including the radiator panel area. Moreover, an optimization analysis based on the final mass of heat the exchangers is performed. - Highlights: • A design-based model of a Closed Brayton Cycle is proposed for nuclear space needs. • Turbomachinery efficiency presented a strong influence on the system efficiency. • Radiator area presented the highest potential to increase the system efficiency. • There is maximum system efficiency for each total mass of heat exchangers. • Size or efficiency optimization was performed by changing heat exchanger proportion.

  15. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2017-01-01

    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  16. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  17. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis

    Science.gov (United States)

    Suo, Zucai

    2014-01-01

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been done to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer (FRET) to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550

  19. X-Ray Laser in an Ablative Capillary Discharge Driven by an m=0 Instability

    International Nuclear Information System (INIS)

    Kunze, H.J.

    2002-01-01

    The development of EUV and soft-X ray lasers made great progress during the last decade. In most cases powerful primary lasers in the UV-, visible and near-infrared spectral regions are employed to produce the dense hot plasmas needed as active media for the lasers. Widely spread applications require small table-top systems and here capillary discharges offer an alternative approach and are being studied by several groups. By selecting properly the transient discharge conditions, collisional excitation or three-body recombination are the effective mechanisms to achieve population inversion. At the Ruhr-University a different approach is pursued where charge exchange between different ions in colliding plasmas is utilized. The plasmas are produced in a small ablative capillary discharge made of polyacetal. In the second half cycle an m=O instability develops and results in hot plasmas in the neck regions which stream into the cold plasma outside and create overpopulation of the n=3 level of hydrogenic carbon leading to lasing on the Balmer-alpha line at 18.22 nm. A waved structure of the inner capillary wall induces reliably the instability and pinhole pictures give the clue why not all materials are useful. Double pass experiments using a multilayer mirror give an effective gain-length product of GL=4.3 for a 3 cm long capillary and a life-time of the inversion layers of 400 ps

  20. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  1. Reliability of widefield capillary microscopy to measure nailfold capillary density in systemic sclerosis.

    Science.gov (United States)

    Hudson, M; Masetto, A; Steele, R; Arthurs, E; Baron, M

    2010-01-01

    To determine intra- and inter-observer reliability of widefield microscopy to measure nailfold capillary density in patients with systemic sclerosis (SSc). Five SSc patients were examined with a STEMV-8 Zeiss biomicroscope with 50x magnification. The nailfold of the second, third, fourth and fifth fingers of both hands of each patient were photographed twice by each of two observers, once in the morning and again in the afternoon (total of 32 pictures). Two raters reviewed the photographs to produce capillary density readings. Intra- and inter-rater reliability of the readings were computed using intra-class correlations (ICC). Additional analyses were undertaken to determine the impact of other sources of variability in the data, namely patient, finger, technician and time. Intra-and inter-rater reliability were substantial (ICC 0.72-0.84) when raters were reading the same photographs or photographs taken at the same time of day. Agreement was only fair between morning and afternoon density readings (ICC 0.30-0.37). Patients, individual fingers and technician accounted for a large part of the variability in the data (combined variance component of 7.69 out of the total 12.23). The coefficient of variation of widefield microscopy was 24%. Although intra- and inter-rater reliability of nailfold capillary density measurements using widefield microscopy are good, proper standardisation of the conditions under which capillaroscopy is done and better imaging of nailfold capillary abnormalities should be considered if nailfold capillary density is to be used as an outcome measure in multi-centre clinical trials in SSc.

  2. Effects of potential once-through improvements on the uranium utilization in the closed LWR cycle assuming self generated recycling of uranium and plutonium

    International Nuclear Information System (INIS)

    1979-06-01

    This paper is concerned with potential improvements to the resource utilization of current generation light water reactors operating on a closed U/Pu fuel cycle. Only those modifications to existing systems layout and fuel cycle practise are discussed that have been considered in Working Group 8 A for the once-through cycle. The objective is to give an impression how much the difference in resource utilization between the once-through and the closed U/Pu cycle were changed if both cycles were reoptimized independantly from each other with respect to uranium consumption. No commercial recycling of U/Pu has been taken place to date in 1300 MWe light water reactors. The feasibility of thermal recycling has been demonstrated however on an industrial scale in reactors of the 300 MWe class. (Obrigheim, Gundremmingen). From this experience and from extensive design calculations it has been concluded that for Pu bearing fuel assemblies of 1300 MWe plants it would be favorable to use the same structural layout and similar fuel management procedures as for uranium assemblies. This would result in plant life-time averaged uranium savings on the order of 35 - 40 % relative to the once-through cycle in case of the Self Generated Recycling Mode

  3. File list: Pol.Emb.05.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_12.bed ...

  4. File list: Pol.Emb.50.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_12.bed ...

  5. Applications of capillary optics for focused ion beams

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2014-01-01

    This article introduces applications of focused ion beams (∼1 μm) with glass capillaries systems. A first report on the interaction between ion beams and glass capillaries was published in 1996. The guiding capabilities of glass capillaries were discovered due to ion reflection from inner wall of glass surfaces. Meanwhile, the similar optics have been already realized in focusing X-rays using glass capillaries. The basic technology of X-rays optics using glass capillaries had been developed in the 1980's and 1900's. Also, low energy atom scattering spectroscopy for insulator material analysis will be mentioned. (author)

  6. Capillary density: An important parameter in nailfold capillaroscopy.

    Science.gov (United States)

    Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik

    2017-01-01

    Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ultraviolet-absorbing organic anions in uremic serum separated by capillary zone electrophoresis, and quantification of hippuric acid

    NARCIS (Netherlands)

    Schoots, A.C.; Verheggen, T.P.E.M.; Vries, de P.M.J.M.; Everaerts, F.M.

    1990-01-01

    Organic anions accumulated in blood serum of patients with chronic renal failure were separated by a novel technique: closed-system capillary zone electrophoresis (CZE) in a pH6 carrier-electrolyte system. Hippuric acid (HA), p-hydroxyhippuric acid, and uric acid were identified by their co-elution

  8. Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation.

    Science.gov (United States)

    Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang

    2018-04-01

    The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Capillary Interactions between a Probe Tip and a Nanoparticle

    International Nuclear Information System (INIS)

    Li-Ning, Sun; Le-Feng, Wang; Wei-Bin, Rong

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions, a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases. It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force. The capillary force decreases with the increasing separation distances, and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances. The applicability of the symmetric meniscus approximation is discussed. (condensed matter: structure, mechanical and thermal properties)

  10. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  11. Microgravity Investigation of Capillary Driven Imbibition

    Science.gov (United States)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  12. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  13. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  14. Genetic variability of Artemisia capillaris (Wormwood capillary) by ...

    African Journals Online (AJOL)

    The genetic variability among individuals of Artemisia capillaris from state of Terengganu, Malaysia was examined by using the random amplified polymorphic DNA (RAPD) technique. The samples were collected from differences regional in Terengganu State. The genomic DNA was extracted from the samples leaves.

  15. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    International Nuclear Information System (INIS)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase α, apparently by binding to and inactivating the DNA-polymerase α complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G 2 phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G 2 phase as feasible. Because DNA polymerase α is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  16. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  17. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; Tangelder, GJ; Donker, AJM; Stehouwer, CDA

    Capillary rarefaction occurs in many tissues in patients with essential hypertension and may contribute to an increased vascular resistance and impaired muscle metabolism. Rarefaction may be caused by a structural (anatomic) absence of capillaries, functional nonperfusion, or both. The aim of this

  18. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  19. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  20. Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters.

    Science.gov (United States)

    Šebestová, Andrea; Petr, Jan

    2017-12-01

    The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    Full Text Available Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  2. Theory and applications of the polymerase chain reaction.

    Science.gov (United States)

    Remick, D G; Kunkel, S L; Holbrook, E A; Hanson, C A

    1990-04-01

    The polymerase chain reaction (PCR) is a newly developed molecular biology technique that can significantly amplify DNA or RNA. The process consists of repetitive cycles of specific DNA synthesis, defined by short stretches of preselected DNA. With each cycle, there is a doubling of the final, desired DNA product such that a million-fold amplification is possible. This powerful method has numerous applications in diagnostic pathology, especially in the fields of microbiology, forensic science, and hematology. The PCR may be used to directly detect viral DNA, which may facilitate the diagnosis of acquired immune deficiency syndrome (AIDS) or other viral diseases. PCR amplification of DNA allows detection of specific sequences from extremely small samples, such as with forensic material. In hematology, PCR may help in the diagnosis of hemoglobinopathies or of neoplastic disorders by documenting chromosomal translocations. The new PCR opens exciting new avenues for diagnostic pathology using this new technology.

  3. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  4. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Cottet, H.

    2011-01-01

    Roč. 413, č. 1 (2011), s. 8-15 ISSN 0003-2697 R&D Projects: GA ČR GP203/09/P485; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary zone electrophoresis * capillary isoelectric focusing * glycated hemoglobin HbA1c Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.996, year: 2011

  5. File list: Pol.Emb.10.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_14 dm3 RNA polymerase Embryo Mitotic cycle 14 SRX750...078,SRX750076,SRX750074 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_14.bed ...

  6. File list: Pol.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_13 dm3 RNA polymerase Embryo Mitotic cycle 13 SRX750...080,SRX750082,SRX750071 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  7. Effects of cooling time on a closed LWR fuel cycle

    International Nuclear Information System (INIS)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-01-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  8. Preliminary closed Brayton cycle study for a space reactor application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de; Camillo, Giannino Ponchio

    2007-01-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  9. Preliminary closed Brayton cycle study for a space reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  10. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J., E-mail: johannes.nowak@tu-dresden.de; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application. - Highlights: • A capillary viscometer to characterize biocompatible ferrofluids is presented. • Shear rates and capillary diameters

  11. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  12. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography.

    Science.gov (United States)

    Ali, Faiz; Cheong, Won Jo

    2015-10-01

    A silica capillary of 50 μm internal diameter and 500 mm length (416 mm effective length) was chemically modified with 4-(trifluoromethoxy) phenyl isocyanate in the presence of dibutyl tin dichloride as catalyst. Sodium diethyl dithiocarbamate was reacted with the terminal halogen of the bound ligand to incorporate the initiator moiety, and in situ polymerization was performed using a monomer mixture of styrene, N-phenylacrylamide, and methacrylic acid. The resultant open tubular capillary column immobilized with the copolymer layer was used for the separation of tryptic digest of cytochrome C in capillary electrochromatography. The sample was well eluted and separated into many components. The elution patterns of tryptic digest of cytochrome C were studied with respect to pH and water content in the mobile phase. This preliminary study demonstrates that open tubular capillary electrochromatography columns with a modified copolymer layer composed of proper nonpolar and polar units fabricated by reversible addition-fragmentation transfer polymerization can be useful as separation media for proteomic analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Lee, J.; Jeong, S. [Cryogenic Engineering Laboratory, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop N{sub 2} decompression system in terms of nitrogen consumption. In this study, two closed-loop pure N{sub 2} J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are investigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled N{sub 2} J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

  14. File list: Pol.Emb.10.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_8-9.bed ...

  15. File list: Pol.Emb.05.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_13-14 dm3 RNA polymerase Embryo Mitotic cycle 13-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_13-14.bed ...

  16. File list: Pol.Emb.10.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_11-13.bed ...

  17. File list: Pol.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 RNA polymerase Embryo Mitotic cycle 12-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  18. File list: Pol.Emb.20.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_11-13.bed ...

  19. File list: Pol.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 RNA polymerase Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  20. File list: Pol.Emb.20.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_8-9.bed ...

  1. File list: Pol.Emb.50.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_12-14 dm3 RNA polymerase Embryo Mitotic cycle 12-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_12-14.bed ...

  2. File list: Pol.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  3. File list: Pol.Emb.50.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_8-9.bed ...

  4. File list: Pol.Emb.10.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_7-9 dm3 RNA polymerase Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_7-9.bed ...

  5. Fidelity and Mutational Spectrum of Pfu DNA Polymerase on a Human Mitochondrial DNA Sequence

    Science.gov (United States)

    André, Paulo; Kim, Andrea; Khrapko, Konstantin; Thilly, William G.

    1997-01-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10−6 must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or “PCR noise”. Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 × 10−7, and five of its more frequent mutations (hot spots) consisted of three transversions (GC → TA, AT → TA, and AT → CG), one transition (AT → GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be

  6. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  7. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  8. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  9. Biomimetic Unidirectional Capillary Action

    Science.gov (United States)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  10. Rapid capillary coating by epoxy-poly-(dimethylacrylamide): Performance in capillary zone electrophoresis of protein and polystyrene carboxylate

    Czech Academy of Sciences Publication Activity Database

    Chiari, M.; Cretich, M.; Šťastná, Miroslava; Radko, S. P.; Chrambach, A.

    2001-01-01

    Roč. 22, č. 4 (2001), s. 656-659 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary coating * capillary zone electrophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.282, year: 2001

  11. Evidence that cell surface charge reduction modifes capillary red cell velocity-flux relationships in hamster cremaster muscle

    NARCIS (Netherlands)

    Vink, H.; Wieringa, P. A.; Spaan, J. A.

    1995-01-01

    1. From capillary red cell velocity (V)-flux (F) relationships of hamster cremaster muscle a yield velocity (VF = 0) can be derived at which red cell flux is zero. Red cell velocity becomes intermittent and/or red blood cells come to a complete standstill for velocities close to this yield velocity,

  12. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  13. Dynamic simulation of natural convection bypass two-circuit cycle refrigerator-freezer and its application Part I: Component models

    International Nuclear Information System (INIS)

    Ding Guoliang; Zhang Chunlu; Lu Zhili

    2004-01-01

    In order to reduce the greenhouse gas emissions, efficient household refrigerator/freezers (RFs) are required. Bypass two-circuit cycle RFs with one compressor are proved to be more efficient than two-evaporator in series cycle RFs. In order to study the characteristics and improve the design of bypass two-circuit cycle RFs, a dynamic model is developed in this paper. In part I, the mathematic models of all components are presented, considering not only the accuracy of the models but also the computation stability and speed to solve the models. An efficiency model that requires a single calorimeter data point at the standard test condition is employed for compressor. A multi-zone model is employed for condenser and for evaporator, with its wall thermal capacity considered by effective metal method. The approximate integral analytic model is employed for adiabatic capillary tube, and the effective inlet enthalpy method is used to transfer the non-adiabatic capillary tube to adiabatic capillary tube. The z-transfer function model is employed for cabinet load calculation

  14. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  15. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  16. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Lorenz G. [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Leitner, Michael; Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Bonazza, Klaus [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Leclercq, Laurent; Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Ebner, Andreas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stutz, Hanno, E-mail: hanno.stutz@sbg.ac.at [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria)

    2017-01-25

    A successive multiple ionic polymer layer (SMIL) coating composed of four layers improved the capillary electrophoretic separation of a recombinant major birch pollen allergen and closely related variants when poly(acrylamide-co-2-acrylamido-2-methyl-1-propansulfonate) (55% PAMAMPS) replaced dextran sulfate as terminal SMIL layer. 55% PAMAMPS decelerated the electroosmotic flow (EOF) due to its lower charge density. Atomic force microscopy (AFM) was used to investigate SMIL properties directly on the inner capillary surface and to relate them to EOF measurements and results of associated CZE separations of a mixture of model proteins and peptides that were performed in the same capillary. For the first time, AFM-based biosensing topography and recognition imaging mode (TREC) under liquid conditions was applied for a sequential characterization of the inner surface of a SMIL coated capillary after selected treatments including pristine SMIL, SMIL after contact with the model mixture, after alkaline rinsing, and the replenishment of the terminal polyelectrolyte layer. A cantilever with tip-tethered avidin was used to determine the charge homogeneity of the SMIL surface in the TREC mode. SMIL coated rectangular capillaries with 100 μm internal diameter assured accessibility of the inner surface for this cantilever type. Observed changes in CZE performance and EOF mobility during capillary treatment were also reflected by alterations in surface roughness and charge distribution of the SMIL coating. A renewal of the terminal SMIL layer restored the original surface properties of SMIL and the separation performance. The alliance of the novel TREC approach and CZE results allows for an improved understanding and a comprehensive insight in effects occurring on capillary coatings. - Highlights: • SMIL coating with a terminal layer of reduced charge density improves CZE separation. • Capillaries with rectangular diameter allow for in-capillary TREC-AFM measurement.

  17. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  18. Rapid differentiation of closely related isolates of two plant viruses by polymerase chain reaction and restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Barbara, D J; Morton, A; Spence, N J; Miller, A

    1995-09-01

    Immunocapture reverse transcriptase-polymerase chain reaction (RT-PCR) followed by restriction fragment length polymorphism (RFLP) analysis of the product has been shown to be an effective procedure for discriminating serologically indistinguishable isolates of two plant viruses, raspberry bushy dwarf (RBDV) and zucchini yellow mosaic (ZYMV). For both viruses, only limited sequence information was available at the time of primer design, but most of the isolates which were tested could be amplified (the one exception being a serologically quite distinct isolate of ZYMV). Restriction endonucleases revealing diagnostic RFLPs were readily identified. Each of two isolates of ZYMV could be detected in the presence of the other and the relative proportions approximately quantified by visual estimation of the relative intensity of the appropriate bands. A range of isolates of different RBDV pathotypes were compared; isolates were grouped in ways that accorded with their known history. Computer analysis of the published sequence from which the primers had been derived showed the sequenced isolate to be identical with an isolate imported from the USSR. The PCR/RFLP procedure is rapid (it can be completed in less than 2 days), effective and will probably be generally applicable to distinguishing closely related virus isolates, even where little sequence information is available.

  19. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  20. Genetics Home Reference: megalencephaly-capillary malformation syndrome

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Megalencephaly Educational Resources (5 links) Boston Children's Hospital: Capillary Malformation Cincinnati Children's Hospital: Capillary Malformations ...

  1. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  2. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J. (Pharmasset); (Emerald)

    2012-08-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.

  3. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    Science.gov (United States)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  4. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  5. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations.

    Science.gov (United States)

    Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo

    2017-06-01

    Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  7. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  8. Capillary contact angle in a completely wet groove.

    Science.gov (United States)

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  9. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    Science.gov (United States)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  10. The closed Brayton cycle: An energy conversion system for near-term military space missions

    Science.gov (United States)

    Davis, Keith A.

    The Particle Bed Reactor (PBR)-closed Brayton cycle (CBC) provides a 5 to 30 kWe class nuclear power system for surveillance and communication missions during the 1990s and will scale to 100 kWe and beyond for other space missions. The PBR-CBC is technically feasible and within the existing state of the art. The PBR-CBC system is flexible, scaleable, and offers development economy. The ability to operate over a wide power range promotes commonality between missions with similar but not identical power spectra. The PBR-CBC system mass is very competitive with rival nuclear dynamic and static power conversion and systems. The PBR-CBC provides growth potential for the future with even lower specific masses.

  11. Reduction of impurity contamination in a working gas for closed-cycle MHD power generation

    International Nuclear Information System (INIS)

    Endo, N.; Yoshikawa, K.; Shioda, S.

    1989-01-01

    The reduction of impurity contamination in a working inert gas for closed-cycle MHD power generation is examined. A conceptual operation system of regenerative heat exchangers is proposed for minimizing the amount of combustion gas which mixes in the working inert gas. Experiments have shown that this mixing can be reduced significantly by evacuating and flushing the heat exchangers after being heated by combustion gas. Calculations have shown that, among the main molecular contaminants in the working inert gas, CO 2 , H 2 O and O 2 can be removed as compounds with the seed material, while N 2 and H 2 can be reduced by a partial purification of the circulating working inert gas. (author)

  12. Closed cycle device

    International Nuclear Information System (INIS)

    Ruby, L.E.; Witt, D.L.; Staley, C.F.

    1975-01-01

    A gas dynamic laser wherein the lasing fluid is recirculated in a closed loop is described. The flow can be assumed to start with the lasing gas passing through a cascade of supersonic nozzles. This low pressure, high velocity gas is then passed through a lasing cavity where the lasing action takes place. The energy of the high velocity gas stream is converted back to static pressure in a supersonic diffuser. The diffuser is constructed with (1) variable geometry, and (2) provisions for bleeding off the boundary layer for improved efficiency. Downstream of the supersonic diffuser there is a heat exchanger which partially cools the gas in the loop. This partially cooled gas is then supplied to a compressor where the pressure and temperature are raised back to the level at the start of the flow. The lasing gas is directed from the exit of the compressor to a manifold upstream of the cascade of supersonic nozzles. The compressor only supplies a pressure rise equal to the pressure loss by inefficiencies in the nozzle, the supersonic diffuser and the pressure drop in the heatexchanger and plumbing. To provide for cooling of the compressor, the gas bled from the diffuser is cooled by a second heat exchanger and pumped back to compressor inlet pressure and introduced into the compressor for cooling. In steady state operation, both heat exchangers referred to above, are designed to regulatethe nozzle inlet gas temperature by removing the amount of heat energy added by compressing minus the amount of energy extracted in the lasing beam and energy lost to the environment. The compressor and pumping means for cooling the compressor can be driven by any means desired. (U.S.)

  13. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  14. Analytical and experimental investigation of closed-cycle sorption cooling systems

    Science.gov (United States)

    Liu, Lianquan

    1992-01-01

    The first part of the present thesis concerns the Coefficient of Performance (COP) of two types of closed-cycle sorption cooling systems: the Single Effect Liquid (SEL) absorption system and the Regenerative Solid (RS) adsorption system. When specific cycle configurations are considered, the COP is always less than that allowed by the second law. The potential of the two systems to approach the second law limit is considered in this work. The analysis shows that COP of a SEL system using LiBr-H2O is not limited by one, as believed before, and that the COP of a RS cooling system using zeolite-water is considerably larger than that of the SEL system. This is due to recovery of the heat of adsorption which is made possible by capturing the thermal wave in the solid adsorbent. In the second part, a one dimensional model has been developed for a real RS cooling system featured by finite heat transfer coefficients. The problem is solved numerically to yield the temperature and uptake profiles, COP, and cooling capacity and cooling rates. The effects of various design and operating parameters on system performance have been investigated by using the model. The convective heat transfer coefficient at the inner wall of the fluid channel passing through the zeolite columns, the flow rate of the heat transfer fluid, the condenser and evaporator temperature are identified as the most significant factors. A new correlation of adsorption equilibrium has been derived in this thesis. The derivation is based on established thermodynamic relationships and is shown to be able to well represent the data of three adsorption pairs widely used in sorption cooling applications: zeolite-water, silica gel-water and activated carbon-methanol. Finally, in the experimental part of the present work a test set-up of a zeolite-water heat and mass regenerator was designed, instrumented and built. Temperature profiles at various operating conditions were measured. The data of a 'single blow' mode

  15. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    Science.gov (United States)

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Closing nuclear fuel cycle with fast reactors: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V. [Bochvar Institute - VNIINM, Moscow (Russian Federation)

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  17. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  18. Can positrons be guided by insulating capillaries?

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. Investigations of guiding of few hundred eV antiparticles by macroscopic insulating capillaries have been described. Using subfemtoamp positron and electron beams, we demonstrated that a portion of the entering beams were transmitted and emerged in the direction of the capillary. We also demonstrated that the transmitted intensities decreased as the capillary tilt angle was increased (see Fig. 1). Both of these are indications of guiding. However, a comparison with transmitted photon data implies that the positron transmission may result from geometric factors associated with our diffuse beams and tapered capillary used in these studies. For electrons, the comparison indicates differences which could imply that even very low intensity beams can be guided. Measurements of the transmitted intensity as a function of charge entering the capillary were inconclusive as no major increases in the transmitted intensity were observed. 2D static simulations imply that our beam intensities, although extremely small with respect to previous guiding experiments, were capable of supplying sufficient charge for guiding to occur. Although not definitive, our study implies that sub-femtoamp beam intensities are sufficient to form charge patches and produce guiding. This may have been observed for electrons with the question remaining open for positrons. That guiding was not clearly seen may have been due to the capillary geometry used or it may indicate that although sufficient charge is being supplied, the surface and bulk resistivities of glass permit this charge to dissipate faster than it is formed. This aspect was not taken into consideration in our simulations but a crude estimate of the discharge rate implies that beam intensities on the order of pA, rather than fA as used here, may be required for guiding to occur in the capillaries used here. Additional studies are required to definitively answer the question as to whether antiparticles

  19. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  20. The water cycle in closed ecological systems: Perspectives from the Biosphere 2 and Laboratory Biosphere systems

    Science.gov (United States)

    Nelson, Mark; Dempster, W. F.; Allen, J. P.

    2009-12-01

    To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle - recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m 2 with a combined volume of 200,000 m 3 with a total water capacity of some 6 × 10 6 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere - a small (40 m 3 volume) soil-based plant growth facility with a footprint of 15 m 2 - is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 10 6 L, soil with 1 to 2 × 10 6 l, primary storage tank with 0 to 8 × 10 5 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 10 5 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller - humidity in the atmosphere (2 × 10 3 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 10 4 L). Key technologies included condensation from

  1. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Science.gov (United States)

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  2. Rapid and specific identification of Yersinia pestis by using a nested polymerase chain reaction procedure.

    OpenAIRE

    Campbell, J; Lowe, J; Walz, S; Ezzell, J

    1993-01-01

    We developed a 4-h nested polymerase chain reaction assay that detected a region of the plasminogen activator gene of Yersinia pestis in 100% of 43 Y. pestis strains isolated from humans, rats, and fleas yet was unreactive with the closely related species Yersinia enterocolitica and Yersinia pseudotuberculosis.

  3. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  4. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    Bossev, D.P.; Warren, G.

    2009-01-01

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  5. Generalized polymer effective charge measurement by capillary isotachophoresis.

    Science.gov (United States)

    Chamieh, Joseph; Koval, Dušan; Besson, Adeline; Kašička, Václav; Cottet, Hervé

    2014-11-28

    In this work, we have generalized the use of capillary isotachophoresis as a universal method for determination of effective charge of anionic and cationic (co)polymers on ordinary capillary electrophoresis instruments. This method is applicable to a broad range of strong or weak polyelectrolytes with good repeatability. Experimental parameters (components and concentrations of leading and terminating electrolytes, capillary diameters, constant electric current intensity) were optimized for implementation in 100 μm i.d. capillaries for both polyanions and polycations. Determined values of polymer effective charge were in a very good agreement with those obtained by capillary electrophoresis with indirect UV detection. Uncertainty of the effective charge measurement using isotachophoresis was addressed and estimated to be ∼5-10% for solutes with mobilities in the 20-50 × 10(-9)m(2)V(-1)s(-1) range. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.

    Science.gov (United States)

    Churaev; Starke; Adolphs

    2000-01-15

    Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.

  7. Geometry Effects of Capillary on the Evaporation from the Meniscus

    International Nuclear Information System (INIS)

    Choi, Choong Hyo; Jin, Song Wan; Yoo, Jung Yul

    2007-01-01

    The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries in much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four corners

  8. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  9. Functional roles of DNA polymerases β and γ

    International Nuclear Information System (INIS)

    Huebscher, U.; Kuenzle, C.C.; Spadari, S.

    1979-01-01

    The physiological functions of DNA polymerases (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC2.7.7.7)β and γ were investigated by using neuronal nuclei and synaptosomes isolated from rat brain. uv irradiation of neuronal nuclei from 60-day-old rats resulted in a 7- to 10-fold stimulation of DNA repair synthesis attributable to DNA polymerase β which, at this developmental stage, is virtually the only DNA polymerase present in the nuclei. No repair synthesis could be elicited by treating the nuclei with N-methyl-N-nitrosourea, but this was probably due to the inability of brain tissue to excise alkylated bases from DNA. The role of DNA polymerase γ was studied in synaptosomes by using a system mimicking in vivo mitochondrial DNA synthesis. By showing that under these conditions, DNA replication occurs in miatochondria, and exploiting the fact that DNA polymerase γ is the only DNA polymerase present in mitochondria, evidence was obtained for a role of DNA polymerase γ in mitochondrial DNA replication. Based on these results and on the wealth of literature on DNA polymerase α, we conclude that DNA polymerase α is mainly responsible for DNA replication in nuclei, DNA polymerase β is involved in nuclear DNA repair, and DNA polymerase γ is the mitochondrial replicating enzyme. However, minor roles for DNA polymerase α in DNA repair or for DNA polymerase β in DNA replication cannot be excluded

  10. Preliminary studies on the closed cycle magneto aerodynamic converter

    International Nuclear Information System (INIS)

    Ricateau, P.

    1964-01-01

    Besides the open cycle MHD converters which convert the thermal energy contained in combustion gases, a closed cycle converter which can work with any high temperature heat source and specially with nuclear sources is being very carefully studied. Before proceeding to a practical study of the power station as a whole the performances of the converter itself must be fully investigated. These performances are largely a function of the conductivity of the gas, but this conductivity must not be repaid by a temperature technically unacceptable for the heat exchanger. In the conversion fluid an ionizable seeding vapour such as caesium or potassium is mixed with a carrier gas, helium or argon. Purely thermal ionization is only efficient above 2 500 deg. K, whereas the electric field obtained by Induction in the converter can, under given conditions, increase the electron temperature and produce an ionization rate well above the equilibrium value. This allows the gas to be ionized at moderate temperature. Studies are under way in order to clarify the conditions required to produce extra-thermal ionization in seeded rare gases. Measurements have been performed with a 3-phase 500 kVA plasmatron with potassium-seeded argon. The outgoing gas is fed into a channel where the tensor components of conductivity are measured in the presence of a magnetic field. The values found under thermodynamic equilibrium conditions confirm the simple theory. This is not the case when the electrons are heated. Measurements of the same kind have been made by another method in caesium-seeded helium contained in an isothermal vessel at 1 900 deg. K. There also the equilibrium values are in good agreement, but non-equilibrium ionization seems to be lower than expected. The effect of electron heating inside the converter in the case of argon-. potassium mixture has been considered in a theoretical study. It is shown that the electrode set must be carefully subdivided along the channel, and that

  11. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    Science.gov (United States)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  12. DNA polymerase preference determines PCR priming efficiency.

    Science.gov (United States)

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  13. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  14. [Analysis of Cut-off Value in Screening of Thalassemia by Capillary Hemoglobin Electrophoresis for Pregnant Women from Shenzhen Region of China].

    Science.gov (United States)

    Huo, Mei; Wu, Wen-Yuan; Liu, Mei; Gan, Zhi-Biao; Mao, Wei-Yu; Lin, Rong-Yao; Liu, Ai-Qin; He, Gui-Rong

    2016-04-01

    To investigate the cut-off value in screening of thalassemia in pregnant women from Shenzhen region by capillary hemoglobin electrophoresis. The data of capillary hemoglobin electrophoresis and genetic diagnosis of thalassemia from 2122 examined prenatal women were retrospectively analyzed. Capillary hemoglobin electrophoresis and α-, β- genetic diagnosis of thalassemia were carried out for every woman. Hemoglobin electrophoresis was performed using Capillarys 2 full-automated electrophoresis instrument. Gap polymerase chain reaction and reverse dot blot were used for genetic diagnosis of thalassemia genotyping test. The cut-off value in screening of thalassemia was determined by receiver operating characteristic curve and next to analyze the value of HbA2 and HbF in screening of thalassemia using the decided cut-off value. The areas under the curve (AUC(Roc)) of HbA2 for diagnosis of α-, β- thalassemia were 0.75 and 0.981 respectively, and the AUC(Roc) of HbF for diagnosis of β-thalassemia was 0.787. When HbA2 ≤ 2.55 was taken as the cut-off value of HbA2 for diagnosis of α-thalassemia, the sensitivity, specificity, positive likelihood ratio (LR(+)) and negative likelihood ratio (LR(-)) were 89.5%, 54.8%, 1.98, 0.19 respectively. When HbA2 ≥3.9 was taken as the cut off value of HbA2 for diagnosis of β-thalassemia, the sensitivity, specificity, LR(+) and LR(-) were 96.1%, 99.8% 480.5, 0.04 respectively. When HbF ≥0.75 was taken as the cut off value of HbF for diagnosis of β-thalassemia, the sensitivity, specificity, LR(+) and LR(-) were 83.6%, 61.8% respectively. The cut-off value in screening of thalassemia by capillarys 2 full automated electrophoresis instrument is different from that of the traditional method of hemoglobin electrophoresis, such as cellulose acetate membrane electrophoresis and agarose gel electrophoresis. Each laboratory should establish their own respective cut off value.

  15. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  16. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X......-ray powder diffraction (XRPD). In this article, we present the results for the analysis of 1st and 2nd deep discharge and charge for a cathode being cycled between 2 and 4.6 V. The crystalline precipitation of Li2O2 only is observed in the capillary battery. However, there are indications of side reactions...... of constant exposure of X-ray radiation to the electrolyte and cathode during charge of the battery was also investigated. X-ray exposure during charge leads to changes in the development of the intensity and the FWHM of the Li2O2 diffraction peaks. The X-ray diffraction results are supported by ex situ X...

  17. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Quesada, M.A.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  18. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    Science.gov (United States)

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  19. Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria.

    Directory of Open Access Journals (Sweden)

    Rudolph Spangler

    Full Text Available BACKGROUND: PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H(2O while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase. CONCLUSIONS/SIGNIFICANCE: It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved "treatment-free" attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one in a sample.

  20. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  2. Multianalyte detection using a capillary-based flow immunosensor.

    Science.gov (United States)

    Narang, U; Gauger, P R; Kusterbeck, A W; Ligler, F S

    1998-01-01

    A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused silica capillaries are prepared by coating anti-TNT and anti-RDX antibodies onto the silanized inner walls using a hetero-bifunctional crosslinker. After immobilization, the antibodies are saturated with a suitable fluorophorelabeled antigen. A "T" connector is used to continuously flow the buffer solution through the individual capillaries. To perform the assay, an aliquot of TNT or RDX or a mixture of the two analytes is injected into the continuous flow stream. In each capillary, the target analyte displaces the fluorophore-labeled antigen from the binding pocket of the antibody. The labeled antigen displaced from either capillary is detected downstream using two portable spectrofluorometers. The limits of detection for TNT and RDX in the multi-analyte formate are 44 fmol (100 microliters of 0.1 ng/ml TNT solution) and 224 fmol (100 microliters of 0.5 ng/ml RDX solution), respectively. The entire assay for both analytes can be performed in less than 3 min.

  3. Weight-controlled capillary viscometer

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  4. Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions

    International Nuclear Information System (INIS)

    Ablowitz, M J; Haut, T S

    2010-01-01

    High-order asymptotic series are obtained for gravity-capillary solitary waves, where the first term in the series is the well-known sech 2 solution of the KdV equation. The asymptotic series is used, with nine terms included, to investigate the effects of surface tension on the height and energy of large amplitude waves, and waves close to the solitary version of Stokes' extreme wave. In particular, for surface tension below a critical value, the solitary wave with the maximum energy is obtained. For large surface tension, the series is also used to study the energy related to the solitary waves of depression. Energy considerations suggest that, for large enough surface tension, there are solitary waves that can get close to the fluid bottom. Comparisons are also made with recent experiments.

  5. Capillary electrophoresis: principles and applications in illicit drug analysis.

    Science.gov (United States)

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  6. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    International Nuclear Information System (INIS)

    Rumi, Mohammad; Ishihara, Shunji; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-01

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor α-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use

  7. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Gabriele Büchel

    2017-12-01

    Full Text Available MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II. To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.

  8. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  10. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  11. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  12. Characterization of the catalytic center of the Ebola virus L polymerase.

    Science.gov (United States)

    Schmidt, Marie Luisa; Hoenen, Thomas

    2017-10-01

    Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential

  13. Characterization of the catalytic center of the Ebola virus L polymerase.

    Directory of Open Access Journals (Sweden)

    Marie Luisa Schmidt

    2017-10-01

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp of L, which is one of the most promising molecular targets, has never been experimentally characterized.Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication.We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target

  14. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  15. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  16. Condensation and Evaporation Transitions in Deep Capillary Grooves

    OpenAIRE

    Malijevský, A. (Alexandr); Parry, A.O.

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature $T_w$ condensation is first-order and evaporation is continuous with the metas...

  17. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  18. Application of CHESS single-bounce capillaries at synchrotron beamlines

    Science.gov (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  19. A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Jakub Hübner

    2013-01-01

    Full Text Available Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

  20. The nuclear fuel cycle in the 21st century

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2004-01-01

    As we enter the 21st century and contemplate the deployment of Generation III+ machines and the development of Generation IV systems, the fuel cycle within which these reactors are to operate has become a predominant consideration. The four challenges to nuclear development of the 21st century of economics, safety, sustainability through spent fuel management and efficient fuel utilization, and proliferation resistance increasingly involve the front and back ends of the fuel cycle equally if not more than the design of the reactor which has reached a far higher level of maturity. It is tempting to accept the closed cycle with its promise of effective waste management as inevitable. The central questions, however, are the characteristics of the desired closed cycle, the relative advantages of thermal versus fast spectrum closed cycles, the character and pace of the transition to a closed cycle, and finally the most central question as to whether the closed cycle is indeed more desirable a choice than is an open cycle. The desired closed fuel cycle for the long term around which this paper is based is full actinide recycle with natural uranium feed and only fission products discharged to an ultimate waste repository. It is concluded that a major international research and development program to achieve this fuel cycle is important to pursue. However, the need to decide for the closed cycle and deploy it is not pressing for the next several decades. (author)

  1. Channeling of neutral particles in micro- and nano-capillaries

    International Nuclear Information System (INIS)

    Dabagov, S.B.

    2003-01-01

    After briefly reviewing the main directions in X-ray optics and analyzing the development of capillary optics, a general theory of radiation propagation through capillary structures is described in both geometrical optics and wave optics approximations. Analysis of radiation field structure inside a capillary waveguide shows that wave propagation in channels can be of a purely modal nature, with transmitted energy mostly concentrated in the immediate neighbourhood of capillary inner walls. A qualitative change in radiation scattering with decreasing channel diameter 0 namely, the transition from surface channeling in microcapillaries to bulk channeling in nanocapillaries - is discussed [ru

  2. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.

    Science.gov (United States)

    Poranen, Minna M; Salgado, Paula S; Koivunen, Minni R L; Wright, Sam; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2008-11-01

    The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.

  3. Research on catalysts for long-life closed-cycle CO2 laser oaperation

    Science.gov (United States)

    Sidney, Barry D.; Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin-oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-Langley on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) the effects of various catalyst pretreatment techniques on catalyst efficiency; (2) development of a technique, verified in a 30-hour test, to prevent isotopic scrambling when C(O-18) and (O-18)2 are reacted in the presence of a common-isotope Pt/Sn(O-16)2 catalyst; and (3) development of a mathematical model of a laser discharge prior to catalyst introduction.

  4. The power features of Masseter muscle activity in tension-type and migraine without aura headache during open-close clench cycles

    Directory of Open Access Journals (Sweden)

    Behrouz Alizadeh Savareh

    2017-07-01

    Full Text Available Introduction Different types of headaches and TMJ click influence the masseter muscle activity. The aim of this study was to assess the trend of energy level of the electromyography (EMG activity of the masseter muscle during open-close clench cycles in migraine without aura (MOA and tension-type headache (TTH with or without TMJ click. Methods Twenty-five women with MOA and twenty four women with TTH participated in the study. They matched with 25 healthy subjects, in terms of class of occlusion and prevalence of temporomandibular joint (TMJ with click. The EMG of both masseter muscles were recorded during open-close clench cycles at a rate of 80 cycles per minute for 15 seconds. The mouth opening was restricted to two centimeters by mandibular motion frame. Signal processing steps have been done on the EMG as: noise removing, smoothing, feature extraction, and statistical analyzing. The six statistical parameters of energy computed were mean, Variance, Skewness, Kurtosis, and first and second half energy over all signal energy. Results A three-way ANOVA indicated that during all the cycles, the mean of energy was more and there was a delay in showing the peak of energy in the masseter of the left side with clicked TMJ in MOA group compared to the two other groups, while this pattern occurred inversely in the side with no-clicked TMJ (P < 0.009. The variation of energy was significantly less in MOA group compared to the two other groups in the no-clicked TMJ (P < 0.003. However, the proportion of the first or second part of signal energy to all energy showed that TTH group had less energy in the first part and more energy in the second part in comparison to the two other groups (P < 0.05. Conclusion The study showed different changes in the energy distribution of masseter muscle activity during cycles in MOA and TTH. MOA, in contrast to TTH, had lateralization effect on EMG and interacted with TMJ click.

  5. Functional conservation of RNA polymerase II in fission and budding yeasts.

    Science.gov (United States)

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  6. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  7. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  8. Capillary Optics as an x-ray Condensing Lens An Alignment

    CERN Document Server

    Cappuccio, G

    2000-01-01

    The procedure of capillary lens alignment is described in detail. The theoretical basis of capillary optics is given in the framework of a comparative analysis of monocapillary and polycapillary optics. The results of x-ray $9 distribution scanning behind the capillary lens for various angle planes, together with the tting results, are presented. A qualitative explanation is given for the discrepancy between the expected and observed divergences of x-ray $9 beams transmitted by the capillary lens.

  9. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  10. Comparison of hydrodynamically closed isotachophoresis-capillary zone electrophoresis with hydrodynamically open capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis: pheniramine, its metabolite and phenylephrine in human urine.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Mikuš, Peter

    2014-09-05

    The advanced two dimensional isotachophoresis (ITP)-capillary zone electrophoresis (CZE) hyphenated with tandem mass spectrometry (MS/MS, here triple quadrupole, QqQ) was developed in this work to demonstrate analytical potentialities of this approach in the analysis of drugs in multicomponent ionic matrices. Pheniramine (PHM), phenylephrine (PHE), paracetamol (PCM) and their potential metabolic products were taken for the analysis by the ITP-CZE-ESI-QqQ technique working in hydrodynamically closed CE separation system and then a comparison with the conventional (hydrodynamically open) CZE-ESI-QqQ technique was made. The ITP-CZE-ESI-QqQ method was favorable in terms of obtainable selectivity (due to highly effective heart-cut analysis), concentration limits of detection (LOD at pgmL(-1) levels due to enhanced sample load capacity and ITP preconcentration), sample handling (on-line sample pretreatment, i.e. clean-up, preconcentration, preseparation), and, by that, possibilities for future automation and miniaturization. On the other hand, this experimental arrangement, in contrast to the CZE-ESI-QqQ arrangement supported by an electroosmotic flow, is principally limited to the analysis of uniformly (i.e. positively or negatively) charged analytes in one run without any possibilities to analyze neutral compounds (here, PCM and neutral or acidic metabolites of the drugs had to be excluded from the analysis). Hence, these general characteristics should be considered when choosing a proper analytical CE-MS approach for a given biomedical application. Here, the analytical potential of the ITP-CZE-ESI-QqQ method was demonstrated showing the real time profiles of excreted targeted drugs and metabolite (PHM, PHE, M-PHM) in human urine after the administration of one dose of Theraflu(®) to the volunteers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Recover vigorous cells of Magnetospirillum magneticum AMB-1 by capillary magnetic separation

    Science.gov (United States)

    Li, Jinhua; Ge, Xin; Zhang, Xiaokui; Chen, Guanjun; Pan, Yongxin

    2010-07-01

    Cultivable magnetotactic bacteria (MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies. However, a cold-stored MTB strain, such as Magnetospirillum magneticum AMB-1, often loses its ability to synthesize magnetosomes and consequently fails to sense the external magnetic field. It is therefore important to quickly recover vigorous bacteria cells that highly capable of magnetosome producing. In this study, a modified capillary magnetic separation system was designed to recover a deteriorating strain of Magnetospirillum magneticum AMB-1 that long-term cold-stored in a refrigerator. The results show that all cells obtained after a 3-cycle treatment were vigorous and had the ability to produce magnetosomes. Moreover, the 3rd-cycle recovered cells were able to form more magnetosome crystals. Compared with the colony formation method, this new method is time-saving, easily operated, and more efficient for recovering vigorous MTB cells.

  12. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    Science.gov (United States)

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  13. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography.

    Science.gov (United States)

    Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo

    2018-01-12

    The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column

  14. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  15. Laws of physics help explain capillary non-perfusion in diabetic retinopathy.

    Science.gov (United States)

    Stefánsson, E; Chan, Y K; Bek, T; Hardarson, S H; Wong, D; Wilson, D I

    2018-02-01

    The purpose is to use laws of physics to elucidate the mechanisms behind capillary non-perfusion in diabetic retinopathy. In diabetic retinopathy, loss of pericytes weakens capillary walls and the vessel dilates. A dilated capillary has reduced resistance to flow, therefore increased flow in that vessel and decreased in adjoining capillaries. A preferential shunt vessel is thus formed from the dilated capillary and the adjacent capillaries become non-perfused. We apply the laws of Laplace and Hagen-Poiseuille to better understand the phenomena that lead to capillary non-perfusion. These laws of physics can give a foundation for physical or mathematical models to further elucidate this field of study. The law of Laplace predicts that a weaker vessel wall will dilate, assuming constant transmural pressure. The Hagen-Poiseuille equation for flow and the Ostwald-de Waele relationship for viscosity predict that a dilated vessel will receive a higher portion of the fluid flow than the adjoining capillaries. Viscosity will decrease in the dilated vessel, furthering the imbalance and resulting in a patch of non-perfused capillaries next to the dilated 'preferential' shunt vessel. Physical principles support or inspire novel hypotheses to explain poorly understood phenomena in ophthalmology. This thesis of pericyte death and capillary remodelling, which was first proposed by Cogan and Kuwabara, already agrees with histological and angiographical observations in diabetic retinopathy. We have shown that it is also supported by classical laws of physics.

  16. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  17. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  18. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  19. Closed Nuclear Fuel Cycle Technologies to Meet Near-Term and Transition Period Requirements

    International Nuclear Information System (INIS)

    Collins, E.D.; Felker, L.K.; Benker, D.E.; Campbell, D.O.

    2008-01-01

    A scenario that very likely fits conditions in the U.S. nuclear power industry and can meet the goals of cost minimization, waste minimization, and provisions of engineered safeguards for proliferation resistance, including no separated plutonium, to close the fuel cycle with full actinide recycle is evaluated. Processing aged fuels, removed from the reactor for 30 years or more, can provide significant advantages in cost reduction and waste minimization. The UREX+3 separations process is being developed to separate used fuel components for reuse, thus minimizing waste generation and storage in geologic repositories. Near-term use of existing and new thermal spectrum reactors can be used initially for recycle actinide transmutation. A transition period will eventually occur, when economic conditions will allow commercial deployment of fast reactors; during this time, recycled plutonium can be diverted into fast reactor fuel and conversion of depleted uranium into additional fuel material can be considered. (authors)

  20. Closed Nuclear Fuel Cycle Technologies to Meet Near-Term and Transition Period Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.D.; Felker, L.K.; Benker, D.E.; Campbell, D.O. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee, 37831-6152 (United States)

    2008-07-01

    A scenario that very likely fits conditions in the U.S. nuclear power industry and can meet the goals of cost minimization, waste minimization, and provisions of engineered safeguards for proliferation resistance, including no separated plutonium, to close the fuel cycle with full actinide recycle is evaluated. Processing aged fuels, removed from the reactor for 30 years or more, can provide significant advantages in cost reduction and waste minimization. The UREX+3 separations process is being developed to separate used fuel components for reuse, thus minimizing waste generation and storage in geologic repositories. Near-term use of existing and new thermal spectrum reactors can be used initially for recycle actinide transmutation. A transition period will eventually occur, when economic conditions will allow commercial deployment of fast reactors; during this time, recycled plutonium can be diverted into fast reactor fuel and conversion of depleted uranium into additional fuel material can be considered. (authors)

  1. New Method Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) to Monitor Interaction between Nanoparticles and the Amyloid-β Peptide

    NARCIS (Netherlands)

    Brambilla, Davide; Verpillot, Romain; Taverna, Myriam; de Kimpe, Line; Le Droumaguet, Benjamin; Nicolas, Julien; Canovi, Mara; Gobbi, Marco; Mantegazza, Francesco; Salmona, Mario; Nicolas, Valérie; Scheper, Wiep; Couvreur, Patrick; Andrieux, Karine

    2010-01-01

    A novel application of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was proposed to efficiently detect and monitor the interaction between polymeric nanoparticles and the β-Amyloid peptide (Aβ(1-42)), a biomarker for Alzheimer's Disease (AD), at concentrations close

  2. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  3. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    Science.gov (United States)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  4. Molecular typing of Lactobacillus brevis isolates from Korean food using repetitive element-polymerase chain reaction.

    Science.gov (United States)

    Kaur, Jasmine; Sharma, Anshul; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    Lactobacillus brevis is a part of a large family of lactic acid bacteria that are present in cheese, sauerkraut, sourdough, silage, cow manure, feces, and the intestinal tract of humans and rats. It finds its use in food fermentation, and so is considered a "generally regarded as safe" organism. L. brevis strains are extensively used as probiotics and hence, there is a need for identifying and characterizing these strains. For identification and discrimination of the bacterial species at the subspecific level, repetitive element-polymerase chain reaction method is a reliable genomic fingerprinting tool. The objective of the present study was to characterize 13 strains of L. brevis isolated from various fermented foods using repetitive element-polymerase chain reaction. Repetitive element-polymerase chain reaction was performed using three primer sets, REP, Enterobacterial Repetitive Intergenic Consensus (ERIC), and (GTG) 5 , which produced different fingerprinting patterns that enable us to distinguish between the closely related strains. Fingerprinting patterns generated band range in between 150 and 5000 bp with REP, 200-7500 bp with ERIC, and 250-2000 bp with (GTG) 5 primers, respectively. The Jaccard's dissimilarity matrices were used to obtain dendrograms by the unweighted neighbor-joining method using genetic dissimilarities based on repetitive element-polymerase chain reaction fingerprinting data. Repetitive element-polymerase chain reaction proved to be a rapid and easy method that can produce reliable results in L. brevis species.

  5. The expanding polymerase universe.

    Science.gov (United States)

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  6. First report of microcephaly-capillary malformations syndrome in ...

    African Journals Online (AJOL)

    Background: Microcephaly-capillary malformation (MIC-CAP) syndrome is a newly described autosomal recessive syndrome characterized by microcephaly, multiple cutaneous capillary malformations, intractable epilepsy and profound developmental delay. We present the first description of MIC-CAP syndrome in Russia.

  7. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    Science.gov (United States)

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  8. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  9. Van de Graaff generator for capillary electrophoresis.

    Science.gov (United States)

    Lee, Seung Jae; Castro, Eric R; Guijt, Rosanne M; Tarn, Mark D; Manz, Andreas

    2017-09-29

    A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10μA), potentials exceeding 100kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2mM borate buffer and a 5μm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of the inner diameters of capillary on the Z-Pinch plasma of the capillary discharge soft X-ray laser

    International Nuclear Information System (INIS)

    Jiang, Shan; Zhao, Yong-peng; Cui, Huai-yu; Li, Lian-bo; Ding, Yu-jie; Zhang, Wen-hong; Li, Wei

    2015-01-01

    In this paper, the effects of inner diameters on the Z-pinch plasma of capillary discharge soft X-ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z-pinch plasma simulations had been conducted with a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code. The parametric studies of Z-pinch plasma, such as the electron temperature, the electron density and the Ne-like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z-pinch plasma of Ne-like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Recent advances of capillary electrophoresis in pharmaceutical analysis.

    Science.gov (United States)

    Suntornsuk, Leena

    2010-09-01

    This review covers recent advances of capillary electrophoresis (CE) in pharmaceutical analysis. The principle, instrumentation, and conventional modes of CE are briefly discussed. Advances in the different CE techniques (non-aqueous CE, microemulsion electrokinetic chromatography, capillary isotachophoresis, capillary electrochromatography, and immunoaffinity CE), detection techniques (mass spectrometry, light-emitting diode, fluorescence, chemiluminescence, and contactless conductivity), on-line sample pretreatment (flow injection) and chiral separation are described. Applications of CE to assay of active pharmaceutical ingredients (APIs), drug impurity testing, chiral drug separation, and determination of APIs in biological fluids published from 2008 to 2009 are tabulated.

  12. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    Science.gov (United States)

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  13. The organization closed water battery plant Aircraft Factory

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2008-01-01

    Full Text Available  The information on unrational water usage and losts is given in the article. The necessity of closed water cycle introduction is shown for the aircraft repairing plant. The principle scheme of closed cycle water usage is developed for the accumulator department of the aircraft repairing plant. Modern technological equipment is offered for implementation.

  14. Transmission of fast highly charged ions through straight and tapered glass capillaries

    International Nuclear Information System (INIS)

    Ayyad, Asma M; Keerthisinghe, D; Kayani, A; Tanis, J A; Dassanayake, B S; Ikeda, T

    2013-01-01

    The transmission of 1 and 3 MeV protons through a borosilicate straight glass capillary and a tapered glass capillary was investigated. The straight capillary had a diameter of ∼0.18 mm and a length of ∼14.4 mm, while the tapered capillary had an inlet diameter of ∼0.71 mm, an outlet diameter of ∼0.10 mm and a length of ∼28 mm. The results show that the 1 and 3 MeV protons traverse through both samples without energy loss, while the tapered capillary showed better transmission than the straight capillary. (paper)

  15. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.

    Science.gov (United States)

    Angers, M; Cloutier, J F; Castonguay, A; Drouin, R

    2001-08-15

    Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.

  16. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption.

    Science.gov (United States)

    Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo

    2012-05-01

    Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.

  17. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    Science.gov (United States)

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vulvar Lobular Capillary Hemangioma (Pyogenic Granuloma

    Directory of Open Access Journals (Sweden)

    Kian-Mei Chong

    2005-03-01

    Conclusion: Pyogenic granuloma is considered a reactive hyperproliferative vascular response to trauma or other stimuli. The name “pyogenic granuloma” is a misnomer since the condition is not associated with pus and does not represent a granuloma histologically. There are a few cases of lobular capillary hemangioma of the glans penis but it is rare on the female genitalia. We present this case to help physicians become aware that lobular capillary hemangiomas may occur at this site.

  19. The increased number of osteoblasts and capillaries in orthodontic tooth movement post-administration of Robusta coffee extract

    Directory of Open Access Journals (Sweden)

    H. Herniyati

    2017-06-01

    Full Text Available Background: The application of orthodontic forces subjects blood capillaries to considerable pressure, resulting in hypoxia on the pressure side. Vascular endothelial growth factor (VEGF, expressed in osteoblasts represents an important mitogen that induces angiogenesis. Osteoblasts and blood capillaries play an important role in bone formation. Robusta coffee contains chlorogenic acid and caffeic acid both of which produce antioxidant effects capable of reducing oxidative stress in osteoblasts. Purpose: The aim of this study was to analyze the effects of Robusta coffee extract on the number of osteoblasts and blood capillaries in orthodontic tooth movement. Methods: This research constituted a laboratory-based experimental study involving the use of sixteen male rodents divided into two groups, namely; control group (C consisting of eight mice given orthodontic mechanical force (OMF and a treatment group (T containing eight mice administered OMF and dried Robusta coffee extract at a dose of 20mg/ 100 g BW. The OMF was performed by installing a ligature wire on the maxillary right first molar and both maxillary incisors. In the following stage, the maxillary right first molar was moved to the mesial using Tension Gauze with a Nickel Titanium Orthodontic closed coil spring. Observation was subsequently undertaken on the 15th day by extracting the maxillary right first and second molar with their periodontal tissues. Thereafter, histological examination was performed using hematoxylin-eosin (HE staining technique to measure the number of osteoblasts and blood capillaries on the mesial and distal periodontal ligaments of the maxillary right first molar. Results: The administration of Robusta coffee extract increases the number of blood capillaries and osteoblasts on both the pressure and tension sides were found to be significantly higher in the T group compared to the C group (p<0,05. Conclusion: Robusta coffee extract increase the number of

  20. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    Science.gov (United States)

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  1. Advancing Polymerase Ribozymes Towards Self-Replication

    Science.gov (United States)

    Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    Autocatalytic replication and evolution in vitro by (i) a cross-chiral RNA polymerase catalyzing polymerization of mononucleotides of the opposite handedness; (ii) non-covalent assembly of component fragments of an existing RNA polymerase ribozyme.

  2. Relationship between RNA polymerase II and efficiency of vaccinia virus replication

    International Nuclear Information System (INIS)

    Wilton, S.; Dales, S.

    1989-01-01

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study the authors examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L 6 H 9 rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing cured enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with [ 35 S]methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rate of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, the authors suggest that mobilization of pol II depends on the efficiency of vaccinia virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types

  3. Hysteretic capillary condensation of 4He on Nuclepore substrates

    International Nuclear Information System (INIS)

    Godshalk, K.M.; Smith, D.T.; Hallock, R.B.

    1987-01-01

    Measurements of the approach to capillary condensation and the hysteresis encountered in capillary condensation are reported for helium adsorbed on the polycarbonate substrate Nuclepore. (Author) (5 refs., 3 figs.)

  4. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  5. Convincing about the advanced use of nuclear energy closing the fuel cycle: from a burden to a solution

    International Nuclear Information System (INIS)

    Neau, Henry Jacques

    2007-01-01

    France has associated a closed fuel cycle with its nuclear program, and developed the corresponding treatment recycling capabilities accordingly. This choice was recently consolidated by law. according to the sustainable management of radioactive materials and waste act of June 2006, the volume and radio toxicity reduction of nuclear waste is an objective that can notably be reached with their treatment and conditioning. Presently, used fuel valuable components (U and Pu) are recycled into MOX fuel and RepU, when fission products are conditioned under an extremely solid and resistant form which cannot disperse and dissolve in the environment (High Level Vitrified Waste). Safety and waste minimisation remain the AREVA constant objective. Presently operated treatment and recycling AREVA NC facilities are using mature industrial technologies, which address environment preservation and non proliferation concerns. This french national choice requires a permanent global acceptance strategy towards politicians, media, associations and more generally public opinion: to. be accepted, in needs to be understood. Transparency, dialogue and information are keywords for AREVA NC to be sure that closing the fuel cycle is considered as the best option available now for responsibly managing the waste, respecting the environment, preserving the resource and securing the future. Partnering in this Global Acceptance policy with other countries and customers, who already rely- or plan to do so - on this recycling strategy is both a reality and a permanent axis of development for AREVA NC

  6. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  7. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  8. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  10. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya; Schwachulla, Patrick I.; Williamson, Erik H.; Rubner, Michael F.; Cohen, Robert E.

    2009-01-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  11. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  12. Targeted functionalization of nanoparticle thin films via capillary condensation.

    Science.gov (United States)

    Gemici, Zekeriyya; Schwachulla, Patrick I; Williamson, Erik H; Rubner, Michael F; Cohen, Robert E

    2009-03-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane).

  13. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles.

    Science.gov (United States)

    Wichelhaus, Andrea; Brauchli, Lorenz; Ball, Judith; Mertmann, Matthias

    2010-05-01

    The main advantage of superelastic nickel-titanium (NiTi) products is their unique characteristic of force plateaus, which allow for clinically precise control of the force. The aims of this study were to define the mechanical characteristics of several currently available closed-coil retraction springs and to compare these products. A universal test frame was used to acquire force-deflection diagrams of 24 NiTi closed-coil springs at body temperature. Data analysis was performed with the superelastic algorithm. Also, the influence of temperature cycles and mechanical microcycles simulating ingestion of different foods and mastication, respectively, were considered. Mechanical testing showed significant differences between the various spring types (ANOVA, mechanical properties of the springs: strong superelasticity without bias stress, weak superelasticity without bias stress, strong superelasticity with bias stress, and weak superelasticity with bias stress. In sliding mechanics, the strongly superelastic closed-coil springs with preactivation are recommended. In addition, we found that the oral environment seems to have only a minor influence on their mechanical properties. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. On approximating restricted cycle covers

    NARCIS (Netherlands)

    Manthey, Bodo

    2008-01-01

    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An $L$-cycle cover is a cycle cover in which the length of every cycle is in the set $L$. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to

  15. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  16. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Morris, C.E.; Stormont, J.C.

    1997-01-01

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  17. Bayesian estimation for quantification by real-time polymerase chain reaction under a branching process model of the DNA molecules amplification process

    NARCIS (Netherlands)

    Lalam, N.; Jacob, C.

    2007-01-01

    The aim of Quantitative Polymerase Chain Reaction is to determine the initial amount X0 of specific nucleic acids from an observed trajectory of the amplification process, the amplification being achieved through successive replication cycles. This process depends on the efficiency fpngn of

  18. Wounding coordinately induces cell wall protein, cell cycle and pectin methyl esterase genes involved in tuber closing layer and wound periderm development.

    Science.gov (United States)

    Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D

    2012-04-15

    Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more

  19. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  20. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Mikuš, Peter

    2017-10-07

    An advanced two-dimensional capillary electrophoresis method, based on on-line combination of capillary isotachophoresis and capillary zone electrophoresis with cyclodextrin additive in background electrolyte, was developed for effective determination of serotonin in human urine. Hydrodynamically closed separation system and large bore capillaries (300-800 µm) were chosen for the possibility to enhance the sample load capacity, and, by that, to decrease limit of detection. Isotachophoresis served for the sample preseparation, defined elimination of sample matrix constituents (sample clean up), and preconcentration of the analyte. Cyclodextrin separation environment enhanced separation selectivity of capillary zone electrophoresis. In this way, serotonin could be successfully separated from the rest of the sample matrix constituents migrating in capillary zone electrophoresis step so that human urine could be directly (i.e., without any external sample preparation) injected into the analyzer. The proposed method was successfully validated, showing favorable parameters of sensitivity (limit of detection for serotonin was 2.32 ng·mL -1 ), linearity (regression coefficient higher than 0.99), precision (repeatability of the migration time and peak area were in the range of 0.02-1.17% and 5.25-7.88%, respectively), and recovery (ranging in the interval of 90.0-93.6%). The developed method was applied for the assay of the human urine samples obtained from healthy volunteers. The determined concentrations of serotonin in such samples were in the range of 12.4-491.2 ng·mL -1 that was in good agreement with literature data. This advanced method represents a highly effective, reliable, and low-cost alternative for the routine determination of serotonin as a biomarker in human urine.

  1. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  2. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  3. Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels.

    OpenAIRE

    Cancilla, M R; Powell, I B; Hillier, A J; Davidson, B E

    1992-01-01

    Arbitrarily primed polymerase chain reaction, with incorporation of either radioactive or fluorescent labels, was used as a rapid and sensitive method for obtaining genomic fingerprints of strains of Lactococcus lactis. Closely related strains produced almost identical fingerprints. Fingerprints of other strains showed only some similarities.

  4. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  5. ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY

    Science.gov (United States)

    Mechref, Yehia

    2012-01-01

    The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203

  6. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    International Nuclear Information System (INIS)

    Bobrov, E.; Alekseev, P.; Chibinyaev, A.; Teplov, P.; Dudnikov, A.

    2016-01-01

    REMIX (Regenerated Mixture) fuel is produced directly from a non-separated mix of recycled uranium and plutonium from reprocessed used fuel and the fabrication technology of such fuel is called REMIX-technology. This paper shows basic features of different fuel assembly (FA) application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water-fuel ratio in the VVER FA affects the fuel characteristics produced by REMIX technology during multiple recycling. It is shown that for for the traditional REMIX-fuel it does not make sense to change anything in the design of VVER FA, because there are no advantages in the fuel feed consumption. The natural uranium economy by the fifth cycle reached about 29%. In the case of the REMIX fuel based on uranium-plutonium from SNF MOX fuel, it would be appropriate to use fuel assemblies with a water-fuel ratio of 1.5

  7. 21 CFR 864.6150 - Capillary blood collection tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Capillary blood collection tube. 864.6150 Section 864.6150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6150 Capillary...

  8. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  9. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  10. Characteristics Of Dosimeter TL CaSO4:Dy Glass Capillaries For Environmental Radiation Dose Monitoring

    International Nuclear Information System (INIS)

    Sofyan Hasnel; Yulianti, Helfi; Ramain, Abubakar; Kusumawati, Dyah D.; Suyati

    2000-01-01

    research on the characteristic of dosimeter TL CaSO 4 : Dy glass capillaries for environmental dose radiation have been carried out. The results obtained are uniform response and reproducibility during three cycles consumption with average percentage standard deviation of 7.31 % and 5.45%. The response dose is linear and has a minimum detectable dose of 0.01 mGy, sunshine effect with non-penetrating light capsule of 4.65%, humidity effects is not significant by using non-penetrating light capsule. Radiation dose information during 30 days are fading 25%

  11. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-07-14

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.

  12. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-01-01

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase η, the POLH gene product. A deficiency in DNA polymerase η due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase ζ cooperates with DNA polymerases κ and ι to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases ζ and κ, but not ι, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load. PMID:19564618

  13. The elevation of the degree of closing of the water cycle of an art paper mill; Taidepaperitehtaan sulkemisasteen nosto - EKY 05

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, M. [Metsae-Serla Oyj, Aeaenekoski (Finland)

    1998-12-31

    A development project, the target of which was to create an optimised total plan and a realisation plan for the elevation of the degree of closing of the water cycle of a three-times coated fine grade paper producing mill on the basis of a critical inspection of the different phases of a complete paper production process. The main objective of the elevation of the degree of closing of the water cycle is to obtain a remarkable increment of the profitability of the plant. The aim is to return 50 % of the solid matter, running off with waste waters, back into the process, and hence to reduce the demand of purified water by 30 %. Annual raw material cost savings of several millions of marks are sought in the projects. The solid matter and COD emissions are simultaneously reduced by over 50 %. The project is in schedule and the investments for the recovery and utilisation of waste paste were completed by the end of 1997. The paste-containing waste waters are concentrated by membrane filtration technique, and the concentrate is used by the side of fresh paste. The solid matter recovered from fiber-containing waste waters is recycled, after being treated, back into raw material flow feeded into the paper machine. UF-permeate is used for replacing the chemically purified water in spraying waters. Other measures are also needed in order to reduce the need for chemically purified water. The design of these measures is going on. The elevation of the degree of closing of the water cycle of a paper mill may not reduce the operability of the paper machine. The project also includes the follow-up of the chemical and biochemical state of the wet end of the machine, and the investigation of the changes needed for the chemical dosage system. The results will be applied at the other paper mills of the company. The project will end at December 1998. (orig.)

  14. The elevation of the degree of closing of the water cycle of an art paper mill; Taidepaperitehtaan sulkemisasteen nosto - EKY 05

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, M [Metsae-Serla Oyj, Aeaenekoski (Finland)

    1999-12-31

    A development project, the target of which was to create an optimised total plan and a realisation plan for the elevation of the degree of closing of the water cycle of a three-times coated fine grade paper producing mill on the basis of a critical inspection of the different phases of a complete paper production process. The main objective of the elevation of the degree of closing of the water cycle is to obtain a remarkable increment of the profitability of the plant. The aim is to return 50 % of the solid matter, running off with waste waters, back into the process, and hence to reduce the demand of purified water by 30 %. Annual raw material cost savings of several millions of marks are sought in the projects. The solid matter and COD emissions are simultaneously reduced by over 50 %. The project is in schedule and the investments for the recovery and utilisation of waste paste were completed by the end of 1997. The paste-containing waste waters are concentrated by membrane filtration technique, and the concentrate is used by the side of fresh paste. The solid matter recovered from fiber-containing waste waters is recycled, after being treated, back into raw material flow feeded into the paper machine. UF-permeate is used for replacing the chemically purified water in spraying waters. Other measures are also needed in order to reduce the need for chemically purified water. The design of these measures is going on. The elevation of the degree of closing of the water cycle of a paper mill may not reduce the operability of the paper machine. The project also includes the follow-up of the chemical and biochemical state of the wet end of the machine, and the investigation of the changes needed for the chemical dosage system. The results will be applied at the other paper mills of the company. The project will end at December 1998. (orig.)

  15. RNA binding and replication by the poliovirus RNA polymerase

    International Nuclear Information System (INIS)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to 32 P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K a for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 x 10 9 M -1 . The polymerase binds to a subgenomic RNAs which contain the 3' end of the genome with a K a similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3' noncoding region

  16. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  17. Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Directory of Open Access Journals (Sweden)

    Hošek J.

    2013-05-01

    Full Text Available This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM. Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm.

  18. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  19. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    Science.gov (United States)

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  20. Evolving a polymerase for hydrophobic base analogues.

    Science.gov (United States)

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  1. Ecological Challenges for Closed Systems

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  2. On the performance of capillary barriers as landfill cover

    Science.gov (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  3. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  4. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan, E-mail: yangjing_928@126.com

    2017-06-15

    Highlights: • A micro X-ray fluorescence setup based on an ellipsoidal capillary was presented. • The optimal parameters of ellipsoidal capillary were designed. • The 2D mapping image of biological sample was obtained. - Abstract: A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  6. Closing the water and nutrient cycles in soilless cultivation systems

    NARCIS (Netherlands)

    Beerling, E.A.M.; Blok, C.; Maas, van der A.A.; Os, van E.A.

    2014-01-01

    Soilless cultivation systems are common in Dutch greenhouse horticulture, i.e., less than 20% of the greenhouse area is still soil grown. For long, it was assumed that in these so-called closed systems the emission of nutrients and plant protection products (PPPs) was close to zero. However, Water

  7. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    Science.gov (United States)

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  8. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.557, year: 2016

  9. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.557, year: 2016

  10. Managment of superficial infantile capillary hemangiomas with topical timolol maleate solution.

    Science.gov (United States)

    Rizvi, Syed Ali Raza; Yusuf, Faraz; Sharma, Rajeev; Rizvi, Syed Wajahat Ali

    2015-01-01

    Capillary hemangioma is the most common benign tumor of eyelids and orbit in children. Recently, a topical beta blocker has been reported as an effective treatment for superficial capillary hemangiomas. We present a case report of two children having large capillary hemangiomas who responded well to topical treatment by 0.5% timolol maleate solution. After 12 months of treatment, the lesion has significantly reduced in size, thickness, and color in both cases. Thus, we conclude that long-term use of topical 0.5% timolol maleate solution is safe and effective in treating superficial capillary hemangiomas.

  11. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M Figueiredo

    1997-05-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  12. First attempts to combine capillary tubes with photocathodes

    CERN Document Server

    Peskov, Vladimir; Sokolova, T; Radionov, I

    1999-01-01

    We describe our efforts to combine glass capillary plates, operating as a gas amplification structure at approx 1 atm, with photocathodes sensitive to visible light. Such capillary tubes are a by-product of the manufacture of Microchannel Plates and are commercially available. Preliminary tests indicate that gas gains >10 sup 3 could be achieved without photon feedback. With two capillary plates in tandem (double-step multiplication) overall gains up to 10 sup 5 were possible at counting rate <100 Hz/mm sup 2. This approach may open new possibilities for detection of visible photons by gaseous detectors. Potential advantages are: high gains, large sensitive area, high granularity, and insensitivity to magnetic fields.

  13. Factors affecting the separation performance of proteins in capillary electrophoresis.

    Science.gov (United States)

    Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori

    2018-04-15

    Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  15. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase......Diagnostic analyses of foodborne pathogens are increasingly based on molecular methods such as PCR, which can improve the sensitivity and reduce the analysis time. The core of PCR is the enzyme performing the reaction: the DNA polymerase. Changing the polymerase can influence the sensitivity...... commercially available polymerases and four master mixes in two validated PCR assays, for Campylobacter and Salmonella, respectively, to develop more sensitive, robust and cost effective assays. The polymerases were screened on purified DNA and the five best performing, for each PCR assay, were then applied...

  16. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol–gel modified inner capillary wall

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, V.; Mikšík, Ivan

    2017-01-01

    Roč. 1517, Sep 29 (2017), s. 185-194 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA15-01948S; GA MŠk(CZ) LO1509 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : capillary electrochromatography (CEC) * open-tubular capillary electrochromatography (OT-CEC) * nucleo-compounds * oligopeptides * sol–gel methods * Porphyrin * scanning electron microscopy (SEM) Subject RIV: CB - Analytical Chemistry, Separation; CE - Biochemistry (MBU-M) OBOR OECD: Analytical chemistry; Biochemistry and molecular biology (MBU-M) Impact factor: 3.981, year: 2016

  17. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  18. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp. Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Directory of Open Access Journals (Sweden)

    Caroline Chénard

    2016-06-01

    Full Text Available Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages.

  19. BN800: The advanced sodium cooled fast reactor plant based on close fuel cycle

    International Nuclear Information System (INIS)

    Wu Xingman

    2011-01-01

    As one of the advanced countries with actually fastest reactor technology, Russia has always taken a leading role in the forefront of the development of fast reactor technology. After successful operation of BN600 fast reactor nuclear power station with a capacity of six hundred thousand kilowatts of electric power for nearly 30 years, and after a few decades of several design optimization improved and completed on its basis, it is finally decided to build Unit 4 of Beloyarsk nuclear power station (BN800 fast reactor power station). The BN800 fast reactor nuclear power station is considered to be the project of the world's most advanced fast reactor nuclear power being put into implementation. The fast reactor technology in China has been developed for decades. With the Chinese pilot fast reactor to be put into operation soon, the Chinese model fast reactor power station has been put on the agenda. Meanwhile, the closed fuel cycle development strategy with fast reactor as key aspect has given rise to the concern of experts and decision-making level in relevant areas. Based on the experiences accumulated in many years in dealing the Sino-Russian cooperation in fast reactor technology, with reference to the latest Russian published and authoritative literatures regarding BN800 fast reactor nuclear power station, the author compiled this article into a comprehensive introduction for reference by leaders and experts dealing in the related fields of nuclear fuel cycle strategy and fast reactor technology development researches, etc. (authors)

  20. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  1. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  2. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)

    2014-05-15

    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  3. Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering

    International Nuclear Information System (INIS)

    Erko, M; Paris, O; Wallacher, D; Findenegg, G H

    2012-01-01

    The effect of repeated cycles of water adsorption/desorption on the structural stability of ordered mesoporous silica SBA-15 is studied by small-angle x-ray scattering (SAXS). In situ sorption measurements are conducted using a custom-built sorption apparatus in connection with a laboratory SAXS setup. Two striking irreversible changes are observed in the sorption isotherms as derived from the integrated SAXS intensity. First, the capillary condensation pressure shifts progressively to lower relative pressure values with increasing number of sorption cycles. This effect is attributed to chemisorption of water at the silica walls, resulting in a change of the fluid-wall interaction. Second, the sorption cycles do not close completely at vanishing vapour pressure, suggesting that progressively more water remains trapped within the porous material after each cycle. This effect is interpreted to be the result of an irreversible collapse of parts of mesopores, originating from pore wall deformation due to the large Laplace pressure of water acting on the pore walls at capillary condensation and capillary evaporation. (paper)

  4. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  5. Evaluation of Tillandsia capillaris Ruiz amd Pav. f. capillaris as biomonitor of atmospheric pollution in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Pignata, M.L. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales]|[Instituto Multidisciplinario de Biologia Vegetal (IMBIV-UNC), Cordoba (Argentina); Wannaz, E.D.; Martinez, M.S.; Caminotti, G. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    2002-07-01

    The behaviour of Tillandsia capillaris Ruiz and Pav. f. capillaris, when exposed to atmospheric pollutants, was assessed by measuring chemical parameters indicating foliar damage and the contents of some heavy metals. Samples were transplanted to three sites in the City of Cordoba and were collected back after 15, 30, 60 and 90 days of exposure. At the same time, samples coming from the collection site were analyzed for each of said exposure times. Chlorophylls, hydroperoxy conjugated dienes, water contents, malondialdehyde, sulfur, Cu, Pb, Ni, Co, Mn, Zn and Fe were measured in the samples. A Foliar Damage Index was calculated from some of these parameters. (orig.)

  6. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Directory of Open Access Journals (Sweden)

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  7. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  8. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  9. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris – March 4-7, 2013: Closing Session. Summary of Sustainability of Advanced Fuel Cycles Panel Session II

    International Nuclear Information System (INIS)

    Cameron, R.

    2013-01-01

    Sustainability was discussed in terms of the social, environment and economic perspectives, which arise from the original Brundtland definition of sustainability. The panel presented their perspectives of the need to move towards a sustainable future, involving better use of uranium, reductions in high-level radioactive waste, safe, secure and economic operation of nuclear reactors and the fuel cycle. In all cases, it was considered that sustainability in the long-term must involve fast reactors and a closed nuclear fuel cycle, although both Korea and the IAEA pointed out that these are clearly national decisions and there will not be a single solution for all countries

  10. Mixed Capillary Venous Retroperitoneal Hemangioma

    Directory of Open Access Journals (Sweden)

    Mohit Godar

    2013-01-01

    Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.

  11. Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA

    Science.gov (United States)

    Wynne, Samantha A.; Pinheiro, Vitor B.; Holliger, Philipp; Leslie, Andrew G. W.

    2013-01-01

    Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers. PMID:23940661

  12. Polymerase Gamma Disease through the Ages

    Science.gov (United States)

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  13. Titan's Methane Cycle is Closed

    Science.gov (United States)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  14. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia.

    Science.gov (United States)

    Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T

    2013-09-01

    Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.

  15. The free-jet expansion from a capillary source

    International Nuclear Information System (INIS)

    Miller, D.R.; Fineman, M.A.; Murphy, H.

    1985-01-01

    This paper presents a comparison of the free-jet expansions originating from an orifice and a capillary by measuring the terminal gas properties. Time-of-flight and intensity data are reported for pure gases (He, Ar, CO 2 ) and mixtures of CO 2 /He, together with condensed dimer intensities for Ar and Co 2 . Pitot tube data are reported for N 2 . The results suggest that the free-jet expansions are nearly the same, provided the capillary is modeled as a non-isentropic Fanno flow process. The Fanno flow is slightly non-adiabatic, which complicates the analysis. Only the condensation kinetics appear strongly sensitive to the differences in the initial conditions for the supersonic expansion; any kinetic process relaxing near the capillary orifice exit would be affected

  16. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  17. The mechanism of action of poly (ADP-ribose) polymerases inhibitors and its application perspective

    International Nuclear Information System (INIS)

    Huang Xiaofei; Cao Jianping

    2008-01-01

    Poly (ADP-ribose) polymerases (PARP) constitute a family of enzymes involved in the regulation of many cellular processes. It plays a vital role in many physical and physiopathological processes,, In the past ten years scientists have conducted extensive research on PARP and its inhibitors, among which the role of PARP inhihitors in radiosensitization, chemopotentiation and neuroprotection have been placed close attention. There have been several PARP inhibitors entering the clinical trials, which predicts its sound application perspectives. (authors)

  18. New type of capillary for use as ion beam collimator and air-vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, V., E-mail: valostoytschew@hotmail.com [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Schulte-Borchers, M. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich (Switzerland); Božičević Mihalića, Iva [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Perez, R.D. [FaMAF, Universidad Nacional de Córdoba, (5000) Ciudad Universitaria, Córdoba (Argentina)

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  19. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  20. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425