Off-Shell Interactions of Closed-String Tachyons
Energy Technology Data Exchange (ETDEWEB)
Dabholkar, A
2004-04-07
Off-shell interactions for localized closed-string tachyons in C/Z{sub N} superstring backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions between these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact interaction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic interactions or to include other fields to test the conjecture for the height of the tachyon potential.
Supersymmetric closed string tachyon cosmology: a first approach
International Nuclear Information System (INIS)
Vázquez-Báez, V; Ramírez, C
2014-01-01
We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations
D-instantons and closed string tachyons in Misner space
International Nuclear Information System (INIS)
Hikida, Yasuaki; Tai, T.-S.
2006-01-01
We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder
Twisted tachyon condensation in closed string field theory
International Nuclear Information System (INIS)
Okawa, Yuji; Zwiebach, Barton
2004-01-01
We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)
Closed string tachyon driving f(R) cosmology
Wang, Peng; Wu, Houwen; Yang, Haitang
2018-05-01
To study quantum effects on the bulk tachyon dynamics, we replace R with f(R) in the low-energy effective action that couples gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory and study properties of their classical solutions. The α' corrections of the graviton-dilaton-tachyon system are implemented in the f(R). We obtain the tachyon-induced rolling solutions and show that the string metric does not need to remain fixed in some cases. In the case with H( t=‑∞ ) = , only the R and R2 terms in f(R) play a role in obtaining the rolling solutions with nontrivial metric. The singular behavior of more classical solutions are investigated and found to be modified by quantum effects. In particular, there could exist some classical solutions, in which the tachyon field rolls down from a maximum of the tachyon potential while the dilaton expectation value is always bounded from above during the rolling process.
Non-critical Poincare invariant bosonic string backgrounds and closed string tachyons
International Nuclear Information System (INIS)
Alvarez, Enrique; Gomez, Cesar; Hernandez, Lorenzo
2001-01-01
A new family of non critical bosonic string backgrounds in arbitrary space-time dimension D and with ISO(1,D-2) Poincare invariance are presented. The metric warping factor and dilaton agree asymptotically with the linear dilaton background. The closed string tachyon equation of motion enjoys, in the linear approximation, an exact solution of 'kink' type interpolating between different expectation values. A renormalization group flow interpretation, based on a closed string tachyon potential of type -T 2 e -T , is suggested
A premier analysis of supersymmetric closed string tachyon cosmology
Vázquez-Báez, V.; Ramírez, C.
2018-04-01
From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.
Toward an open-closed string theoretical description of a rolling tachyon
International Nuclear Information System (INIS)
Ohmori, Kazuki
2004-01-01
We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory
Closed String Tachyons, AdS/CFT, and QCD
International Nuclear Information System (INIS)
Silverstein, Eva M
2001-01-01
We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual
Closed String Tachyons, AdS/CFT, and QCD
Energy Technology Data Exchange (ETDEWEB)
Silverstein, Eva M
2001-07-25
We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual.
Non-supersymmetric tachyon-free type-II and type-I closed strings from RCFT
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)], E-mail: bgator@imaff.cfmac.csic.es; Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)
2007-11-15
We consider non-supersymmetric four-dimensional closed string theories constructed out of tensor products of N=2 minimal models. Generically such theories have closed string tachyons, but these may be removed either by choosing a non-trivial partition function or a suitable Klein bottle projection. We find large numbers of examples of both types.
Open string decoupling and tachyon condensation
International Nuclear Information System (INIS)
Chalmers, G.
2001-01-01
The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.
On Field Theory of Open Strings, Tachyon Condensation and Closed Strings
Shatashvili, Samson L.
2001-01-01
I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.
Closed string tachyons on AdS orbifolds and dual Yang-Mills instantons
Energy Technology Data Exchange (ETDEWEB)
Hikida, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Iizuka, N. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics
2007-06-15
We study the condensation of localized closed string tachyons on AdS orbifolds both from the bulk and boundary theory viewpoints. We first extend the known results for AdS{sub 5}/Z{sub k} to AdS{sub 3}/Z{sub k} case, and we proposed that the AdS{sub 3}/Z{sub k} decays into AdS{sub 3}/Z{sub k'} with k{sup '} < k. From the bulk viewpoint, we obtain a time-dependent gravity solution describing the decay of AdS orbifold numerically. From the dual gauge theory viewpoint, we calculated the Casimir energies of gauge theory vacua and it is found that their values are exactly the same as the masses of dual geometries, even though they are in different parameter regimes of 't Hooft coupling. We also consider AdS{sub 5} orbifold. The decay of AdS{sub 5}/Z{sub k} is dual to the transition between the vacua of dual gauge theory on R{sub t} x S{sup 3}/Z{sub k}. We constructed the instanton solutions describing the transitions by making use of instanton solutions on R{sub t} x S{sup 2}. (orig.)
Closed-String Tachyons and the Hagedorn Transition in AdS Space
Barbón, José L F
2002-01-01
We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...
The tachyon potential in string theory
International Nuclear Information System (INIS)
Banks, T.
1991-01-01
We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Albion
2001-07-25
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.
International Nuclear Information System (INIS)
Lawrence, Albion
2001-01-01
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting
Butterfly tachyons in vacuum string field theory
International Nuclear Information System (INIS)
Matlock, Peter
2003-01-01
We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation
Light-like tachyon condensation in open string field theory
Czech Academy of Sciences Publication Activity Database
Hellerman, S.; Schnabl, Martin
2013-01-01
Roč. 2013, č. 4 (2013), s. 1-34 ISSN 1126-6708 Institutional support: RVO:68378271 Keywords : string field theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Proper acceleration, the geometric tachyon and the dynamics of a fundamental string near Dp branes
International Nuclear Information System (INIS)
Das, Ashok; Panda, Sudhakar; Roy, Shibaji
2009-01-01
We present a detailed analysis of our recent observation that the origin of the geometric tachyon, which arises when a Dp brane propagates in the vicinity of a stack of coincident NS5 branes, is due to the proper acceleration generated by the background dilaton field. We show that when a fundamental string (F-string), described by the Nambu-Goto action, is moving in the background of a stack of coincident Dp branes, the geometric tachyon mode can also appear since the overall conformal mode of the induced metric for the string can act as a source for proper acceleration. We also studied the detailed dynamics of the F-string as well as the instability by mapping the Nambu-Goto action of the F-string to the tachyon effective action of the non-BPS D-string. We qualitatively argue that the condensation of the geometric tachyon is responsible for the (F,Dp) bound state formation.
The Hagedorn temperature and open QCD-string tachyons in pure N=1 super-Yang-Mills
International Nuclear Information System (INIS)
Armoni, Adi; Hollowood, Timothy J.
2008-01-01
We consider large-N confining gauge theories with a Hagedorn density of states. In such theories the potential between a pair of colour-singlet sources may diverge at a critical distance r c =1/T H . We consider, in particular, pure N=1 super-Yang-Mills theory and argue that when a domain wall and an anti-domain wall are brought to a distance near r c the interaction potential is better described by an 'open QCD-string channel'. We interpret the divergence of the potential in terms of a tachyonic mode and relate its mass to the Hagedorn temperature. Finally we relate our result to a theorem of Kutasov and Seiberg and argue that the presence of an open string tachyonic mode in the annulus amplitude implies an exponential density of states in the UV of the closed string channel
Nonrelativistic closed string theory
International Nuclear Information System (INIS)
Gomis, Jaume; Ooguri, Hirosi
2001-01-01
We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting
Open Wilson lines as states of closed string
International Nuclear Information System (INIS)
Murakami, Koichi; Nakatsu, Toshio
2003-01-01
A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)
Physical states at the tachyonic vacuum of open string field theory
International Nuclear Information System (INIS)
Giusto, S.; Imbimbo, C.
2004-01-01
We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty
Non-minimally coupled tachyonic inflation in warped string background
International Nuclear Information System (INIS)
Chingangbam, Pravabati; Panda, Sudhakar; Deshamukhya, Atri
2005-01-01
We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large T along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured. (author)
Open-closed string correspondence in open string field theory
International Nuclear Information System (INIS)
Baumgartl, M.; Sachs, I.
2008-01-01
We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Oriented open-closed string theory revisited
International Nuclear Information System (INIS)
Zwiebach, B.
1998-01-01
String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Hosotani model in closed string theory
International Nuclear Information System (INIS)
Shiraishi, Kiyoshi.
1988-11-01
Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)
Reheating for closed string inflation
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazumdar, Anupam [Lancaster Univ. (United Kingdom). Physics Dept.; Copenhagen Univ. (Denmark). Niels Bohr Institute
2010-05-15
We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)
Reheating for closed string inflation
International Nuclear Information System (INIS)
Cicoli, Michele; Mazumdar, Anupam; Copenhagen Univ.
2010-05-01
We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)
Deriving the four-string and open-closed string interactions from geometric string field theory
International Nuclear Information System (INIS)
Kaku, M.
1990-01-01
One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included
The Effect of Bulk Tachyon Field on the Dynamics of Geometrical Tachyon
International Nuclear Information System (INIS)
Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios
2007-01-01
We study the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the geometrical tachyon field reaches the minimum of the potential
Interacting bosonic strings in subcritical dimensions
International Nuclear Information System (INIS)
Hwang, S.; Marnelius, R.
1988-01-01
Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)
Continuing between closed and open strings
International Nuclear Information System (INIS)
Green, M.B.; Thorn, C.B.
1991-01-01
A family of dual models is defined that interpolates between the tree diagrams of non-orientable bosonic closed-string theory (which has a massless spin-2 state) and the open-string theory with no internal symmetry (in which the lowest-mass spin-2 state is massive). These models are parametrized by the intercept, Δ, of the leading Regge pole. The only models that have an infinite-dimensional conformal invariance and are consequently free of ghosts are the two familiar string theories with Δ=2 (closed strings) and Δ=1 (open strings with no internal symmetry). For arbitrary Δ the models are invariant under the finite dimensional conformal group, SO(Δ,2), which guarantees the crossing symmetry and consistent factorization of tree amplitudes. The spectrum of the level-two states is exhibited explicitly as Δ varies from 2 to 1 in order to illustrate the manner in which the graviton (the lowest-mass spin-2 state) acquires a mass. The scalar ghost generically associated with massive gravity cancels with the 'dilaton' precisely at Δ=1. (orig.)
Deformations of closed strings and topological open membranes
Hofman, C.; Ma, W.K.
2001-01-01
We study deformations of topological closed strings. A well-known example is the perturba- tion of a topological closed string by itself, where the associative OPE product is deformed, and which isgoverned by the WD VV equations. Our main in terest will be closed strings that arise as the
Deformations of closed strings and topological open membranes
Hofman, C.
We study deformations of topological closed strings. A well-known example is the perturbation of a topological closed string by itself, where the associative OPE product is deformed, and which is governed by the WDVV equations. Our main interest will be closed strings that arise as the boundary
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
Coupling of open to closed bosonic strings in four dimensions
International Nuclear Information System (INIS)
Bern, Z.; Dunbar, D.C.
1987-11-01
We study the construction of D < 26 open bosonic string theories using the fermionic formulation for the internal degrees of freedom. The various models are specified by the boundary conditions of the world sheet fermions on the annulus. Using the fact that open string loops can be transformed into closed string exchanges, we determine possible open string models which may be coupled to known D < 26 closed string models. Finally, as a verification of consistency, we examine particular open string non-planar amplitudes. (orig.)
On integrable c < 1 open-closed string theory
International Nuclear Information System (INIS)
Johnson, C.V.
1994-01-01
The integrable structure of open-closed string theories in the (p, q) conformal minimal model backgrounds is presented. The relation between the τ-function of the closed string theory and that of the open-closed string theory is uncovered. The resulting description of the open-closed string theory is shown to fit very naturally into the framework of the sl(q, C) KdV hierarchies. In particular, the twisted bosons which underlie and organise the structure of the closed string theory play a similar role here and may be employed to derive loop equations and correlation function recursion relations for the open-closed strings in a simple way. (orig.)
Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings
International Nuclear Information System (INIS)
Bak, Dongsu; Rey, Soojong; Yee, Houng
2004-01-01
We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)
Two field formulation of closed string field theory
International Nuclear Information System (INIS)
Bogojevic, A.R.
1990-09-01
A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)
A note on closed-string interactions a la Witten
International Nuclear Information System (INIS)
Romans, L.J.
1987-01-01
We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. (orig.)
Note on closed-string interactions a la Witten
Energy Technology Data Exchange (ETDEWEB)
Romans, L.J.
1987-08-20
We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed.
N=1 Mirror Symmetry and Open/Closed String Duality
Mayr, Peter
2002-01-01
We show that the exact N=1 superpotential of a class of 4d string compactifications is computed by the closed topological string compactified to two dimensions. A relation to the open topological string is used to define a special geometry for N=1 mirror symmetry. Flat coordinates, an N=1 mirror map for chiral multiplets and the exact instanton corrected superpotential are obtained from the periods of a system of differential equations. The result points to a new class of open/closed string dualities which map individual string world-sheets with boundary to ones without. It predicts an mathematically unexpected coincidence of the closed string Gromov-Witten invariants of one Calabi-Yau geometry with the open string invariants of the dual Calabi-Yau.
Exact potential and scattering amplitudes from the tachyon non-linear β -function
International Nuclear Information System (INIS)
Coletti, E.; Forini, V.; Nardelli, G.; Orselli, M.; Grignani, G.
2004-01-01
We compute, on the disk, the non-linear tachyon β-function, β T , of the open bosonic string theory. β T is determined both in an expansion to the third power of the field and to all orders in derivatives and in an expansion to any power of the tachyon field in the leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective action S and prove that it has a very simple universal form in terms of the renormalized tachyon field and β T . The expression for S is well suited to studying both processes that are far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact tachyon potential. The normalization of S is fixed by requiring that the field redefinition that maps S into the tachyon effective action derived from the cubic string field theory is regular on-shell. The normalization factor is in precise agreement with the one required for verifying all the conjectures on tachyon condensation. The coordinates in the space of couplings in which the tachyon β-function is non linear are the most appropriate to study RG fixed points that can be interpreted as solitons of S, i.e. D-branes. (author)
Things Fall Apart: Topology Change From Winding Tachyons
Energy Technology Data Exchange (ETDEWEB)
Adams, A.
2005-02-04
We argue that closed string tachyons drive two spacetime topology changing transitions--loss of genus in a Riemann surface and separation of a Riemann surface into two components. The tachyons of interest are localized versions of Scherk-Schwarz winding string tachyons arising on Riemann surfaces in regions of moduli space where string-scale tubes develop. Spacetime and world-sheet renormalization group analyses provide strong evidence that the decay of these tachyons removes a portion of the spacetime, splitting the tube into two pieces. We address the fate of the gauge fields and charges lost in the process, generalize it to situations with weak flux backgrounds, and use this process to study the type 0 tachyon, providing further evidence that its decay drives the theory sub-critical. Finally, we discuss the time-dependent dynamics of this topology-changing transition and find that it can occur more efficiently than analogous transitions on extended supersymmetric moduli spaces, which are limited by moduli trapping.
From UV/IR mixing to closed strings
International Nuclear Information System (INIS)
Lopez, Esperanza
2003-01-01
It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)
Stationary closed strings in five-dimensional flat spacetime
Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke
2012-11-01
We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.
The tachyon at the end of the universe
International Nuclear Information System (INIS)
McGreevy, John; Silverstein, Eva
2005-01-01
We show that a tachyon condensate phase replaces the spacelike singularity in certain cosmological and black hole spacetimes in string theory. We analyze explicitly a set of examples with flat spatial slices in various dimensions which have a winding tachyon condensate, using worldsheet path integral methods from Liouville theory. In a vacuum with no excitations above the tachyon background in the would-be singular region, we analyze the production of closed strings in the resulting state in the bulk of spacetime. We find a thermal result reminiscent of the Hartle-Hawking state, with tunably small energy density. The amplitudes exhibit a self-consistent truncation of support to the weakly-coupled small-tachyon region of spacetime. We argue that the background is accordingly robust against back reaction, and that the resulting string theory amplitudes are perturbatively finite, indicating a resolution of the singularity and a mechanism to start or end time in string theory. Finally, we discuss the generalization of these methods to examples with positively curved spatial slices
International Nuclear Information System (INIS)
Recami, E.
1984-01-01
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt
Construction of closed fermionic string models in four dimensions
International Nuclear Information System (INIS)
Lewellen, D.C.
1987-01-01
It is possible to construct consistent closed string models directly in four space-time dimensions if reparametrization invariance, conformal invariance and world sheet supersymmetry are properly accounted for. In the context of string models whose internal degrees of freedom are represented by free world sheet fermions, it is possible to completely solve for the above requirements, providing a simple set of rules for constructing string models. N = 1 supersymmetric and non-supersymmetric heterotic type string models with chiral fermions and realistic gauge groups, as well as generalized type II models with realistic gauge groups, can easily be constructed. Many other string models can be constructed using similar methods based on free world sheet bosons
Non-minimally coupled tachyon and inflation
International Nuclear Information System (INIS)
Piao Yunsong; Huang Qingguo; Zhang Xinmin; Zhang Yuanzhong
2003-01-01
In this Letter, we consider a model of tachyon with a non-minimal coupling to gravity and study its cosmological effects. Regarding inflation, we show that only for a specific coupling of tachyon to gravity this model satisfies observations and solves various problems which exist in the single and multi tachyon inflation models. But noting in the string theory the coupling coefficient of tachyon to gravity is of order g s , which in general is very small, we can hardly expect that the non-minimally coupling of tachyon to gravity could provide a reasonable tachyon inflation scenario. Our work may be a meaningful try for the cosmological effect of tachyon non-minimally coupled to gravity
Disk partition function and oscillatory rolling tachyons
International Nuclear Information System (INIS)
Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep
2008-01-01
An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same
Dualities in ABJM matrix model from closed string viewpoint
Energy Technology Data Exchange (ETDEWEB)
Kiyoshige, Kazuki; Moriyama, Sanefumi [Department of Physics, Graduate School of Science, Osaka City University,3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)
2016-11-17
We propose a new formalism to study the ABJM matrix model. Contrary to expressing the fractional brane background with the Wilson loops in the open string formalism, we formulate the Wilson loop expectation value from the viewpoint of the closed string background. With this new formalism, we can prove some duality relations in the matrix model. /includegraphics[scale=0.7]{abstract.eps}.
Deforming tachyon kinks and tachyon potentials
International Nuclear Information System (INIS)
Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.
2006-01-01
In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed
Boundary string field theory and an open string one-loop
International Nuclear Information System (INIS)
Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi
2003-01-01
We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field
International Nuclear Information System (INIS)
Kaku, M.
1988-01-01
We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane
Quantization of bosonic closed strings and the Liouville model
International Nuclear Information System (INIS)
Paycha, S.
1988-01-01
The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)
Technology of multiloop calculations for closed bosonic strings
International Nuclear Information System (INIS)
Ramachandran, R.
1986-03-01
In this article, we trace the essentials of the technology of multiloop computations in the covariant Polyakov formalism of the closed bosonic string theory in the critical dimension. We discuss how we may isolate the divergences in the multiloop vacuum amplitude and show that they are interpreted as due to tadpole diagrams in which the dilaton goes into vacuum. (author)
Multiloop divergences in the closed bosonic string theory
International Nuclear Information System (INIS)
Gava, E.; Iengo, R.; Jayaraman, T.; Ramachandran, R.
1985-12-01
We discuss the structure of the divergences in the multiloop vacuum diagrams for the closed bosonic strings in the framework of the Polyakov covariant formalism. We find, by an explicit computation, that all the divergences in the theory may be interpreted as due to tadpole diagrams in which the dilation goes into the vacuum. (author)
Open and Closed String field theory interpreted in classical Algebraic Topology
Sullivan, Dennis
2003-01-01
There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.
Some issues in the loop variable approach to open strings and an extension to closed strings
International Nuclear Information System (INIS)
Sathiapalan, B.
1994-01-01
Some issues in the loop variable renormalization group approach to gauge-invariant equations for the free fields of the open string are discussed. It had been shown in an earlier paper that this leads to a simple form of the gauge transformation law. We discuss in some detail some of the curious features encountered there. The theory looks a little like a massless theory in one higher dimension that can be dimensionally reduced to give a massive theory. We discuss the origin of some constraints that are needed for gauge invariance and also for reducing the set of fields to that of standard string theory. The mechanism of gauge invariance and the connection with the Virasoro algebra is a little different from the usual story and is discussed. It is also shown that these results can be extended in a straightforward manner to closed strings. (orig.)
Tachyons in the Galilean limit
Energy Technology Data Exchange (ETDEWEB)
Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, Vilanova i la Geltrú, E-08808 (Spain); Gomis, Joaquim [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona, Martí i Franquès 1, Barcelona, E-08028 (Spain); Mezincescu, Luca [Department of Physics, University of Miami,P.O. Box 248046, Coral Gables, FL, 33124 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2017-04-20
The Souriau massless Galilean particle of “colour” k and spin s is shown to be the Galilean limit of the Souriau tachyon of mass m=ik and spin s. We compare and contrast this result with the Galilean limit of the Nambu-Goto string and Green-Schwarz superstring.
Tadpole resummations in string theory
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2008-01-01
While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed
Open string theory in 1+1 dimensions
International Nuclear Information System (INIS)
Bershadsky, M.; Kutasov, D.
1992-01-01
We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)
Deformations in closed string theory: canonical formulation and regularization
International Nuclear Information System (INIS)
Cederwall, M.; Von Gussich, A.; Sundell, P.
1996-01-01
We study deformations of closed string theory by primary fields of conformal weight (1,1), using conformal techniques on the complex plane. A canonical surface integral formalism for computing commutators in a non-holomorphic theory is constructed, and explicit formulae for deformations of operators are given. We identify the unique regularization of the arising divergences that respects conformal invariance, and consider the corresponding parallel transport. The associated connection is metric compatible and carries no curvature. (orig.)
A proposal for an effective interacting field theory of open and closed strings
International Nuclear Information System (INIS)
Baulieu, L.; Grossman, B.
1987-01-01
We propose the use of the reggeon-pomeron vertex to obtain an effective field theory for open and closed strings. We suggest that closed string fields are necessary in order to go off-shell in an open string field theory. We then find that the closed string fields satisfy the Virasoro constraints (including equal number of left and right movers) in an appropriate choice of gauge. (orig.)
Closed string emission from unstable D-brane with background electric field
International Nuclear Information System (INIS)
Nagami, Kenji
2004-01-01
We study the closed string emission from an unstable Dp-brane with constant background electric field in bosonic string theory. The average total number density and the average total energy density of emitted closed strings are explicitly calculated in the presence of electric field. It is explicitly shown that the energy density in the UV region becomes finite whenever the background electric field is switched on. The energy density converted into closed strings in the presence of electric field is negligibly small compared with the D-brane tension in the weak string coupling limit. (author)
A Chern-Simons-like action for closed-string field theory
International Nuclear Information System (INIS)
Taylor, C.C.
1989-01-01
A Chern-Simons-like action is proposed for closed-string field theory. The action involves auxiliary fields of arbitrary ghost number and is defined in terms of the closed-string operations ∫, Q and *, analogous to those introduced by Witten in the construction of open-string field theory. The action is an extension of one proposed for free closed strings and bears a formal relationship to 2 + 1 gravity analogous to that between open-string field theory and (2 + 1)-dimensional Yang-Mills theory. (author)
Tomaschitz, R
2000-01-01
We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...
Interactions for winding strings in Misner space
International Nuclear Information System (INIS)
Hikida, Y.
2006-06-01
We compute correlation functions of closed strings in Misner space, a big crunch big bang universe. We develop a general method for correlators with twist fields, which are relevant for the investigation on the condensation of winding tachyon. We propose to compute the correlation functions by performing an analytic continuation of the results in C/Z N Euclidean orbifold. In particular, we obtain a finite result for a general four point function of twist fields, which might be important for the interpretation as the quartic term of the tachyon potential. Three point functions are read off through the factorization, which are consistent with the known results. (Orig.)
Tree-level disk amplitude of three closed strings
Mousavi, Sepideh; Velni, Komeil Babaei
2018-05-01
It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.
Rankin-Selberg methods for closed strings on orbifolds
Angelantonj, Carlo; Pioline, Boris
2013-01-01
In recent work we have developed a new unfolding method for computing one-loop modular integrals in string theory involving the Narain partition function and, possibly, a weak almost holomorphic elliptic genus. Unlike the traditional approach, the Narain lattice does not play any role in the unfolding procedure, T-duality is kept manifest at all steps, a choice of Weyl chamber is not required and the analytic structure of the amplitude is transparent. In the present paper, we generalise this procedure to the case of Abelian Z_N orbifolds, where the integrand decomposes into a sum of orbifold blocks that can be organised into orbits of the Hecke congruence subgroup {\\Gamma}_0(N). As a result, the original modular integral reduces to an integral over the fundamental domain of {\\Gamma}_0(N), which we then evaluate by extending our previous techniques. Our method is applicable, for instance, to the evaluation of one-loop corrections to BPS-saturated couplings in the low energy effective action of closed string mo...
Gauge invariance and equations of motion for closed string modes
Directory of Open Access Journals (Sweden)
B. Sathiapalan
2014-12-01
Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.
Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description
International Nuclear Information System (INIS)
Athenodorou, Andreas; Teper, Michael
2016-01-01
We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l"γ) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.
Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-10-18
We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l{sup γ}) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.
International Nuclear Information System (INIS)
Barrowes, S.C.
1977-01-01
Tachyon paradoxes, including causality paradoxes, have persisted within tachyon theories and left little hope for the existence of observable tachyons. A way is presented to solve the causality paradoxes, along with two other paradoxes, by the introduction of an absolute frame of reference in which a tachyon effect may never precede its cause. Relativity for ordinary matter is unaffected by this, even if the tachyons couple to ordinary particles. Violations of the principle of relativity due to the absolute frame would appear only in the case of free tachyons
Quantum A∞-structures for open-closed topological strings
International Nuclear Information System (INIS)
Herbst, M.
2006-02-01
We study factorizations of topological string amplitudes on higher genus Riemann surfaces with multiple boundary components and find quantum A ∞ -relations, which are the higher genus analog of the (classical) A ∞ -relations on the disk. For topological strings with c=3 the quantum A ∞ -relations are trivially satisfied on a single D-brane, whereas in a multiple D-brane configuration they may be used to compute open higher genus amplitudes recursively from disk amplitudes. This can be helpful in open Gromov-Witten theory in order to determine open string higher genus instanton corrections. Finally, we find that the quantum A ∞ -structure cannot quite be recast into a quantum master equation on the open string moduli space. (orig.)
On the symmetry algebra of the discrete states in d<2 closed string theory
International Nuclear Information System (INIS)
Panda, S.; Roy, S.
1993-01-01
The symmetry charges associated with the Lian-Zuckerman states for d<2 closed string theory are constructed. Unlike in the open string case, it is shown here that the symmetry charges commute among themselves and act trivially on all the physical states. (author). 19 refs
A non-supersymmetric open-string theory and S-duality
International Nuclear Information System (INIS)
Bergman, O.; Gaberdiel, M.R.
1997-01-01
A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)
(Non-)commutative closed string on T-dual toroidal backgrounds
Andriot, David; Lust, Dieter; Patalong, Peter
2013-01-01
In this paper we investigate the connection between (non-)geometry and (non-)commutativity of the closed string. To this end, we solve the classical string on three T-dual toroidal backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with Q-flux. In all three situations we work under the assumption of a dilute flux and consider quantities to linear order in the flux density. Furthermore, we perform the first steps of a canonical quantization for the twisted torus, to derive commutators of the string expansion modes. We use them as well as T-duality to determine, in the non-geometric background, a commutator of two string coordinates, which turns out to be non-vanishing. We relate this non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.
Tachyon mediated non-Gaussianity
International Nuclear Information System (INIS)
Dutta, Bhaskar; Leblond, Louis; Kumar, Jason
2008-01-01
We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.
Loop homotopy algebras in closed string field theory
International Nuclear Information System (INIS)
Markl, M.
2001-01-01
Barton Zwiebach (1993) constructed ''string products'' on the Hilbert space of a combined conformal field theory of matter and ghosts, satisfying the ''main identity''. It has been well known that the ''tree level'' of the theory gives an example of a strongly homotopy Lie algebra (though, as we will see later, this is not the whole truth). Strongly homotopy Lie algebras are now well-understood objects. On the one hand, strongly homotopy Lie algebra is given by a square zero coderivation on the cofree cocommutative connected coalgebra on the other hand, strongly homotopy Lie algebras are algebras over the cobar dual of the operad Com for commutative algebras. No such characterization of the structure of string products for arbitrary genera has been available, though there are two series of papers directly pointing towards the requisite characterization. As far as the characterization in terms of (co)derivations is concerned, we need the concept of higher order (co)derivations. For our characterization we need to understand the behavior of these higher (co)derivations on (co)free (co)algebras. The necessary machinery for the operadic approach is that of modular operads. We also indicate how to adapt the loop homotopy structure to the case of open string field theory. (orig.)
Covariant loop-calculus for the closed bosonic string
International Nuclear Information System (INIS)
Petersen, J.L.; Sidenius, J.R.
1987-06-01
A previously suggested N-reggeon (N-string) amplitude based on the BRST-formulation is extended by obtaining integrations over Koba-Nielsen-like variables in terms of integrations over quasiconformal ghost fields. Simple sewing rules for reggeons are set up and the N-reggeon amplitude is shown to factorize correctly and to have satisfactory BRST-cohomology properties. Multi-loop amplitudes for arbitrary external states are constructed in the Schottky parametrization. The sewing prescription for antighost zero-modes produces a measure on Schottky space with the characteristic BRST properties. The treatment is inherently local on moduli space, however. (orig./HSI)
String field theory solution for any open string background
Czech Academy of Sciences Publication Activity Database
Erler, T.; Maccaferri, Carlo
2014-01-01
Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Tachyon condensation in the D0/D4 system
International Nuclear Information System (INIS)
David, Justin R.
2000-01-01
The D0/D4 system with a Neveu-Schwarz B-field in the spatial directions of the D4-brane has a tachyon in the spectrum of the (0,4) strings. The tachyon signals the instability of the system to form a bound state of the D0-brane with the D4-brane. We use the Wess-Zumino-Witten like open superstring field theory formulated by Berkovits to study the tachyon potential for this system. The tachyon potential lies outside the universality class of the D-brane anti-D-brane system. It is a function of the B-field. We calculate the tachyon potential at the zeroth level approximation. The minimum of the tachyon potential in this case is expected to reproduce the mass defect involved in the formation of the D0/D4 bound state. We compare the minimum of the tachyon potential with the mass defect in three cases. For small values of the B-field we obtain 70% of the expected mass defect. For large values of the B-field with Pf(2πα' B) > 0 the potential reduces to that of the D-brane anti-D-brane reproducing 62% of the expected mass defect. For large values of the B-field with Pf(2πα' B) < 0 the minimum of the tachyon potential gives 25% of the expected mass defect. At the tachyon condensate we show that the (0,4) strings decouple from the low energy dynamics. (author)
Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation
International Nuclear Information System (INIS)
Zwiebach, B.
1993-01-01
The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)
Closed String Thermodynamics and a Blue Tensor Spectrum
Brandenberger, Robert H; Patil, Subodh P
2014-01-01
The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard inflationary models, although it was predicted some years ago in the context of a mechanism that thermally generates the primordial perturbations through a Hagedorn phase of string cosmology. The purpose of this note is to encourage greater scrutiny of the data with priors informed by a model that is immediately falsifiable, but which \\textit{predicts} features that might be favoured by the data-- namely a blue tensor tilt with an induced and complimentary red tilt to the scalar spectrum, with a naturally large tensor to scalar ratio that relates to both.
Are partons confined tachyons?
International Nuclear Information System (INIS)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored
Cosmology with rolling tachyon
Indian Academy of Sciences (India)
Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...
Extension of the constraint algebra for a closed string with a world surface of fixed topology
International Nuclear Information System (INIS)
Kashaev, R.M.; Osipov, A.A.
1989-01-01
The recently proposed choice of gauge in which the constraints and auxiliary conditions form a closed algebra is extended to the case of the Krichever--Novikov generalized graded algebras. It is shown that the central element of the extended algebra can be represented by an inexact form on a closed contour of the world surface of the string. A realization of the given algebra in terms of string variables is obtained. For this purpose, the classical dynamics of a closed bosonic string with a world surface of fixed genus is discussed. The dynamical variables are introduced in a covariant way and Hamilton equations are obtained in terms of them. These equations are equivalent to the Lagrange equations only in the case of a harmonic function of ''time.''
International Nuclear Information System (INIS)
Yaakov, Itamar
2006-01-01
We extend Gopakumar's prescription for constructing closed string worldsheets from free field theory diagrams with adjoint matter to open and closed string worldsheets arising from free field theories with fundamental matter. We describe the extension of the gluing mechanism and the electrical circuit analogy to fundamental matter. We discuss the generalization of the existence and uniqueness theorem of Strebel differentials to open Riemann surfaces. Two examples are computed of correlators containing fundamental matter, and the resulting worldsheet OPE's are computed. Generic properties of Gopakumar's construction are discussed
Tachyon hair on two-dimensional black holes
International Nuclear Information System (INIS)
Peet, A.; Susskind, L.; Thorlacius, L.
1993-01-01
Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type
Tachyon tube on non BPS D-branes
International Nuclear Information System (INIS)
Huang Wunghong
2004-01-01
We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane. (author)
International Nuclear Information System (INIS)
Bose, S K
2009-01-01
Does the Special Theory of Relativity (STR) forbid the existence of particles traveling with speed greater than the speed of light in vacuo (Tachyons)? Prof. Sudarshan and collaborators O.M. Bilaniuk and V.K. Despande examined this question in 1962 and concluded that STR does not rule out such objects. Now, the momentum 4-vector of a Tachyon is necessarily space-like and consequently, the sign of energy no longer Lorentz-invariant. Thus a Tachyon will be found to have negative energy in certain inertial frames. The authors noted that in the latter, the sign of time-intervals will also be reversed. A negative energy Tachyon traveling backward in time could now be reinterpreted as a positive energy particle traveling forward in time. This reinterpretation could be done consistently as was shown by several examples. A quantum field theory of free spinless Tachyons was suggested by Feinberg (1967). M. Arons and Sudarshan reexamined this model and showed that the model did not possess invariance under the Poincare group. An alternative version was constructed by them that possessed the desired invariance property but no local commutativity. Subsequently, Dhar and Sudarshan constructed a model of a neutral scalar Tachyon with Yukawa coupling to Fermions. The model had unusual features such as the emission of a Tachyon by a Fermion as a real process and the need for an additional non-local interaction. Prof. Sudarshan, in association with J. Narlikar, studied Tachyons in the context of cosmology in 1976. One of their conclusions is that any primordial Tachyons that might have been created at the beginning are unlikely to have survived to the present era.
International Nuclear Information System (INIS)
Maund, J.B.
1979-01-01
Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity
Are partons confined tachyons?
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
On Climbing Scalars in String Theory
Dudas, E; Sagnotti, A
2010-01-01
In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.
Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking
International Nuclear Information System (INIS)
Dhar, Avinash; Nag, Partha
2008-01-01
We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra
A variational approach to closed bosonic strings on bordered Riemann surfaces
International Nuclear Information System (INIS)
Ohrndorf, T.
1987-01-01
Polyakov's path integral for bosonic closed strings defined on a bordered Riemann surface is investigated by variational methods. It is demonstrated that boundary variations are generated by the Virasoro operators. The investigation is performed for both, simply connected Riemann surfaces as well as ringlike domains. It is shown that the form of the variational operator is the same on both kinds of surfaces. The Virasoro algebra arises as a consistency condition for the variation. (orig.)
Closed flux tubes and their string description in D=3 1 SU(N) gauge theories
International Nuclear Information System (INIS)
Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael
2010-08-01
We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l√σ ∝ 1.6, and extends up to l√σ∝6 (where σ is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to √σ, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J P =0 - quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)
Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity
Saadi, Maha
1991-01-01
The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2
Couso-Santamaría, Ricardo; Schiappa, Ricardo; Vonk, Marcel
2015-01-01
The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local CP2 toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by Z_3 symmetry, alongside another action related to the Kahler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomal...
String perturbation theory diverges
International Nuclear Information System (INIS)
Gross, D.J.; Periwal, V.
1988-01-01
We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence
Indian Academy of Sciences (India)
This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.
Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons
International Nuclear Information System (INIS)
Sin, Sang-Jin
2003-01-01
We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow
Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons
Energy Technology Data Exchange (ETDEWEB)
Sin, Sang-Jin
2003-03-20
We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow.
Localized tachyon condensation and G-parity conservation
International Nuclear Information System (INIS)
Lee, Sunggeun; Sin, Sang-Jin
2004-01-01
We study the condensation of localized tachyon in non-supersymmetric orbifold. We first show that the G-parity of chiral primaries are preserved under the condensation of localized tachyon (CLT). Using this, we finalize the proof of the conjecture that the lowest-tachyon-mass-squared increases under CLT at the level of type II string with full consideration of GSO projection. We also show the equivalence between the G-parity given by G [jk 1 /n]+[jk 2 /n] coming from partition function and that given by G={jk 1 /n}+k 2 -{jk 2 -/n}k 1 coming from the monomial construction for the chiral primaries in the dual Mirror picture. (author)
Exact string theory model of closed timelike curves and cosmological singularities
International Nuclear Information System (INIS)
Johnson, Clifford V.; Svendsen, Harald G.
2004-01-01
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios
Metamaterial Model of Tachyonic Dark Energy
Directory of Open Access Journals (Sweden)
Igor I. Smolyaninov
2014-02-01
Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.
The theta-structure in string theories - 1: bosonic strings
International Nuclear Information System (INIS)
Li Miao.
1985-09-01
We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Tachyon dynamics — for neutrinos?
Schwartz, Charles
2018-04-01
Following earlier studies that provided a consistent theory of kinematics for tachyons (faster-than-light particles), we here embark on a study of tachyon dynamics, both in classical physics and in the quantum theory. Examining a general scattering process, we come to recognize that the labels given to “in” and “out” states are not Lorentz invariant for tachyons; and this lets us find a sensible interpretation of negative energy states. For statistical mechanics, as well as for scattering problems, we study what should be the proper expression for density of states for tachyons. We review the previous work on quantization of a Dirac field for tachyons and go on to expand earlier considerations of neutrinos as tachyons in the context of cosmology. We stumble into the realization that tachyon neutrinos would contribute to gravitation with the opposite sign compared to tachyon antineutrinos. This leads to the gobsmacking prediction that the Cosmic Neutrino Background, if they are indeed tachyons, might explain both phenomena of Dark Matter and Dark Energy. This theoretical study also makes contact with the anticipated results from the experiments KATRIN and PTOLEMY, which focus on beta decay and neutrino absorption by Tritium.
On non-BPS effective actions of string theory
Hatefi, Ehsan
2018-05-01
We discuss some physical prospective of the non-BPS effective actions of type IIA and IIB superstring theories. By dealing with all complete three and four point functions, including a closed Ramond-Ramond string (in terms of both its field strength and its potential), gauge (scalar) fields as well as a real tachyon and under symmetry structures, we find various restricted world volume and bulk Bianchi identities. The complete forms of the non-BPS scattering amplitudes including their Chan-Paton factors are elaborated. All the singularity structures of the non-BPS amplitudes, their all order α ' higher-derivative corrections, their contact terms and various modified Bianchi identities are derived. Finally, we show that scattering amplitudes computed in different super-ghost pictures are compatible when suitable Bianchi identities are imposed on the Ramond-Ramond fields. Moreover, we argue that the higher-derivative expansion in powers of the momenta of the tachyon is universal.
International Nuclear Information System (INIS)
Tomaschitz, R.
2006-01-01
We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The tachyonic line spectra of hydrogenic ions such as H, 56 Fe 25+ , and 238 U 91+ , as well as their muonic counterparts pμ - , 56 Fe 26+ μ - and 238 U 92+ μ - are calculated, in particular the tachyonic power transversally and longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylinder fields of γ -ray and millisecond pulsars, such as the Crab pulsar, PSR B1509-58, and PSR J0218 + 4232. The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic source particles are derived. We study the parameters determining the global shape of the transversal and longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that electrons and nuclei cycling in the surface fields can reach energies beyond the ''ankle'' of the cosmic ray spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays. (orig.)
International Nuclear Information System (INIS)
Barut, A.O.
1982-01-01
Some aspects of the experimental behaviour of tachyons are studied, in particular by finding out their apparent shape. A Superluminal particle, which in its own rest-frame is spherical or ellipsoidal (and with an infinite life-time), would appear to a laboratory frame as occupying the whole region of space bound by a double cone and a two-sheeted hyperboloid. Such a structure (the tachyon 'shape') rigidly travels with the speed of the tachyon. However, if the Superluminal particle has a finite life-time in its rest-frame, then in the laboratory frame in gets a finite space-extension. As a by-product, we are able to interpret physically the immaginary units entering -as wellknown- the transversal coordinates in the Superluminal Lorentz transformations. The various particular or limiting cases of the tachyon shape are thoroughly considered. Finally, some brief considerations concerning possible experiments to look for tachyons are added
International Nuclear Information System (INIS)
Jaskolski, Z.
1991-05-01
The geometrical approach to the functional integral over Faddeev-Popov ghost fields is developed and applied to construct the BRST extension of the off-shell closed string amplitudes in the constant curvature gauge. In this gauge the overlap path integral for off-shell amplitudes is evaluated. It leads to the nonlocal sewing procedure generating all off-shell amplitudes from the cubic interaction vertex. The general scheme of the reconstruction of a covariant closed string field theory from the off-shell amplitudes is discussed within the path integral framework. (author). 30 refs
A universal nonlinear relation among boundary states in closed string field theory
International Nuclear Information System (INIS)
Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku
2004-01-01
We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)
Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation
Barnaby, Neil; Cline, James M.
2006-05-01
We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.
String theory as a Lilliputian world
International Nuclear Information System (INIS)
Ambjørn, J.; Makeenko, Y.
2016-01-01
Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.
String theory as a Lilliputian world
Energy Technology Data Exchange (ETDEWEB)
Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)
2016-05-10
Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.
Unity from duality: gravity, gauge theory and strings
International Nuclear Information System (INIS)
Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.
2002-01-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Ground State Energy of the Modified Nambu-Goto String
Hadasz, Leszek
We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.
Ground state energy of the modified Nambu-Goto string
Hadasz, Leszek
1997-01-01
We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.
International Nuclear Information System (INIS)
Popov, A.D.
1991-01-01
We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)
International Nuclear Information System (INIS)
Mrowczynski, St.
1984-01-01
The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed
Tree-level stability without spacetime fermions: novel examples in string theory
International Nuclear Information System (INIS)
Israel, Dan; Niarchos, Vasilis
2007-01-01
Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory
Tachyons in the Milne Universe
Tomaschitz, R
1999-01-01
Superluminal particles (tachyons) are studied in a Robertson-Walker cosmology with linear expansion factor and negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving observers, isometric copies of the forward lightcone, which can be synchronized by Lorentz boosts. We investigate superluminal wave propagation, a real Proca field with negative mass-square, coupled to subluminal matter in analogy to the electromagnetic field. For photons, the eikonal approximation is exact in Robertson-Walker cosmology, and the Proca field is coupled to the background geometry in such a way that this also holds for tachyons. The spectral decomposition of freely propagating tachyon fields in the Milne universe is derived. We study the wave-particle duality in terms of the spectral elementary waves and their orthogonal ray bundles, in the comoving frame as well as in the individual geodesic rest frames of galactic observers. The spectral energy density of a tachyon back...
Directory of Open Access Journals (Sweden)
Francisco Martnez Flores
2015-08-01
Full Text Available ABSTRACT We have carried out an exhaustive analysis of the scope of Relativity showing that it is possible to couple it with Quantum Theory but not with Classical Mechanics In order to do that we have introduced the concept of electromagnetic and virtual mass to all particles subjected to Quantum Field Theory radically different from the real or inertial mass included in Newtonian Dynamics which turns out the adequate status to understand quantum phenomena without resorting to explanations difficult to admit. In that line we have considered the particles so-called Tachyon for which we made a reformulation of the relativistic equation avoiding the space-like or negative interval non-causal thus it has been demonstrated its identification with antiparticles on account of the peculiar behavior of energy and momentum regarding the particles and photons.
BRST invariant mixed string vertex for the bosonic string
International Nuclear Information System (INIS)
Clarizia, A.; Pezzella, F.
1987-09-01
We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)
A new formulation of the theory of tachyons. Part II: Tachyon electrodynamics
International Nuclear Information System (INIS)
Dawe, R.L.; Hines, K.C.
1991-06-01
A new formulation of the theory of tachyons using the same two postulates as in Special Relativity is applied to electrodynamics. Use is made of a 'switching principle' to show how tachyons automatically obey the law of conservation of electric charge in any inertial reference frame, even though the observed electric charge is not any invariant for tachyons. Tachyonic transformations of electromagnetic fields E, B, D, H, P and M are rigorously derived from Maxwell's equations and are shown to be the same as for bradyonic transformations. Tachyonic transformations of current and charge densities and scalar and vector potentials are also derived and discussed. Further examples include calculations of the magnetic dipole moment of a tachyonic current loop and of the speed of light in a tachyonic dielectric. Constitutive equations for a tachyonic dielectric are also given. The Lagrangian and Hamiltonian for charged tachyons are discussed, as well as generic tachyonic transformations. 51 refs., 15 figs
Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings
International Nuclear Information System (INIS)
Awada, M.A.
1986-07-01
We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional
International Nuclear Information System (INIS)
Hohly, R.W.
1992-01-01
Tachyons of very small mass, m, have been assumed to satisfy a Proca-like equation, approximately but not exactly, so that the Lorentz gauge condition can be retained as in the photon case. THe tachyon fields therefore have four non-zero conjugate momenta, making invariance manifest. On introducing particle operators, two consistent, theories are found, a particle theory and a 'non-particle' theory, depending on which version of the Reinterpretation Principle one applies. The particle theory is relativistically invariant, gauge invariant, and also causal in the naive sense. While the vacuum is not invariant, using RIP, the fields and Fock space of physical tachyon states is invariant. The Lorentz gauge is satisfied by restricting states to those meeting a Gupta-Bleuler condition. Physical states can further be modified to travel symmetrically in time, and thus, will not violate causality. Under this restriction, a time symmetric tachyon sent backwards in time by Lorentz transformation becomes a tachyon going forward in time, but in the opposite direction
Closed flux tubes and their string description in D=3+1 SU(N) gauge theories
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [Washington Univ., Seattle, WA (United States). Dept. of Physics; Teper, Michael [Oxford Univ. (United Kingdom). Centre for Theoretical Physics
2010-08-15
We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l{radical}{sigma} {proportional_to} 1.6, and extends up to l{radical}{sigma}{proportional_to}6 (where {sigma} is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to {radical}{sigma}, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J{sup P}=0{sup -} quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)
Dynamics and stability of light-like tachyon condensation
International Nuclear Information System (INIS)
Barnaby, Neil; Robinson, Patrick; Mulryne, David J.; Nunes, Nelson J.
2009-01-01
Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an 'island of stability' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.
Dynamics and stability of light-like tachyon condensation
Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick
2009-03-01
Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.
Open bosonic string in background electromagnetic field
International Nuclear Information System (INIS)
Nesterenko, V.V.
1987-01-01
The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found
Dynamical analysis of tachyonic chameleon
Banijamali, Ali; Solbi, Milad
2017-08-01
In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.
Ancient cosmological tachyons in the present-day world
International Nuclear Information System (INIS)
Molski, M.
1993-01-01
The geodesic equation for space-like objects moving along a circular trajectory in the expanding universe is considered. Our analysis leads to the conclusion that ancient cosmological tachyons may exist in the present-day world and may play an important role in (i) the internal structure of hadrons conceived as nonlocal objects called strings, (ii) the T-symmetry violation observed in the weak K-decays, (iii) the multidimensional unified field theories of Kaluza-Klein type, and in (iv) the classical models of charged particles which combine ordinary electromagnetism with a self-interacting version of Newtonian gravity. 18 refs
Quaternionic formulation of tachyons, superluminal transformations and a complex space-time
Energy Technology Data Exchange (ETDEWEB)
Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)
1979-04-11
A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.
Assisted inflation from geometric tachyon
International Nuclear Information System (INIS)
Panigrahi, Kamal L.; Singh, Harvendra
2007-01-01
We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes
The identity string field and the sliver frame level expansion
Czech Academy of Sciences Publication Activity Database
Erler, Theodore
2012-01-01
Roč. 2012, č. 11 (2012), s. 1-25 ISSN 1126-6708 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation, bosonic strings , String Field Theory Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
Four-dimensional strings: Phenomenology and model building
International Nuclear Information System (INIS)
Quiros, M.
1989-01-01
In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)
International Nuclear Information System (INIS)
Gross, D.J.
1986-01-01
Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories
String phase transitions in a strong magnetic field
Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo
1993-01-01
We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Background Independent Open String Field Theory and Constant B-Field
Nemeschansky, D.; Yasnov, V.
2000-01-01
We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.
Explicit formuli for one, two, three and four loops string amplitudes in critical dimension
International Nuclear Information System (INIS)
Morozov, A.Yu.
1987-01-01
A report on explicit formulae for loop string diagrams in the primary-quantized theory of strings is presented. In the critical dimension d=26 tachyon p-loop scattering amplitude in the theory of boson strings is presented as finite-multiple integral with respect to Riemann surface M p moduli space. Integration on M p in continual integral is determined
Lowe, D. A.; Thorlacius, L.
1994-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...
Tachyons in Robertson-Walker Cosmology
Tomaschitz, R
1998-01-01
Superluminal signal transfer is studied in the context of a preferred cosmic frame of reference provided by the galactic background. The receding galaxies constitute a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) is unambiguously defined as a positive quantity. The causality violation which arises in relativistic tachyonic theories is avoided. We define interactions of particles and tachyons in terms of elastic head-on collisions and energy-momentum conservation. To compare the theory developed with existing relativistic theories, tachyons are studied at first in a Minkowski universe, and the causality of a superluminal communication process is analyzed. Then we discuss the dynamics of tachyons in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. We point out the consequences that the space expansion has on tachyons, like a finite life-time in the frame of absolute rest, and multiple images in the rest frames of moving observer...
International Nuclear Information System (INIS)
Mrowczynski, S.
1983-01-01
The properties of the ideal gas of classical (nonquantum) faster than light particles-tachyons have been considered. The basic notions of thermodynamics of tachyons have been introduced. We have found the partition function and other thermodynamical quantities for the ideal tachyon gas. The equation of state which we have found for tachyons is exactly the same as for the ideal gas of partictes slower than light-bradyons. The internal energy and the apecific heat have been discussed at low and at very high temperatures. It has been shown that in high temperature limit the properties of gas of tachyons and gas of bradyons are th'e same. The numerical calculations concerning the internal energy and specific heat at different temperatures were performed and the results have been presented. It has been shown that in full interval of temperature the characteristics of gas of tachyons are similar to those of gas of bradyons
Closed flux tubes and their string description in D=2+1 SU(N) gauge theories
International Nuclear Information System (INIS)
Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael
2011-08-01
We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest ∝30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N→ ∞ continuum limit. We find that the energies, E n (l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l 2 diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l 3 ) corrections to σl, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l 7 ), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l 7 ) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)
Closed flux tubes and their string description in D=2+1 SU(N) gauge theories
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [The Israeli Institute for Advanced Research (IIAR), Rehovot (Israel); Teper, Michael [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics
2011-08-15
We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest {proportional_to}30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N{yields} {infinity} continuum limit. We find that the energies, E{sub n}(l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l{sup 2} diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l{sup 3}) corrections to {sigma}l, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l{sup 7}), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l{sup 7}) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)
Aspects of type $0$ string theory
Blumenhagen, R; Kumar, A; Lüst, Dieter
2000-01-01
A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.
Dynamics of Interacting Tachyonic Teleparallel Dark Energy
International Nuclear Information System (INIS)
Banijamali, Ali
2014-01-01
We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.
Tachyon condensation on the elliptic curve
International Nuclear Information System (INIS)
Govindarajan, Suresh; Jockers, Hans; Lerche, Wolfgang; Warner, Nicholas P.
2007-01-01
We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minimal charges. As an application, we explicitly construct all rank two matrix factorizations
Tachyon Condensation on the Elliptic Curve
Govindarajan, S; Lerche, Wolfgang; Warner, Nicholas P
2007-01-01
We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minim...
Minimal string theory is logarithmic
International Nuclear Information System (INIS)
Ishimoto, Yukitaka; Yamaguchi, Shun-ichi
2005-01-01
We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)
Stability of a tachyon braneworld
International Nuclear Information System (INIS)
Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto; Herrera-Aguilar, Alfredo; Rocha, Roldão da
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld
Stability of a tachyon braneworld
Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.
Stability of a tachyon braneworld
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla, México (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aherrera@ifuap.buap.mx, E-mail: andre.kuerten@ufabc.edu.br, E-mail: malagon@fis.unam.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Santo André, SP (Brazil)
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld
Stability of a tachyon braneworld
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Kuerten, André Martorano [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil); Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil)
2016-01-26
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.
Exactly solvable string models of curved space-time backgrounds
International Nuclear Information System (INIS)
Russo, J.G.
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)
Tachyon driven solution to Cosmic Coincidence Problrm
Srivastaca, S. K.
2004-01-01
Here, non-minimally coupled tachyon to gravity is considered as a source of "dark energy". It is demonstrated that with expansion of the universe, tachyon dark energy decays to "dark matter" providing a solution to "cosmic coincidence problem".Moreover, it is found that universe undergoes accelerated expansion simultaneously.
Tachyons in an Expanding Space-Time
Tomaschitz, R
1998-01-01
Superluminal signal transfer is introduced in the context of an absolute frame of reference provided by the galactic background. The receding galaxies constitute a reference frame, a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) can be defined as a positive definite quantity. The theory presented is essentially covariant, but not relativistic. The causality problem of superluminal signal transfer, which arises in relativistic theories, can be completely avoided. Tachyons are studied in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. The tachyonic dynamics is defined, and it is pointed out how tachyonic events appear to observers who are uniformly moving in the frame of absolute rest. The consequences that the space expansion has on tachyons, e.g. redoubling effects, are discussed.
Supertube domain walls and elimination of closed timelike curves in string theory
International Nuclear Information System (INIS)
Drukker, Nadav
2004-01-01
We show that some novel physics of supertubes removes closed timelike curves from many supersymmetric spaces which naively suffer from this problem. The main claim is that supertubes naturally form domain walls, so while analytical continuation of the metric would lead to closed timelike curves, across the domain wall the metric is nondifferentiable, and the closed timelike curves are eliminated. In the examples we study, the metric inside the domain wall is always of the Goedel type, while outside the shell it looks like a localized rotating object, often a rotating black hole. Thus this mechanism prevents the appearance of closed timelike curves behind the horizons of certain rotating black holes
Complex geometry and quantum string theory
International Nuclear Information System (INIS)
Belavin, A.A.; Knizhnik, V.G.
1986-01-01
Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry
Energy Technology Data Exchange (ETDEWEB)
Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2016-07-11
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.
Quantum consistency of open string theories
International Nuclear Information System (INIS)
Govaerts, J.
1989-01-01
We discuss how Virasoro anomalies in open string theories uniquely select the gauge group SO(2 D/2 ) independently of any regularisation, although the cancellation of these anomalies does not occur in tachyonic theories, and regulators can always be chosen to make these theories (one-loop) finite for any SO(n) and USp(n) gauge group. The discussion is mainly restricted to open bosonic strings. These results open new perspectives for the recent suggestion made by Sagnotti, the generalisations of which allow for the construction of new open string theories in less than ten dimensions. (orig.)
BPS limit of multi- D- and DF-strings in boundary string field theory
International Nuclear Information System (INIS)
Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai
2007-01-01
A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form
Wilson-Polyakov loops for critical strings and superstrings at finite temperature
International Nuclear Information System (INIS)
Green, M.B.
1992-01-01
An open string with end-points fixed at spatial separation L is a string theory analogue of the static quark-antiquark system in quenched QCD. Folowing a review of the quantum mechanics of this system in critical bosonic string theory the partition function at finite β (the inverse temperature) for fixed end-point open strings is discussed. This is related by a conformal transformation ('world-sheet duality') to the correlation function of two closed strings fixed at distinct spatial points (a string theory analogue of two Wilson-Polyakov loops). Temperature duality (β → β' = 4π 2 /β) relates this correlation function, in turn, to the finite-temperature Green function for a closed strong propagating between initial and final states that are at distinct (euclidean) space-time points. In addition, spatial duality relates the fixed end-point open string to the familiar open string with free end-points. A generalization to fixed end-points superstrings is suggested, in which the superalgebra may be viewed as the spatial dual of the usual open-string superalgebra. At zero temperature world-sheet duality relates the partition function of supersymmetric fixed end-point open strings to the correlation function of point-like closed-string states. These couple to combinations of the scalar and pseudoscalar states of a type-2b superstring superfield. At finite temperature supersymmetry is broken and this correlation function involves the propagation of non-supersymmetric states with non-zero winding numbers (which formally include a tachyon at temperatures above the Hagedorn transition). Temperature duality again relates the partition function to the finite-temperature Green function describing the propagator for point-like closed-string states of the dual theory, in which supersymmetry is broken. The singularity that arises in the critical bosonic theory as L is reduced below L = 2 π√α' is absent in the superstring and the static potential is well defined for all
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Tachyonic ionization cross sections of hydrogenic systems
Energy Technology Data Exchange (ETDEWEB)
Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)
2005-03-11
Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.
Two-body interactions by tachyon exchange
International Nuclear Information System (INIS)
Maccarrone, R.; Recami, E.
1982-01-01
Due to its relevance for the possible applications to particle physics and for causality problems, is analyzed in this paper the kinematic of (classical) tachyon-exchange between two bodies A, B, for all possible relative velocities. In particular, the two cases u.-vector V-vector c 2 are carefully investigated, V are the body B and tachyon speeds relative to A, respectively
String beta function equations from c=1 matrix model
Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R
1995-01-01
We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.
Large BCFT moduli in open string field theory
Czech Academy of Sciences Publication Activity Database
Maccaferri, C.; Schnabl, Martin
2015-01-01
Roč. 2015, č. 8 (2015), s. 149 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Field Theory * tachyon condensation * D-branes Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015
Can a tachyon emit light radiation in all directions
Energy Technology Data Exchange (ETDEWEB)
Ramanujam, G A [NGM Coll., Tamil Nadu (India). Dept. of Physics
1976-03-01
It is shown here that a critical analysis of the approaches employed by various authors to accommodate tachyons into special relativity leads one to the conclusion that a tachyon can emit light radiation only along its line of motion.
Two-matrix models and c =1 string theory
International Nuclear Information System (INIS)
Bonora, L.; Xiong Chuansheng
1994-05-01
We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)
Thermodynamics of 2D string theory
International Nuclear Information System (INIS)
Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University
2003-01-01
We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)
Observability of complex ghosts and tachyons
International Nuclear Information System (INIS)
Yamamoto, Hiroshi
1976-01-01
The complex ghost introduced previously by the present author is studied from a standpoint whether its effects are observable by experiments or not. According to the theory of complex ghost the scattering cross section of two real particles shows some particular properties. It has a kind of resonance peak at a certain energy which does not conform to the Breit-Wigner formula. It has also a peak for a certain energy transfer, if there exist tachyons. The tachyon is a kind of ghost and is allowed to exist in the theory. Using these properties the complex ghosts are expected to be detected by experiments. The recently observed resonance psi(3.1) is supposed to be the complex ghost of photon, since they have the same quantum numbers. If it is assumed, some properties of the resonance known by experiments are explained naturally to a certain extent. Along the same line it is not unnatural to expect that the photon is also accompanied by a tachyon as a ghost. An experiment to detect the tachyon is proposed. If the angular distribution of elastic electron-positron or electron-electron scattering is observed at a suitably high energy, then a peak will be found in the domain -1< cos theta<1, where it is assumed that the exchanged photon accompanies a tachyon. (auth.)
Tachyon constant-roll inflation
Mohammadi, A.; Saaidi, Kh.; Golanbari, T.
2018-04-01
The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.
International Nuclear Information System (INIS)
Neveu, A.
1986-01-01
There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures
Relativistic string dynamics and its connection with hadron physics
International Nuclear Information System (INIS)
Barbashov, B.M.; Nesterenko, V.V.
1976-01-01
Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented
Dynamics of Symmetry Breaking and Tachyonic Preheating
Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor
2001-01-01
We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.
International Nuclear Information System (INIS)
Kogan, Y.I.
1989-05-01
Using the connection between (2+1) Chern-Simons gauge theory and 2d Conformal Field Theory the on-shell string condition is obtained as a condition of full independence of interior of (2+1) world. The new method for off-shell continuation is considered based on the introduction of the Maxwell term in (2+1) theory. This leads to dynamical transmutation of world-sheet dimensions - the off-shell string becomes topological membrane (topological means that (2+1) theory has topological mass term). The dependence of parameters of (2+1) theory under the external fields is discussed. (author). 17 refs
Introduction to string theory and string compactifications
International Nuclear Information System (INIS)
GarcIa-Compean, Hugo
2005-01-01
Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed
International Nuclear Information System (INIS)
Jensen, B.
1993-06-01
The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs
International Nuclear Information System (INIS)
Turok, N.; Bhattacharjee, P.
1984-01-01
The evolution of a network of strings produced at a grand-unification phase transition in an expanding universe is discussed, with particular reference to the processes of energy exchange between the strings and the rest of the universe. This is supported by numerical calculations simulating the behavior of strings in an expanding universe. It is found that in order that the energy density of the strings does not come to dominate the total energy density there must be an efficient mechanism for energy loss: the only plausible one being the production of closed loops and their subsequent decay via gravitational radiation
Tachyon kinematics and causality: a systematic thorough analysis of the tachyon causal paradoxes
International Nuclear Information System (INIS)
Recami, E.
1987-01-01
The chronological order of the events along a spacelike path is not invariant under Lorentz transformations, as is well known. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stueckelberg-Feynman switching procedure (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal paradoxes. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least in microphysics) only after the tachyon relativistic mechanics has been properly developed. They start by showing how to apply the SWP, both in the case of ordinary special relativity and in the case with tachyons. Then they carefully exploit the kinetics of the tachyon exchange between two (ordinary) bodies. Being finally able to tackle the tachyon causality problem, they successively solve the paradoxes of: (i) Tolman-Regge, (ii) Pirani, (iii) Edmonds, and (iv) Bell. Finally, they discuss a further, new paradox associated with the transmission of signals by modulated tachyon beams
Tachyons, Lamb Shifts and Superluminal Chaos
Tomaschitz, R
2000-01-01
An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 ke...
Supersymmetric D2 anti-D2 Strings
Bak, Dongsu; Ohta, Nobuyoshi
2001-01-01
We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...
Macroscopic fundamental strings in cosmology
Energy Technology Data Exchange (ETDEWEB)
Aharonov, Y; Englert, F; Orloff, J
1987-12-24
We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.
Are classical tachyons slower-than-light quantum particles
International Nuclear Information System (INIS)
Recami, E.; Maccarrone, G.D.
1983-01-01
After having studied the shape that a tachyon T (e.g., intrinsecally spherical) would take up, it is shown in an explicit example that the characteristic of classical tachyons are similar to those of the ordinary (slower-than-light) quantum particles. In particular, a realistic tachyon is associated with a 'phase-speed' V [V 2 >Cσ2], but with a 'group speed' v=c 2 /V [v 2 2
Accelerated expansion of the universe driven by tachyonic matter
International Nuclear Information System (INIS)
Padmanabhan, T.
2002-01-01
It is an accepted practice in cosmology to invoke a scalar field with a potential V(φ) when the observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function degree of freedom in the expansion factor a(t) can be traded off for the function V(φ), it is always possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(φ) from a(t) in two cases: (i) a normal scalar field with the Lagrangian L=(1/2)∂ a φ∂ a φ-V(φ) used in quintessence or dark energy models; (ii) a tachyonic field with the Lagrangian L=-V(φ)[1-∂ a φ∂ a φ] 1/2 , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Tachyons: may they have a role in elementary particle physics
International Nuclear Information System (INIS)
Recami, E.; Rodrigues, W. A.
1985-01-01
The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism
Tachyons: may they have a role in elementary particle physics
International Nuclear Information System (INIS)
Recami, E.; Rodrigues Junior, W.A.
1985-01-01
The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt
Cosmic strings and galaxy formation
International Nuclear Information System (INIS)
Bertschinger, E.
1989-01-01
Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings
Chern-Simons couplings for dielectric F-strings in matrix string theory
International Nuclear Information System (INIS)
Brecher, Dominic; Janssen, Bert; Lozano, Yolanda
2002-01-01
We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
Stability analysis in tachyonic potential chameleon cosmology
International Nuclear Information System (INIS)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.
2011-01-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations
Stability analysis in tachyonic potential chameleon cosmology
Energy Technology Data Exchange (ETDEWEB)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
A de Sitter tachyon thick braneworld
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.
Quantum and classical aspects of deformed c = 1 strings
International Nuclear Information System (INIS)
Nakatsu, T.; Tsujimaru, S.; Takasaki, K.
1995-01-01
The quantum and classical aspects of a deformed c=1 matrix model proposed by Jevicki and Yoneya are studied. String equations are formulated in the framework of the Toda lattice hierarchy. The Whittaker functions now play the role of generalized Airy functions in c<1 strings. This matrix model has two distinct parameters. Identification of the string coupling constant is thereby not unique, and leads to several different perturbative interpretations of this model as a string theory. Two such possible interpretations are examined. In both cases, the classical limit of the string equations, which turns out to give a formal solution of Polchinski's scattering equations, shows that the classical scattering amplitudes of massless tachyons are insensitive to deformations of the parameters in the matrix model. (author)
International Nuclear Information System (INIS)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
Introduction to path integrals, matrix models and strings
International Nuclear Information System (INIS)
Jevicki, A.
1995-01-01
The major strength of the theory is then that it is integrable and exactly solvable. Its integrable nature leads to understanding of a w ∞ algebra as a space-time symmetry of string theory. This algebra acts in a nonlinear way on the basic collective field representing a massless tachyon. It is interpreted as a spectrum-generating algebra allowing to build an infinite sequence of discrete imaginary energy states which turn out to be remnants of higher string modes in two dimensions. The presence and interplay of discrete modes with the scalar tachyon are particularly interesting. The w ∞ symmetry is seen to serve as an organizational principle and is of much broader relevance. (orig.)
Algebraic solutions in open string field theory – a lightning review
Czech Academy of Sciences Publication Activity Database
Schnabl, Martin
2010-01-01
Roč. 50, č. 3 (2010), s. 102-108 ISSN 1210-2709 Grant - others:EUROHORC(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics https://ojs.cvut.cz/ojs/index.php/ap/article/download/1213/1045
Ward Identities of W_{\\infty} Symmetry and Higher Genus Amplitudes in 2D String Theory
Hamada, Ken-ji
1995-01-01
The Ward identities of the $W_{\\infty}$ symmetry in two dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss differences of role...
Consistency of the tachyon warm inflationary universe models
International Nuclear Information System (INIS)
Zhang, Xiao-Min; Zhu, Jian-Yang
2014-01-01
This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ 0 and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε H , and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ 0 ) is usually not a suitable assumption for a warm inflationary model
Inflation and dark energy arising from geometrical tachyons
International Nuclear Information System (INIS)
Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji
2006-01-01
We study the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical setup. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of cosmic microwave background due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by cosmic microwave background anisotropies. However, the geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field
Minimal string theories and integrable hierarchies
Iyer, Ramakrishnan
Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Tachyon logamediate inflation on the brane
Energy Technology Data Exchange (ETDEWEB)
Kamali, Vahid; Nik, Elahe Navaee [Bu-Ali Sina University, Department of Physics, Hamedan (Iran, Islamic Republic of)
2017-07-15
According to a Barrow solution for the scale factor of the universe, the main properties of the tachyon inflation model in the framework of the RSII braneworld are studied. Within this framework the basic slow-roll parameters are calculated analytically. We compare this inflationary scenario to the latest observational data. The predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. The current predictions are consistent with those of viable inflationary models. (orig.)
Dynamics of coupled phantom and tachyon fields
Energy Technology Data Exchange (ETDEWEB)
Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)
2017-10-15
In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)
Dynamics of coupled phantom and tachyon fields
International Nuclear Information System (INIS)
Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong
2017-01-01
In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)
Bosonization and current algebra of spinning strings
International Nuclear Information System (INIS)
Stern, A.
1996-01-01
We write down a general geometric action principle for spinning strings in d-dimensional Minkowski space, which is formulated without the use of Grassmann coordinates. Instead, it is constructed in terms of the pull-back of a left invariant Maurer-Cartan form on the d-dimensional Poincare group to the world-sheet. The system contains some interesting special cases. Among them are the Nambu string (as well as, null and tachyonic strings) where the spin vanishes, and also the case of a string with a spin current - but no momentum current. We find the general form for the Virasoro generators, and show that they are first class constraints in the Hamiltonian formulation of the theory. The current algebra associated with the momentum and angular momentum densities are shown, in general, to contain rather complicated anomaly terms which obstruct quantization. As expected, the anomalies vanish when one specializes to the case of the Nambu string, and there one simply recovers the algebra associated with the Poincare loop group. We speculate that there exist other cases where the anomalies vanish, and that these cases give the bosonization of the known pseudoclassical formulations of spinning strings. (orig.)
Quantum backreaction in string theory
International Nuclear Information System (INIS)
Evnin, O.
2012-01-01
There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
D-brane anti-D-brane system in string theory
Hyakutake, Y
2003-01-01
In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y.Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable an tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) x U(1) gauge theory with a complex tachyon field. Since the mass squared of the techyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed. (author)
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Traubenberg, M.R. de.
1988-01-01
We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt
Directory of Open Access Journals (Sweden)
Milošević M.
2016-01-01
Full Text Available The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n, and tensor-scalar ratio (r for the given potentials. We pay special attention to the inverse power potential, first of all to V (x ~ x−4, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X0 to the string theory motivated sector of its values is briefly considered. [Projekat Ministarstva nauke Republike Srbije, br. 176021, br. 174020 i br. 43011
The reconstruction of tachyon inflationary potentials
Energy Technology Data Exchange (ETDEWEB)
Fei, Qin; Gong, Yungui; Lin, Jiong; Yi, Zhu, E-mail: feiqin@hust.edu.cn, E-mail: yggong@mail.hust.edu.cn, E-mail: 707751841@qq.com, E-mail: yizhu92@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 1037 LuoYu Rd, Wuhan, Hubei 430074 (China)
2017-08-01
We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of e -folds before the end of inflation. Using the relation between the observables like n {sub s} and r with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter w {sub re} during reheating is a constant. Depending on the model parameters and the value of w {sub re} , the constraints on N {sub re} and T {sub re} are different. As n {sub s} increases, the allowed reheating epoch becomes longer for w {sub re} =−1/3, 0 and 1/6 while the allowed reheating epoch becomes shorter for w {sub re} =2/3.
Rossing, Thomas D.; Hanson, Roger J.
In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.
Observational constraints on tachyonic chameleon dark energy model
Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.
2018-03-01
It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.
Tachyons: may they have a role in elementary particle physics
International Nuclear Information System (INIS)
Recami, Erasmo
1985-01-01
The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)
Cosmological evolution of a brane Universe in a type 0 string background
International Nuclear Information System (INIS)
Papantonopoulos, E.; Pappa, I.
2002-01-01
We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. For constant values of tachyon and dilaton an inflationary phase is appearing. For non constant values of tachyon and dilaton and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to 1/(log α) 4 indicating a slowly varying inflationary phase
COSMOS-e'-GTachyon from string theory
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Panda, Sudhakar [Institute of Physics, Bhubaneswar, Odisha (India); Harish-Chandra Research Institute, Allahabad (India)
2016-05-15
In this article, our prime objective is to study the inflationary paradigm in the context of the generalized tachyon (GTachyon) living on the world volume of a non-BPS string theory. The tachyon action is considered here is modified compared to the original action. One can quantify the amount of the modification via a power q instead of 1/2 in the effective action. Using this set-up we study inflation by various types of tachyonic potentials, using which we constrain the index q within, 1/2 < q < 2, and a specific combination (∝ α{sup '}M{sup 4}{sub s}/g{sub s}) of the Regge slope α{sup '}, the string coupling constant g{sub s} and the mass scale of tachyon M{sub s}, from the recent Planck 2015 and Planck+BICEP2/Keck Array joint data. We explicitly study the inflationary consequences from single field, assisted field and multi-field tachyon set-ups. Specifically for the single field and assisted field cases we derive the results in the quasi-de Sitter background in which we will utilize the details of cosmological perturbations and quantum fluctuations. Also we derive the expressions for all inflationary observables using any arbitrary vacuum and the Bunch-Davies vacuum. For the single field and the assisted field cases we derive the inflationary flow equations, new sets of consistency relations. Also we derive the field excursion formula for the tachyon, which shows that assisted inflation is on the safe side compared to the single field case to validate the effective field theory framework. Further we study the features of the CMB angular power spectrum from TT, TE and EE correlations from scalar fluctuations within the allowed range of q for each of the potentials from the single field set-up. We also put constraints from the temperature anisotropy and polarization spectra, which shows that our analysis is consistent with the Planck 2015 data. Finally, using the δN formalism we derive the expressions for inflationary observables in the context of
Time-dependent perturbations in two-dimensional string black holes
Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E
1992-01-01
We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}
Magnetically-enhanced open string pair production
Lu, J. X.
2017-12-01
We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.
The operator formalism and contact terms in string theory
International Nuclear Information System (INIS)
Doyle, M.D.
1992-01-01
The operator formalism has proven to be a powerful tool in string theory. In particular, by making explicit the role of a choice of local coordinates (or, equivalently, a normal-ordering prescription) at vertex operator insertions, it provides a framework for understanding the insertion of very general states in both on-shell string theory and string field theory, for formulating a semirigid N = 2 geometry-based approach to topological gravity, for resolving ambiguities in fermionic string theory, and for analyzing contact interactions. The main focus of this thesis on this last application of the operator formalism, although it touches on each of the others. The first goal is the analysis of the dilaton contact terms required for the dilaton equation in the bosonic and heterotic strings. In the bosonic case, a coordinate family appropriate for a punctured sphere is given and is used to calculate dilaton two-point functions. This coordinate family is later generalized to a 'good' coordinate family appropriate for dilaton calculations on higher genus surfaces. It is found that dilaton-dilaton contact terms are improperly normalized resulting in the failure of the dilaton equation, suggesting that the zero-momentum dilaton is not the string coupling constant. This seems to be the result of a tachyon divergence. A similar calculation in the heterotic case, where there is no tachyon, shows that the dilaton contact terms are properly normalized, and that the dilaton equation and the interpretation of the dilaton as the string coupling constant goes through. The other major goal is re-examination of Green and Seiberg's work which showed that, in simple treatments of fermionic string theory, it is necessary to introduce contact interactions when vertex operators collide to avoid the failure of certain superconformal Ward identities
Non-Gaussianity from tachyonic preheating in hybrid inflation
International Nuclear Information System (INIS)
Barnaby, Neil; Cline, James M.
2007-01-01
In a previous work we showed that large non-Gaussianities and nonscale-invariant distortions in the cosmic microwave background power spectrum can be generated in hybrid inflation models, due to the contributions of the tachyon (waterfall) field to the second order curvature perturbation. Here we clarify, correct, and extend those results. We show that large non-Gaussianity occurs only when the tachyon remains light throughout inflation, whereas n=4 contamination to the spectrum is the dominant effect when the tachyon is heavy. We find constraints on the parameters of warped-throat brane-antibrane inflation from non-Gaussianity. For F-term and D-term inflation models from supergravity, we obtain nontrivial constraints from the spectral distortion effect. We also establish that our analysis applies to complex tachyon fields
A model-theory for Tachyons in two dimensions
International Nuclear Information System (INIS)
Recami, E.; Rodriques, W.A. Jr.
1986-01-01
The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are as follows: The larger scheme, to build up in order to incorporate space-like objects in the relativistic theories. These allow better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as ''asymptotically free'' objects; superliminal classical objects can have a role in elementary particle interactions (perhaps even in astrophysics) and possible verification of the reproduction of quantum-like behaviour at a classical level when taking into account the possible existence of faster-than-light classical particles. This paper shows that Special Relativity - even without tachyons - can be given a form which describes both particles and anti-particles. This paper also is confined only to a ''model theory'' of Tachyons in two dimensions
How to recover casuality for tachyons even in macrophysics
International Nuclear Information System (INIS)
Pavsic, M.
1976-11-01
The postulate that negative energy particles do not exist (travelling forward in time) leads automatically to the ''re-interpretation principle'' by Stueckelberg and Feynman. It has already been shown that such a ''principle'', assumed as the third postulate of special relativity, ensures the validity of the law of (retarded) casuality both in standard relativity and in (extended) relativity with tachyons and with superluminal inertial frames. Our third postulate, moreover, alloys to one predict antiparticle existence in a purely relativistic context. The paper shown that the third postulate is sufficient to implement the law of casuality even in macrophysics, when usual macro-objects interact with micro-tachyons and macro-tachyons. To that aim, some tachyon kinematics is further developed, which can be useful even in understanding elementary particle interactions (and may be hadron structure). Many other related problems are discussed
Hollow micro string based calorimeter device
DEFF Research Database (Denmark)
2014-01-01
positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...
Transverse structure of the QCD string
International Nuclear Information System (INIS)
Meyer, Harvey B.
2010-01-01
The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.
A model theory for tachyons in two dimensions
International Nuclear Information System (INIS)
Recami, E.; Rodrigues, W.A.
1985-01-01
The paper is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in part one (sect. 2) it is shown that special relativity, even without tachyons, can be given a form such to describe both particles and antiparticles. The plan of part two is confined only to a model theory in two dimensions, for the reasons stated in sect. 3
Covariant holography of a tachyonic accelerating universe
Energy Technology Data Exchange (ETDEWEB)
Rozas-Fernandez, Alberto [Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Fundamental, Madrid (Spain); University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom)
2014-08-15
We apply the holographic principle to a flat dark energy dominated Friedmann-Robertson-Walker spacetime filled with a tachyon scalar field with constant equation of state w = p/ρ, both for w > -1 and w < -1. By using a geometrical covariant procedure, which allows the construction of holographic hypersurfaces, we have obtained for each case the position of the preferred screen and have then compared these with those obtained by using the holographic dark energy model with the future event horizon as the infrared cutoff. In the phantom scenario, one of the two obtained holographic screens is placed on the big rip hypersurface, both for the covariant holographic formalism and the holographic phantom model. It is also analyzed whether the existence of these preferred screens allows a mathematically consistent formulation of fundamental theories based on the existence of an S-matrix at infinite distances. (orig.)
A de Sitter tachyonic braneworld revisited
Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão
2018-01-01
Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.
Tachyon kinematics and causality: A systematic, thorough analysis
International Nuclear Information System (INIS)
Recami, E.
1985-01-01
The chronological order of the events along a space-like path is not invariant under Lorentz transformations, as wellknown. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stuckelberg-Feynman 'switching procedure' (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the 'SWP' does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal 'paradoxes'. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least 'in microphysics') only after having properly developed the tachyon relativistic mechanics. It is shown how to apply the 'SWP', both in the case of ordinary Special Relativity, and in the case with tachyons. Then, the kinematics of the tachyon-exchange between two (ordinary) bodies is carrefully exploited. Being finally able to tackle the tachyon-causality problem, the paradoxes are sucessively solved: (i) by Tolman-Regge; (ii) by Pirani; (iii) by Edmonds; (iv) by Bell. At last, a further new paradox associated with the transmission of signals by modulated tachyon beams is discussed. (Author) [pt
Multi-branes boundary states with open string interactions
International Nuclear Information System (INIS)
Pesando, Igor
2008-01-01
We derive boundary states which describe configurations of multiple parallel branes with arbitrary open string states interactions in bosonic string theory. This is obtained by a careful discussion of the factorization of open/closed string states amplitudes taking care of cycles needed by ensuring vertices commutativity: in particular the discussion reveals that already at the tree level open string knows of the existence of closed string
International Nuclear Information System (INIS)
Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan
2001-01-01
We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2
International Nuclear Information System (INIS)
Wang, F.; Chun, W.
1985-01-01
The use of basis states described as hadronic (or hadron-hadron) or hidden-colour (or colour-colour) for a system of quarks does not necessarily imply that connected exotic multiquark hadrons do exist. Antisymmetrization of quark wave functions tends to make these descriptions ill defined. It appears necessary to have stable collective structures called strings or bags to provide the physical connections required by quark confinement. The masses of multiquark hadrons can then be estimated by using semplified string, bag and NR potential models. The results turn out to be qualitatively similar in all these models. The stability problem for multiquark strings is briefly discussed
International Nuclear Information System (INIS)
Bennett, D.P.
1988-07-01
Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs
International Nuclear Information System (INIS)
Chaves, Max
2006-01-01
The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es
Pre-geometrical field theory of the open string
International Nuclear Information System (INIS)
Nojiri, M.M.; Nojiri, Shin'ichi
1988-01-01
We propose a gauge invariant, background independent string action, which contains open and closed string fields and no kinetic terms. The kinetic term is generated through the condensation of the string fields, which is the solution of the equations of motion. We solve the equations and show that the action is classically equivalent to the open string action proposed by Hata et al. (orig.)
String-coupling constant and dilaton vacuum expectation value in string field theory
International Nuclear Information System (INIS)
Yoneya, Tamiaki
1987-01-01
In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)
Basic Concepts of String Theory
Blumenhagen, Ralph; Theisen, Stefan
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Strings, conformal fields and topology
International Nuclear Information System (INIS)
Kaku, Michio
1991-01-01
String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts
Basic concepts of string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Information flow, causality, and the classical theory of tachyons
International Nuclear Information System (INIS)
Basano, L.
1977-01-01
Causal paradoxes arising in the tachyon theory have been systematically solved by using the reinterpretation principle as a consequence of which cause and effect no longer retain an absolute meaning. However, even in the tachyon theory, a cause is always seen to chronologically precede its effect, but this is obtained at the price of allowing cause and effect to be interchanged when required. A recent result has shown that this interchange-ability of cause and effect must not be unlimited if heavy paradoxes are to be avoided. This partial recovery of the classical concept of causality has been expressed by the conjecture that transcendent tachyons cannot be absorbed by a tachyon detector. In this paper the directional properties of the flow of information between two observers in relative motion and its consequences on the logical self-consistency of the theory of superluminal particles are analyzed. It is shown that the above conjecture does not provide a satisfactory solution to the problem because it implies that tachyons of any speed cannot be intercepted by the same detector. (author)
A model-theory for tachyons in two dimensions
International Nuclear Information System (INIS)
Recami, E.; Rodrigues Junior, W.A.
1985-01-01
The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are preliminarily mentioned right now; (i) the larger scheme that one tries to build up in order to incorporate space-like objects in the relativistic theories can allow a better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as 'asymptotically free' objects; (ii) Superluminal classical objects can have a role in elementary particle interactions (and perhaps even in astrophysics); and it might be tempting to verify how far one can go in reproducing the quantum-like behaviour at a classical level just by taking account of the possible existence of faster-than-light classical particles. This article is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in Part I (Sect. 2) it is merely shown that Special Relativity - even without tachyons - can be given a form such to describe both particles and anti-particles. The plan of Part II is confined only to a 'model-theory' of Tachyons in two dimensions, for the reasons stated in Sect. 3. (Author) [pt
A study of tachyon dynamics for broad classes of potentials
Energy Technology Data Exchange (ETDEWEB)
Quiros, Israel [Division de Ciencias e Ingenieria de la Universidad de Guanajuato, AP 150, 37150, Leon, Guanajuato (Mexico); Gonzalez, Tame [Departamento de Fisica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); Gonzalez, Dania; Napoles, Yunelsy [Departamento de Matematica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); GarcIa-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria del IPN, Mexico DF (Mexico); Moreno, Claudia, E-mail: iquiros@Fisica.ugto.m, E-mail: tame@uclv.edu.c, E-mail: dgm@uclv.edu.c, E-mail: yna@uclv.edu.c, E-mail: rigarcias@ipn.m, E-mail: claudia.moreno@cucei.udg.m [Departamento de Fisica y Matematicas, Centro Universitario de Ciencias Exactas e IngenierIas, Av. Revolucion 1500 SR, Universidad de Guadalajara, 44430 Guadalajara, Jalisco (Mexico)
2010-11-07
We investigate in detail the asymptotic properties of tachyon cosmology for a broad class of self-interaction potentials. The present approach relies on an appropriate re-definition of the tachyon field, which, in conjunction with a method formerly applied in the bibliography in a different context allows us to generalize the dynamical systems study of tachyon cosmology to a wider class of self-interaction potentials beyond the (inverse) square-law one. It is revealed that independent of the functional form of the potential, the matter-dominated solution and the ultra-relativistic (also matter-dominated) solution are always associated with equilibrium points in the phase space of the tachyon models. The latter is always the past attractor, while the former is a saddle critical point. For inverse power-law potentials V{proportional_to}{phi}{sup -2{lambda}} the late-time attractor is always the de Sitter solution, while for sinh-like potentials V{proportional_to}sinh {sup -{alpha}}({lambda}{sup {phi}}), depending on the region of parameter space, the late-time attractor can be either the inflationary tachyon-dominated solution or the matter-scaling (also inflationary) phase. In general, for most part of known quintessential potentials, the late-time dynamics will be associated either with de Sitter inflation, or with matter-scaling, or with scalar field-dominated solutions.
Solving the open bosonic string in perturbation theory
International Nuclear Information System (INIS)
Samuel, S.
1990-01-01
The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)
International Nuclear Information System (INIS)
Engquist, J.; Sundell, P.; Tamassia, L.
2007-01-01
The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)
The energy-carrying velocity and rolling of tachyons of unstable D-branes
International Nuclear Information System (INIS)
Chung, Jin Hyun; L'Yi, Won Sik
2004-01-01
We show that the tachyons that originate from unstable D-branes carry energy and momentum at a velocity β = c 2 /v; where v is the phase velocity, which is greater than c. For an observer who moves with velocity β, the tachyon is observed to be moving from one of the ground states of the tachyon potential to a potential hill. The tachyon is found to either pass over the hill or bounce back to the original ground state. Another possible solution is the case that is margial to these; that is, the tachyon reaches the top of the potential hill and stays there forever.
String moduli inflation. An overview
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2011-06-15
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
String moduli inflation. An overview
International Nuclear Information System (INIS)
Cicoli, Michele; Quevedo, Fernando
2011-06-01
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
Constant-roll tachyon inflation and observational constraints
Gao, Qing; Gong, Yungui; Fei, Qin
2018-05-01
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1995-01-01
Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)
Connecting solutions in open string field theory with singular gauge transformations
Czech Academy of Sciences Publication Activity Database
Erler, Theodore; Maccaferri, C.
2012-01-01
Roč. 2012, č. 4 (2012), 1-40 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : tachyon condensation * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP04%282012%29107
A novel class of string models with Scherk-Schwarz supersymmetry breaking
Scrucca, Claudio A; Scrucca, Claudio A.; Serone, Marco
2001-01-01
A new type of four-dimensional string vacua with Scherk--Schwarz supersymmetry breaking is considered. The construction involves Z_N x Z_M' freely acting orbifolds, defined in terms of rotations and translations in the internal space. Tachyons are either absent or limited to a given region of the tree-level moduli space. Particular attention is devoted to an interesting Z_3 x Z_3' heterotic example.
A string theory which isn't about strings
Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.
2017-11-01
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
On Closed Timelike Curves and Warped Brane World Models
Directory of Open Access Journals (Sweden)
Slagter Reinoud Jan
2013-09-01
Full Text Available At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.
One-loop regularization of the Polyakov string functional
International Nuclear Information System (INIS)
Cohen, E.; Kluberg-Stern, H.; Peschanski, R.
1989-01-01
The divergences of the vacuum amplitude for the bosonic Polyakov string are studied at the one-loop level in a modular invariant regularization scheme, characterized by a dimensional cutoff analogous to proper time. As a result, the singular behaviour in the cutoff is not uniform in the range of the modulus variable and this yields a control on the singularities induced by the tachyon and the dilaton. The divergences are those of a sigma model, but the coefficients of the sigma-model counter-terms are different for the sphere and the flat torus. (orig.)
Non-supersymmetric deformations of non-critical superstrings
International Nuclear Information System (INIS)
Itzhaki, Nissan; Kutasov, David; Seiberg, Nathan
2005-01-01
We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds
Tachyons imply the existence of a privileged frame
Energy Technology Data Exchange (ETDEWEB)
Sjoedin, T.; Heylighen, F.
1985-12-16
It is shown that the existence of faster-than-light signals (tachyons) would imply the existence (and detectability) of a privileged inertial frame and that one can avoid all problems with reversed-time order only by using absolute synchronization instead of the standard one. The connection between these results and the EPR-paradox is discussed.
Localizability of tachyonic particles and neutrinoless double beta decay
Energy Technology Data Exchange (ETDEWEB)
Jentschura, U.D. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States); Institut fuer Theoretische Physik, Heidelberg (Germany); Wundt, B.J. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States)
2012-02-15
The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)
Localizability of tachyonic particles and neutrinoless double beta decay
International Nuclear Information System (INIS)
Jentschura, U.D.; Wundt, B.J.
2012-01-01
The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)
Consistent boundary conditions for open strings
International Nuclear Information System (INIS)
Lindstroem, Ulf; Rocek, Martin; Nieuwenhuizen, Peter van
2003-01-01
We study boundary conditions for the bosonic, spinning (NSR) and Green-Schwarz open string, as well as for (1+1)-dimensional supergravity. We consider boundary conditions that arise from (1) extremizing the action, (2) BRST, rigid or local supersymmetry, or κ(Siegel)-symmetry of the action, (3) closure of the set of boundary conditions under the symmetry transformations, and (4) the boundary limits of bulk Euler-Lagrange equations that are 'conjugate' to other boundary conditions. We find corrections to Neumann boundary conditions in the presence of a bulk tachyon field. We discuss a boundary superspace formalism. We also find that path integral quantization of the open string requires an infinite tower of boundary conditions that can be interpreted as a smoothness condition on the doubled interval; we interpret this to mean that for a path-integral formulation of open strings with only Neuman boundary conditions, the description in terms of orientifolds is not just natural, but is actually fundamental
From fractals to wormholes via string theory
International Nuclear Information System (INIS)
Felce, A.G.
1992-01-01
The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view
Systems and methods for photovoltaic string protection
Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.
2017-10-25
A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.
Multiloop calculations in p-adic string theory and Bruhat-Tits trees.2
International Nuclear Information System (INIS)
Zabrodin, A.V.; Mironov, A.D.; Chekhov, L.O.
1989-01-01
The open p-adic string world sheet as a coset space F=T/Γ, where T is the Bruhat-Tits tree for the p-adic linear group GL(2.Q p ) is some Schottky group is treated. The boundary of this world sheet corresponds to p-adic Mumford curve of finite genus. The string dynamics is governed by the local Gaussian action on the coset space F. The tachyon amplitudes expressed in terms of p-adic Θ-functions are proposed for the Mumford curve of arbitrary genus and compared with the corresponding usual archimedian amplitudes. 41 refs.; 14 figs
Dynamical evolution of cosmic strings
International Nuclear Information System (INIS)
Bouchet, F.R.
1988-01-01
The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t -2 . This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
International Nuclear Information System (INIS)
Stefanski, B. Jr.
2004-01-01
We find classical open string solutions in the AdS 5 x S 5 /Z 2 orientifold with angular momenta along the five-sphere. The energy of these solutions has an expansion in integral powers of λ with sigma-model corrections suppressed by inverse powers of J - the total angular momentum. This gives a prediction for the exact anomalous dimensions of operators in the large N limit of an N = 2 Sp, Super-Yang-Mills theory with matter. We also find a simple map between open and closed string solutions. This gives a prediction for an all-loop planar relationship between the anomalous dimensions of single-trace and two-quark operators in the dual gauge theory. (author)
Notes on entanglement entropy in string theory
International Nuclear Information System (INIS)
He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento
2015-01-01
In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.
Improved Off-Shell Scattering Amplitudes in String Field Theory and New Computational Methods
Park, I Y; Bars, Itzhak
2004-01-01
We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the Veneziano formula in the Moyal star formulation of Witten's string field theory (MSFT). We also demonstrate detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to Witten's string field theory. We extend the techniques of computation in MSFT, and show that the j=0 representation of SL(2,R) generated by the Virasoro operators $L_{0},L_{\\pm1}$ is a key structure in practical computations for generating numbers. We provide more insight into the Moyal structure that simplifies string field theory, and develop techniques that could be applied more generally, including nonperturbative processes.
Energy momentum tensor and marginal deformations in open string field theory
International Nuclear Information System (INIS)
Sen, Ashoke
2004-01-01
Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)
String loop effect on the BRST charge
International Nuclear Information System (INIS)
Das, A.; Nishino, H.
1987-07-01
An effective BRST charge Q BRST which incorporates the string one-loop corrections is presented for the closed bosonic string in an arbitrary background. The effective σ-model action which leads to such a Q BRST is obtained and some consequences are discussed. (author). 14 refs, 1 fig
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
String cosmology. Large-field inflation in string theory
International Nuclear Information System (INIS)
Westphal, Alexander
2014-09-01
This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.
T-Duality Group for Open String Theory
Kajiura, Hiroshige
2001-01-01
We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
International Nuclear Information System (INIS)
Thorlacius, L.
1989-01-01
Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors
The Tolman-Regge antitelephone paradox: Its solution by tachyon mechanics
International Nuclear Information System (INIS)
Recami, E.
The possibility of solving (at least 'in microphysics') all the ordinary causal paradoxes devised for Tachyons is not yet widely recognized; on the contrary, the effectiveness of the Stuckelberg-Feynman 'switching principle' is often misunderstood. It is therefore shown in details and rigorously how to solve the oldest causal paradox, originally proposed by Tolman, which is the Kernel of so many further tachyon paradoxes. The key to the solution is a careful application of Tachyon Kinematics. Which can be unambiguously derived from Special Relativity. A systematic, thorough analysis of all tachyon paradoxes is going to appear elsewhere. (Author) [pt
Non-perturbative topological strings and conformal blocks
Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.
2011-01-01
We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to
The confining string from the soft dilaton theorem
International Nuclear Information System (INIS)
Alvarez, Enrique; Gomez, Cesar
2000-01-01
A candidate for the confining string of gauge theories is constructed via a representation of the ultraviolet divergences of quantum field theory by a closed string dilaton insertion, computed through the soft dilaton theorem. The resulting (critical) confining string is conformally invariant, singles out naturally d=4 dimensions, and can not be used to represent theories with Landau poles
Thermodynamical string fragmentation
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)
2017-01-31
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.
Non-minimally coupled tachyon field in teleparallel gravity
Energy Technology Data Exchange (ETDEWEB)
Fazlpour, Behnaz [Department of Physics, Babol Branch, Islamic Azad University, Shariati Street, Babol (Iran, Islamic Republic of); Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir [Department of Basic Sciences, Babol University of Technology, Shariati Street, Babol (Iran, Islamic Republic of)
2015-04-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.
Non-minimally coupled tachyon field in teleparallel gravity
International Nuclear Information System (INIS)
Fazlpour, Behnaz; Banijamali, Ali
2015-01-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P 4 ), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field
Diffusion of massive particles around an Abelian-Higgs string
Saha, Abhisek; Sanyal, Soma
2018-03-01
We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.
Solution of the dilaton problem in open bosonic string theories
Energy Technology Data Exchange (ETDEWEB)
Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.
Solution of the dilaton problem in open bosonic string theories
International Nuclear Information System (INIS)
Bern, Z.; Dunbar, D.C.
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories
A new approach to strings and superstrings
International Nuclear Information System (INIS)
Sparano, G.
1988-01-01
The subject of this thesis is a new, more general, action principle for strings, superstrings, and extended objects in any number of dimensions. The origin and motivations for this approach can be found in the context of the study of the symmetries of string theories and, more specifically, are related to the application of K.S.K. (Kirillov, Souriau, Kostant) construction to strings. The main results we find are: (A) A classification of string theories analogous to the classification of relativistic point particles as massive, massless and tachionic with or without spin. Nambu-Goto string and Schild null string emerge as special cases of a more general classification of strings. (B) A new method to introduce spin in strings by using a Wess-Zumino term in the action. (C) Several results are obtained through the study of the configuration space which shows a rich topological structure: for the Nambu-Goto string in any number of dimensions it is found the existence of theta states analogous to the theta-vacua of nonabelian gauge theories. For the closed Schild Null string, in four dimensions, this analysis shows Z2 solitons and the possibility of quantizing the system so that the states are spinorial (have half odd integral spin) even though the Lagrangian consists only of bosonic variables. (D) Unlike Nambu-Goto string, the quantization of Schild Null string is consistent in any number of space-time dimensions. Besides these concrete results, the formalism we introduce will hopefully give also new insights in the problem of the hidden symmetries of the string
Observational status of Tachyon Natural Inflation and reheating
Rashidi, Narges; Nozari, Kourosh; Grøn, Øyvind
2018-05-01
We study observational viability of Natural Inflation with a tachyon field as inflaton. By obtaining the main perturbation parameters in this model, we perform a numerical analysis on the parameter space of the model and in confrontation with 68% and 95% CL regions of Planck2015 data. By adopting a warped background geometry, we find some new constraints on the width of the potential in terms of its height and the warp factor. We show that the Tachyon Natural Inflation in the large width limit recovers the tachyon model with a phi2 potential which is consistent with Planck2015 observational data. Then we focus on the reheating era after inflation by treating the number of e-folds, temperature and the effective equation of state parameter in this era. Since it is likely that the value of the effective equation of state parameter during the reheating era to be in the range 0Inflation model. In particular, we show that a prediction of this model is r<=8/3 δns, where δns is the scalar spectral tilt, δns=1‑ns. In this regard, given that from the Planck2015 data we have δns=0.032 (corresponding to ns=0.968), we get r<= 0.085.
Directory of Open Access Journals (Sweden)
Amin Boumenir
2008-07-01
Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.
Consistent superstrings as solutions of the D=26 bosonic string theory
International Nuclear Information System (INIS)
Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.
1985-01-01
Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)
International Nuclear Information System (INIS)
Sikivie, P.
1991-01-01
The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)
Evidence for string substructure
International Nuclear Information System (INIS)
Bergman, O.
1996-06-01
The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes
Quantum geometry of bosonic strings - revisited
International Nuclear Information System (INIS)
Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ
1999-07-01
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
International Nuclear Information System (INIS)
Turok, N.
1987-11-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig
International Nuclear Information System (INIS)
Turok, N.
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation
International Nuclear Information System (INIS)
Schaefer, Mirko
2011-01-01
analytical results in closed form, for complete synchronization the stability of all fixed points and period-2 orbits of all chaotic string networks are determined analytically. The master stability formalism allows to treat the ring-network of the chaotic string model as a special case, but the results are valid for coupled Tchebycheff maps on arbitrary networks. For two-cluster synchronization on bipartite networks, selected fixed points and period-2 orbits are analyzed. (orig.)
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
Ward identities of W{sub {infinity}} symmetry and higher-genus amplitudes in 2D string theory
Energy Technology Data Exchange (ETDEWEB)
Hamada, K. [National Lab. for High Energy Physics, Ibaraki (Japan)
1996-03-04
The Ward identities of the W{sub {infinity}} symmetry in two-dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss the differences of the roles of the external leg factor between the c{sub M} = 1 model and the c{sub M} <1 model. (orig.).
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1988-01-01
The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr
Topological strings from quantum mechanics
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
String theory of the Regge intercept.
Hellerman, S; Swanson, I
2015-03-20
Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.
Tachyon cosmology, supernovae data, and the big brake singularity
International Nuclear Information System (INIS)
Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu.
2009-01-01
We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard ΛCDM model.
Multiple Coulomb ordered strings of ions in a storage ring
International Nuclear Information System (INIS)
Hasse, Rainer W.
2002-01-01
We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency
A microscopic description of absorption in high-energy string-brane collisions
D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele
2016-01-01
We study the collision of a highly energetic light closed string off a stack of Dp-branes at (sub)string-scale impact parameters and in a regime justifying a perturbative treatment. Unlike at larger impact parameters - where elastic scattering and/or tidal excitations dominate - here absorption of the closed string by the brane system, with the associated excitation of open strings living on it, becomes important. As a first step, we study this phenomenon at the disk level, in which the energetic closed string turns into a single heavy open string at rest whose particularly simple properties are described.
On background-independent open-string field theory
International Nuclear Information System (INIS)
Witten, E.
1992-01-01
A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator
Relativistic classical strings. II
International Nuclear Information System (INIS)
Galvao, C.A.P.
1985-01-01
The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt
Indian Academy of Sciences (India)
strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.
International Nuclear Information System (INIS)
Chudnovsky, E.; Vilenkin, A.
1988-01-01
If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
International Nuclear Information System (INIS)
Ambjoern, J.
1987-08-01
The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
International Nuclear Information System (INIS)
Vishniac, E.T.
1987-01-01
We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)
International Nuclear Information System (INIS)
Hosomichi, Kazuo
2008-01-01
We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.
International Nuclear Information System (INIS)
Wimmer, Robert
2005-01-01
We investigate the D0-D4-brane system for different B-field backgrounds including the small instanton singularity in noncommutative SYM theory. We discuss the excitation spectrum of the unstable state as well as for the BPS D0-D4 bound state. We compute the tachyon potential which reproduces the complete mass defect. The relevant degrees of freedom are the massless (4,4) strings. Both results are in contrast with existing string field theory calculations. The excitation spectrum of the small instanton is found to be equal to the excitation spectrum of the fluxon solution on R θ 2 x R which we trace back to T-duality. For the effective theory of the (0,0) string excitations we obtain a BFSS matrix model. The number of states in the instanton background changes significantly when the B-field becomes self-dual. This leads us to the proposal of the existence of a phase transition or cross over at self-dual B-field
International Nuclear Information System (INIS)
Freund, P.G.O.
1988-01-01
According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface
Constraining non-minimally coupled tachyon fields by the Noether symmetry
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2009-01-01
A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.
Open string T-duality in a weakly curved background
International Nuclear Information System (INIS)
Davidovic, Ljubica
2016-01-01
We consider a theory of an open string moving in a weakly curved background, composed of a constant metric and a linearly coordinate dependent Kalb-Ramond field with an infinitesimal field strength. We find its T-dual using the generalized Buscher procedure developed for the closed string moving in a weakly curved background, and the fact that solving the boundary conditions, the open string theory transforms to the effective closed string theory. So, T-dualizing the effective theory along all effective directions we obtain its T-dual theory and resume the open string theory which has such an effective theory. In this way we obtain the open string theory T-dual. (orig.)
Note on inflation with a tachyon rolling on the Gauss-Bonnet brane
International Nuclear Information System (INIS)
Paul, B.C.; Sami, M.
2004-01-01
In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of J. E. Lidsey and N. J. Nunes [Phys. Rev. D 67, 103510 (2003)] for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal
Strings, texture, and inflation
International Nuclear Information System (INIS)
Hodges, H.M.; Primack, J.R.
1991-01-01
We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I
Free bosonic string field theory without supplementary fields
International Nuclear Information System (INIS)
Embacher, F.
1987-01-01
A covariant local action for free bosonic string fields is constructed without the use of supplementary fields. The open string case is treated in detail. Up to a mathematical conjecture which is likely to hold it is shown that the Virasoro constraints arise as a special choice of gauge. The kinetic operator turns out to be extremely simple, the gauge transformation law arising rather implicitly. The case of closed strings is briefly discussed. 25 refs. (Author)
Conformal field theory and its application to strings
International Nuclear Information System (INIS)
Verlinde, E.P.
1988-01-01
Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes
Casimir energy for a piecewise uniform string
International Nuclear Information System (INIS)
Brevik, I.; Nielsen, H.B.
1989-07-01
The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts I and II, endowed in general with different tensions and mass densities, although adjusted in such a way that the velocity of sound always equals the velocity of light. The dispersion equation is worked out under general conditions, and the frequency spectrum is determined in special cases. When the ratio L II /L I between the string lengths is an integer, it is in principle possible to determine the frequency spectrum through solving algebraic equations of increasingly high degree. The Casimir energy relative to the uniform string is in general found to be negative, although in the special case L I =L II the energy is equal to zero. Delicate points in the regularization procedure are discussed; they point toward an anomaly in the theory. (orig.)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1987-01-01
The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix
Intrinsic-normal-ordered vertex operators from the multiloop N-tachyon amplitude
International Nuclear Information System (INIS)
Aldazabal, G.; Nunez, C.; Bonini, M.; Iengo, R.
1987-09-01
We construct vertex operators for arbitrary mass level states of the closed bosonic string. Starting from a generalization of the Koba-Nielsen amplitude which is suitable for an arbitrary genus Riemann surface, we read the vertex operators from the residues of the poles for the intermediate states. Since the original expression is metric independent and normal ordered without the need of inventing any regularization scheme, our vertex operators also possess these properties. We discuss their general features. (author). 17 refs
Open-string models with broken supersymmetry
International Nuclear Information System (INIS)
Sagnotti, A.
2002-01-01
I review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua. (author)
Open-string models with broken supersymmetry
International Nuclear Information System (INIS)
Sagnotti, Augusto
2000-01-01
We review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua
Braiding knots with topological strings
International Nuclear Information System (INIS)
Gu, Jie
2015-08-01
For an arbitrary knot in a three-sphere, the Ooguri-Vafa conjecture associates to it a unique stack of branes in type A topological string on the resolved conifold, and relates the colored HOMFLY invariants of the knot to the free energies on the branes. For torus knots, we use a modified version of the topological recursion developed by Eynard and Orantin to compute the free energies on the branes from the Aganagic-Vafa spectral curves of the branes, and find they are consistent with the known colored HOMFLY knot invariants a la the Ooguri-Vafa conjecture. In addition our modified topological recursion can reproduce the correct closed string free energies, which encode the information of the background geometry. We conjecture the modified topological recursion is applicable for branes associated to hyperbolic knots as well, encouraged by the observation that the modified topological recursion yields the correct planar closed string free energy from the Aganagic-Vafa spectral curves of hyperbolic knots. This has implications for the knot theory concerning distinguishing mutant knots with colored HOMFLY invariants. Furthermore, for hyperbolic knots, we present methods to compute colored HOMFLY invariants in nonsymmetric representations of U(N). The key step in this computation is computing quantum 6j-symbols in the quantum group U q (sl N ).
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
Chronology protection in string theory
International Nuclear Information System (INIS)
Dyson, Lisa
2004-01-01
Many solutions of General Relativity appear to allow the possibility of time travel. This was initially a fascinating discovery, but geometries of this type violate causality, a basic physical law which is believed to be fundamental. Although string theory is a proposed fundamental theory of quantum gravity, geometries with closed timelike curves have resurfaced as solutions to its low energy equations of motion. In this paper, we will study the class of solutions to low energy effective supergravity theories related to the BMPV black hole and the rotating wave-D1-D5-brane system. Time travel appears to be possible in these geometries. We will attempt to build the causality violating regions and propose that stringy effects prohibit their construction. The proposed chronology protection agent for these geometries mirrors a mechanism string theory employs to resolve a class of naked singularities. (author)
Gadde, Abhijit; Haghighat, Babak; Kim, Joonho; Kim, Seok; Lockhart, Guglielmo; Vafa, Cumrun
2018-02-01
We consider bound states of strings which arise in 6d (1,0) SCFTs that are realized in F-theory in terms of linear chains of spheres with negative self-intersections 1,2, and 4. These include the strings associated to N small E 8 instantons, as well as the ones associated to M5 branes probing A and D type singularities in M-theory or D5 branes probing ADE singularities in Type IIB string theory. We find that these bound states of strings admit (0,4) supersymmetric quiver descriptions and show how one can compute their elliptic genera.
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Krause, Axel
2006-01-01
We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Casimir energy for twisted piecewise uniform bosonic strings
International Nuclear Information System (INIS)
Lu, J.; Huang, B.; Shanghai, Teachers Univ.
1998-01-01
The Casimir energy for the transverse oscillations of piecewise uniform bosonic strings with either untwisted or twisted continuous conditions is discussed. After calculating the analytic values of zeros of the dispersion function under certain conditions, is obtained the Casimir energy for both open and closed bosonic strings composed of two or three segments
Liouville equation with boundary conditions derived from classical strings
International Nuclear Information System (INIS)
Marnelius, R.
1983-01-01
It is shown in terms of the classical string theory that a breaking of the Weyl invariance necessarily requires the Liouville equation for the variable phi=1n rho, where rho is the variable that appears in the conformal gauge gsub(α#betta#)=rhoetasub(α#betta#). Appropriate boundary conditions on phi for open and closed strings are then derived. (orig.)
Big bang and big crunch in matrix string theory
International Nuclear Information System (INIS)
Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.
2007-01-01
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe
Optimization of SAGD wellbore completions : short production tubing string sensitivities
Energy Technology Data Exchange (ETDEWEB)
Cokar, M.; Graham, J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada)
2008-10-15
This study investigated the effects of changing the landing position of short production tubing strings near the heel of steam assisted gravity drainage (SAGD) production wells. A homogenous discretized wellbore model was used to model the reservoir and wellbore simultaneously in order to study wellbore and reservoir interactions. The aim of the study was to develop a method of optimizing bitumen production and determining the most economical position for wellbore strings. Simulations were conducted to examine the effect of shortening the production tubing string and examine the impact of extending the tubing string beyond the heel of the well on bitumen bitumen production rates and the steam oil ratio (SOR). Results of the study showed that a shortened string decreased bitumen production rates, while the amounts of steam produced through the tubing string increased. When the tubing string was extended past the heel of the well, bitumen production rates remained the same, but steam injection rates and SOR decreased. A lower pressure differential between the injector and producer wells was also observed. The study showed that SAGD producers can re-position production tubing strings in order to determine ratios of liquid production. It was concluded that although placing the short production tubing string close to the heel increased oil production, a longer tubing string improved production rates while lowering operating costs. 3 refs., 3 tabs., 35 figs.
High-energy string-brane scattering: leading eikonal and beyond
D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele
2010-01-01
We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation.
Multiloop calculations in p-adic string theory and Bruhat-Tits trees. 1
International Nuclear Information System (INIS)
Zabrodin, A.V.; Mironov, A.D.; Chekhov, L.O.
1989-01-01
The open p-adic string world sheet as a coset space F=T/Γ, where T is the Bruhat-Tits three for the p-adic linear group GL(2.Q p ) and Γ is contained it PGL(2.Q p ) is some Schottky group is treated. The boundary of this world sheet corresponds to p-adic Mumford curve of finite genus. The string dynamics is governed by the local gaussian action on the coset space F. The tachyon amplitudes expressed in terms of p-adic Θ-functions are proposed for the Mumford curve of arbitrary genus and compared them with the corresponding usual archimedian amplitudes. 25 refs.; 5 figs
Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes
Hamam, D.; Belaloui, N.
2018-03-01
We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.
De Sitter vacua in no-scale supergravities and Calabi-Yau string models
Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A
2008-01-01
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...
Effects of the image universe on cosmic strings
International Nuclear Information System (INIS)
Vachaspati, T.; Rees, M.
1990-01-01
We investigate some of the cosmological effects of the gravitational attraction of straight cosmic strings that arises due to the conical geometry of the string. Although this effect is second order in Newton's gravitational constant, its effects in the early universe can be significant. We find that the image masses responsible for this second order attraction effectively 'fill up' the volume deficit due to the conical geometry of a static straight string. A moving string also experiences a frictional force due to the images and this provides a mechanism for energy dissipation. The energy loss due to the image effect is comparable to the energy loss in gravitational radiation for strings on the size of the horizon scale but is probably not important when compared to the energy loss due to loop production. The image effect can also become important when a string comes close to a black hole. Our analysis of these effects is newtonian. (orig.)
Non-linear σ-models and string theories
International Nuclear Information System (INIS)
Sen, A.
1986-10-01
The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs
Covariant field theory of closed superstrings
International Nuclear Information System (INIS)
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Semilocal and electroweak strings
Achucarro, A; Vachaspati, T
We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
2011-01-01
to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...
Derandomizing from random strings
Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.
2010-01-01
In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial
Unification of string dualities
International Nuclear Information System (INIS)
Sen, A.
1997-01-01
We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)
Optimal Packed String Matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...
CERN. Geneva. Audiovisual Unit
2002-01-01
I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.
DEFF Research Database (Denmark)
Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva
2017-01-01
In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
International Nuclear Information System (INIS)
Ishibashi, Nobuyuki; Onogi, Tetsuya
1989-01-01
Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)
Conformal symmetry and string theories
International Nuclear Information System (INIS)
Kumar, A.
1987-01-01
This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories
Comparison of string models for heavy ion collisions
International Nuclear Information System (INIS)
Werner, K.
1990-01-01
An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering
A reduced covariant string model for the extrinsic string
International Nuclear Information System (INIS)
Botelho, L.C.L.
1989-01-01
It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
Space-time versus world-sheet renormalization group equation in string theory
International Nuclear Information System (INIS)
Brustein, R.; Roland, K.
1991-05-01
We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Quantum geometry of bosonic strings - revisited
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica
1999-07-01
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
Complex geometry and string theory. Part 1
International Nuclear Information System (INIS)
Morozov, A.; Perelomov, A.
1989-01-01
Methods of calculation on the Reimann surfaces are given. The structure of determinant stratifications over spaces of the Riemann surface moduli is described. Obvious formulas for cross sections of the stratifications and for the Polyakov measure in the theory of closed boson strings are given
Duality relation between charged elastic strings and superconducting cosmic strings
International Nuclear Information System (INIS)
Carter, B.
1989-01-01
The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
Superconducting cosmic strings
International Nuclear Information System (INIS)
Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.
1986-01-01
Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources
Energy Technology Data Exchange (ETDEWEB)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
A disintegrating cosmic string
International Nuclear Information System (INIS)
Griffiths, J B; Docherty, P
2002-01-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)
International Nuclear Information System (INIS)
Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.
1985-01-01
Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines
Exceptional groups from open strings
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Zwiebach, B.
1998-01-01
We consider type IIB theory compactified on a two-sphere in the presence of mutually non-local 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional open strings, and are shown to generate the structure of exceptional groups. (orig.)
Answer to 'Information flow, causality, and the classical theory of tachyons'
International Nuclear Information System (INIS)
Recami, E.; Pavsic, M.
1978-01-01
Recently Basano (Int. J. Theor. Phys.; 16:715 (1977)) in a paper entitled 'Information Flow, Causality and the Classical Theory of Tachyons' commented on earlier work by the present authors. In answer to those comments it is pointed out that although 'Extended Relativity' seems to allow one to solve any causal paradoxes with both usual particles and tachyons nevertheless a number of paradoxes are continuously proposed. It has already been shown by the authors that tachyons possibly do not imply any causality violations even in macro-physics but Basano claimed that the procedure lead to new, different paradoxes. It is here demonstrated that such presumed difficulties do not exist. (U.K.)
Gravitational waves from non-Abelian gauge fields at a tachyonic transition
Tranberg, Anders; Tähtinen, Sara; Weir, David J.
2018-04-01
We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.
Modular invariant partition functions for toroidally compactified bosonic string
International Nuclear Information System (INIS)
Ardalan, F.; Arfaei, H.
1988-06-01
We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs
Counting dyons in N=4 string theory
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.
On the domain of string perturbation theory
International Nuclear Information System (INIS)
Davis, S.
1989-06-01
For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs
Cosmic strings and cosmic structure
International Nuclear Information System (INIS)
Albrecht, A.; Brandenberger, R.; Turok, N.
1987-01-01
The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Hydroball string sensing system
International Nuclear Information System (INIS)
Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.
1991-01-01
This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
String theory compactifications
Graña, Mariana
2017-01-01
The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Energy Technology Data Exchange (ETDEWEB)
Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)
2013-02-21
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
International Nuclear Information System (INIS)
Kamenshchik, A. Yu.; Manti, S.
2013-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
International Nuclear Information System (INIS)
Mandal, Jyotirmay Das; Debnath, Ujjal
2016-01-01
We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ 0 (where Γ 0 is a constant) in “intermediate” inflation and Γ = V(ϕ), (where V(ϕ) is the potential of tachyonic field) in “logamediate” inflation. We have assumed slow-roll condition to construct scalar field ϕ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained. We have analyzed the stability of this model through graphical representations. (paper)
International Nuclear Information System (INIS)
Schellekens, A.N.
1989-01-01
In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found
Confusing the heterotic string
International Nuclear Information System (INIS)
Benett, D.L.; Mizrachi, L.
1986-01-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)
Confusing the heterotic string
Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.
1986-10-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.
Confusing the heterotic string
Energy Technology Data Exchange (ETDEWEB)
Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.
1986-10-02
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Manipulating Strings in Python
Directory of Open Access Journals (Sweden)
William J. Turkel
2012-07-01
Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.
Nonassociativity, Malcev algebras and string theory
International Nuclear Information System (INIS)
Guenaydin, M.; Minic, D.
2013-01-01
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
D-branes in little string theory
International Nuclear Information System (INIS)
Israel, Dan; Pakman, Ari; Troost, Jan
2005-01-01
We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes
Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings
International Nuclear Information System (INIS)
Bigazzi, F.; Cotrone, A.L.; Martucci, L.; Pando Zayas, L.A.
2004-07-01
We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)
High-energy symmetries of string theory
International Nuclear Information System (INIS)
Lee Jenchi.
1990-01-01
The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation
String creation, D-branes and effective field theory
International Nuclear Information System (INIS)
Hung Lingyan
2008-01-01
This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries
Deterministic indexing for packed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...
Gravitational effects of cosmic strings in Friedmann universes
International Nuclear Information System (INIS)
Veeraraghavan, S.
1988-01-01
Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Strings and fundamental physics
International Nuclear Information System (INIS)
Baumgartl, Marco; Brunner, Ilka; Haack, Michael
2012-01-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Strings and fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik
2012-07-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking
International Nuclear Information System (INIS)
Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh
2010-01-01
A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a zero-tension cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Interacting-string picture of the fermionic string
International Nuclear Information System (INIS)
Mandelstam, S.
1986-01-01
This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism
Are Stopped Strings Preferred in Sad Music?
David Huron; Caitlyn Trevor
2017-01-01
String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut) or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard). Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifica...
Strings for quantumchromodynamics
International Nuclear Information System (INIS)
Schomerus, V.
2007-04-01
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Strings for quantumchromodynamics
Energy Technology Data Exchange (ETDEWEB)
Schomerus, V.
2007-04-15
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Quark potential of spontaneous strings
International Nuclear Information System (INIS)
German, G.; Kleinert, H.
1989-01-01
The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan
2015-01-01
, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein-protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10...... into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein-protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis...
International Nuclear Information System (INIS)
Arnowitt, R.; Bryan, R.; Duff, M.J.; Nanopoulos, D.; Pope, C.N.
1990-01-01
Does string theory provide us with a consistent quantum theory of gravity? Is it that Holy Grail of elementary particle physics, a Theory of Everything with embraces all the forces and particles of Nature? Even if it is, can we extract concrete predictions about our low-energy world that can be tested experimentally at the SSC and other particle accelerators? What does it have to say about the origin of the Universe and the thorny problem of the cosmological constant? Are superstring theories unique, or might the eleven-dimensional supermembrane prove equally consistent? These are just some of the question posed and debated at Strings '89
Strings draw theorists together
International Nuclear Information System (INIS)
Green, Michael
2000-01-01
Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10 -33 m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for string theorists over the past decade. Much
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1987-10-01
These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Racetrack inflation and cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)
2008-05-15
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
String theory in four dimensions
International Nuclear Information System (INIS)
Dine, M.
1988-01-01
A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael
2011-01-01
present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score...... models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org....
Instability of colliding metastable strings
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-04-15
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Cosmic strings and galaxy formation
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Instability of colliding metastable strings
International Nuclear Information System (INIS)
Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.
2013-04-01
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Racetrack inflation and cosmic strings
International Nuclear Information System (INIS)
Brax, P.; Postma, M.
2008-05-01
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
The Lauricella functions and exact string scattering amplitudes
International Nuclear Information System (INIS)
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi
2016-01-01
We discover that the 26D open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state can be expressed in terms of the D-type Lauricella functions with associated SL(K+3,ℂ) symmetry. As a result, SSA and symmetries or relations among SSA of different string states at various limits calculated previously can be rederived. These include the linear relations first conjectured by Gross http://dx.doi.org/10.1016/0370-2693(87)90355-8; http://dx.doi.org/10.1016/0550-3213(88)90390-2; http://dx.doi.org/10.1103/PhysRevLett.60.1229D.J. Gross and J.R. Ellis, Strings at superplanckian energies: in search of the string symmetry, Phil. Trans. Roy. Soc. Lond. A 329 (1989) 401. http://dx.doi.org/10.1016/0550-3213(89)90435-5 and later corrected and proved in http://dx.doi.org/10.1016/j.physletb.2005.02.034; http://arxiv.org/abs/hep-th/0303012; http://dx.doi.org/10.1016/j.nuclphysb.2004.04.022; http://dx.doi.org/10.1016/j.nuclphysb.2004.11.032; http://dx.doi.org/10.1103/PhysRevLett.96.171601; http://dx.doi.org/10.1016/j.nuclphysb.2005.07.018; http://dx.doi.org/10.1016/j.nuclphysb.2005.12.025 in the hard scattering limit, the recurrence relations in the Regge scattering limit with associated SL(5,ℂ) symmetry http://dx.doi.org/10.1088/1126-6708/2009/06/028; http://dx.doi.org/10.1007/JHEP04(2013)082; http://dx.doi.org/10.1016/j.physletb.2014.11.017 and the extended recurrence relations in the nonrelativistic scattering limit with associated SL(4,ℂ) symmetry http://dx.doi.org/10.1007/JHEP05(2016)186 discovered recently. Finally, as an application, we calculate a new recurrence relation of SSA which is valid for all energies.
From maximal to minimal supersymmetry in string loop amplitudes
Energy Technology Data Exchange (ETDEWEB)
Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University,651 88 Karlstad (Sweden); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Potsdam (Germany)
2017-04-28
We calculate one-loop string amplitudes of open and closed strings with N=1,2,4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.
1-Colored Archetypal Permutations and Strings of Degree n
Directory of Open Access Journals (Sweden)
Gheorghe Eduard Tara
2012-10-01
Full Text Available New notions related to permutations are introduced here. We present the string of a 1-colored permutation as a closed planar curve, the fundamental 1-colored permutation as an equivalence class related to the equivalence in strings of the 1-colored permutations. We give formulas for the number of the 1-colored archetypal permutations of degree n. We establish an algorithm to identify the 1- colored archetypal permutations of degree n and we present the atlas of the 1-colored archetypal strings of degree n, n ≤ 7, based on this algorithm.
Multiloop world-line Green functions from string theory
International Nuclear Information System (INIS)
Roland, K.; Sato, H.T.
1996-01-01
We show how the multiloop bosonic Green function of closed string theory reduces to the world-line Green function as defined by Schmidt and Schubert in the limit where the string world-sheet degenerates into a Φ 3 particle diagram. To obtain this correspondence we have to make an appropriate choice of the local coordinates defined on the degenerate string world sheet. We also present a set of simple rules that specify, in the explicit setting of the Schottky parametrization, which is the corner of moduli space corresponding to a given multiloop Φ 3 diagram. (orig.)
String theory and quark confinement
International Nuclear Information System (INIS)
Polyakov, A.M.
1998-01-01
This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)
String theory in four dimensions
1988-01-01
``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.
String necklaces and primordial black holes from type IIB strings
International Nuclear Information System (INIS)
Lake, Matthew; Thomas, Steve; Ward, John
2009-01-01
We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.
Nonequatorial tachyon trajectories in Kerr space-time and the second law of black-hole physics
International Nuclear Information System (INIS)
Dhurandhar, S.V.
1979-01-01
The behavior of tachyon trajectories (spacelike geodesics) in Kerr space-time is discussed. It is seen that the trajectories may be broadly classified into three types according to the magnitude of the angular momentum of the tachyon. When the magnitude of angular momentum is large [vertical-barhvertical-bar > or = a (1 + GAMMA 2 )atsup 1/2at, where h and GAMMA are the angular momentum and energy at infinity and a 0. In the other cases, a negative value for Carter's constant of motion Q is permitted, which happens to be a necessary condition for the tachyon to fall into the singularity. Next, the second law of black-hole physics is investigated in the general case of nonequatorial trajectories. It is shown that nonequatorial tachyons can decrease the area of the Kerr black hole only if it is rotating sufficiently rapidly [a > (4/3√3) M
SUPERCOLLIDER: String test success
International Nuclear Information System (INIS)
Anon.
1992-01-01
On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes
2007-01-01
"How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)
Directory of Open Access Journals (Sweden)
Marco A.C. Kneipp
2016-12-01
Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
On exceptional instanton strings
Del Zotto, M.; Lockhart, G.
According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons
International Nuclear Information System (INIS)
Akama, Keiichi
1988-01-01
Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)
Optimal shapes of compact strings
International Nuclear Information System (INIS)
Maritan, A.; Micheletti, C.; Trovato, A.; Banavar, J.R.
2000-07-01
Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins. (author)
Lectures on strings and dualities
International Nuclear Information System (INIS)
Vafa, C.
1997-01-01
In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)
Towards a string formulation of vortex dynamics
International Nuclear Information System (INIS)
Elsebeth Schroeder; Ola Toernkvist
1998-01-01
We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom
Strings draw theorists together
Energy Technology Data Exchange (ETDEWEB)
Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)
2000-03-01
Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10{sup -33} m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for
Gravitational effects of global strings
International Nuclear Information System (INIS)
Aryal, M.; Everett, A.E.
1986-01-01
We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
One-loop masses of open-string scalar fields in string theory
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2008-01-01
In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.
Energy Technology Data Exchange (ETDEWEB)
Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu
2007-02-15
In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian
Manipulating lightcone fluctuations in an analogue cosmic string
Directory of Open Access Journals (Sweden)
Jiawei Hu
2018-02-01
Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.
Manipulating lightcone fluctuations in an analogue cosmic string
Hu, Jiawei; Yu, Hongwei
2018-02-01
We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.
Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure
International Nuclear Information System (INIS)
Setare, M.R.; Kamali, V.
2014-01-01
We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.
Tachyon with an inverse power-law potential in a braneworld cosmology
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-08-01
We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.
Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)
2014-09-07
We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.
Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure
Directory of Open Access Journals (Sweden)
M.R. Setare
2014-09-01
Full Text Available We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9, Planck and BICEP2 data.
Classical open-string field theory: A∞-algebra, renormalization group and boundary states
International Nuclear Information System (INIS)
Nakatsu, Toshio
2002-01-01
We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
International Nuclear Information System (INIS)
Gross, D.J.
1985-01-01
String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
International Nuclear Information System (INIS)
Volovich, I.V.
1987-01-01
The hypothesis of the possible p-adic structure of spacetime is considered. The p-adic Veneziano amplitude is proposed and the main properties of the p-adic string theory are discussed. The analogous questions on the Galois field are also discussed. In this case the Jacobi sum plays the role of the Veneziano amplitude which can be expressed by means of the I-adic cohomology of the Fermat curves. The corresponding vertex operator is given. (author)
Finite temperature corrections to tachyon mass in intersecting D-branes
International Nuclear Information System (INIS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-01-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Finite temperature corrections to tachyon mass in intersecting D-branes
Energy Technology Data Exchange (ETDEWEB)
Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)
2017-04-19
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Pseudo-Hermitian quantum dynamics of tachyonic spin-1/2 particles
International Nuclear Information System (INIS)
Jentschura, U D; Wundt, B J
2012-01-01
We investigate the spinor solutions, the spectrum and the symmetry properties of a matrix-valued wave equation whose plane-wave solutions satisfy the superluminal (tachyonic) dispersion relation E 2 = p-vector 2 - m 2 , where E is the energy, p-vector is the spatial momentum and m is the mass of the particle. The equation reads (iγ μ ∂ μ − γ 5 m)ψ = 0, where γ 5 is the fifth current. The tachyonic equation is shown to be CP invariant and T invariant. The tachyonic Hamiltonian breaks parity and is non-Hermitian but fulfils the pseudo-Hermitian property H 5 ( r-vector ) = P H + 5 (- r-vector ) P -1 =P H + 5 ( r-vector ) P -1 , where P is the parity matrix and P is the full parity transformation. The energy eigenvalues and eigenvectors describe a continuous spectrum of plane-wave solutions (which correspond to real eigenvalues for | p-vector |≥m) and evanescent waves, which constitute resonances and anti-resonances with complex-conjugate pairs of resonance eigenvalues (for | p-vector | 5 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
An invariant string propagator
International Nuclear Information System (INIS)
Cohen, A.; Moore, G.; Nelson, P.; Polchinski, J.
1986-01-01
The authors show that the Polyakov path integral is used to define off-shell quantities in string theory. The path integral of Polyakov gives an elegant description of strings and their interactions. However, its use has been limited to obtaining the Koba-Nielsen expressions for S-matrix elements. It is not yet clear what quantities make sense in string theory. This study shows that the path integral can be used to define off-shell quantities as well. In particular it defines a natural n-point function in loop space as the sum of all world surfaces bounded by n specific spacetime curves. The reader is referred for more detail. The report first outlines general evaluation then discusses the additional features added by boundaries. Locally, the three gauge freedoms ξ/sup a/ and δphi can be used to take g/sub ab/ (σ) to the unit matrix. Globally, this is not quite possible. In general the researchers choose a family of fiducial metrics g/sub ab/ (σ,tau), depending on a finite number of Teichmuller parameters tau, and every metric is gauge equivalent to one of these
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1996-01-01
We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)
Fingerprints in Compressed Strings
DEFF Research Database (Denmark)
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2013-01-01
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...
Covariant loops and strings in a positive definite Hilbert space
International Nuclear Information System (INIS)
Rohrlich, F.
1977-01-01
Relativistic loops and strings are defined in the conventional way as solutions of a one-dimensional wave equation with certain boundary conditions and satisfying the orthogonal gauge conditions. Conventional pseudo-Cartesian co-ordinates (rather than null-plane co-ordinates) are used. The creation and annihilation operator four-vector αsub(μ)sup(+) and αsub(m) are required to be spacelike (orthogonal to the total momentum Psup(μ), so that the resulting Fock space is positive definite. This requirements is shown to be mathematically consistent with Poincare' invariance and to impose no additional physical constraints on the system. It can be implemented in a canonical realization of the Poincare' algebra as a condition on a state vectors, or in a noncanonical realization as an operator equation, as is done here. The space is further restricted by the Virasoro conditions to a physical subspace PHI which is of course also positive definite. In this way there arises no critical-dimension problem and Poincare' invariance holds also in 3+1 dimensions. The energy and spin spectra are the same as usual, leading to linear Regge trajectories, except that there are no tachyons and no zero mass states. The leading Regge trajectory has negative intercept
Gauge theories as string theories: the first results
International Nuclear Information System (INIS)
Gorsky, Aleksandr S
2005-01-01
The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)
String amplitudes: from field theories to number theory
CERN. Geneva
2017-01-01
In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...
Exactly solvable string models of curved space-time backgrounds
Russo, J.G.; Russo, J G; Tseytlin, A A
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.
How to simulate global cosmic strings with large string tension
Energy Technology Data Exchange (ETDEWEB)
Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)
2017-10-01
Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.
Generalized string theory mapping relations between gravity and gauge theory
International Nuclear Information System (INIS)
Bjerrum-Bohr, N.E.J.
2003-01-01
A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings
Maximal unbordered factors of random strings
DEFF Research Database (Denmark)
Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs
2016-01-01
A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...
Fast Searching in Packed Strings
DEFF Research Database (Denmark)
Bille, Philip
2009-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...
Comparing double string theory actions
International Nuclear Information System (INIS)
De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.
2014-01-01
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed
Comparing double string theory actions
Energy Technology Data Exchange (ETDEWEB)
De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)
2014-04-28
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Cosmic string induced CMB maps
International Nuclear Information System (INIS)
Landriau, M.; Shellard, E. P. S.
2011-01-01
We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.
Experimenting with string musical instruments
LoPresto, Michael C.
2012-03-01
What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.
Strings, vortex rings, and modes of instability
Directory of Open Access Journals (Sweden)
Steven S. Gubser
2015-03-01
Full Text Available We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.
Local grand unification and string theory
International Nuclear Information System (INIS)
Nilles, Hans Peter; Vaudrevange, Patrick K.S.
2009-09-01
The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)
Optimization of boundary controls of string vibrations
Energy Technology Data Exchange (ETDEWEB)
Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2005-12-31
For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
Schomerus, Volker
2017-01-01
Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.
Open problems in string cosmology
International Nuclear Information System (INIS)
Toumbas, N.
2010-01-01
Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Haouzi, Nathan; Kozçaz, Can
2017-01-01
Starting from type IIB string theory on an $ADE$ singularity, the (2,0) little string arises when one takes the string coupling $g_s$ to 0. In this setup, we give a unified description of the codimension-two defects of the little string, for any simple Lie algebra ${\\mathfrak{g}}$. Geometrically, these are D5 branes wrapping 2-cycles of the singularity. Equivalently, the defects are specified by a certain set of weights of $^L {\\mathfrak{g}}$, the Langlands dual of ${\\mathfrak{g}}$. As a firs...
Kiritsis, Elias
2007-01-01
This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
Straight spinning cosmic strings in Brans-Dicke gravity
Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.
2018-03-01
An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.
Strings and superstrings. Electron linear colliders
International Nuclear Information System (INIS)
Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.
1989-01-01
Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr