WorldWideScience

Sample records for closed string field

  1. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  2. Open-closed string correspondence in open string field theory

    International Nuclear Information System (INIS)

    Baumgartl, M.; Sachs, I.

    2008-01-01

    We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  4. A Chern-Simons-like action for closed-string field theory

    International Nuclear Information System (INIS)

    Taylor, C.C.

    1989-01-01

    A Chern-Simons-like action is proposed for closed-string field theory. The action involves auxiliary fields of arbitrary ghost number and is defined in terms of the closed-string operations ∫, Q and *, analogous to those introduced by Witten in the construction of open-string field theory. The action is an extension of one proposed for free closed strings and bears a formal relationship to 2 + 1 gravity analogous to that between open-string field theory and (2 + 1)-dimensional Yang-Mills theory. (author)

  5. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  6. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  7. Closed string emission from unstable D-brane with background electric field

    International Nuclear Information System (INIS)

    Nagami, Kenji

    2004-01-01

    We study the closed string emission from an unstable Dp-brane with constant background electric field in bosonic string theory. The average total number density and the average total energy density of emitted closed strings are explicitly calculated in the presence of electric field. It is explicitly shown that the energy density in the UV region becomes finite whenever the background electric field is switched on. The energy density converted into closed strings in the presence of electric field is negligibly small compared with the D-brane tension in the weak string coupling limit. (author)

  8. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  9. A proposal for an effective interacting field theory of open and closed strings

    International Nuclear Information System (INIS)

    Baulieu, L.; Grossman, B.

    1987-01-01

    We propose the use of the reggeon-pomeron vertex to obtain an effective field theory for open and closed strings. We suggest that closed string fields are necessary in order to go off-shell in an open string field theory. We then find that the closed string fields satisfy the Virasoro constraints (including equal number of left and right movers) in an appropriate choice of gauge. (orig.)

  10. Geometric derivation of string field theory from first principles: Closed strings and modular invariance

    International Nuclear Information System (INIS)

    Kaku, M.

    1988-01-01

    We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane

  11. Oriented open-closed string theory revisited

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1998-01-01

    String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc

  12. Closed Strings From Nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Albion

    2001-07-25

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.

  13. Closed Strings From Nothing

    International Nuclear Information System (INIS)

    Lawrence, Albion

    2001-01-01

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting

  14. Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1993-01-01

    The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)

  15. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  16. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  17. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  18. Open Wilson lines as states of closed string

    International Nuclear Information System (INIS)

    Murakami, Koichi; Nakatsu, Toshio

    2003-01-01

    A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)

  19. Note on closed-string interactions a la Witten

    Energy Technology Data Exchange (ETDEWEB)

    Romans, L.J.

    1987-08-20

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed.

  20. From UV/IR mixing to closed strings

    International Nuclear Information System (INIS)

    Lopez, Esperanza

    2003-01-01

    It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)

  1. A note on closed-string interactions a la Witten

    International Nuclear Information System (INIS)

    Romans, L.J.

    1987-01-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by 'stuttering' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. (orig.)

  2. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  3. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  4. Field theory of strings

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-01-01

    We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)

  5. Strings, conformal fields and topology

    International Nuclear Information System (INIS)

    Kaku, Michio

    1991-01-01

    String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts

  6. Free bosonic string field theory without supplementary fields

    International Nuclear Information System (INIS)

    Embacher, F.

    1987-01-01

    A covariant local action for free bosonic string fields is constructed without the use of supplementary fields. The open string case is treated in detail. Up to a mathematical conjecture which is likely to hold it is shown that the Virasoro constraints arise as a special choice of gauge. The kinetic operator turns out to be extremely simple, the gauge transformation law arising rather implicitly. The case of closed strings is briefly discussed. 25 refs. (Author)

  7. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  8. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  9. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  10. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  11. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  12. Toward an open-closed string theoretical description of a rolling tachyon

    International Nuclear Information System (INIS)

    Ohmori, Kazuki

    2004-01-01

    We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory

  13. Pre-geometrical field theory of the open string

    International Nuclear Information System (INIS)

    Nojiri, M.M.; Nojiri, Shin'ichi

    1988-01-01

    We propose a gauge invariant, background independent string action, which contains open and closed string fields and no kinetic terms. The kinetic term is generated through the condensation of the string fields, which is the solution of the equations of motion. We solve the equations and show that the action is classically equivalent to the open string action proposed by Hata et al. (orig.)

  14. On integrable c < 1 open-closed string theory

    International Nuclear Information System (INIS)

    Johnson, C.V.

    1994-01-01

    The integrable structure of open-closed string theories in the (p, q) conformal minimal model backgrounds is presented. The relation between the τ-function of the closed string theory and that of the open-closed string theory is uncovered. The resulting description of the open-closed string theory is shown to fit very naturally into the framework of the sl(q, C) KdV hierarchies. In particular, the twisted bosons which underlie and organise the structure of the closed string theory play a similar role here and may be employed to derive loop equations and correlation function recursion relations for the open-closed strings in a simple way. (orig.)

  15. Loop homotopy algebras in closed string field theory

    International Nuclear Information System (INIS)

    Markl, M.

    2001-01-01

    Barton Zwiebach (1993) constructed ''string products'' on the Hilbert space of a combined conformal field theory of matter and ghosts, satisfying the ''main identity''. It has been well known that the ''tree level'' of the theory gives an example of a strongly homotopy Lie algebra (though, as we will see later, this is not the whole truth). Strongly homotopy Lie algebras are now well-understood objects. On the one hand, strongly homotopy Lie algebra is given by a square zero coderivation on the cofree cocommutative connected coalgebra on the other hand, strongly homotopy Lie algebras are algebras over the cobar dual of the operad Com for commutative algebras. No such characterization of the structure of string products for arbitrary genera has been available, though there are two series of papers directly pointing towards the requisite characterization. As far as the characterization in terms of (co)derivations is concerned, we need the concept of higher order (co)derivations. For our characterization we need to understand the behavior of these higher (co)derivations on (co)free (co)algebras. The necessary machinery for the operadic approach is that of modular operads. We also indicate how to adapt the loop homotopy structure to the case of open string field theory. (orig.)

  16. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    Science.gov (United States)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  17. Closed string tachyon driving f(R) cosmology

    Science.gov (United States)

    Wang, Peng; Wu, Houwen; Yang, Haitang

    2018-05-01

    To study quantum effects on the bulk tachyon dynamics, we replace R with f(R) in the low-energy effective action that couples gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory and study properties of their classical solutions. The α' corrections of the graviton-dilaton-tachyon system are implemented in the f(R). We obtain the tachyon-induced rolling solutions and show that the string metric does not need to remain fixed in some cases. In the case with H( t=‑∞ ) = , only the R and R2 terms in f(R) play a role in obtaining the rolling solutions with nontrivial metric. The singular behavior of more classical solutions are investigated and found to be modified by quantum effects. In particular, there could exist some classical solutions, in which the tachyon field rolls down from a maximum of the tachyon potential while the dilaton expectation value is always bounded from above during the rolling process.

  18. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  19. Deformations of closed strings and topological open membranes

    NARCIS (Netherlands)

    Hofman, C.; Ma, W.K.

    2001-01-01

    We study deformations of topological closed strings. A well-known example is the perturba- tion of a topological closed string by itself, where the associative OPE product is deformed, and which isgoverned by the WD VV equations. Our main in terest will be closed strings that arise as the

  20. Deformations of closed strings and topological open membranes

    NARCIS (Netherlands)

    Hofman, C.

    We study deformations of topological closed strings. A well-known example is the perturbation of a topological closed string by itself, where the associative OPE product is deformed, and which is governed by the WDVV equations. Our main interest will be closed strings that arise as the boundary

  1. String creation, D-branes and effective field theory

    International Nuclear Information System (INIS)

    Hung Lingyan

    2008-01-01

    This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries

  2. Conformal field theory and its application to strings

    International Nuclear Information System (INIS)

    Verlinde, E.P.

    1988-01-01

    Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes

  3. On the background independence of string field theory

    International Nuclear Information System (INIS)

    Sen, A.

    1990-01-01

    Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)

  4. Non-critical Poincare invariant bosonic string backgrounds and closed string tachyons

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar; Hernandez, Lorenzo

    2001-01-01

    A new family of non critical bosonic string backgrounds in arbitrary space-time dimension D and with ISO(1,D-2) Poincare invariance are presented. The metric warping factor and dilaton agree asymptotically with the linear dilaton background. The closed string tachyon equation of motion enjoys, in the linear approximation, an exact solution of 'kink' type interpolating between different expectation values. A renormalization group flow interpretation, based on a closed string tachyon potential of type -T 2 e -T , is suggested

  5. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  6. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  7. Covariant field theory of closed superstrings

    International Nuclear Information System (INIS)

    Siopsis, G.

    1989-01-01

    The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction

  8. N=1 Mirror Symmetry and Open/Closed String Duality

    CERN Document Server

    Mayr, Peter

    2002-01-01

    We show that the exact N=1 superpotential of a class of 4d string compactifications is computed by the closed topological string compactified to two dimensions. A relation to the open topological string is used to define a special geometry for N=1 mirror symmetry. Flat coordinates, an N=1 mirror map for chiral multiplets and the exact instanton corrected superpotential are obtained from the periods of a system of differential equations. The result points to a new class of open/closed string dualities which map individual string world-sheets with boundary to ones without. It predicts an mathematically unexpected coincidence of the closed string Gromov-Witten invariants of one Calabi-Yau geometry with the open string invariants of the dual Calabi-Yau.

  9. Nonrelativistic closed string theory

    International Nuclear Information System (INIS)

    Gomis, Jaume; Ooguri, Hirosi

    2001-01-01

    We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting

  10. Continuing between closed and open strings

    International Nuclear Information System (INIS)

    Green, M.B.; Thorn, C.B.

    1991-01-01

    A family of dual models is defined that interpolates between the tree diagrams of non-orientable bosonic closed-string theory (which has a massless spin-2 state) and the open-string theory with no internal symmetry (in which the lowest-mass spin-2 state is massive). These models are parametrized by the intercept, Δ, of the leading Regge pole. The only models that have an infinite-dimensional conformal invariance and are consequently free of ghosts are the two familiar string theories with Δ=2 (closed strings) and Δ=1 (open strings with no internal symmetry). For arbitrary Δ the models are invariant under the finite dimensional conformal group, SO(Δ,2), which guarantees the crossing symmetry and consistent factorization of tree amplitudes. The spectrum of the level-two states is exhibited explicitly as Δ varies from 2 to 1 in order to illustrate the manner in which the graviton (the lowest-mass spin-2 state) acquires a mass. The scalar ghost generically associated with massive gravity cancels with the 'dilaton' precisely at Δ=1. (orig.)

  11. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  12. Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings

    International Nuclear Information System (INIS)

    Awada, M.A.

    1986-07-01

    We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional

  13. Reheating for closed string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazumdar, Anupam [Lancaster Univ. (United Kingdom). Physics Dept.; Copenhagen Univ. (Denmark). Niels Bohr Institute

    2010-05-15

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)

  14. Reheating for closed string inflation

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mazumdar, Anupam; Copenhagen Univ.

    2010-05-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)

  15. A universal nonlinear relation among boundary states in closed string field theory

    International Nuclear Information System (INIS)

    Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku

    2004-01-01

    We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)

  16. Some issues in the loop variable approach to open strings and an extension to closed strings

    International Nuclear Information System (INIS)

    Sathiapalan, B.

    1994-01-01

    Some issues in the loop variable renormalization group approach to gauge-invariant equations for the free fields of the open string are discussed. It had been shown in an earlier paper that this leads to a simple form of the gauge transformation law. We discuss in some detail some of the curious features encountered there. The theory looks a little like a massless theory in one higher dimension that can be dimensionally reduced to give a massive theory. We discuss the origin of some constraints that are needed for gauge invariance and also for reducing the set of fields to that of standard string theory. The mechanism of gauge invariance and the connection with the Virasoro algebra is a little different from the usual story and is discussed. It is also shown that these results can be extended in a straightforward manner to closed strings. (orig.)

  17. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  18. Coupling of open to closed bosonic strings in four dimensions

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1987-11-01

    We study the construction of D < 26 open bosonic string theories using the fermionic formulation for the internal degrees of freedom. The various models are specified by the boundary conditions of the world sheet fermions on the annulus. Using the fact that open string loops can be transformed into closed string exchanges, we determine possible open string models which may be coupled to known D < 26 closed string models. Finally, as a verification of consistency, we examine particular open string non-planar amplitudes. (orig.)

  19. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  20. UV / IR mixing in noncommutative field theory via open string loops

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Lee, Sangmin

    2000-01-01

    We explicitly evaluate one-loop (annulus) planar and nonplanar open string amplitudes in the presence of the background NS-NS two-form field. In the decoupling limit of Seiberg and Witten, we find that the nonplanar string amplitudes reproduce the UV/IR mixing of noncommutative field theories. In particular, the investigation of the UV regime of the open string amplitudes shows that certain IR closed string degrees of freedom survive the decoupling limit as previously predicted from the noncommutative field theory analysis. These degrees of freedom are responsible for the quadratic, linear and logarithmic IR singularities when the D-branes embedded in space-time have the codimension zero, one and two, respectively. The analysis is given for both bosonic and supersymmetric open strings

  1. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  2. Open and closed string worldsheets from free large N gauge theories with adjoint and fundamental matter

    International Nuclear Information System (INIS)

    Yaakov, Itamar

    2006-01-01

    We extend Gopakumar's prescription for constructing closed string worldsheets from free field theory diagrams with adjoint matter to open and closed string worldsheets arising from free field theories with fundamental matter. We describe the extension of the gluing mechanism and the electrical circuit analogy to fundamental matter. We discuss the generalization of the existence and uniqueness theorem of Strebel differentials to open Riemann surfaces. Two examples are computed of correlators containing fundamental matter, and the resulting worldsheet OPE's are computed. Generic properties of Gopakumar's construction are discussed

  3. Off-Shell Interactions of Closed-String Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Dabholkar, A

    2004-04-07

    Off-shell interactions for localized closed-string tachyons in C/Z{sub N} superstring backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions between these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact interaction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic interactions or to include other fields to test the conjecture for the height of the tachyon potential.

  4. (Non-)commutative closed string on T-dual toroidal backgrounds

    CERN Document Server

    Andriot, David; Lust, Dieter; Patalong, Peter

    2013-01-01

    In this paper we investigate the connection between (non-)geometry and (non-)commutativity of the closed string. To this end, we solve the classical string on three T-dual toroidal backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with Q-flux. In all three situations we work under the assumption of a dilute flux and consider quantities to linear order in the flux density. Furthermore, we perform the first steps of a canonical quantization for the twisted torus, to derive commutators of the string expansion modes. We use them as well as T-duality to determine, in the non-geometric background, a commutator of two string coordinates, which turns out to be non-vanishing. We relate this non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.

  5. The Polyakov path integral over bordered surfaces 3 (The BRST extended closed string off-shell amplitudes)

    International Nuclear Information System (INIS)

    Jaskolski, Z.

    1991-05-01

    The geometrical approach to the functional integral over Faddeev-Popov ghost fields is developed and applied to construct the BRST extension of the off-shell closed string amplitudes in the constant curvature gauge. In this gauge the overlap path integral for off-shell amplitudes is evaluated. It leads to the nonlocal sewing procedure generating all off-shell amplitudes from the cubic interaction vertex. The general scheme of the reconstruction of a covariant closed string field theory from the off-shell amplitudes is discussed within the path integral framework. (author). 30 refs

  6. Correlators of Ramond-Neveu-Schwarz fields in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Haertl, Daniel

    2011-07-15

    loop order. To complement the discussion we calculate the tree-level amplitude of two gauge fields and four gauginos for string compactifications to four dimensions and give its field theory limit. This open string amplitude is of particular interest because it can be related to an open-closed amplitude involving gauge fields and bulk moduli. In this way the mapping between the open and the open-closed sector can be studied in great detail and brane-bulk couplings can be determined in terms of open string couplings. (orig.)

  7. Correlators of Ramond-Neveu-Schwarz fields in string theory

    International Nuclear Information System (INIS)

    Haertl, Daniel

    2011-01-01

    order. To complement the discussion we calculate the tree-level amplitude of two gauge fields and four gauginos for string compactifications to four dimensions and give its field theory limit. This open string amplitude is of particular interest because it can be related to an open-closed amplitude involving gauge fields and bulk moduli. In this way the mapping between the open and the open-closed sector can be studied in great detail and brane-bulk couplings can be determined in terms of open string couplings. (orig.)

  8. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    Science.gov (United States)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  9. Supersymmetric closed string tachyon cosmology: a first approach

    International Nuclear Information System (INIS)

    Vázquez-Báez, V; Ramírez, C

    2014-01-01

    We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations

  10. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  11. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  12. String amplitudes: from field theories to number theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  13. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  14. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  15. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  16. Deformations in closed string theory: canonical formulation and regularization

    International Nuclear Information System (INIS)

    Cederwall, M.; Von Gussich, A.; Sundell, P.

    1996-01-01

    We study deformations of closed string theory by primary fields of conformal weight (1,1), using conformal techniques on the complex plane. A canonical surface integral formalism for computing commutators in a non-holomorphic theory is constructed, and explicit formulae for deformations of operators are given. We identify the unique regularization of the arising divergences that respects conformal invariance, and consider the corresponding parallel transport. The associated connection is metric compatible and carries no curvature. (orig.)

  17. String field representation of the Virasoro algebra

    Energy Technology Data Exchange (ETDEWEB)

    Mertes, Nicholas [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic); Department of Physics, University of Miami,Coral Gables, FL (United States); Schnabl, Martin [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)

    2016-12-29

    We construct a representation of the zero central charge Virasoro algebra using string fields in Witten’s open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.

  18. Construction of closed fermionic string models in four dimensions

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1987-01-01

    It is possible to construct consistent closed string models directly in four space-time dimensions if reparametrization invariance, conformal invariance and world sheet supersymmetry are properly accounted for. In the context of string models whose internal degrees of freedom are represented by free world sheet fermions, it is possible to completely solve for the above requirements, providing a simple set of rules for constructing string models. N = 1 supersymmetric and non-supersymmetric heterotic type string models with chiral fermions and realistic gauge groups, as well as generalized type II models with realistic gauge groups, can easily be constructed. Many other string models can be constructed using similar methods based on free world sheet bosons

  19. Interacting bosonic strings in subcritical dimensions

    International Nuclear Information System (INIS)

    Hwang, S.; Marnelius, R.

    1988-01-01

    Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)

  20. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  1. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  2. String-localized quantum fields and modular localization

    Energy Technology Data Exchange (ETDEWEB)

    Mund, J. [Juiz de Fora Univ., MG (Brazil). Dept. de Fisica; Schroer, B. [FU-Berlin, Berlin (Germany). Inst. fuer Theoretische Physik; Yngvason, J. [Erwin Schroedinger Institute for Mathematical Physics, Vienna (Austria)

    2005-12-15

    We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincare group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting. (author)

  3. String-localized quantum fields and modular localization

    International Nuclear Information System (INIS)

    Mund, J.

    2005-12-01

    We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincare group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting. (author)

  4. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  5. Exact marginality in open string field theory. A general framework

    International Nuclear Information System (INIS)

    Kiermaier, M.

    2007-07-01

    We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)

  6. D-instantons and closed string tachyons in Misner space

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Tai, T.-S.

    2006-01-01

    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder

  7. Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings

    International Nuclear Information System (INIS)

    Bak, Dongsu; Rey, Soojong; Yee, Houng

    2004-01-01

    We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)

  8. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  9. Gauge invariance and equations of motion for closed string modes

    Directory of Open Access Journals (Sweden)

    B. Sathiapalan

    2014-12-01

    Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.

  10. Dualities in ABJM matrix model from closed string viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshige, Kazuki; Moriyama, Sanefumi [Department of Physics, Graduate School of Science, Osaka City University,3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-11-17

    We propose a new formalism to study the ABJM matrix model. Contrary to expressing the fractional brane background with the Wilson loops in the open string formalism, we formulate the Wilson loop expectation value from the viewpoint of the closed string background. With this new formalism, we can prove some duality relations in the matrix model. /includegraphics[scale=0.7]{abstract.eps}.

  11. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  12. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  13. A string theory which isn't about strings

    Science.gov (United States)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  14. Hidden gravity in open-string field theory

    International Nuclear Information System (INIS)

    Siegel, W.

    1994-01-01

    We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory

  15. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  16. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  17. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  18. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  19. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  20. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  1. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  2. String Chopping and Time-ordered Products of Linear String-localized Quantum Fields

    Science.gov (United States)

    Cardoso, Lucas T.; Mund, Jens; Várilly, Joseph C.

    2018-03-01

    For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction Lagrangian. This paper provides a first step in that direction. The basic issue is the presence of an open set of n-tuples of strings which cannot be chronologically ordered. We resolve it by showing that almost all such string configurations can be dissected into finitely many pieces which can indeed be chronologically ordered. This fixes the time-ordered products of linear field factors outside a nullset of string configurations. (The extension across the nullset, as well as the definition of time-ordered products of Wick monomials, will be discussed elsewhere).

  3. Non-linear σ-models and string theories

    International Nuclear Information System (INIS)

    Sen, A.

    1986-10-01

    The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs

  4. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  5. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  6. Gauge invariance of string fields

    International Nuclear Information System (INIS)

    Banks, T.; Peskin, M.E.

    1985-10-01

    Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab

  7. Vacuum fluctuations of twisted fields in the space time of cosmic strings

    International Nuclear Information System (INIS)

    Matsas, G.E.A.

    1990-01-01

    A twisted scalar field conformally coupled to gravitation is used to calculate the vacuum stress-energy tensor in the background spacetime generated by an infinite straight gauge cosmic string. The result has an absolute numerical value close to the one obtained with a non-twisted conformal scalar field but their signals are opposite. (author) [pt

  8. Non-supersymmetric tachyon-free type-II and type-I closed strings from RCFT

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)], E-mail: bgator@imaff.cfmac.csic.es; Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2007-11-15

    We consider non-supersymmetric four-dimensional closed string theories constructed out of tensor products of N=2 minimal models. Generically such theories have closed string tachyons, but these may be removed either by choosing a non-trivial partition function or a suitable Klein bottle projection. We find large numbers of examples of both types.

  9. MHV, CSW and BCFW: field theory structures in string theory amplitudes

    International Nuclear Information System (INIS)

    Boels, Rutger; Larsen, Kasper Jens; Obers, Niels A.; Vonk, Marcel

    2008-01-01

    Motivated by recent progress in calculating field theory amplitudes, we study applications of the basic ideas in these developments to the calculation of amplitudes in string theory. We consider in particular both non-Abelian and Abelian open superstring disk amplitudes in a flat space background, focusing mainly on the four-dimensional case. The basic field theory ideas under consideration split into three separate categories. In the first, we argue that the calculation of α'-corrections to MHV open string disk amplitudes reduces to the determination of certain classes of polynomials. This line of reasoning is then used to determine the α' 3 -correction to the MHV amplitude for all multiplicities. A second line of attack concerns the existence of an analog of CSW rules derived from the Abelian Dirac-Born-Infeld action in four dimensions. We show explicitly that the CSW-like perturbation series of this action is surprisingly trivial: only helicity conserving amplitudes are non-zero. Last but not least, we initiate the study of BCFW on-shell recursion relations in string theory. These should appear very naturally as the UV properties of the string theory are excellent. We show that all open four-point string amplitudes in a flat background at the disk level obey BCFW recursion relations. Based on the naturalness of the proof and some explicit results for the five-point gluon amplitude, it is expected that this pattern persists for all higher point amplitudes and for the closed string.

  10. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  11. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  12. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  13. BRST invariant mixed string vertex for the bosonic string

    International Nuclear Information System (INIS)

    Clarizia, A.; Pezzella, F.

    1987-09-01

    We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)

  14. On multibrane solutions in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Murata, Masaki; Schnabl, Martin

    2011-01-01

    Roč. 2011, č. 188 (2011), s. 50-55 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * D-branes * open strings Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/50/

  15. Multiloop divergences in the closed bosonic string theory

    International Nuclear Information System (INIS)

    Gava, E.; Iengo, R.; Jayaraman, T.; Ramachandran, R.

    1985-12-01

    We discuss the structure of the divergences in the multiloop vacuum diagrams for the closed bosonic strings in the framework of the Polyakov covariant formalism. We find, by an explicit computation, that all the divergences in the theory may be interpreted as due to tadpole diagrams in which the dilation goes into the vacuum. (author)

  16. Open string T-duality in a weakly curved background

    International Nuclear Information System (INIS)

    Davidovic, Ljubica

    2016-01-01

    We consider a theory of an open string moving in a weakly curved background, composed of a constant metric and a linearly coordinate dependent Kalb-Ramond field with an infinitesimal field strength. We find its T-dual using the generalized Buscher procedure developed for the closed string moving in a weakly curved background, and the fact that solving the boundary conditions, the open string theory transforms to the effective closed string theory. So, T-dualizing the effective theory along all effective directions we obtain its T-dual theory and resume the open string theory which has such an effective theory. In this way we obtain the open string theory T-dual. (orig.)

  17. Quantization of bosonic closed strings and the Liouville model

    International Nuclear Information System (INIS)

    Paycha, S.

    1988-01-01

    The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)

  18. Heterotic string solutions and coset conformal field theories

    CERN Document Server

    Giveon, Amit; Tseytlin, Arkady A

    1993-01-01

    We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...

  19. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  20. Particles, fields, and now strings

    International Nuclear Information System (INIS)

    Weinberg, S.

    1986-01-01

    The author traces the history of the struggle between two views of the world: a world of particles or a world of fields. These positions were crystallised as quantum field theory and S-matrix theory and now by the reintroduction of string theories. (Auth.)

  1. Open string in the constant B-field background

    International Nuclear Information System (INIS)

    Jing Jian; Long Zhengwen

    2005-01-01

    A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided

  2. Exact string theory model of closed timelike curves and cosmological singularities

    International Nuclear Information System (INIS)

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-01-01

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios

  3. Open-closed homotopy algebra in mathematical physics

    International Nuclear Information System (INIS)

    Kajiura, Hiroshige; Stasheff, Jim

    2006-01-01

    In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed string field theory, but that first paper concentrated on the mathematical aspects. Here we show how an OCHA is obtained by extracting the tree part of Zwiebach's quantum open-closed string field theory. We clarify the explicit relation of an OCHA with Kontsevich's deformation quantization and with the B-models of homological mirror symmetry. An explicit form of the minimal model for an OCHA is given as well as its relation to the perturbative expansion of open-closed string field theory. We show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (A ∞ algebras) by closed strings (L ∞ algebras)

  4. String phase transitions in a strong magnetic field

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo

    1993-01-01

    We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.

  5. Technology of multiloop calculations for closed bosonic strings

    International Nuclear Information System (INIS)

    Ramachandran, R.

    1986-03-01

    In this article, we trace the essentials of the technology of multiloop computations in the covariant Polyakov formalism of the closed bosonic string theory in the critical dimension. We discuss how we may isolate the divergences in the multiloop vacuum amplitude and show that they are interpreted as due to tadpole diagrams in which the dilaton goes into vacuum. (author)

  6. σ-models and string theories

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1987-01-01

    The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix

  7. Ghost sector of vacuum string field theory and the projection equation

    International Nuclear Information System (INIS)

    Potting, Robertus; Raeymaekers, Joris

    2002-01-01

    We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)

  8. Effective lagrangian from bosonic string field theory

    International Nuclear Information System (INIS)

    Nakazawa, Naohito

    1987-01-01

    We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)

  9. String field equation from renormalization group

    International Nuclear Information System (INIS)

    Sakai, Kenji.

    1988-10-01

    We derive an equation of motion for an open bosonic string field which is introduced as a background field in a sigma model. By using the method of Klebanov and Susskind, we obtain the β-function for this background field and investigate its properties. (author)

  10. Background Independent Open String Field Theory and Constant B-Field

    OpenAIRE

    Nemeschansky, D.; Yasnov, V.

    2000-01-01

    We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.

  11. String field representation of the Virasoro algebra

    Czech Academy of Sciences Publication Activity Database

    Mertes, N.; Schnabl, Martin

    2016-01-01

    Roč. 2016, č. 12 (2016), 1-14, č. článku 151. ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Held Theory * Conformal Field Models in String Theory Subject RIV: BE - Theoretical Physics Impact factor: 6.063, year: 2016

  12. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  13. On the symmetry algebra of the discrete states in d<2 closed string theory

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1993-01-01

    The symmetry charges associated with the Lian-Zuckerman states for d<2 closed string theory are constructed. Unlike in the open string case, it is shown here that the symmetry charges commute among themselves and act trivially on all the physical states. (author). 19 refs

  14. Solving Witten's string field theory using the butterfly state

    International Nuclear Information System (INIS)

    Okawa, Yuji

    2004-01-01

    We solve the equation of motion of Witten's cubic open string field theory in a series expansion using the regulated butterfly state. The expansion parameter is given by the regularization parameter of the butterfly state, which can be taken to be arbitrarily small. Unlike the case of level truncation, the equation of motion can be solved for an arbitrary component of the Fock space up to a positive power of the expansion parameter. The energy density of the solution is well defined and remains finite even in the singular butterfly limit, and it gives approximately 68% of the D25-brane tension for the solution at the leading order. Moreover, it simultaneously solves the equation of motion of vacuum string field theory, providing support for the conjecture at this order. We further improve our ansatz by taking into account next-to-leading terms, and find two numerical solutions which give approximately 88% and 109%, respectively, of the D25-brane tension for the energy density. These values are interestingly close to those by level truncation at level 2 without gauge fixing studied by Rastelli and Zwiebach and by Ellwood and Taylor

  15. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  16. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  17. Experimental observation of Bethe strings

    Science.gov (United States)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  18. Nonabelian gauge fields in the background of magnetic strings

    International Nuclear Information System (INIS)

    Wieczorek, E.

    1993-01-01

    Quantized nonabelian gauge fields are studied in the external classical background of a linear magnetic string. The determination of the gauge field propagator demands a specification of the string by suitable physical limiting procedures. The vacuum energy density is obtained after transforming the background problem into a Casimir problem. (orig.)

  19. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  20. New gauge symmetries in Witten's Ramond string field theory

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Terao, Haruhiko

    1988-01-01

    Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)

  1. Extension of the constraint algebra for a closed string with a world surface of fixed topology

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Osipov, A.A.

    1989-01-01

    The recently proposed choice of gauge in which the constraints and auxiliary conditions form a closed algebra is extended to the case of the Krichever--Novikov generalized graded algebras. It is shown that the central element of the extended algebra can be represented by an inexact form on a closed contour of the world surface of the string. A realization of the given algebra in terms of string variables is obtained. For this purpose, the classical dynamics of a closed bosonic string with a world surface of fixed genus is discussed. The dynamical variables are introduced in a covariant way and Hamilton equations are obtained in terms of them. These equations are equivalent to the Lagrange equations only in the case of a harmonic function of ''time.''

  2. Discrete field theories and spatial properties of strings

    International Nuclear Information System (INIS)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs

  3. A covariant open bosonic string field theory including the endpoint and middlepoint interaction

    International Nuclear Information System (INIS)

    Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.

    1988-01-01

    Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)

  4. Tree-level disk amplitude of three closed strings

    Science.gov (United States)

    Mousavi, Sepideh; Velni, Komeil Babaei

    2018-05-01

    It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.

  5. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  6. The confining string from the soft dilaton theorem

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar

    2000-01-01

    A candidate for the confining string of gauge theories is constructed via a representation of the ultraviolet divergences of quantum field theory by a closed string dilaton insertion, computed through the soft dilaton theorem. The resulting (critical) confining string is conformally invariant, singles out naturally d=4 dimensions, and can not be used to represent theories with Landau poles

  7. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  8. Analytic study of nonperturbative solutions in open string field theory

    International Nuclear Information System (INIS)

    Bars, I.; Kishimoto, I.; Matsuo, Y.

    2003-01-01

    We propose an analytic framework to study the nonperturbative solutions of Witten's open string field theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts. The first one describes the spectrum of two identical half strings which are independent from each other. The second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order in the midpoint correction. An infinite number of solutions are classified in terms of projection operators. Among them, there exists only one stable solution which is identical to the standard butterfly state. We include the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which can be formally summed to the complete exact solution

  9. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  10. Basic concepts of string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  11. Rankin-Selberg methods for closed strings on orbifolds

    CERN Document Server

    Angelantonj, Carlo; Pioline, Boris

    2013-01-01

    In recent work we have developed a new unfolding method for computing one-loop modular integrals in string theory involving the Narain partition function and, possibly, a weak almost holomorphic elliptic genus. Unlike the traditional approach, the Narain lattice does not play any role in the unfolding procedure, T-duality is kept manifest at all steps, a choice of Weyl chamber is not required and the analytic structure of the amplitude is transparent. In the present paper, we generalise this procedure to the case of Abelian Z_N orbifolds, where the integrand decomposes into a sum of orbifold blocks that can be organised into orbits of the Hecke congruence subgroup {\\Gamma}_0(N). As a result, the original modular integral reduces to an integral over the fundamental domain of {\\Gamma}_0(N), which we then evaluate by extending our previous techniques. Our method is applicable, for instance, to the evaluation of one-loop corrections to BPS-saturated couplings in the low energy effective action of closed string mo...

  12. Thermodynamic properties of open noncritical string in external electromagnetic field

    International Nuclear Information System (INIS)

    Lichtzier, I.M.; Odintsov, S.D.; Bytsenko, A.A.

    1991-01-01

    We investigate the thermodynamics of open noncritical string (charged and neutral) in an external constant magnetic field. The free energy and Hagedorn temperature are calculated. It is shown that Hagedorn temperature is the same as in the absence of constant magnetic field. We present also the expressions for the free energy and Hagedorn temperature of the neutral open noncritical string in an external constant electromagnetic field. In this case Hagedorn temperature depends on the external electric field. (author)

  13. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  14. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  15. Bounds on Masses of Bulk Fields in String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; McGreevy, John; Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-02-13

    In string compactification on a manifold X, in addition to the string scale and the normal scales of low-energy particle physics, there is a Kaluza-Klein scale 1/R associated with the size of X. We present an argument that generic string models with low-energy supersymmetry have, after moduli stabilization, bulk fields with masses which are parametrically lighter than 1/R. We discuss the implications of these light states for anomaly mediation and gaugino mediation scenarios.

  16. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  17. Open strings on AdS2 branes

    International Nuclear Information System (INIS)

    Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan

    2001-01-01

    We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2

  18. Remarks on the relation between different (open) string field theories

    International Nuclear Information System (INIS)

    De Alwis, S.P.

    1987-01-01

    It is shown that the different three-string vertices, related by conformal transformations, are in the same BRST cohomology class. We use this result to discuss the relation between different (open) string field theories. (orig.)

  19. Equivalence of different formulations of the free Ramond string field theory

    International Nuclear Information System (INIS)

    Sazdovic, B.

    1987-01-01

    We analyze the structure of Witten's formulation of the free Ramond string field theory and show that it is equivalent to other formulations. We establish explicit connections between their string fields. It is shown that the established connections eliminate all terms with mixed mass levels. (orig.)

  20. Basic Concepts of String Theory

    CERN Document Server

    Blumenhagen, Ralph; Theisen, Stefan

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  1. Open membranes in a constant C-field background and noncommutative boundary strings

    International Nuclear Information System (INIS)

    Kawamoto, Shoichi; Sasakura, Naoki

    2000-01-01

    We investigate the dynamics of open membrane boundaries in a constant C-field background. We follow the analysis for open strings in a B-field background, and take some approximations. We find that open membrane boundaries do show noncommutativity in this case by explicit calculations. Membrane boundaries are one dimensional strings, so we face a new type of noncommutativity, that is, noncommutative strings. (author)

  2. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  3. Physical states at the tachyonic vacuum of open string field theory

    International Nuclear Information System (INIS)

    Giusto, S.; Imbimbo, C.

    2004-01-01

    We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty

  4. Supersymmetrical dual string theories and their field theory limits: A review

    International Nuclear Information System (INIS)

    Green, M.B.

    1985-01-01

    This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties

  5. Closed flux tubes and their string description in D=3+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [Washington Univ., Seattle, WA (United States). Dept. of Physics; Teper, Michael [Oxford Univ. (United Kingdom). Centre for Theoretical Physics

    2010-08-15

    We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l{radical}{sigma} {proportional_to} 1.6, and extends up to l{radical}{sigma}{proportional_to}6 (where {sigma} is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to {radical}{sigma}, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J{sup P}=0{sup -} quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)

  6. Closed flux tubes and their string description in D=3 1 SU(N) gauge theories

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael

    2010-08-01

    We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l√σ ∝ 1.6, and extends up to l√σ∝6 (where σ is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to √σ, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J P =0 - quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)

  7. String Analysis for Dynamic Field Access

    DEFF Research Database (Denmark)

    Madsen, Magnus; Andreasen, Esben

    2014-01-01

    domains to reason about dynamic field access in a static analysis tool. A key feature of the domains is that the equal, concatenate and join operations take Ο(1) time. Experimental evaluation on four common JavaScript libraries, including jQuery and Prototype, shows that traditional string domains...

  8. Nonassociativity, Malcev algebras and string theory

    International Nuclear Information System (INIS)

    Guenaydin, M.; Minic, D.

    2013-01-01

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The identity string field and the sliver frame level expansion

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore

    2012-01-01

    Roč. 2012, č. 11 (2012), s. 1-25 ISSN 1126-6708 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation, bosonic strings , String Field Theory Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  10. Introduction to string field theory. A pedestrian approach to the covariant formulation

    International Nuclear Information System (INIS)

    West, G.B.

    1986-01-01

    A relatively elementary account is given of what a string field represents and what is involved in the construction of its covariant action. Emphasis is on drawing a correspondence with similar problems in ordinary field theory and, particularly, using the language and mathematics used in ordinary field theory. Only the free string is discussed. 17 refs., 3 figs

  11. An introduction to conformal field theory in two dimensions and string theory

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1989-01-01

    This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields

  12. Introduction to string field theory. A pedestrian approach to the covariant formulation

    Energy Technology Data Exchange (ETDEWEB)

    West, G.B.

    1986-01-01

    A relatively elementary account is given of what a string field represents and what is involved in the construction of its covariant action. Emphasis is on drawing a correspondence with similar problems in ordinary field theory and, particularly, using the language and mathematics used in ordinary field theory. Only the free string is discussed. 17 refs., 3 figs. (LEW)

  13. On Climbing Scalars in String Theory

    CERN Document Server

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  14. Spinor Field Realizations of the half-integer $W_{2,s}$ Strings

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong

    2008-01-01

    The grading Becchi-Rouet-Stora-Tyutin (BRST) method gives a way to construct the integer $W_{2,s}$ strings, where the BRST charge is written as $Q_B=Q_0+Q_1$. Using this method, we reconstruct the nilpotent BRST charges $Q_{0}$ for the integer $W_{2,s}$ strings and the half-integer $W_{2,s}$ strings. Then we construct the exact grading BRST charge with spinor fields and give the new realizations of the half-integer $W_{2,s}$ strings for the cases of $s=3/2$, 5/2, and 7/2.

  15. String fields, higher spins and number theory

    CERN Document Server

    Polyakov, Dimitri

    2018-01-01

    The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.

  16. Generalized string theory mapping relations between gravity and gauge theory

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2003-01-01

    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings

  17. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  18. Improved Off-Shell Scattering Amplitudes in String Field Theory and New Computational Methods

    CERN Document Server

    Park, I Y; Bars, Itzhak

    2004-01-01

    We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the Veneziano formula in the Moyal star formulation of Witten's string field theory (MSFT). We also demonstrate detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to Witten's string field theory. We extend the techniques of computation in MSFT, and show that the j=0 representation of SL(2,R) generated by the Virasoro operators $L_{0},L_{\\pm1}$ is a key structure in practical computations for generating numbers. We provide more insight into the Moyal structure that simplifies string field theory, and develop techniques that could be applied more generally, including nonperturbative processes.

  19. The sewing technique for strings and conformal field theories

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We discuss recent results obtained from the sewing procedure for strings and conformal field theories. They are summarized by the N Point [String] g loop Vertex V N;g , that is the 'generating functional' of all correlation functions [scattering amplitudes] of the theory on a genus g Riemann surface. We discuss V N;g for free bosonic theory with arbitrary background charge and for fermionic and bosonic bc systems. By saturating those vertices with highest weight states we obtain in a simple way the correlation functions of the corresponding primary fields on genus g Riemann surfaces that reproduce known results including the correlation functions of a bosonic bc system, that present a number of peculiarities. We construct also V N;g for the bosonic and fermionic string. In particular this technique allows one to explicitly construct the measure of integration over the moduli and to study the various pinching limits in order to check the finiteness of superstring theories. (orig.)

  20. Higher-Spin Triplet Fields and String Theory

    Directory of Open Access Journals (Sweden)

    D. Sorokin

    2010-01-01

    Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.

  1. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  2. Hyperbolic strings

    International Nuclear Information System (INIS)

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  3. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  4. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  5. Open BRST algebras, ghost unification and string field theory

    NARCIS (Netherlands)

    Baulieu, Laurent; Bergshoeff, Eric; Sezgin, Ergin

    1988-01-01

    Geometrical aspects of the BRST quantization of charged antisymmetric tensor fields and string fields are studied within the framework of the Batalin and Vilkovisky method. In both cases, candidate anomalies which obey the Wess-Zumino consistency conditions are given.

  6. Quantum A∞-structures for open-closed topological strings

    International Nuclear Information System (INIS)

    Herbst, M.

    2006-02-01

    We study factorizations of topological string amplitudes on higher genus Riemann surfaces with multiple boundary components and find quantum A ∞ -relations, which are the higher genus analog of the (classical) A ∞ -relations on the disk. For topological strings with c=3 the quantum A ∞ -relations are trivially satisfied on a single D-brane, whereas in a multiple D-brane configuration they may be used to compute open higher genus amplitudes recursively from disk amplitudes. This can be helpful in open Gromov-Witten theory in order to determine open string higher genus instanton corrections. Finally, we find that the quantum A ∞ -structure cannot quite be recast into a quantum master equation on the open string moduli space. (orig.)

  7. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  8. Hot String Soup

    OpenAIRE

    Lowe, D. A.; Thorlacius, L.

    1994-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...

  9. Cosmic global strings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  10. Macroscopic fundamental strings in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aharonov, Y; Englert, F; Orloff, J

    1987-12-24

    We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.

  11. A variational approach to closed bosonic strings on bordered Riemann surfaces

    International Nuclear Information System (INIS)

    Ohrndorf, T.

    1987-01-01

    Polyakov's path integral for bosonic closed strings defined on a bordered Riemann surface is investigated by variational methods. It is demonstrated that boundary variations are generated by the Virasoro operators. The investigation is performed for both, simply connected Riemann surfaces as well as ringlike domains. It is shown that the form of the variational operator is the same on both kinds of surfaces. The Virasoro algebra arises as a consistency condition for the variation. (orig.)

  12. A note on T-duality, open strings in B-field background and canonical transformations

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.

    1999-11-01

    In this paper we study T-duality for open strings ending on branes with non-zero B-field on them from the point of view of canonical transformations. For the particular case of type II strings on the two torus we show that the Sl(2, Z) N transformations can be understood as a sub-class of canonical transformations on the open strings in the B-field background. (author)

  13. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1988-01-01

    The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr

  14. Open BRST algebras, ghost unification and string field theory

    International Nuclear Information System (INIS)

    Baulieu, L.; Bergshoeff, E.; Sezgin, E.

    1988-01-01

    Geometrical aspects of the BRST quantization of charged antisymmetric tensor fields and string fields are studied within the framework of the Batalin and Vilkovisky method. In both cases, candidate anomalies which obey the Wess-Zumino consistency conditions are given. (author). 18 refs, 1 fig

  15. A premier analysis of supersymmetric closed string tachyon cosmology

    Science.gov (United States)

    Vázquez-Báez, V.; Ramírez, C.

    2018-04-01

    From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.

  16. Transverse structure of the QCD string

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2010-01-01

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length β defined from the slope of its gravitational form factor, is given by (d-1/2πσ)log(β/4r 0 ) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2πσ)log(r/r 0 ). We also obtain predictions for transition form factors among closed-string states.

  17. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  18. Lectures on interacting string field theory

    International Nuclear Information System (INIS)

    Jevicki, A.

    1986-09-01

    We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs

  19. On deformations and quantization in topological string theory

    International Nuclear Information System (INIS)

    Kay, Michael

    2014-01-01

    The study of moduli spaces of N=(2,2) superconformal field theories and more generally of N=(2,2) supersymmetric quantum field theories, has been a longstanding, multifaceted area of research. In this thesis we focus on certain selected general aspects of this study and develop general techniques within the framework of topological string theory. This work is naturally divided into two parts. The first is concerned with aspects of closed topological string theory, and culminates with a theory, where the geometrical structure of the topological anti-topological moduli spaces of N=(2,2) superconformal field theories with central charge c=9 is rediscovered in the light of quantization, within a general framework. The second part is concerned with aspects of the study of the open and closed moduli space of topological conformal field theories at genus zero. In particular, it contains an exposition of a paper, where general results on the classification and computation of bulk-induced deformations of open topological conformal field theories were obtained from a coherent algebraic approach, drawing from the defining L ∞ and A ∞ structures involved. In part, the latter investigation is restricted to arbitrary affine B-twisted Landau Ginzburg models. Subsequently, further original work is presented that completes the topological string field theory structure of B-twisted Landau Ginzburg models.

  20. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  1. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  2. On the stringy nature of winding modes in noncommutative thermal field theories

    CERN Document Server

    Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim

    2000-01-01

    We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...

  3. Covariant loop-calculus for the closed bosonic string

    International Nuclear Information System (INIS)

    Petersen, J.L.; Sidenius, J.R.

    1987-06-01

    A previously suggested N-reggeon (N-string) amplitude based on the BRST-formulation is extended by obtaining integrations over Koba-Nielsen-like variables in terms of integrations over quasiconformal ghost fields. Simple sewing rules for reggeons are set up and the N-reggeon amplitude is shown to factorize correctly and to have satisfactory BRST-cohomology properties. Multi-loop amplitudes for arbitrary external states are constructed in the Schottky parametrization. The sewing prescription for antighost zero-modes produces a measure on Schottky space with the characteristic BRST properties. The treatment is inherently local on moduli space, however. (orig./HSI)

  4. Super string field theory and the Wess-Zumino-Witten action

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore

    2017-01-01

    Roč. 2017, č. 10 (2017), s. 1-63, č. článku 057. ISSN 1029-8479 R&D Projects: GA MŠk EF15_003/0000437 Institutional support: RVO:68378271 Keywords : string field theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  5. Towards a string formulation of vortex dynamics

    International Nuclear Information System (INIS)

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom

  6. Large BCFT moduli in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Maccaferri, C.; Schnabl, Martin

    2015-01-01

    Roč. 2015, č. 8 (2015), s. 149 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Field Theory * tachyon condensation * D-branes Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015

  7. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  8. Light-like tachyon condensation in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Hellerman, S.; Schnabl, Martin

    2013-01-01

    Roč. 2013, č. 4 (2013), s. 1-34 ISSN 1126-6708 Institutional support: RVO:68378271 Keywords : string field theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  9. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  10. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory

    International Nuclear Information System (INIS)

    Liu Luxin

    2009-01-01

    The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.

  12. Open string Regge trajectory and its field theory limit

    International Nuclear Information System (INIS)

    Rojas, Francisco; Thorn, Charles B.

    2011-01-01

    We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N→∞ with Ng s 2 fixed. Our motivation is to improve the understanding of open string theory at finite α ' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α ' t+Σ(t) can be extracted, through order g 2 , from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)∼-Cg 2 (-α ' t) (D-4)/2 /(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α ' t). We also study Σ(t) in the limit t→-∞ and show that, when D ' t/(ln(-α ' t)) γ , where γ>0 depends on D and the number of massless scalars. Thus, as long as 4 ' t arbitrarily large. Finally we present the results of numerical calculations of Σ(t) for all negative t.

  13. Dynamics of Carroll strings

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2016-07-11

    We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.

  14. Linear b-gauges for open string fields

    International Nuclear Information System (INIS)

    Kiermaier, Michael; Zwiebach, Barton; Sen, Ashoke

    2008-01-01

    Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge

  15. Backreacted axion field ranges in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent; Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2016-08-05

    String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.

  16. Some exact computations on the twisted butterfly state in string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji

    2004-01-01

    The twisted butterfly state solves the equation of motion of vacuum string field theory in the singular limit. The finiteness of the energy density of the solution is an important issue, but possible conformal anomaly resulting from the twisting has prevented us from addressing this problem. We present a description of the twisted regulated butterfly state in terms of a conformal field theory with a vanishing central charge which consists of the ordinary bc ghosts and a matter system with c=26. Various quantities relevant to vacuum string field theory are computed exactly using this description. We find that the energy density of the solution can be finite in the limit, but the finiteness depends on the sub leading structure of vacuum string field theory. We further argue, contrary to our previous expectation, that contributions from sub leading terms in the kinetic term to the energy density can be of the same order as the contribution from the leading term which consists of the midpoint ghost insertion. (author)

  17. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  18. Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings

    International Nuclear Information System (INIS)

    Bigazzi, F.; Cotrone, A.L.; Martucci, L.; Pando Zayas, L.A.

    2004-07-01

    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)

  19. Multi-branes boundary states with open string interactions

    International Nuclear Information System (INIS)

    Pesando, Igor

    2008-01-01

    We derive boundary states which describe configurations of multiple parallel branes with arbitrary open string states interactions in bosonic string theory. This is obtained by a careful discussion of the factorization of open/closed string states amplitudes taking care of cycles needed by ensuring vertices commutativity: in particular the discussion reveals that already at the tree level open string knows of the existence of closed string

  20. Critical non-Abelian vortex in four dimensions and little string theory

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  1. Antisymmetric tensor Zp gauge symmetries in field theory and string theory

    International Nuclear Information System (INIS)

    Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.

    2014-01-01

    We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality

  2. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  3. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  4. Interaction vertices in reduced string field theories

    International Nuclear Information System (INIS)

    Embacher, F.

    1989-01-01

    In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)

  5. Alternative interpretation for the moduli fields of string theories

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Tonatiuh [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico); Luevano, Jose-Ruben [Departamento de Ciencias Basicas, UAM-A, C.P. 02200 Mexico, D.F. (Mexico); Urena-Lopez, L Arturo [Instituto de Fisica, IFUG, A.P. 150, 37150, Leon, Guanajuato (Mexico); Vazquez, J Alberto [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2007-11-15

    In this work we provide a basis for studying the cosmologies derived from superstring theory. Distinct features of these cosmologies are the presence of an axion field, and the interaction of the dilaton field with all the other matter fields. We make a first study of the equations of motion and write them as an autonomous dynamical system. The fixed points of the equations and their corresponding stability are determined in turn. We then discuss the viability of the string fields as dark energy and dark matter.

  6. The off-shell closed strings as the topological open membranes. Dynamical transmutation of world sheet dimension

    International Nuclear Information System (INIS)

    Kogan, Y.I.

    1989-05-01

    Using the connection between (2+1) Chern-Simons gauge theory and 2d Conformal Field Theory the on-shell string condition is obtained as a condition of full independence of interior of (2+1) world. The new method for off-shell continuation is considered based on the introduction of the Maxwell term in (2+1) theory. This leads to dynamical transmutation of world-sheet dimensions - the off-shell string becomes topological membrane (topological means that (2+1) theory has topological mass term). The dependence of parameters of (2+1) theory under the external fields is discussed. (author). 17 refs

  7. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  8. Stretching cosmic strings

    International Nuclear Information System (INIS)

    Turok, N.; Bhattacharjee, P.

    1984-01-01

    The evolution of a network of strings produced at a grand-unification phase transition in an expanding universe is discussed, with particular reference to the processes of energy exchange between the strings and the rest of the universe. This is supported by numerical calculations simulating the behavior of strings in an expanding universe. It is found that in order that the energy density of the strings does not come to dominate the total energy density there must be an efficient mechanism for energy loss: the only plausible one being the production of closed loops and their subsequent decay via gravitational radiation

  9. Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2

    CERN Document Server

    Couso-Santamaría, Ricardo; Schiappa, Ricardo; Vonk, Marcel

    2015-01-01

    The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local CP2 toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by Z_3 symmetry, alongside another action related to the Kahler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomal...

  10. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  11. Field redefinitions and Chern-Simons terms in the heterotic string

    International Nuclear Information System (INIS)

    Bern, Z.; Shimada, T.

    1987-07-01

    Field redefinitions in the low energy effective action of the heterotic string are discussed. A field redefinition is constructed which generates the local counterterm that transforms the Lorentz into the gravitational form of the anomaly. We also discuss the field redefinition which torsionizes the Lorentz Chern-Simons term and its relation to an amplitude matching study of the compatibility of torsion with the Gauss-Bonnet combination. (orig.)

  12. Systems and methods for photovoltaic string protection

    Science.gov (United States)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    2017-10-25

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  13. Local grand unification and string theory

    International Nuclear Information System (INIS)

    Nilles, Hans Peter; Vaudrevange, Patrick K.S.

    2009-09-01

    The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)

  14. Manipulating lightcone fluctuations in an analogue cosmic string

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2018-02-01

    Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  15. Manipulating lightcone fluctuations in an analogue cosmic string

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2018-02-01

    We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  16. Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    CERN Document Server

    Suraci, A; Balle, C; Blanco-Viñuela, E; Casas-Cubillos, J; Gomes, P; Pelletier, S; Serio, L; Vauthier, N; Balle, Ch.

    2001-01-01

    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning.

  17. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  18. Decoupling of degenerate positive-norm states in Witten's string field theory

    International Nuclear Information System (INIS)

    Kao, Hsien-Chung; Lee, Jen-Chi

    2003-01-01

    We show that the degenerate positive-norm physical propagating fields of the open bosonic string can be gauged to the higher rank fields at the same mass level. As a result, their scattering amplitudes can be determined from those of the higher spin fields. This phenomenon arises from the existence of two types of zero-norm states with the same Young representations as those of the degenerate positive-norm states in the old covariant first quantized (OCFQ) spectrum. This is demonstrated by using the lowest order gauge transformation of Witten's string field theory (WSFT) up to the fourth massive level (spin-five), and is found to be consistent with conformal field theory calculation based on the first quantized generalized sigma-model approach. In particular, on-shell conditions of zero-norm states in the OCFQ stringy gauge transformation are found to correspond, in a one-to-one manner, to the background ghost fields in off-shell gauge transformation of WSFT. The implication of decoupling of scalar modes on Sen's conjectures is also briefly discussed

  19. Quantum local quench, AdS/BCFT and Yo-Yo string

    International Nuclear Information System (INIS)

    Astaneh, Amin Faraji; Mosaffa, Amir Esmaeil

    2015-01-01

    We propose a holographic model for local quench in 1+1 dimensional Conformal Field Theory (CFT). The local quench is produced by joining two identical CFT’s on semi-infinite lines. When these theories have a zero boundary entropy, we use the AdS/Boundary CFT proposal to describe this process in terms of bulk physics. Boundaries of the original CFT’s are extended in AdS as dynamical surfaces. In our holographic picture these surfaces detach from the boundary and form a closed folded string which can propagate in the bulk. The dynamics of this string is governed by the tensionless Yo-Yo string solution and its subsequent evolution determines the time dependence after quench. We use this model to calculate holographic Entanglement Entropy (EE) of an interval as a function of time. We propose how the falling string deforms Ryu-Takayanagi’s curves. Using the deformed curves we calculate EE and find complete agreement with field theory results.

  20. A criterion for flatness in minimal area metrics that define string diagrams

    International Nuclear Information System (INIS)

    Ranganathan, K.; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    It has been proposed that the string diagrams of closed string field theory be defined by a minimal area problem that requires that all nontrivial homotopy curves have length greater than or equal to 2π. Consistency requires that the minimal area metric be flat in a neighbourhood of the punctures. The theorem proven in this paper, yields a criterion which if satisfied, will ensure this requirement. The theorem states roughly that the metric is flat in an open set, U if there is a unique closed curve of length 2π through every point in U and all of these closed curves are in the same free homotopy class. (orig.)

  1. Three level constraints on conformal field theories and string models

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1989-05-01

    Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs

  2. String moduli inflation. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-06-15

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  3. String moduli inflation. An overview

    International Nuclear Information System (INIS)

    Cicoli, Michele; Quevedo, Fernando

    2011-06-01

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  4. Particle crossing versus field crossing; a corrective response to Duff's recent account of string theory

    International Nuclear Information System (INIS)

    Schroer, Bert; FU-Berlin

    2012-02-01

    Using recent results of advanced quantum field theory, we confute some of M. Duff's claims about string theory which he wrote as an invited paper to the project 'Forty Years Of String Theory: Reflecting on the Foundations' (author)

  5. Mass corrections in string theory and lattice field theory

    International Nuclear Information System (INIS)

    Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo

    2009-01-01

    Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.

  6. Two exercises in supersymmetry: a low-energy supergravity model and free string field theory

    International Nuclear Information System (INIS)

    Preitschopf, C.R.

    1986-09-01

    The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge

  7. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  8. Strings, texture, and inflation

    International Nuclear Information System (INIS)

    Hodges, H.M.; Primack, J.R.

    1991-01-01

    We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I

  9. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  10. Null Geodesics and Strong Field Gravitational Lensing in a String Cloud Background

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole

  11. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  12. Regularizing cubic open Neveu-Schwarz string field theory

    International Nuclear Information System (INIS)

    Berkovits, Nathan; Siegel, Warren

    2009-01-01

    After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.

  13. A microscopic description of absorption in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2016-01-01

    We study the collision of a highly energetic light closed string off a stack of Dp-branes at (sub)string-scale impact parameters and in a regime justifying a perturbative treatment. Unlike at larger impact parameters - where elastic scattering and/or tidal excitations dominate - here absorption of the closed string by the brane system, with the associated excitation of open strings living on it, becomes important. As a first step, we study this phenomenon at the disk level, in which the energetic closed string turns into a single heavy open string at rest whose particularly simple properties are described.

  14. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  15. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, R. [Universidad Autonoma de Puebla, Instituto de Fisica, Puebla, Pue. (Mexico); Meza-Aldama, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, Pue. (Mexico)

    2016-02-15

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1) x SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries. (orig.)

  16. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  17. The Dirac field in the electromagnetic potential of a charged string; Das Dirac-Feld im elektromagnetischen Potential eines geladenen Strings

    Energy Technology Data Exchange (ETDEWEB)

    Anaguano, L.

    2005-07-01

    According to the theory of Quantum Electrodynamics (QED) the vacuum state will change in the presence of very strong electromagnetic fields. If the external field (in the simplest case purely electrostatic) exceeds a certain critical value the creation of electron-positron pairs will ensue, resulting the the formation of a charged vacuum. This process is characterized by the emergence of electron states with a binding energy larger than twice the electron rest mass. The effect up to now usually was studied for spherically symmetric systems, in particular for the Coulomb potential of a heavy nucleus. In the present thesis we investigate, how this phenomenon changes when passing from spherical to cylindrical geometry. For this, we derive the solutions of the Dirac equation for electrons in the electrostatic potential of a long, thin charged cylinder (a ''charged string'') and study the ensuing supercritical effects. Since the logarithmic potential of an infinitely long string rises indefinitely with growing distance, all electron states should be supercritical (i.e., electrons should be able to tunnel through the particle-antiparticle gap of the Dirac equation). Therefore on may expect that the central charge will surround itself with an oppositely charged sheath of vacuum electrons, leading to neutralization of the string. To develop a quantitative description of this process, we investigate the solutions of the Poisson equation and the Dirac equation in cylindrical symmetry. In the first step a series expansion of the electrostatic potential in the central plane of a homogeneously charge cylinder of finite length and finite radius is derived. Subsequently, we employ the tetrad (vierbein) formalism to separate the Dirac equation in cylindrical coordinates. The resulting radial Dirac equation is transformed to Schroedinger type. The bound states are evaluated using the method of uniform approximation (a version of the WKB approximation). We study

  18. Pair production in the gravitational field of a cosmic string

    Science.gov (United States)

    Harari, Diego D.; Skarzhinsky, Vladimir D.

    1990-04-01

    We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.

  19. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  20. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  1. Functional integral approach to string theories

    International Nuclear Information System (INIS)

    Sakita, B.

    1987-01-01

    Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory

  2. On the field/string theory approach to theta dependence in large N Yang-Mills theory

    International Nuclear Information System (INIS)

    Gabadadze, Gregory

    1999-01-01

    The theta dependence of the vacuum energy in large N Yang-Mills theory has been studied some time ago by Witten using a duality of large N gauge theories with the string theory compactified on a certain space-time. We show that within the field theory context vacuum fluctuations of the topological charge give rise to the vacuum energy consistent with the string theory computation. Furthermore, we calculate 1/N suppressed corrections to the string theory result. The reconciliation of the string and field theory approaches is based on the fact that the gauge theory instantons carry zerobrane charge in the corresponding D-brane construction of Yang-Mills theory. Given the formula for the vacuum energy we study certain aspects of stability of the false vacua of the model for different realizations of the initial conditions. The vacuum structure appears to be different depending on whether N is infinite or, alternatively, large but finite

  3. String cosmology modern string theory concepts from the cosmic structure

    CERN Document Server

    2009-01-01

    The field of string cosmology has matured considerably over the past few years, attracting many new adherents to this multidisciplinary Field. This book fills a critical gap by bringing together strains of current research into one single volume. The resulting collection of selected articles presents the latest, ongoing results from renowned experts currently working in the field. This offers the possibility for practitioners to become conversant with many different aspects of string cosmology

  4. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  5. Windings of twisted strings

    Science.gov (United States)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  6. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Bringoltz, Barak; Teper, Michael

    2011-08-01

    We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest ∝30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N→ ∞ continuum limit. We find that the energies, E n (l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l 2 diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l 3 ) corrections to σl, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l 7 ), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l 7 ) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)

  7. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  8. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Traubenberg, M.R. de.

    1988-01-01

    We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt

  9. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  10. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  11. Gravitational effects of cosmic strings in Friedmann universes

    International Nuclear Information System (INIS)

    Veeraraghavan, S.

    1988-01-01

    Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined

  12. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  13. String necklaces and primordial black holes from type IIB strings

    International Nuclear Information System (INIS)

    Lake, Matthew; Thomas, Steve; Ward, John

    2009-01-01

    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.

  14. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  15. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  16. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  17. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?

    Science.gov (United States)

    Poltis, Robert; Stojkovic, Dejan

    2010-10-15

    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.

  18. T-Duality Group for Open String Theory

    OpenAIRE

    Kajiura, Hiroshige

    2001-01-01

    We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...

  19. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [The Israeli Institute for Advanced Research (IIAR), Rehovot (Israel); Teper, Michael [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics

    2011-08-15

    We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest {proportional_to}30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N{yields} {infinity} continuum limit. We find that the energies, E{sub n}(l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l{sup 2} diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l{sup 3}) corrections to {sigma}l, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l{sup 7}), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l{sup 7}) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)

  20. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  1. Heterotic string in an arbitrary background field

    International Nuclear Information System (INIS)

    Sen, A.

    1985-01-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N = 1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N = 1 supersymmetric nonlinear and N = 2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories

  2. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  3. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    Science.gov (United States)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  4. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    He, Minxi; Liu, Junyu; Lu, Shiyun; Cai, Yi-Fu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhou, Siyi; Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Brandenberger, Robert, E-mail: hmxz0@mail.ustc.edu.cn, E-mail: jliu2@caltech.edu, E-mail: shiyun@mail.ustc.edu.cn, E-mail: zhousiyi1@gmail.com, E-mail: yifucai@ustc.edu.cn, E-mail: phyw@ust.hk, E-mail: rhb@physics.mcgill.ca [Department of Physics, McGill University, Montréal, Quebec H3A 2T8 (Canada)

    2016-12-01

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two models produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.

  5. Closed String Tachyons, AdS/CFT, and QCD

    International Nuclear Information System (INIS)

    Silverstein, Eva M

    2001-01-01

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual

  6. Electric magnetic duality in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1992-07-01

    The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs

  7. Superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1984-01-01

    Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)

  8. Non-perturbative topological strings and conformal blocks

    NARCIS (Netherlands)

    Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.

    2011-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to

  9. Relativistic classical strings. II

    International Nuclear Information System (INIS)

    Galvao, C.A.P.

    1985-01-01

    The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt

  10. Strings and fundamental physics

    International Nuclear Information System (INIS)

    Baumgartl, Marco; Brunner, Ilka; Haack, Michael

    2012-01-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  11. Strings and fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik

    2012-07-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  12. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, A.

    2002-01-01

    I review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua. (author)

  13. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, Augusto

    2000-01-01

    We review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua

  14. Constraints on four dimensional effective field theories from string and F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent

    2017-06-21

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E{sub 8} to SU(5) x U(1){sup n}. We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  15. Constraints on four dimensional effective field theories from string and F-theory

    International Nuclear Information System (INIS)

    Baume, Florent

    2017-01-01

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E 8 to SU(5) x U(1) n . We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  16. A global string with an event horizon

    International Nuclear Information System (INIS)

    Harari, D.; Polychronakos, A.P.

    1990-01-01

    An idealized infinite straight global string in flat space-time has a logarithmically divergent energy per unit length. With gravity included, the standard field theoretical model for a straight global string has been shown to give rise to a repulsive gravitational field, and to develop a curvature singularity at a finite proper distance off the string core. Here we point out that alternative (although probably unrealistic) equations of state for the core of the global string produce a non-singular cylindrically symmetric metric with an event horizon at a finite proper distance off the core, such that timelike observers beyond the horizon are bound to move away from the string. The same geometric structure applies to the standard field theoretical model for a vortex in (2+1)-dimensional gravity. Thermal effects in a quantum field theory around the string due to the presence of the horizon are also calculated. (orig.)

  17. One loop tadpole in heterotic string field theory

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo

    2017-11-01

    We compute the off-shell 1-loop tadpole amplitude in heterotic string field theory. With a special choice of cubic vertex, we show that this amplitude can be computed exactly. We obtain explicit and elementary expressions for the Feynman graph decomposition of the moduli space, the local coordinate map at the puncture as a function of the modulus, and the b-ghost insertions needed for the integration measure. Recently developed homotopy algebra methods provide a consistent configuration of picture changing operators. We discuss the consequences of spurious poles for the choice of picture changing operators.

  18. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  19. On the infinities of closed superstring amplitudes

    International Nuclear Information System (INIS)

    Restuccia, A.; Taylor, J.G.

    1988-01-01

    The authors present an analysis of possible infinities that may be present in uncompactified multi-loop heterotic and type II superstring amplitudes constructed, without use of the short-string limit, in the light-cone gauge, and with use of a closed [10]-SUSY field theory algebra. Various types of degenerations of the integrand are discussed on the string worldsheet. No infinities are found, modulo (for type II) a particular identity for Green's functions

  20. Strings in the Sun?

    International Nuclear Information System (INIS)

    Chudnovsky, E.; Vilenkin, A.

    1988-01-01

    If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy

  1. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  2. Remark on the gravitational field produced by an infinite straight string

    International Nuclear Information System (INIS)

    Francisco, G.; Matsas, G.E.A.

    1989-01-01

    The results predicted by Newtonian gravity and general relativity are compared regarding the field produced by an infinite gauge string with constant density λ. A simple gedankenexperiment is suggested to stress the remarkable differences between these two theories. The existence of the usual Newtonian limit is discussed in this case

  3. Aspects of non-geometry in string theory

    International Nuclear Information System (INIS)

    Patalong, Peter

    2013-01-01

    This thesis investigates various manifestations of non-geometry in string theory. It utilises different frameworks to study how non-geometry appears in the target space, how non-geometry and non-geometric fluxes are interconnected, how non-geometry can be captured in effective field theories and how a possible extension of the standard string worldsheet model can accommodate non-geometric setups. The first part provides an example that non-geometry can imply non-commutativity of the closed string coordinate fields. Three T-dual frames are investigated, the three-torus with constant H-flux, the twisted torus and the torus with non-geometric flux Q. Under the assumption of dilute flux, a mode expansion and the canonical quantisation are carried out in the second case up to linear order in the flux parameter. T-duality is then used to relate the commutators of the string expansion modes to the coordinate field commutator in the non-geometric third frame. Non-commutativity is found and related to the non-geometric flux Q and the string winding, it therefore appears as an intrinsically string theoretic feature. The second part investigates non-geometry in the context of ten-dimensional effective field theories, i.e. double field theory and supergravity. A field redefinition is implemented that takes the form of a T-duality transformation, it reveals an alternative set of field variables allowing to define non-geometric fluxes Q and R in higher dimensions. The perspective of double field theory provides a geometric interpretation of those by taking into account a new type of covariant winding derivative. The perspective of the ten-dimensional supergravity allows to investigate the interplay between non-geometric field configurations and non-geometric fluxes. For the three-torus example, a well-defined action can be found, and a simple dimensional reduction makes contact to the known four-dimensional potential. It thus proves the correct uplift of Q and R to higher

  4. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  5. Solution of the dilaton problem in open bosonic string theories

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories

  6. An exact bosonization rule for c = 1 noncritical string theory

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Yamaguchi, Atsushi

    2007-01-01

    We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields

  7. Strings, gauge fields, and the geometry behind the legacy of Maximilian Kreuzer

    CERN Document Server

    Katzarkov, Ludmil; Knapp, Johanna; Rashkov, Radoslav; Scheidegger, Emanuel

    2012-01-01

    This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West. Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work of Brandt, Dragon, and Kreuzer on classification of anomalies in gauge theories. This highly cited work, which is also quoted in the textbook of Steven Weinberg on quantum field theory, has not yet been presented in full detail except in private lecture notes by Norbert Dragon. Similarly, the software package PALP (Packag...

  8. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  9. Closed String Tachyons, AdS/CFT, and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2001-07-25

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual.

  10. Algebraic solutions in open string field theory – a lightning review

    Czech Academy of Sciences Publication Activity Database

    Schnabl, Martin

    2010-01-01

    Roč. 50, č. 3 (2010), s. 102-108 ISSN 1210-2709 Grant - others:EUROHORC(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics https://ojs.cvut.cz/ojs/index.php/ap/article/download/1213/1045

  11. Cosmology in Gauge Field Theory and String Theory

    International Nuclear Information System (INIS)

    Garcia Compean, H

    2005-01-01

    This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce

  12. Lecture notes: string theory and zeta-function

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: toppan@cbpf.br

    2001-11-01

    These lecture notes are based on a revised and LaTexed version of the Master thesis defended at ISAS. The research part being omitted, they included a review of the bosonic closed string a la Polyakov and of the one-loop background field method of quantisation defined through the zeta-function. In an appendix some basic features of the Riemann zeta-function are also reviewed. The pedagogical aspects of the material here presented are particularly emphasized. These notes are used, together with the Scherk's article in Rev. Mod. Phys. and the first volume of the Polchinski book, for the mini-course on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-Witten two-volumes book is also used for consultative purposes. (author)

  13. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  14. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  15. A superstring field theory for supergravity

    Science.gov (United States)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  16. Consistent superstrings as solutions of the D=26 bosonic string theory

    International Nuclear Information System (INIS)

    Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.

    1985-01-01

    Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)

  17. Aspects of some dualities in string theory

    Science.gov (United States)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  18. Relativistic string dynamics and its connection with hadron physics

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1976-01-01

    Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented

  19. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  20. String theory and quark confinement

    International Nuclear Information System (INIS)

    Polyakov, A.M.

    1998-01-01

    This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)

  1. An Integer Programming Formulation of the Minimum Common String Partition Problem.

    Directory of Open Access Journals (Sweden)

    S M Ferdous

    Full Text Available We consider the problem of finding a minimum common string partition (MCSP of two strings, which is an NP-hard problem. The MCSP problem is closely related to genome comparison and rearrangement, an important field in Computational Biology. In this paper, we map the MCSP problem into a graph applying a prior technique and using this graph, we develop an Integer Linear Programming (ILP formulation for the problem. We implement the ILP formulation and compare the results with the state-of-the-art algorithms from the literature. The experimental results are found to be promising.

  2. Spinor Green function in higher-dimensional cosmic string space-time in the presence of magnetic flux

    International Nuclear Information System (INIS)

    Spinelly, J.; Mello, E.R. Bezerra de

    2008-01-01

    In this paper we investigate the vacuum polarization effects associated with quantum fermionic charged fields in a generalized (d+1)-dimensional cosmic string space-times considering the presence of a magnetic flux along the string. In order to develop this analysis we calculate a general expression for the respective Green function, valid for several different values of d, which is expressed in terms of a bispinor associated with the square of the Dirac operator. Adopting this result, we explicitly calculate the renormalized vacuum expectation values of the energy-momentum tensors, (T A B ) Ren. , associated with massless fields. Moreover, for specific values of the parameters which codify the cosmic string and the fractional part of the ratio of the magnetic flux by the quantum one, we were able to present in closed forms the bispinor and the respective Green function for massive fields.

  3. Localizing gauge fields on a topological Abelian string and the Coulomb law

    International Nuclear Information System (INIS)

    Torrealba S, Rafael S.

    2010-01-01

    The confinement of electromagnetic field is studied in axial symmetrical, warped, six-dimensional brane world, using a recently proposed topological Abelian string-vortex solution as background. It was found, that the massless gauge field fluctuations follow four-dimensional Maxwell equations in the Lorenz gauge. The massless zero mode is localized when the thickness of the string vortex is less than 5β/4πe 2 v 2 and there are no other localized massless modes. There is also an infinite of nonlocalized massive Fourier modes, that follow four-dimensional Proca equations with a continuous spectrum. To compute the corrections to the Coulomb potential, a radial cutoff was introduced, in order to achieve a discrete mass spectrum. As a main result, a (R o /βR 2 ) correction was found for the four-dimensional effective Coulomb law; the result is in correspondence with the observed behavior of the Coulomb potential at today's measurable distances.

  4. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  5. Vertex operator construction of superconformal ghosts and string field theory

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Nakamura, S.; Tezuka, A.

    1987-01-01

    Superconformal ghosts in string theories are characterized by the SU(1,1) Kac-Moody algebra with central charge -1/2. These ghost fields are constructed as the vertex operators realizing spinor representations of the Kac-Moody algebra. Representations of the canonical commutation relations of the superconformal ghosts are analyzed extensively. All irreducible representations are found to possess only the trivial inner product but for one exceptional case. Consequently, in superstring field theory it is necessary to consider reducible representations in general. Hilbert spaces with a non-trivial inner product are explicitly obtained upon which second quantization of superstring may be carried out. (orig.)

  6. Vacuum degeneracy in four-dimensional string theories

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1988-01-01

    I present results obtained in collaboration with A. Font, L. Ibanez and F. Quevedo using a method that links explicit string constructions with the techniques of supergravity field theories. We make use of the fact that the supersymmetric vacua of the field theory limit of d=4 N=1 superstring theories are all degenerate. Given a particular string theory we can then test for new 'nearby' string theories by an examination of flat directions in the scalar potential of the underlying field theory. As input from string theory we need the knowledge of the Yukawa couplings (i.e., the superpotential) for any number of fields. In the language of conformal field theory, this amounts to a search for exactly marginal operators and the classification of multicritical points. (orig./HSI)

  7. Stringy Jacobi fields in Morse theory

    International Nuclear Information System (INIS)

    Cho, Yong Seung; Hong, Soon-Tae

    2007-01-01

    We consider the variation of the surface spanned by closed strings in a spacetime manifold. Using the Nambu-Goto string action, we induce the geodesic surface equation and the geodesic surface deviation equation which yields a Jacobi field, and we define the index form of a geodesic surface as in the case of point particles to discuss conjugate strings on the geodesic surface

  8. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  9. String cosmology in Bianchi type-VI 0 dusty Universe with ...

    Indian Academy of Sciences (India)

    In this paper, the effect of electromagnetic field in the string Bianchi type-VI0 Universe is investigated. Einstein's field equations have been solved exactly with suitable physical assumptions for two types of strings: (i) massive strings and (ii) Nambu strings. It is found that when the Universe is dominated by massive strings, ...

  10. Connecting solutions in open string field theory with singular gauge transformations

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore; Maccaferri, C.

    2012-01-01

    Roč. 2012, č. 4 (2012), 1-40 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : tachyon condensation * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP04%282012%29107

  11. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  12. Transplanckian censorship and global cosmic strings

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-01-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM p /f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e Δa/M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  13. Transplanckian censorship and global cosmic strings

    Science.gov (United States)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  14. Transplanckian censorship and global cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia); Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts,Amherst, MA 01003 (United States)

    2017-04-21

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM{sub p}/f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e{sup Δa/M{sub p}}. For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  15. Racetrack inflation and cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-05-15

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  16. Racetrack inflation and cosmic strings

    International Nuclear Information System (INIS)

    Brax, P.; Postma, M.

    2008-05-01

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  17. Contact interactions of closed superstrings

    International Nuclear Information System (INIS)

    Greensite, J.

    1987-07-01

    It is shown that closed light-cone superstring field theory, which is presently formulated with only cubic interaction terms, does not have a stable ground state, and that the global supersymmetry algebra is violated at second order in the coupling. Local contact interactions, of quartic (and possibly higher) order in the string fields, must be added to the light-cone Hamiltonian to restore supersymmetry and vacuum stability. (orig.)

  18. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  19. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  20. Wilson-Polyakov loops for critical strings and superstrings at finite temperature

    International Nuclear Information System (INIS)

    Green, M.B.

    1992-01-01

    An open string with end-points fixed at spatial separation L is a string theory analogue of the static quark-antiquark system in quenched QCD. Folowing a review of the quantum mechanics of this system in critical bosonic string theory the partition function at finite β (the inverse temperature) for fixed end-point open strings is discussed. This is related by a conformal transformation ('world-sheet duality') to the correlation function of two closed strings fixed at distinct spatial points (a string theory analogue of two Wilson-Polyakov loops). Temperature duality (β → β' = 4π 2 /β) relates this correlation function, in turn, to the finite-temperature Green function for a closed strong propagating between initial and final states that are at distinct (euclidean) space-time points. In addition, spatial duality relates the fixed end-point open string to the familiar open string with free end-points. A generalization to fixed end-points superstrings is suggested, in which the superalgebra may be viewed as the spatial dual of the usual open-string superalgebra. At zero temperature world-sheet duality relates the partition function of supersymmetric fixed end-point open strings to the correlation function of point-like closed-string states. These couple to combinations of the scalar and pseudoscalar states of a type-2b superstring superfield. At finite temperature supersymmetry is broken and this correlation function involves the propagation of non-supersymmetric states with non-zero winding numbers (which formally include a tachyon at temperatures above the Hagedorn transition). Temperature duality again relates the partition function to the finite-temperature Green function describing the propagator for point-like closed-string states of the dual theory, in which supersymmetry is broken. The singularity that arises in the critical bosonic theory as L is reduced below L = 2 π√α' is absent in the superstring and the static potential is well defined for all

  1. Bosonic Liouville string theory in conformal gauge

    International Nuclear Information System (INIS)

    Schnittger, J.

    1990-01-01

    The object of the present thesis are the so-called Liouville theories as possibilities for the consistent formulation of string theories beyond the critical dimension. First we discuss the general framework for the quantum theory and explain common properties and differences of different approaches. These considerations lead us to the main demand of the thesis, the formulation of a unified quantum theory for open and closed strings. Of central importance is thereby the construction of the field operator for the Weyl degree of freedom on a suitably defined Hilbert space, so that also in the quantum theory locality and Hermiticity of the Energy-Momentum tensor are respected. In the study of the allowed ground states of the Hilbert space an interesting particularity in comparison to the structure of usual conformal field theories comes across, the importance and consequences of which we intensively study. In the last section we enter the consistence of the theory on the 1-loop level and come then to the final consideration, where we indicate some still open questions of the Liouville theory. (orig.) [de

  2. Subsubleading soft theorems of gravitons and dilatons in the bosonic string

    International Nuclear Information System (INIS)

    Vecchia, Paolo Di; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft state is a graviton or a dilaton, the full string amplitude can be expressed as a soft theorem through subsubleading order. It turns out that there are string corrections to the field theoretical limit in the case of a soft graviton, while for a soft dilaton the string corrections vanish. We then show that the new soft theorems, including the string corrections, can be simply obtained from the exchange diagrams where the soft state is attached to the other external states through the three-point string vertex of three massless states. In the soft-limit, the propagator of the exchanged state is divergent, and at tree-level these are the only divergent contributions to the full amplitude. However, they do not form a gauge invariant subset and must be supplemented with extra non-singular terms. The requirement of gauge invariance then fixes the complete amplitude through subsubleading order in the soft expansion, reproducing exactly what one gets from the explicit calculation in string theory. From this it is seen that the string corrections at subsubleading order arise as a consequence of the three-point amplitude having string corrections in the bosonic string. When specialized to a soft dilaton, it remarkably turns out that the string corrections vanish and that the non-singular piece of the subsubleading term of the dilaton soft theorem is the generator of space-time special conformal transformation.

  3. String-Math 2015

    CERN Document Server

    2015-01-01

    Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...

  4. High-energy string-brane scattering: leading eikonal and beyond

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2010-01-01

    We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation.

  5. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  6. String loop effect on the BRST charge

    International Nuclear Information System (INIS)

    Das, A.; Nishino, H.

    1987-07-01

    An effective BRST charge Q BRST which incorporates the string one-loop corrections is presented for the closed bosonic string in an arbitrary background. The effective σ-model action which leads to such a Q BRST is obtained and some consequences are discussed. (author). 14 refs, 1 fig

  7. Open string theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Bershadsky, M.; Kutasov, D.

    1992-01-01

    We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)

  8. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  9. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  10. Hermiticity and CPT in string theory

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  11. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    Cosmic strings as source of gravitational field in general relativity was discussed by ... tensor theory of gravitation and constructed an analog of Einstein field ... As string concept is useful before the particle creation and can explain galaxy for-.

  12. Exotic configurations for gauge theory strings

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1987-01-01

    This paper discusses a class of string configurations occuring in nonabelian gauge theories, which are such that a component of the charged scalar field responsible for the string has a nonvanishing expectation value in the core of the string. A systematic procedure is given for setting up the ansatz for such configurations. (orig.)

  13. Interactions for winding strings in Misner space

    International Nuclear Information System (INIS)

    Hikida, Y.

    2006-06-01

    We compute correlation functions of closed strings in Misner space, a big crunch big bang universe. We develop a general method for correlators with twist fields, which are relevant for the investigation on the condensation of winding tachyon. We propose to compute the correlation functions by performing an analytic continuation of the results in C/Z N Euclidean orbifold. In particular, we obtain a finite result for a general four point function of twist fields, which might be important for the interpretation as the quartic term of the tachyon potential. Three point functions are read off through the factorization, which are consistent with the known results. (Orig.)

  14. Strings, vortex rings, and modes of instability

    Directory of Open Access Journals (Sweden)

    Steven S. Gubser

    2015-03-01

    Full Text Available We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.

  15. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    International Nuclear Information System (INIS)

    Carlip, S

    2006-01-01

    -but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and Liouville theory and about the Green-Schwarz superstring

  16. String loop divergences and effective lagrangians

    International Nuclear Information System (INIS)

    Fischler, W.; Klebanov, I.; Susskind, L.

    1988-01-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)

  17. Predictions for PP-wave string amplitudes from perturbative SYM

    International Nuclear Information System (INIS)

    Gursoy, Umut

    2003-01-01

    The role of general two-impurity multi-trace operators in the BMN correspondence is explored. Surprisingly, the anomalous dimensions of all two-impurity multi-trace BMN operators to order g 2 2 λ' are completely determined in terms of single-trace anomalous dimensions. This is due to suppression of connected field theory diagrams in the BMN limit and this fact has important implications for some string theory processes on the PP-wave background. We also make gauge theory predictions for the matrix elements of the light-cone string field theory Hamiltonian in the two string-two string and one string-three string sectors. (author)

  18. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  19. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  20. Covariant N-string amplitude

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.

    1986-11-01

    The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)

  1. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  2. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  3. Closed-String Tachyons and the Hagedorn Transition in AdS Space

    CERN Document Server

    Barbón, José L F

    2002-01-01

    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...

  4. Dark matter cosmic string in the gravitational field of a black hole

    Science.gov (United States)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  5. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    Science.gov (United States)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  6. One-loop Pfaffians and large-field inflation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian, E-mail: fabian.ruehle@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Wieck, Clemens, E-mail: clemens.wieck@uam.es [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2017-06-10

    We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  7. E(lementary) Strings in Six-Dimensional Heterotic F-Theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  8. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  9. STRING 2008 hold at CERN -- the largest and most important conference on String Theory with the mostly active researchers in the field. The main purpose of the conference is to review the latest developments for experts.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    STRING 2008 hold at CERN -- the largest and most important conference on String Theory with the mostly active researchers in the field. The main purpose of the conference is to review the latest developments for experts.

  10. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-10-21

    , it could easily be missed-but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and

  11. Research in string theory and two dimensional conformal field theory: Progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Friedan, D.H.; Martinec, E.J.; Shenker, S.H.

    1988-12-01

    The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics

  12. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  13. Tracing the string: BMN correspondence at finite J2/N

    International Nuclear Information System (INIS)

    Pearson, John; Vaman, Diana; Verlinde, Herman; Volovich, Anastasia; Spradlin, Marcus

    2003-01-01

    Employing the string bit formalism of hep-th/0209215, we identify the basis transformation that relates BMN operators in N=4 gauge theory to string states in the dual string field theory at finite g 2 =J 2 /N. In this basis, the supercharge truncates at linear order in g 2 , and the mixing amplitude between 1 and 2-string states precisely matches with the (corrected) answer of hep-th/0206073 for the 3-string amplitude in light-cone string field theory. Supersymmetry then predicts the order g 2 2 contact term in the string bit Hamiltonian. The resulting leading order mass renormalization of string states agrees with the recently computed shift in conformal dimension of BMN operators in the gauge theory. (author)

  14. Tensor modes on the string theory landscape

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2012-06-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  15. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander

    2012-06-15

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  16. Spinning and rotating strings for N=1 SYM theory and brane constructions

    International Nuclear Information System (INIS)

    Schvellinger, Martin

    2004-01-01

    We obtain spinning and rotating closed string solutions in AdS 5 x T 1,1 background, and show how these solutions can be mapped onto rotating closed strings embedded in configurations of intersecting branes in type IIA string theory. Then, we discuss spinning closed string solutions in the UV limit of the Klebanov-Tseytlin background, and also properties of classical solutions in the related intersecting brane constructions in the UV limit. We comment on extensions of this analysis to the deformed conifold background, and in the corresponding intersecting brane construction, as well as its relation to the deep IR limit of the Klebanov-Strassler solution. We briefly discuss on the relation between type IIA brane constructions and their related M-theory descriptions, and how solitonic solutions are related in both descriptions. (author)

  17. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  18. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  19. The dual formulation of cosmic strings and vortices

    CERN Document Server

    Lee, Ki-Myeong

    1993-01-01

    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.

  20. Quantum string test of nonconformal holography

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Lin, Xinyi; Medina-Rincon, Daniel; Zarembo, Konstantin [Nordita, Stockholm University and KTH Royal Institute of Technology,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Department of Physics and Astronomy, Uppsala University,SE-751 08 Uppsala (Sweden)

    2017-04-18

    We compute Lüscher corrections to the effective string tension in the Pilch-Warner background, holographically dual to N=2{sup ∗} supersymmetric Yang-Mills theory. The same quantity can be calculated directly from field theory by solving the localization matrix model at large-N. We find complete agreement between the field-theory predictions and explicit string-theory calculation at strong coupling.

  1. The issue of supersymmetry breaking in strings

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-12-01

    We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach

  2. Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

    Science.gov (United States)

    Hořava, Petr

    1996-12-01

    Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.

  3. Final Report: "Strings 2014"

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  4. Modular invariant partition functions for toroidally compactified bosonic string

    International Nuclear Information System (INIS)

    Ardalan, F.; Arfaei, H.

    1988-06-01

    We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs

  5. Global and stochastic analysis approach to bosonic strings and associated quantum fields

    Energy Technology Data Exchange (ETDEWEB)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 less than or equal to d less than or equal to 13, having as world sheet compact Riemann surfaces ..lambda.. of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on ..lambda.. and a measure on Teichmueller space.

  6. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    Science.gov (United States)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  7. A new approach to strings and superstrings

    International Nuclear Information System (INIS)

    Sparano, G.

    1988-01-01

    The subject of this thesis is a new, more general, action principle for strings, superstrings, and extended objects in any number of dimensions. The origin and motivations for this approach can be found in the context of the study of the symmetries of string theories and, more specifically, are related to the application of K.S.K. (Kirillov, Souriau, Kostant) construction to strings. The main results we find are: (A) A classification of string theories analogous to the classification of relativistic point particles as massive, massless and tachionic with or without spin. Nambu-Goto string and Schild null string emerge as special cases of a more general classification of strings. (B) A new method to introduce spin in strings by using a Wess-Zumino term in the action. (C) Several results are obtained through the study of the configuration space which shows a rich topological structure: for the Nambu-Goto string in any number of dimensions it is found the existence of theta states analogous to the theta-vacua of nonabelian gauge theories. For the closed Schild Null string, in four dimensions, this analysis shows Z2 solitons and the possibility of quantizing the system so that the states are spinorial (have half odd integral spin) even though the Lagrangian consists only of bosonic variables. (D) Unlike Nambu-Goto string, the quantization of Schild Null string is consistent in any number of space-time dimensions. Besides these concrete results, the formalism we introduce will hopefully give also new insights in the problem of the hidden symmetries of the string

  8. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  9. Gauge and general covariance of string interactions

    International Nuclear Information System (INIS)

    Das, S.R.

    1986-01-01

    All fundamental interactions at observable energies seem to arise out of local symmetries - gauge invariances and general coordinate invariance. In usual field theories of point particles these invariances are postulated a priori: the idea is to deduce everything else from the symmetry group and the representation content of the matter fields. In string theories, the situation is rather different. Here the basic principle is reparametrization invariance on the world sheet swept out by the string. The authors consider the simplest string models-those defined on flat Minkowski space-time. The transverse oscillations of the string lead to an infinite tower of modes which may be thought of as the ''particles'' constituting the string. The interacting string theory is defined, in the first quantized formulation, by specifying the interaction of these modes with the string. These interaction vertices must satisfy a basic requirement: when any dual amplitude is factorized only physical states (i.e. those satisfying the Virasoro conditions) must occur as on-mass-shell intermediate states. This means that the vertices respect the reparametrization invariance of the world sheet, since it is this symmetry which eliminates ghost states by virtue of Virasoro conditions

  10. Gauge invariant actions for string models

    International Nuclear Information System (INIS)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs

  11. Quantum field theory on higher-genus Riemann surfaces, 2

    International Nuclear Information System (INIS)

    Kubo, Reijiro; Ojima, Shuichi.

    1990-08-01

    Quantum field theory for closed bosonic string systems is formulated on arbitrary higher-genus Riemann surfaces in global operator formalism. Canonical commutation relations between bosonic string field X μ and their conjugate momenta P ν are derived in the framework of conventional quantum field theory. Problems arising in quantizing bosonic systems are considered in detail. Applying the method exploited in the preceding paper we calculate Ward-Takahashi identities. (author)

  12. An introduction to string theory

    OpenAIRE

    West, Peter C

    1989-01-01

    These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential. A number of appe...

  13. Straight spinning cosmic strings in Brans-Dicke gravity

    Science.gov (United States)

    Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.

    2018-03-01

    An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.

  14. Open spinning strings

    International Nuclear Information System (INIS)

    Stefanski, B. Jr.

    2004-01-01

    We find classical open string solutions in the AdS 5 x S 5 /Z 2 orientifold with angular momenta along the five-sphere. The energy of these solutions has an expansion in integral powers of λ with sigma-model corrections suppressed by inverse powers of J - the total angular momentum. This gives a prediction for the exact anomalous dimensions of operators in the large N limit of an N = 2 Sp, Super-Yang-Mills theory with matter. We also find a simple map between open and closed string solutions. This gives a prediction for an all-loop planar relationship between the anomalous dimensions of single-trace and two-quark operators in the dual gauge theory. (author)

  15. Interacting-string picture of the fermionic string

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1986-01-01

    This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism

  16. Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A.; Saharyan, N.A. [Yerevan State University, Department of Physics, Yerevan (Armenia); Manukyan, V.F. [Gyumri State Pedagogical Institute, Department of Physics and Mathematics, Gyumri (Armenia)

    2017-07-15

    The electromagnetic field correlators are evaluated around a cosmic string in background of (D + 1)-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions D > 3, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the post-inflationary era these strings will be surrounded by large-scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models. (orig.)

  17. Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Larsen, A.L.

    2003-01-01

    Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We then consi......Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We...... then consider open string boundary conditions corresponding to a certain field-dependent gluing condition. This allows us to consider open strings with constant energy and angular momentum. Classically, these open strings naturally generalize the open strings in flat Minkowski space. For rigidly rotating open...

  18. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 << d << 13, having as world sheet compact Riemann surfaces Λ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on Λ and a measure on Teichmueller space. (orig.)

  19. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    Energy Technology Data Exchange (ETDEWEB)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 << d << 13, having as world sheet compact Riemann surfaces /Lambda/ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on /Lambda/ and a measure on Teichmueller space. (orig.).

  20. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 ≤ d ≤ 13, having as world sheet compact Riemann surfaces Λ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on Λ and a measure on Teichmueller space. (orig.)

  1. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    Science.gov (United States)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is

  2. An equivalence between momentum and charge in string theory

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.; Steif, A.R.

    1992-01-01

    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light

  3. Casimir energy for twisted piecewise uniform bosonic strings

    International Nuclear Information System (INIS)

    Lu, J.; Huang, B.; Shanghai, Teachers Univ.

    1998-01-01

    The Casimir energy for the transverse oscillations of piecewise uniform bosonic strings with either untwisted or twisted continuous conditions is discussed. After calculating the analytic values of zeros of the dispersion function under certain conditions, is obtained the Casimir energy for both open and closed bosonic strings composed of two or three segments

  4. Differential formulation in string theories

    International Nuclear Information System (INIS)

    Guzzo, M.M.

    1987-01-01

    The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt

  5. Developing the covariant Batalin-Vilkovisky approach to string theory

    International Nuclear Information System (INIS)

    Hata, H.; Zwiebach, B.

    1994-01-01

    In this work the authors investigate the variation of the string field action under changes of the string field vertices giving rise to different decompositions of the moduli spaces of Riemann surfaces. The authors establish that any such change in the string action arises from a field transformation canonical with respect to the Batalin-Vilkovisky (BV) antibracket and find the explicit form of the generator of the infinitesimal transformations. Two theories using different decompositions of moduli space are shown to yield the same gauge-fixed action upon use of different gauge-fixing conditions. The authors also elaborate on recent work on the covariant BV formalism, and emphasize the necessity of a measure in the space of two-dimensional field theories in order to extend a recent analysis of background independence to quantum string field theory. 22 refs., 2 figs

  6. The type IIB string axiverse and its low-energy phenomenology

    International Nuclear Information System (INIS)

    Cicoli, Michele; Goodsell, Mark D.; Ringwald, Andreas

    2012-06-01

    We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

  7. The type IIB string axiverse and its low-energy phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); INFN, Sezione di Trieste (Italy); Goodsell, Mark D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-06-15

    We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

  8. Instanton strings and hyper-Kaehler geometry

    International Nuclear Information System (INIS)

    Dijkgraaf, Robbert

    1999-01-01

    We discuss two-dimensional sigma models on moduli spaces of instantons on K3 surfaces. These N = (4, 4) superconformal field theories describe the near-horizon dynamics of the D1-D5-brane system and are dual to string theory on AdS 3 . We derive a precise map relating the moduli of the K3 type 1113 string compactification to the moduli of these conformal field theories and the corresponding classical hyper-Kahler geometry. We conclude that in the absence of background gauge fields, the metric on the instanton moduli spaces degenerates exactly to the orbifold symmetric product of K3. Turning on a self-dual NS B-field deforms this symmetric product to a manifold that is diffeomorphic to the Hilbert scheme. We also comment on the mathematical applications of string duality to the global issues of deformations of hyper-Kaehler manifolds

  9. String theory of Calabi-Yau compactifications

    International Nuclear Information System (INIS)

    Luetken, C.A.

    1989-01-01

    The conformal field theory description of Calabi-Yau compactifications of the heterotic superstring from 10 to 4 dimensions is outlined. The basic ideas of ordinary (bosonic) conformal field theory are explained before describing the exactly solvable N=2 superconformal minimal models which are needed in the tensor construction of certain particularly simple string vacua. Using a simple sigma-model construction of algebraic varieties and drawing on insight gained from the Landau-Ginzburg description of critical phenomena, it is explained how the critical behaviour of these 2-dimensional solvable quantum field theories with complex supersymmetry may be regarded as string compactification on a Calabi-Yau background. The virtue of this is to provide a tool for computing exact (tree level) results for strings in these highly non-trivial vacua, including all the Yukawa couplings needed in the construction of the low-energy effective field theory. (orig.)

  10. Multiple-Trace Operators and Non-Local String Theories

    International Nuclear Information System (INIS)

    Silverstein, Eva M.

    2001-01-01

    We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal

  11. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  12. Dynamical evolution of cosmic strings

    International Nuclear Information System (INIS)

    Bouchet, F.R.

    1988-01-01

    The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t -2 . This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok

  13. First quantized noncritical relativistic Polyakov string

    International Nuclear Information System (INIS)

    Jaskolski, Z.; Meissner, K.A.

    1994-01-01

    The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig

  14. Probing the string winding sector

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo; Mayo, Martín [G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Instituto Balseiro, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Nuñez, Carmen [Instituto de Astronomía y Física del Espacio (CONICET-UBA),C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2017-03-17

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O(n,n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  15. Open string T-duality in double space

    International Nuclear Information System (INIS)

    Sazdovic, B.

    2017-01-01

    The role of double space is essential in the new interpretation of T-duality and consequently in an attempt to construct M-theory. The case of the open string is missing in such an approach because until now there has been no appropriate formulation of open string T-duality. In the previous paper (Sazdovic, From geometry to non-geometry via T-duality, arXiv:1606.01938, 2017), we showed how to introduce vector gauge fields A"N_a and A"D_i at the end-points of an open string in order to enable open string invariance under local gauge transformations of the Kalb-Ramond field and its T-dual ''restricted general coordinate transformations''. We demonstrated that gauge fields A"N_a and A"D_i are T-dual to each other. In the present article we prove that all above results can be interpreted as coordinate permutations in double space. (orig.)

  16. Open string T-duality in double space

    Energy Technology Data Exchange (ETDEWEB)

    Sazdovic, B. [University of Belgrade, Institute of Physics, Belgrade (Serbia)

    2017-09-15

    The role of double space is essential in the new interpretation of T-duality and consequently in an attempt to construct M-theory. The case of the open string is missing in such an approach because until now there has been no appropriate formulation of open string T-duality. In the previous paper (Sazdovic, From geometry to non-geometry via T-duality, arXiv:1606.01938, 2017), we showed how to introduce vector gauge fields A{sup N}{sub a} and A{sup D}{sub i} at the end-points of an open string in order to enable open string invariance under local gauge transformations of the Kalb-Ramond field and its T-dual ''restricted general coordinate transformations''. We demonstrated that gauge fields A{sup N}{sub a} and A{sup D}{sub i} are T-dual to each other. In the present article we prove that all above results can be interpreted as coordinate permutations in double space. (orig.)

  17. Cosmic strings in an expanding spacetime

    International Nuclear Information System (INIS)

    Stein-Schabes, J.A.; Burd, A.B.

    1987-04-01

    We investigate the stability of a static, infinitely long and straight vacuum string solution under inhomogeneous axisymmetric time-dependent perturbations. We find it to be perturbatively stable. We further extend our work by finding a string solutions in an expanding Universe. The back reaction of the string on the gravitational field has been ignored. The background is assumed to be a Friedman-Robertson-Walker (FRW) cosmology. By numerically integrating the field equations in a radiation and matter dominated models, we discover oscillatory solutions. The possible damping of these oscillations is discussed. For late times the solution becomes identical to the static one studied in the first part of the paper. 19 refs., 8 figs

  18. Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam (Germany)

    2016-12-06

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.

  19. Soft behavior of a closed massless state in superstring and universality of the soft behavior of the dilaton

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through...... the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string....... Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory....

  20. Effects of the image universe on cosmic strings

    International Nuclear Information System (INIS)

    Vachaspati, T.; Rees, M.

    1990-01-01

    We investigate some of the cosmological effects of the gravitational attraction of straight cosmic strings that arises due to the conical geometry of the string. Although this effect is second order in Newton's gravitational constant, its effects in the early universe can be significant. We find that the image masses responsible for this second order attraction effectively 'fill up' the volume deficit due to the conical geometry of a static straight string. A moving string also experiences a frictional force due to the images and this provides a mechanism for energy dissipation. The energy loss due to the image effect is comparable to the energy loss in gravitational radiation for strings on the size of the horizon scale but is probably not important when compared to the energy loss due to loop production. The image effect can also become important when a string comes close to a black hole. Our analysis of these effects is newtonian. (orig.)

  1. Two-loop string theory on null compactifications

    International Nuclear Information System (INIS)

    Cove, Henry C.D.; Szabo, Richard J.

    2006-01-01

    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed

  2. Numerical simulation of bosonic-superconducting-string interactions

    International Nuclear Information System (INIS)

    Laguna, P.; Matzner, R.A.

    1990-01-01

    Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies

  3. Point-like structure and off-shell dual strings

    International Nuclear Information System (INIS)

    Green, M.B.

    1977-01-01

    It is argued that in a consistent off-shell dual formalism the amplitude for the emission of a scalar off-shell state by a string consists of two components. One of these contains the particle poles in the off-shell leg and the other is intimately related to the insertion of a point-like energy density on the string. As a result, the amplitude for a string to emit a zero momentum scalar state into the vacuum (which may be relevant for spontaneous symmetry breaking) is described by the amplitude for a finite fraction of the energy in the string to collapse to a spatial point at some time (this fraction and its space-time position being integrated over). The off-shell amplitudes have an elegant formulation in terms of a set of 'confined modes' which can be assigned quark flavour quantum numbers to reproduce the Chan-Paton scheme. It is suggested that the dual model be modified by allowing for the coupling of scalar closed strings to the vacuum and the resulting effect on the space-time structure of dual Green functions is described. It is found that even the emission of a single zero-momentum closed string modifies the elastic amplitude in a significant manner, leading to a power-behaved fixed-angle cross section in contrast to the usual exponential decrease of the dual model. This arises from point-like scattering between energy densities accumulating in the colliding strings. The relationship between the fixed angle and Regge limits is discussed. The fixed angle behaviour is found to be the asymptotic limit in momentum transfer of a fixed pole that arises in the Regge limit. (Auth.)

  4. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  5. A non-supersymmetric open-string theory and S-duality

    International Nuclear Information System (INIS)

    Bergman, O.; Gaberdiel, M.R.

    1997-01-01

    A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)

  6. Enhanced gauge symmetry and winding modes in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, G. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Graña, M. [Institut de Physique Théorique, CEA/ Saclay,91191 Gif-sur-Yvette Cedex (France); Iguri, S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Mayo, M. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Nuñez, C. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, J.A. [Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2016-03-15

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1)×U(1) symmetry to SU(2)×SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with ((O(d+3,d+3))/(O(d+3)×O(d+3))) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  7. Lectures on string theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs

  8. sigma model approach to the heterotic string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1985-09-01

    Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in α', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs

  9. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  10. String phenomenology

    CERN Document Server

    Ibáñez, Luis E

    2015-01-01

    This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.

  11. EFFECTIVE ACTIONS FOR HETEROTIC STRING THEORY

    NARCIS (Netherlands)

    SUELMANN, H

    Heterotic String Theory is an attempt to construct a description of nature that is more satisfying than the Standard Model. A major problem is that it is very difficult to do explicit calculations in string theory. Therefore, it is useful to construct a 'normal' field theory that approximates HST.

  12. Braiding knots with topological strings

    International Nuclear Information System (INIS)

    Gu, Jie

    2015-08-01

    For an arbitrary knot in a three-sphere, the Ooguri-Vafa conjecture associates to it a unique stack of branes in type A topological string on the resolved conifold, and relates the colored HOMFLY invariants of the knot to the free energies on the branes. For torus knots, we use a modified version of the topological recursion developed by Eynard and Orantin to compute the free energies on the branes from the Aganagic-Vafa spectral curves of the branes, and find they are consistent with the known colored HOMFLY knot invariants a la the Ooguri-Vafa conjecture. In addition our modified topological recursion can reproduce the correct closed string free energies, which encode the information of the background geometry. We conjecture the modified topological recursion is applicable for branes associated to hyperbolic knots as well, encouraged by the observation that the modified topological recursion yields the correct planar closed string free energy from the Aganagic-Vafa spectral curves of hyperbolic knots. This has implications for the knot theory concerning distinguishing mutant knots with colored HOMFLY invariants. Furthermore, for hyperbolic knots, we present methods to compute colored HOMFLY invariants in nonsymmetric representations of U(N). The key step in this computation is computing quantum 6j-symbols in the quantum group U q (sl N ).

  13. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  14. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    International Nuclear Information System (INIS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-01-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  15. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  16. Unified string theories

    International Nuclear Information System (INIS)

    Gross, D.J.

    1985-01-01

    String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed

  17. Inflation and cosmic strings in models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Matheson, A.M.; Brandenberger, R.H.

    1989-01-01

    We derive the effective action for the composite field which in dynamical symmetry breaking plays the role of the Higgs field. We show that this effective action does not give rise to inflation. It is, however, possible to obtain topological defects such as cosmic strings. There will be fermionic zero modes trapped on the strings, and the strings will therefore be superconducting in a generalized sense. (orig.)

  18. Real topological string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)

    2017-03-15

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.

  19. Multiloop world-line Green functions from string theory

    International Nuclear Information System (INIS)

    Roland, K.; Sato, H.T.

    1996-01-01

    We show how the multiloop bosonic Green function of closed string theory reduces to the world-line Green function as defined by Schmidt and Schubert in the limit where the string world-sheet degenerates into a Φ 3 particle diagram. To obtain this correspondence we have to make an appropriate choice of the local coordinates defined on the degenerate string world sheet. We also present a set of simple rules that specify, in the explicit setting of the Schottky parametrization, which is the corner of moduli space corresponding to a given multiloop Φ 3 diagram. (orig.)

  20. Dissecting CFT Correlators and String Amplitudes. Conformal Blocks and On-Shell Recursion for General Tensor Fields

    International Nuclear Information System (INIS)

    Hansen, Tobias

    2015-07-01

    This thesis covers two main topics: the tensorial structure of quantum field theory correlators in general spacetime dimensions and a method for computing string theory scattering amplitudes directly in target space. In the first part tensor structures in generic bosonic CFT correlators and scattering amplitudes are studied. To this end arbitrary irreducible tensor representations of SO(d) (traceless mixed-symmetry tensors) are encoded in group invariant polynomials, by contracting with sets of commuting and anticommuting polarization vectors which implement the index symmetries of the tensors. The tensor structures appearing in CFT d correlators can then be inferred by studying these polynomials in a d + 2 dimensional embedding space. It is shown with an example how these correlators can be used to compute general conformal blocks describing the exchange of mixed-symmetry tensors in four-point functions, which are crucial for advancing the conformal bootstrap program to correlators of operators with spin. Bosonic string theory lends itself as an ideal example for applying the same methods to scattering amplitudes, due to its particle spectrum of arbitrary mixed-symmetry tensors. This allows in principle the definition of on-shell recursion relations for string theory amplitudes. A further chapter introduces a different target space definition of string scattering amplitudes. As in the case of on-shell recursion relations, the amplitudes are expressed in terms of their residues via BCFW shifts. The new idea here is that the residues are determined by use of the monodromy relations for open string theory, avoiding the infinite sums over the spectrum arising in on-shell recursion relations. Several checks of the method are presented, including a derivation of the Koba-Nielsen amplitude in the bosonic string. It is argued that this method provides a target space definition of the complete S-matrix of string theory at tree-level in a at background in terms of a small

  1. Thermodynamical string fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)

    2017-01-31

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  2. New Z3 strings

    Directory of Open Access Journals (Sweden)

    Marco A.C. Kneipp

    2016-12-01

    Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.

  3. Dynamics of Strings in Noncommutative Gauge Theory

    International Nuclear Information System (INIS)

    Gross, David J.; Nekrasov, Nikia A.

    2000-01-01

    We continue our study of solitons in noncommutative gauge theories and present an extremely simple BPS solution of N=4 U(1) noncommutative gauge theory in 4 dimensions, which describes N infinite D1 strings that pierce a D3 brane at various points, in the presence of a background B-field in the Seiberg-Witten limit. We call this solution the N-fluxon. For N=1 we calculate the complete spectrum of small fluctuations about the fluxon and find three kinds of modes: the fluctuations of the superstring in 10 dimensions arising from fundamental strings attached to the D1 strings, the ordinary particles of the gauge theory in 4 dimensions and a set of states with discrete spectrum, localized at the intersection point - corresponding to fundamental strings stretched between the D1 string and the D3 brane. We discuss the fluctuations about the N-fluxon as well and derive explicit expressions for the amplitudes of interactions between these various modes. We show that translations in noncommutative gauge theories are equivalent to gauge transformations (plus a constant shift of the gauge field) and discuss the implications for the translational zeromodes of our solitons. We also find the dyonic versions of N-fluxon, as well as of our previous string-monopole solution. (author)

  4. Heterotic strings on homogeneous spaces

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  6. Topological Casimir effect in compactified cosmic string spacetime

    International Nuclear Information System (INIS)

    De Mello, E R Bezerra; Saharian, A A

    2012-01-01

    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massive scalar field with general curvature coupling in the generalized cosmic string geometry with a compact dimension along its axis. The boundary condition along the compactified dimension is taken in general form with an arbitrary phase. The vacuum expectation values are decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. The asymptotic behavior of the vacuum expectation values of the field squared, energy density and stresses is investigated near the string and at large distances. We show that the nontrivial topology due to the cosmic string enhances the vacuum polarization effects induced by the compactness of spatial dimension for both the field squared and the vacuum energy density. A simple formula is given for the part of the integrated topological Casimir energy induced by the planar angle deficit. The results are generalized for a charged scalar field in the presence of a constant gauge field. In this case, the vacuum expectation values are periodic functions of the component of the vector potential along the compact dimension. (paper)

  7. Observational tests of open strings in braneworld scenarios

    International Nuclear Information System (INIS)

    Freese, Katherine; Lewis, Matthew J.; Schaar, Jan Pieter van der

    2003-01-01

    We consider some consequences of describing the gauge and matter degrees of freedom in our universe by open strings, as suggested by the braneworld scenario. We focus on changes in causal structure described by the open string metric and investigate their observational implications. The causal structure is described not by the usual metric g μν , but instead by the open string metric, that incorporates the electromagnetic background and the NS-NS two-form, G μν = g μν -(2 π α') 2 (F 2 ) μν. The speed of light on the brane is now slower when propagating along directions transverse to electromagnetic fields or NS-NS two-forms, so that Lorentz invariance is explicitly broken. We describe experiments designed to detect the predicted variations in the open string causal structure on the brane: interferometric laboratory based experiments, experiments exploiting astrophysical electromagnetic fields, and experiments that rely on modification to special relativity. We show that current technology cannot probe beyond open string lengths of 10 -13 cm, corresponding to MeV string scales. We also point out that in a braneworld scenario, constraints on large scale electromagnetic fields together with a modest phenomenological bound on the NS-NS two-form naturally lead to a bound on the scale of canonical noncommutativity that is two orders of magnitude below the string length. We show that theoretical constraints on the NS-NS two-form bound the scale of noncommutativity to be well below the Planck length, (vertical barθvertical bar max )(1/2) -35 cm x (TeV/stringscale) 2 . (author)

  8. Quantum geometry of bosonic strings - revisited

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  9. 1-Colored Archetypal Permutations and Strings of Degree n

    Directory of Open Access Journals (Sweden)

    Gheorghe Eduard Tara

    2012-10-01

    Full Text Available New notions related to permutations are introduced here. We present the string of a 1-colored permutation as a closed planar curve, the fundamental 1-colored permutation as an equivalence class related to the equivalence in strings of the 1-colored permutations. We give formulas for the number of the 1-colored archetypal permutations of degree n. We establish an algorithm to identify the 1- colored archetypal permutations of degree n and we present the atlas of the 1-colored archetypal strings of degree n, n ≤ 7, based on this algorithm.

  10. Topological strings from quantum mechanics

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

  11. Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking

    International Nuclear Information System (INIS)

    Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2010-01-01

    A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a zero-tension cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.

  12. Global symmetries of open strings in an electromagnetic background

    International Nuclear Information System (INIS)

    Ferrer, E.J.; de la Incera, V.

    1994-01-01

    The global symmetries of open bosonic strings in an electromagnetic background are investigated. The Poincare subalgebra and the mass of the open charged string are derived. These results are useful for computing the background electric field dependence of the one-loop free energy and Hagedorn temperature of a neutral string gas

  13. String cosmology in Bianchi type-VI0 dusty Universe with ...

    Indian Academy of Sciences (India)

    -VI0 Universe is investigated. Einstein's field equations have been solved exactly with suitable physical assump- tions for two types of strings: (i) massive strings and (ii) Nambu strings. It is found that when the. Universe is dominated by massive ...

  14. Casimir energy for a piecewise uniform string

    International Nuclear Information System (INIS)

    Brevik, I.; Nielsen, H.B.

    1989-07-01

    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts I and II, endowed in general with different tensions and mass densities, although adjusted in such a way that the velocity of sound always equals the velocity of light. The dispersion equation is worked out under general conditions, and the frequency spectrum is determined in special cases. When the ratio L II /L I between the string lengths is an integer, it is in principle possible to determine the frequency spectrum through solving algebraic equations of increasingly high degree. The Casimir energy relative to the uniform string is in general found to be negative, although in the special case L I =L II the energy is equal to zero. Delicate points in the regularization procedure are discussed; they point toward an anomaly in the theory. (orig.)

  15. On the interplay between string theory and field theory

    International Nuclear Information System (INIS)

    Brunner, I.

    1998-01-01

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  16. On the interplay between string theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, I.

    1998-07-08

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  17. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  18. Noncompact symmetries in string theory

    International Nuclear Information System (INIS)

    Maharana, J.; Schwarz, J.H.

    1993-01-01

    Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)

  19. Liouville equation with boundary conditions derived from classical strings

    International Nuclear Information System (INIS)

    Marnelius, R.

    1983-01-01

    It is shown in terms of the classical string theory that a breaking of the Weyl invariance necessarily requires the Liouville equation for the variable phi=1n rho, where rho is the variable that appears in the conformal gauge gsub(α#betta#)=rhoetasub(α#betta#). Appropriate boundary conditions on phi for open and closed strings are then derived. (orig.)

  20. Quantum geometry of bosonic strings - revisited

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  1. Spinning strings in AdS3×S3 with NS–NS flux

    Directory of Open Access Journals (Sweden)

    Rafael Hernández

    2014-11-01

    Full Text Available The sigma model describing closed strings rotating in AdS3×S3 is known to reduce to the one-dimensional Neumann–Rosochatius integrable system. In this article we show that closed spinning strings in AdS3×S3×T4 in the presence of NS–NS three-form flux can be described by an extension of the Neumann–Rosochatius system. We consider closed strings rotating with one spin in AdS3 and two different angular momenta in S3. For a class of solutions with constant radii we find the dependence of the classical energy on the spin and the angular momenta as an expansion in the square of the 't Hooft coupling of the theory.

  2. Lecture notes in topics in path integrals and string representations

    CERN Document Server

    Botelho, Luiz C L

    2017-01-01

    Functional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.

  3. Non-perturbative effects and the refined topological string

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  4. Unified model for vortex-string network evolution

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Moore, J.N.; Shellard, E.P.S.

    2004-01-01

    We describe and numerically test the velocity-dependent one-scale string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behavior (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and nonrelativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual 'coarse-grained' approach

  5. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    Cosmic strings arise during phase transitions after the big-bang explosion as the temperature goes down below some critical temperature [1–3]. These strings have stress energy and couple in a simple way to the gravitational field. The general relativistic formalism of cosmic strings is due to Letelier [4,5]. Stachel [6] has ...

  6. On tadpoles and vacuum redefinitions in String Theory

    International Nuclear Information System (INIS)

    Dudas, E.; Nicolosi, M.; Pradisi, G.; Sagnotti, A.

    2005-01-01

    Tadpoles accompany, in one form or another, all attempts to realize supersymmetry breaking in String Theory, making the present constructions at best incomplete. Whereas these tadpoles are typically large, a closer look at the problem from a perturbative viewpoint has the potential of illuminating at least some of its qualitative features in String Theory. A possible scheme to this effect was proposed long ago by Fischler and Susskind, but incorporating background redefinitions in string amplitudes in a systematic fashion has long proved very difficult. In the first part of this paper, drawing from field theory examples, we thus begin to explore what one can learn by working perturbatively in a 'wrong' vacuum. While unnatural in Field Theory, this procedure presents evident advantages in String Theory, whose definition in curved backgrounds is mostly beyond reach at the present time. At the field theory level, we also identify and characterize some special choices of vacua where tadpole resummations terminate after a few contributions. In the second part we present a notable example where vacuum redefinitions can be dealt with to some extent at the full string level, providing some evidence for a new link between IIB and 0B orientifolds. We finally show that NS-NS tadpoles do not manifest themselves to lowest order in certain classes of string constructions with broken supersymmetry and parallel branes, including brane-antibrane pairs and brane supersymmetry breaking models, that therefore have UV-finite threshold corrections at one loop

  7. D-string fluid in conifold, I: Topological gauge model

    International Nuclear Information System (INIS)

    Ahl Laamara, R.; Drissi, L.B.; Saidi, E.H.

    2006-01-01

    Motivated by similarities between quantum Hall systems a la Susskind and aspects of topological string theory on conifold as well as results obtained in [E.H. Saidi, Topological SL(2) gauge theory on conifold and noncommutative geometry, hep-th/0601020], we study the dynamics of D-string fluids running in deformed conifold in presence of a strong and constant RR background B-field. We first introduce the basis of D-string system in fluid approximation and then derive the holomorphic noncommutative gauge invariant field action describing its dynamics in conifold. This study may be also viewed as embedding Susskind description for Laughlin liquid in type IIB string theory. FQH systems on real manifolds RxS 2 and S 3 are shown to be recovered by restricting conifold to its Lagrangian sub-manifolds. Aspects of quantum behaviour of the string fluid are discussed. ring fluid are discussed

  8. The supergravity fields for a D-brane with a travelling wave from string amplitudes

    International Nuclear Information System (INIS)

    Black, William; Russo, Rodolfo; Turton, David

    2010-01-01

    We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T 4 xS 1 . The amplitudes reproduce all the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum duality frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.

  9. LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

    Directory of Open Access Journals (Sweden)

    Raj Bali

    2013-01-01

    Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.

  10. 5D Black Holes and Matrix Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  11. String 2, test facility for the LHC

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    String 2 is the long chain seen to the right, representing one complete cell of bending dipoles, focusing quadrupoles and corrector magnets. On 17 June 2002 the test string reached the nominal running current of 11 860 A and magnetic field of 8.335 T for the LHC.

  12. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  13. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  14. New twistor string theories revisited

    International Nuclear Information System (INIS)

    Broedel, Johannes; Wurm, Bernhard

    2009-01-01

    A gauged version of Berkovits twistor string theory featuring the particle content of N=8 supergravity was suggested by Abou-Zeid, Hull and Mason. The equations of motion for a particular multiplet in the modified theory are examined on the level of basic twistor fields and thereby shown to imply the vanishing of the negative helicity graviton on-shell. Additionally, the restrictions emerging from the equation of motion for the new gauge field B-bar reveal the chiral nature of interactions in theories constructed in this manner. Moreover, a particular amplitude in Berkovits open string theory is shown to be in agreement with the corresponding result in Einstein gravity.

  15. Supersymmetric D2 anti-D2 Strings

    OpenAIRE

    Bak, Dongsu; Ohta, Nobuyoshi

    2001-01-01

    We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...

  16. Phase-space lagrangians for null spinning strings

    International Nuclear Information System (INIS)

    Barcelos-Neto, J.; Ruiz-Altaba, M.; Ramirez, C.

    1990-01-01

    The striking fact that normal-ordered null strings have the same critical dimension as their usual non-zero tension siblings can be understood from the observation that one must, in the tensionless case, keep all the conjugate momenta as independent dynamical variables, thus doubling the number of physical degrees of freedom. The fermionic momenta give rise to a second-class constraint which cannot be solved covariantly, but can be successfully incorporated into the first-class constraint algebra after gauge-fixing. The ghost contributions to the anomaly consist of two b-c (and also two β-γ systems in the supersymmetric case), of the single Virasoro sub(super)algebra for the closed null (spinning) string. In the appropriate gauge, the null (super)string is (super)chiral. (orig.)

  17. Closed string tachyons on AdS orbifolds and dual Yang-Mills instantons

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Iizuka, N. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics

    2007-06-15

    We study the condensation of localized closed string tachyons on AdS orbifolds both from the bulk and boundary theory viewpoints. We first extend the known results for AdS{sub 5}/Z{sub k} to AdS{sub 3}/Z{sub k} case, and we proposed that the AdS{sub 3}/Z{sub k} decays into AdS{sub 3}/Z{sub k'} with k{sup '} < k. From the bulk viewpoint, we obtain a time-dependent gravity solution describing the decay of AdS orbifold numerically. From the dual gauge theory viewpoint, we calculated the Casimir energies of gauge theory vacua and it is found that their values are exactly the same as the masses of dual geometries, even though they are in different parameter regimes of 't Hooft coupling. We also consider AdS{sub 5} orbifold. The decay of AdS{sub 5}/Z{sub k} is dual to the transition between the vacua of dual gauge theory on R{sub t} x S{sup 3}/Z{sub k}. We constructed the instanton solutions describing the transitions by making use of instanton solutions on R{sub t} x S{sup 2}. (orig.)

  18. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  19. Transversally extended string

    International Nuclear Information System (INIS)

    Akama, Keiichi

    1988-01-01

    Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)

  20. From fractals to wormholes via string theory

    International Nuclear Information System (INIS)

    Felce, A.G.

    1992-01-01

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view

  1. Notes on strings and higher spins

    International Nuclear Information System (INIS)

    Sagnotti, A

    2013-01-01

    This review is devoted to the intriguing and still largely unexplored links between string theory and higher spins, the types of excitations that lie behind their most cherished properties. A closer look at higher spin fields provides some further clues that string theory describes a broken phase of a higher spin gauge theory. Conversely, string amplitudes contain a wealth of information on higher spin interactions that can clarify long-standing issues related to their infrared behavior. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  2. From maximal to minimal supersymmetry in string loop amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University,651 88 Karlstad (Sweden); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Potsdam (Germany)

    2017-04-28

    We calculate one-loop string amplitudes of open and closed strings with N=1,2,4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.

  3. Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheykhi

    2014-01-01

    Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.

  4. String theory, supersymmetry, unification, and all that

    International Nuclear Information System (INIS)

    Schwarz, J.H.; Seiberg, N.

    1999-01-01

    String theory and supersymmetry are theoretical ideas that go beyond the standard model of particle physics and show promise for unifying all forces. After a brief introduction to supersymmetry, the authors discuss the prospects for its experimental discovery in the near future. They then show how the magic of supersymmetry allows us to solve certain quantum field theories exactly, thus leading to new insights about field theory dynamics related to electric-magnetic duality. The discussion of superstring theory starts with its perturbation expansion, which exhibits new features including open-quotes stringy geometry.close quotes The authors then turn to more recent nonperturbative developments. Using new dualities, all known superstring theories are unified, and their strong-coupling behavior is clarified. A central ingredient is the existence of extended objects called branes. copyright 1999 The American Physical Society

  5. Tensor constructions of open string theories. I. Foundations

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A ∞ algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group. (orig.)

  6. Confinement and strings in MQCD

    International Nuclear Information System (INIS)

    Hanany, A.; Strassler, M.J.; Zaffaroni, A.

    1998-01-01

    We study aspects of confinement in the M-theory fivebrane version of QCD (MQCD). We show heavy quarks are confined in hadrons (which take the form of membrane-fivebrane bound states) for N=1 and softly broken N=2 SU(N) MQCD. We explore and clarify the transition from the exotic physics of the latter to the standard physics of the former. In particular, the many strings and quark-antiquark mesons found in N=2 field theory by Douglas and Shenker are reproduced. It is seen that in the N=1 limit all but one such meson disappears while all of the strings survive. The strings of softly broken N=2, N=1, and even non-supersymmetric SU(N) MQCD have a common ratio for their tensions as a function of the amount of flux they carry. We also comment on the almost BPS properties of the Douglas-Shenker strings and discuss the brane picture for monopole confinement on N=2 QCD Higgs branches. (orig.)

  7. String-theoretic deformation of the Parke-Taylor factor

    Science.gov (United States)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  8. Hawking radiation in string theories

    International Nuclear Information System (INIS)

    Sakai, N.

    1986-01-01

    String theories in a uniform gravitational field are studied to examine the Hawking radiation. An upper limit is found for the strength of the possible gravitational field: the corresponding Hawking temperature cannot be larger than the Hagedorn limiting temperature divided by π

  9. Relativistic Landau levels in the rotating cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2016-09-15

    In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)

  10. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  11. Kleinian singularities and the ground ring of c=1 string theory

    International Nuclear Information System (INIS)

    Ghoshal, D.; Jatkar, D.P.; Mukhi, S.

    1993-01-01

    We investigate the nature of the ground ring of c=1 string theory at the special ADE points in the c=1 moduli space associated to discrete subgroups of SU(2). The chiral ground rings at these points are shown to define the ADE series of singular varieties introduced by Klein. The non-chiral ground rings relevant to closed-string theory are 3 real dimensional singular varieties obtained as U(1) quotients of the kleinian varieties. The unbroken symmetries of the theory at these points are the volume-preserving diffeomorphisms of these varieties. The theory of kleinian singularities has a close relation to that of complex hyperKaehler surfaces, or gravitational instantons. We speculate on the relevance of these instantons and of self-dual gravity in c=1 string theory. (orig.)

  12. Semiclassical strings and non-Abelian T-duality

    Directory of Open Access Journals (Sweden)

    S. Zacarías

    2014-10-01

    Full Text Available We study semiclassical strings in the Klebanov–Witten and in the non-Abelian T-dual Klebanov–Witten backgrounds. We show that both backgrounds share a subsector of equivalent states up to conditions on the T-dual coordinates. We also analyse string configurations where the strings are stretched along the T-dual coordinates. This semiclassical analysis predicts the existence of (almost chiral primary operators for the dual superconformal field theory whose (anomalous bare dimensions depend on the T-dual coordinates. We briefly discuss the Penrose limit of the dualised background.

  13. Optimization of SAGD wellbore completions : short production tubing string sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cokar, M.; Graham, J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada)

    2008-10-15

    This study investigated the effects of changing the landing position of short production tubing strings near the heel of steam assisted gravity drainage (SAGD) production wells. A homogenous discretized wellbore model was used to model the reservoir and wellbore simultaneously in order to study wellbore and reservoir interactions. The aim of the study was to develop a method of optimizing bitumen production and determining the most economical position for wellbore strings. Simulations were conducted to examine the effect of shortening the production tubing string and examine the impact of extending the tubing string beyond the heel of the well on bitumen bitumen production rates and the steam oil ratio (SOR). Results of the study showed that a shortened string decreased bitumen production rates, while the amounts of steam produced through the tubing string increased. When the tubing string was extended past the heel of the well, bitumen production rates remained the same, but steam injection rates and SOR decreased. A lower pressure differential between the injector and producer wells was also observed. The study showed that SAGD producers can re-position production tubing strings in order to determine ratios of liquid production. It was concluded that although placing the short production tubing string close to the heel increased oil production, a longer tubing string improved production rates while lowering operating costs. 3 refs., 3 tabs., 35 figs.

  14. Time-dependent perturbations in two-dimensional string black holes

    CERN Document Server

    Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E

    1992-01-01

    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}

  15. The W3 string spectrum

    International Nuclear Information System (INIS)

    Pope, C.N.; Stelle, K.S.

    1991-08-01

    We study the spectrum of W 3 strings. In particular, we show that for appropriately chosen space-time signature, one of the scalar fields is singled out be the spin-3 constraint and is ''frozen'': no creation operators from it can appear in physical states and the corresponding momentum must assume a specific fixed value. The remaining theory is unitary and resembles an ordinary string theory in d contains 26 with anomalies cancelled by appropriate background charges. (author). 8 refs

  16. D-branes in little string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Pakman, Ari; Troost, Jan

    2005-01-01

    We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes

  17. Introduction to string theory

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1987-10-01

    These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs

  18. Microscopic approach to string gas cosmology

    Science.gov (United States)

    Evnin, Oleg

    2014-03-01

    In this contribution to the proceedings of the Conference on Modern Physics of Compact Stars and Relativistic Gravity in Yerevan, Armenia (September 18-21, 2013), I review recent work attempting to give a fundamental definition to string evolution in a dynamical, fully compact universe, and present a sketch of how the resulting formalism can be used for addressing questions of phenomenological significance in the field of string gas cosmology.

  19. From N=2 strings to M-theory

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1997-01-01

    Taking the N=2 strings as the starting point, we discuss the equivalent self-dual field theories and analyze their symmetry structure in 2 + 2 dimensions. Restoring the full 'Lorentz' invariance in the target space necessarily leads to an extension of the N=2 string theory to a theory of 2 + 2 dimensional supermembranes propagating in 2 + 10 dimensional target space. The supermembrane requires maximal conformal supersymmetry in 2 + 2 dimensions, in the way advocated by Siegel, and it leads to the self-dual N=4 super-Yang-Mills theory and the self-dual N=8 (gauged) supergravity in 2+2 dimensions. The N=2 strings now appear on equal footing with the other string models as particular limits of the M-theory. (orig.)

  20. Planck 2013 results. XXV. Searches for cosmic strings and other topological defects

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 < 1.5 x 10^{-7}$ and $f_{10} < 0.015$ at 95% confidence that can be improved to $G\\mu/c^2 < 1.3 x 10^{-7}$ and $f_{10} < 0.010$ on inclusion of high-$\\ell$ CMB data. For the abelian-Higgs field theory ...