WorldWideScience

Sample records for closed rankine cycle

  1. Offshore Rankine Cycles

    OpenAIRE

    Brandsar, Jo

    2012-01-01

    The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles (Rankine, ORC, Brayton, Kalina, etc.), mechanical equipment (gas/steam turbine, heat exchangers and additional equipment) and safety concerns (flammable and/or toxic fluids, high temperature and pressures), to name the most important.The thesis try to give a brief overview of all critical points and alternatives, concerning employment of a wa...

  2. Organic rankine cycle fluid

    Science.gov (United States)

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  3. Rankine cycle system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  4. Combined Rankin and Organic Rankin Cycles with Screw Expenders

    OpenAIRE

    Tang, Yan

    2014-01-01

    Low pressure saturated steam exists in a lot of industries. The recovery of the energy from the low pressure saturated steam can save tremendous power consumption for those industries. Although the Rankin cycle with a steam turbine can be used to generate the power from the low pressure saturated steam, the isotropic efficiency of the steam turbine is low, the reliability is questionable due to the two phase expansion, and the size is typically large due to the low pressure. This paper presen...

  5. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  6. Air Conditioning System using Rankine Cycle

    Science.gov (United States)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  7. Solar/gas Rankine/Rankine-cycle heat pump assessment

    Science.gov (United States)

    Khalifa, H. E.; Melikian, G.

    1982-07-01

    This report contains an assessment of the technical and economic feasibility of Rankine-cycle solar-augmented gas-fired heat pumps (SAGFHP) for multi-family residential and light-commercial applications. The SAGFHP design considered in this report is based on the successful UTRC turbocompressor system which has been tested both in the laboratory and in a solar cooling installation in Phoenix. AZ. An hour-by-hour modeling of present-design SAGFHP performance in multi-family and office buildings in New York, Wisconsin, Nebraska and Oregon indicated that, even without solar augmentation, primary energy savings of up 17% and 31% could be achieved relative to advanced furnace plus electric air conditioning systems and electric heat pumps, respectively.

  8. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  9. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  10. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  11. Organic rankine cycle waste heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  12. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  13. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  14. Emissions-critical charge cooling using an organic rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  15. Organic rankine cycle system for use with a reciprocating engine

    Science.gov (United States)

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  16. Simplified procedure for the estimation of Rankine power cycle efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, V.R.; Devotta, S.; Patwardhan, V.S. (National Chemical Lab., Poona (India))

    1989-01-01

    A simplified procedure for estimating the Rankine power cycle efficiency eta{sub R} is presented. This procedure does not need any detailed thermodynamic data but requires only the liquid specific heat and the latent heat of vaporization at boiler temperature. This procedure is tested for its application to eight potential Rankine power cycle working fluids for which exact eta{sub R} values have been reported based on detailed thermodynamic data. A fairly wide range of condensing and boiling temperatures is covered. The results indicate that the present procedure can predict eta{sub R} values within +- 1%. (author).

  17. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  18. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas;

    2015-01-01

    In this paper we present a novel organic Rankine cycle layout, named the organic split-cycle, designed for utilization of low grade heat. The cycle is developed by implementing a simplified version of the split evaporation concept from the Kalina split-cycle in the organic Rankine cycle in order...

  19. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary...

  20. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  1. Development of a Direct Evaporator for the Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  2. Supercritical Fluid Parameters in Organic Rankine Cycle Applications

    Directory of Open Access Journals (Sweden)

    Andreas Schuster

    2008-09-01

    Full Text Available Nowadays, the use of Organic Rankine Cycle (ORC in decentralised applications is linked with the fact that this process allows to use low temperature heat sources and offers an advantageous efficiency in small-scale applications. Many state of the art applications like geothermal and biomass fired power plants as well as new applications like solar desalination with reverse osmosis, waste heat recovery from biogas digestion plants or micro-Combined Heat and Power (micro-CHP systems can successfully use the ORC process. The investigation of supercritical parameters in ORC applications seems to bring promising results in decentralised energy production. This paper presents the results from the simulation of the ORC process in normal and supercritical fluid parameters and discusses the efficiency variation in various applications.

  3. Experimental investigation of scroll based organic Rankine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Tarique, Md Ali; Dincer, I.; Zamfirescu, C. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], E-mail: Md.Ali.Tarique@uoit.ca, email: Ibrahim.Dincer@uoit.ca, email: Calin.Zamfirescu@uoit.ca

    2011-07-01

    Global awareness of the greenhouse effect and global warming due to carbon- based fuel combustion has spurred interest in the use of low-grade heat that is abundantly available from renewable energy sources and also from the waste heat produced at plants. This paper investigates the performance of a scroll expander in an Organic Rankine Cycle (ORC), experimentally and analytically, with the purpose of using low-grade sustainable energy sources in mind. The expander was modeled on the basis of thermodynamic and fluid flow characteristics within a control volume boundary and the isentropic efficiency of the expander, which is an important factor in optimizing its performance, was determined. From the experimental analysis, the maximum isentropic efficiency was found to be 66% at 120C source temperature. This shows that mechanical work or electricity can be generated using a scroll expander in a low power ORC. Moreover, the analytical model is validated with regard to the optimal expansion.

  4. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  5. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer in the selection of the optimal size of the organic Rankine cycle unit when multiple exhaust gas streams are available....

  6. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    Science.gov (United States)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  7. Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A detailed thermodynamic and techno-economic comparison is presented for a CO2-based transcritical Rankine cycle and a subcritical organic Rankine cycle (ORC) using HFC245fa (1,1,1,3,3-pentafluoro-propane) as the working fluid driven by the low-temperature geothermal source,in order to determine the configuration that presents the maximum net power output with a minimum investment.The evaluations of both Rankine cycles have been performed based on equal thermodynamic mean heat rejection temperature by varying certain system operating parameters to achieve each Rankine cycle’s optimum design at various geothermal source temperature levels ranging from 80oC to 120oC.The results obtained show that the optimum ther-modynamic mean heat injection temperatures of both Rankine cycles are distributed in the scope of 55% to 65% of a given geothermal source temperature level,and that the CO2-based transcritical Rankine cycle presents 3% to 7% higher net power output,84% reduction of turbine inlet volume flow rate,47% reduction of expansion ratio and 1.68 times higher total heat transfer capacity compared with the HFC245fa-based subcritical ORC.It is also indicated that using the CO2-based transcritical system can reduce the dimension of turbine design.However,it requires larger heat transfer areas with higher strength heat exchanger materials because of the higher system pressure.

  8. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    In this paper we present a novel organic Rankine cycle layout, named the organic split-cycle, designed for utilization of low grade heat. The cycle is developed by implementing a simplified version of the split evaporation concept from the Kalina split-cycle in the organic Rankine cycle in order....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...... pinch point temperature difference to be reached at two locations in the boiler. Compared to the transcritical organic Rankine cycle, the organic split-cycle improves the boiling process without an entailing increase in the boiler pressure, thus enabling an efficient low grade heat to power conversion...

  9. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  10. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  11. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  12. Recent research trends in organic Rankine cycle technology: A bibliometric approach

    DEFF Research Database (Denmark)

    Imran, Muhammad; Haglind, Fredrik; Asim, Muhammad

    2018-01-01

    This work describes the contribution of researchers around the world in the field of the organic Rankine cycle in the period 2000–2016. A bibliometric approach was applied to analyze the scientific publications in the field using the Scopus Elsevier database, together with Science Citation Index...... of active countries, institutes, authors, and journals in the organic Rankine cycle technology field. From 2000 to 2016, there were 2120 articles published by 3443 authors from 997 research institutes scattered over 71 countries. The total number of citations and impact factor are 36,739 and 4597...... are the leading countries in organic Rankine cycle research and account for 64% of the total number of publications. The core research activities in the field are mainly focused on applications of the organic Rankine cycle technology, working fluids selection/performance, cycle architecture, and design...

  13. Altheim geothermal power plant electricity generation by means of an organic rankine cycle turbogenerator; Geothermienanlage Altheim - Stromerzeugung mittels Organic-Rankine-Cycle-Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G. [Marktgemeindeamt Altheim (Austria)

    1996-10-01

    The present paper reports on a project in Altheim in Upper Austria aiming to produce electricity by means of an Organic Rankine Cycle Turbogenerator using low-temperature thermal water. This could help improve the technical and economic situation of the goethermal power plant in operation there. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Das Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Geothermieanlage zu verbessern. (orig.)

  14. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...... is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine...

  15. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  16. New concepts for organic Rankine cycle power systems

    NARCIS (Netherlands)

    Casati, E.I.M.

    2014-01-01

    Energy provision is one of the major challenges for the Human Society, and it is increasingly clear that the current production/consumption model is not sustainable. The envisaged energy system is smarter, more decentralised and integrated. Energy conversion systems based on the organic Rankine ther

  17. New concepts for organic Rankine cycle power systems

    NARCIS (Netherlands)

    Casati, E.I.M.

    2014-01-01

    Energy provision is one of the major challenges for the Human Society, and it is increasingly clear that the current production/consumption model is not sustainable. The envisaged energy system is smarter, more decentralised and integrated. Energy conversion systems based on the organic Rankine

  18. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    Science.gov (United States)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  19. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...... is presented and validated with the best available data from literature. The methodology allows the identification of the most suitable working fluid considering the trade-off between cycle and multistage turbine designs. The results of the optimization of cycle and turbine suggest that the fluid n...

  20. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007......;32:1210–21.[2] Frutiger J, Andreasen JG, Liu W, Spliethoff H, Haglind F, Abildskov J, Sin G. Working fluid selection for organic Rankine cycles - impact of uncertainty of fluid properties. Energy (accepted s.t. revision)....

  1. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo;

    2015-01-01

    for single- and two-phase heat transfer coefficients.The results indicate that severe load changes (0.4–1.0 MWs-1) can lead to exceedance of thetemperature limit of fluid decomposition for a period of 10 min. Ramp rates lower than 0.3MWs-1 areacceptable considering the stability of the electric grid......This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  2. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... unit toincrease the overall energy conversion efficiency.The dynamic model of the plant is coupled with a one-dimensional model of the once-through boilerfed by the exhaust thermal power of the gas turbine. The heat exchanger model uses a distributedcross-flow physical topology and local correlations...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  3. Rankin-Selberg methods for closed strings on orbifolds

    CERN Document Server

    Angelantonj, Carlo; Pioline, Boris

    2013-01-01

    In recent work we have developed a new unfolding method for computing one-loop modular integrals in string theory involving the Narain partition function and, possibly, a weak almost holomorphic elliptic genus. Unlike the traditional approach, the Narain lattice does not play any role in the unfolding procedure, T-duality is kept manifest at all steps, a choice of Weyl chamber is not required and the analytic structure of the amplitude is transparent. In the present paper, we generalise this procedure to the case of Abelian Z_N orbifolds, where the integrand decomposes into a sum of orbifold blocks that can be organised into orbits of the Hecke congruence subgroup {\\Gamma}_0(N). As a result, the original modular integral reduces to an integral over the fundamental domain of {\\Gamma}_0(N), which we then evaluate by extending our previous techniques. Our method is applicable, for instance, to the evaluation of one-loop corrections to BPS-saturated couplings in the low energy effective action of closed string mo...

  4. Efficiency Of Rankine Cycle And Optimum Working Fluid Using Redlich-Kwong Equation Of State

    Science.gov (United States)

    Saunderson, Deborah; Budiman, R. Arief

    2010-10-01

    Efficiency of Rankine cycle as a function of working fluid molecule is modeled using the Redlich-Kwong equation of state. We have evaluated 12 molecules, ranging from water to ethylene glycol, and have parameterized their individual performance on several material parameters, including heat capacity and compressibility. This research aims to understand at the molecular level what drives some molecules to perform better at certain temperature and pressure range of the Rankine cycle. Immediate applications we are interested in are geothermal power and solar thermal energy conversion.

  5. Optimum Working Fluid Selection For Rankine Cycle Using Redlich-Kwong Equation of State

    Science.gov (United States)

    Budiman, Arief; Saunderson, Deborah

    2011-03-01

    Efficiency of Rankine cycle as a function of working fluid molecule is modeled using Redlich-Kwong equation of state. We have evaluated 12 molecules, ranging from water to ethylene glycol, and have parameterized their individual performance on several material parameters, including heat capacity and compressibility. This research aims to understand at the molecular level what drives some molecules to perform better at certain temperature and pressure range of the Rankine cycle. Immediate applications we are interested in are geothermal power, solar thermal energy conversion and waste heat recovery.

  6. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...... solutions. The ORC favorably compares to the steam Rankine cycle because of its simple layout and high efficiency, achievable by selecting a working fluid with desirable properties. This paper aims at assessing the fuel savings attainable by implementing ORC units on board vessels powered by liquefied...

  7. Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2013-12-15

    In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

  8. Second law analysis of a solar powered Rankine cycle/vapor compression cycle

    Energy Technology Data Exchange (ETDEWEB)

    Egrican, A.N.; Karakas, A.

    1986-01-01

    Conversion of solar heat energy to power or air conditioning is a difficult and costly process. Only two practical means of solar cooling are presently state-of-the-art. These are by use of the Rankine cycle/vapor compression cycle (RC/VCC) and the absorption refrigeration cycle. RC/VCC solar cooling systems convert collected solar heat into a cooling effect. In the present study, the second law analysis is given, the maximum reversible work, lost work and availability for each component are calculated. The use of lost work or irreversibility and availability analysis in a real thermodynamic and heat transfer problem is very important in at least two regards. The first one is that in most cases accomplishing a real problem with the less irreversibility is directly proportional to the less cost. The second one is that availability is one of our natural resources. The conservation and effective use of availability reserves result in the decrease irreversibilities.

  9. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  10. Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders

    OpenAIRE

    Read, M. G.; Smith, I K; Stosic, N.

    2015-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications. This cycle model contains detailed thermodynamic models of the system components, and the methods used to match the operation of the expander to the requirements of the cycle are described. Two types of ORC system are considered; one containing a turbine to expand dry saturated or superheated vapour, and one with a twin-screw ...

  11. Performance analysis of a solar-powered organic rankine cycle engine.

    Science.gov (United States)

    Bryszewska-Mazurek, Anna; Swieboda, Tymoteusz; Mazurek, Wojciech

    2011-01-01

    This paper presents the performance analysis of a power plant with the Organic Rankine Cycle (ORC). The power plant is supplied by thermal energy utilized from a solar energy collector. R245fa was the working fluid in the thermodynamic cycle. The organic cycle with heat regeneration was built and tested experimentally. The ORC with a heat regenerator obtained the maximum thermodynamic efficiency of approximately 9%.

  12. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...... %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit...

  13. Sizing models and performance analysis of waste heat recovery organic Rankine cycles for heavy duty trucks

    OpenAIRE

    Guillaume, Ludovic; Legros, Arnaud; Quoilin, Sylvain; Declaye, Sébastien; Lemort, Vincent

    2013-01-01

    This paper attempts to address this problematic of selecting the architecture, the expander and the working fluid for a waste heat recovery organic (or non-organic) Rankine cycle on a truck engine. It focuses especially on three expander technologies: the scroll, the piston and the screw expanders, and three working fluids: R245fa, ethanol and water. Peer reviewed

  14. Uncertainty Assessment of Equations of State with Application to an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    –Redlich–Kwong (SRK), the Peng-Robinson (PR) cubic EoS, and the perturbed-chain statistical associating fluid theory (PCSAFT) EoS, as applied to an organic Rankine cycle (ORC) power system to recover heat from the exhaust gas of a marine diesel engine with cyclopentane as the working fluid. Uncertainties of the Eo...

  15. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...

  16. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe......-objectiveoptimization of the net power output and the component costs for organic Rankine cycle power plantsusing low-temperature heat at 90 C to produce electrical power at around 500 kW. The primary outcomesof the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a(0.65/0.35mole...

  17. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  18. THERMODYNAMIC ANALYSIS OF DIFFERENT WORKING FLUIDS USED IN ORGANIC RANKINE CYCLE FOR RECOVERING WASTE HEAT FROM GT-MHR

    National Research Council Canada - National Science Library

    AMIN HABIBZADEH; MOHAMMAD MEHDI RASHIDI

    2016-01-01

    In this paper, the performance of 13 working fluids in two Organic Rankine Cycles, which operate as the bottoming cycles for recovering waste heat from gas turbine modular helium reactor (GT-MHR), is investigated...

  19. Comparison of organic rankine cycle systems under varying conditions using turbine and twin-screw expanders

    OpenAIRE

    Read, M. G.; Smith, I K; Stosic, N.; Kovacevic, A.

    2016-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications using both turbine and twin-screw expanders when account is taken of performance variation due to changes in ambient conditions. The cycle simulation contains thermodynamic models of both types of expander. In the case of the twin-screw machine, the methods used to match the operation of the expander to the requirements of the ...

  20. Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy

    Institute of Scientific and Technical Information of China (English)

    ZHANG XinRong; LI XiaoJuan

    2012-01-01

    A comprehensive performance evaluation of a solar assisted transcritical CO2-based Rankine cycle system is made with exergy analysis method.The actual thermal data taken from the all-day experiment of the system are utilized to determine energy transfer and the exergy destructions in each component of the system.In addition,a hypothetical carbon dioxide expansion turbine is introduced,then two thermodynamic models for solar transcritical carbon dioxide Rankine cycles with a throttling valve (experiment) and with an expansion turbine have been established with exergy analysis method.The obtained results clearly show that solar collector contributes the largest share to system irreversibility and entropy generation in the all-day working state,and the exergy improvement potential of solar collector is the maximum in the working state.So this component should be the optimization design focus to improve system exergy effectiveness.For the cycle with the turbine,the energy efficiency and the entropy generation are not much higher than the cycle with throttling valve,but the exergy efficiency of the cycle with turbine is twice of the cycle with throttling valve.It provides more guidance when the transcritical CO2-based Rankine system is in a large-scale solar application.

  1. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    ) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model...

  2. Regulation Law of Turbine and Generator in Organic Rankine Cycle Power Generation Experimental System

    Institute of Scientific and Technical Information of China (English)

    潘利生; 王怀信; 史维秀

    2014-01-01

    In the performance experiment of organic Rankine cycle power generation experimental system, the load-resistance-regulation method is one of the most important regulation methods. However, the regulation law has not been clear enough to guide the experiment, which is unfavorable to the experimental research on organic Rankine cy-cle. In this paper the regulation law of turbine and generator by the load-resistance-regulation method is studied theo-retically and experimentally. The results show that when the thermal cycle parameters keep constant, the turbine speed increases with the increase of load resistance and there is a maximum value of transmission-generator efficiency with the variation of the turbine speed; when the turbine speed and generator speed keep constant, the transmission-generator efficiency decreases and gradually tends to zero with the increase of load resistance.

  3. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...... criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences....... Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate...

  4. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  5. Study and Design of Waste Heat Recovery using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Seyed Saied Homami

    2016-03-01

    Full Text Available Existing energy crisis in the world has diverted human perspective to the optimum usage of the available energy resources. One of these solutions is waste heat recovery systems[1]. Simultaneous production of fresh water, power and cooling from waste heat improves energy efficiency in industrial applications which could be operated by organic Rankine cycles. In this article, cogeneration of electricity and heat (CHP in the petrochemical industry, textile and paper production has been reviewed and the usage of aforesaid cycle in these industries is determined. Designing organic Rankine cycle (with operating fluid organic trans-butene and taking advantage of the excess low pressure steam, a strategy for producing three valuable products of fresh water, power and refrigeration in the petrochemical industries has been offered. Simultaneous production of 10,000 kg/hr fresh water, 1533 kw power and access to the lower temperatures of about 226 K and 260 K were resulted.

  6. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    Science.gov (United States)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the

  7. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  8. Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

    OpenAIRE

    2014-01-01

    A multi-variable optimisation program has been developed to investigate the performance of Wet Organic Rankine Cycles for low temperature heat recovery applications. This cycle model contains a detailed thermodynamic model of the twin-screw expander, and the methods used to match the operation of the expander to the requirements of the cycle are described. The capability of the cycle model has been demonstrated for the case of heat recovery from a source of pressurized hot water at 120°C. The...

  9. Selected aspects of operation of supercritical (transcritical organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Mocarsk Szymon

    2015-06-01

    Full Text Available The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.

  10. Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control

    Directory of Open Access Journals (Sweden)

    Andres Hernandez

    2016-05-01

    Full Text Available In this paper, the optimal operation of a stationary sub-critical 11 kW el organic Rankine cycle (ORC unit for waste heat recovery (WHR applications is investigated, both in terms of energy production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC approach to constrained model predictive control (MPC. Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized.

  11. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  12. Expansion machine for a low power-output steam Rankine-cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Badr, O.; Naik, S.; O' Callaghan, P.W.; Probert, S.D. (Cranfield Inst. of Tech., Bedford (United Kingdom). School of Mechanical Engineering)

    1991-01-01

    The performance of the expansion device in a rankine-cycle engine is one of the major parameters dictating the engine's overall energy-conversion efficiency. In this paper the screening process undertaken to choose the most suitable expansion machine for a steam Rankine-cycle engine, operating principally as a 'mini' combined heat-and-power unit, is described. In the low power-output range (i.e. 5-20 kW) envisaged rotary, positive-displacement machines offer many advantages compared with turbines and reciprocating-piston expanders. So rotary-vane, helical-screw and Wankel-type expansion devices were short listed. However further assessments, based upon operational problems and cost effectiveness, led finally to the choice of the Wankel-type expander for the proposed application. Nevertheless, for this machine to be commercially successful, existing designs need to be modified and optimised. (author).

  13. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  14. Studi Variasi Flowrate Refrigerant pada Sistem Organic Rankine Cycle dengan Fluida Kerja R-123

    Directory of Open Access Journals (Sweden)

    Aria Halim Pamungkas

    2013-09-01

    Full Text Available Saat ini kelangkaan sumber energi fosil telah menjadi isu utama di seluruh dunia. Hal tersebut memberikan dampak yang signifikan di setiap aspek kehidupan dan salah satunya adalah di bidang pembangkit listrik. Salah satu sistem pembangkit listrik yang tidak menggunakan energi fosil adalah Organic rankine cycle (ORC. Pada penelitian ini dilakukan dengan metode eksperimental pada suatu sistem Organic rankine cycle yang telah dibangun. Penelitian ini yang divariasikan adalah flowrate dari fluida kerja dalam hal ini R-123. Variasi flowrate yang digunakan yaitu 3-1 GPM (Galon per menit dengan penurunan 0,5 GPM setiap pengambilan data. Hasil yang didapatkan dari penelitian ini berupa grafik–grafik daya pada turbin, kondensor, pompa dan evaporator, efisiensi siklus dan back work ratio  fungsi flowrate fluida kerja. Efisiensi siklus tertinggi adalah 5,86% yang terjadi pada flowrate 3 GPM dan efisiensi siklus terendah adalah 4,32% yang terjadi pada flowrate 1 GPM.

  15. Dynamic test on waste heat recovery system with organic Rankine cycle

    Institute of Scientific and Technical Information of China (English)

    王志奇; 刘力文; 夏小霞; 周乃君

    2014-01-01

    Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature. The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency (39.49−35.24 Hz), the expander efficiency and thermal efficiency drop by 16%and 21%within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed.

  16. Organic rankine cycle with positive displacement expander and variable working fluid composition

    OpenAIRE

    2016-01-01

    Organic Rankine Cycles are often used in the exploitation of low-temperature heat sources. The relatively small temperature differential available to these projects makes them particularly vulnerable to changing ambient conditions, especially if an air-cooled condenser is used. The authors have recently demonstrated that a dynamic ORC with a variable working fluid composition, tuned to match the condensing temperature with the heat sink, can be used to achieve a considerable increase in year-...

  17. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    OpenAIRE

    Fang Fang; Hong Yue; Yeli Zhou; Jiancun Feng; Jianhua Zhang

    2012-01-01

    In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power ...

  18. System and method for regulating EGR cooling using a rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  19. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  20. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  1. Optimization of Organic Rankine Cycles for Off-Shore Applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Larsen, Ulrik; Nguyen, Tuong-Van

    2013-01-01

    In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio are not in......In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio...... and the thermal efficiency of the cycle can be maximized. This paper is aimed at finding the most optimal ORC tailored for off-shore applications using an optimization procedure based on the genetic algorithm. Numerous working fluids are screened through, considering mainly thermal efficiency, but also other...

  2. Rankine cycle load limiting through use of a recuperator bypass

    Science.gov (United States)

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  3. Optimization of Organic Rankine Cycles for Off-Shore Applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Larsen, Ulrik; Nguyen, Tuong-Van

    2013-01-01

    In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio are not in......, cyclohexane at 55.5 bar is the preferable working fluid with a combined thermal efficiency of 44.3%. The supercritical CO2 cycle with a maximum pressure of 192.9 bar is found to be the best alternative if an extremely low hazard is required....... are not increased up to the optimal values and one or more redundant gas turbines may be employed. With increasing incentives for reducing the CO2 emissions off-shore, improving the thermal efficiency has become a focus area. Due to the peculiar low turbine outlet temperature and due to space and weight constraints...... characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently...

  4. Modeling and analysis of scroll compressor conversion into expander for Rankine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Oralli, E.; Dincer, I.; Zamfirescu, C. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], E-mail: Emre.Oralli@uoit.ca, email: Ibrahim.Dincer@uoit.ca, email: Calin.Zamfirescu@uoit.ca

    2011-07-01

    With the current push towards the use of sustainable energies, low power heat generation systems are shifting towards sustainable heat sources such as geothermal, solar, industrial waste and cogeneration energy. The aim of this paper is to investigate the use of a scroll expander for power generation using the Rankine cycle. A parametric study was carried out on a refrigeration scroll compressor to determine the impact of geometry, working fluid, and operating conditions on the efficiency of the Rankine heat engine. In addition modifications were made to the expander to optimize its operation. Results showed that organic fluids should be used at saturated conditions, that decreasing the temperature of the condenser leads to an increased thermal efficiency of ORC and that the designed radius is an optimum value. This study highlighted the impacts of geometric and thermodynamic parameters on scroll expanders.

  5. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-03-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives ({{η}}_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  6. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  7. RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DiNanno, L.R.; DiBella, F.A.; Koplow, M.D.

    1983-12-01

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air-cooled condenser-regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged (TC) diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound (TCPD) diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy-duty trnsport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene (PFB) and 40 mole percent hexafluorobenzene (HFB). Included in these 1983 work efforts was the thermal stability testing of the RC-1 organic fluid in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900/sup 0/F. This report describes the work performed for one of the multiple contracts awarded under the Department of Energy's Heavy-Duty Transport Technology Program.

  8. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  9. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  10. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Tahani Mojtaba

    2013-01-01

    Full Text Available There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.

  11. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  12. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output......This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...

  13. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  14. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  15. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  16. Research of efficiency of the organic Rankine cycle on a mathematical model

    Directory of Open Access Journals (Sweden)

    Galashov N.

    2017-01-01

    Full Text Available The object of the study are the organic Rankine cycle. The purpose of research is to evaluate the impact on the net efficiency of the initial and final properties of the cycle at work on a saturated and superheated steam. Investigations were carried out on the basis of a mathematical model, in which the thermodynamic properties of materials are determined on the basis of “REFPROP”. On the basis of the available scientific publications on the use of working fluids in an organic Rankine cycle analysis was selected ozone-safe pentane. A mathematical model has been developed on condition that condenser is used as air cooler which allows the substance to condense at a temperature below 0 °С. Numerical study on the mathematical model shown that net efficiency at work on pentane linearly depends on the condensation temperature and parabolically depends on the initial temperature with the saturated steam. During work at the superheated steam efficiency strongly depends on both the initial temperature and of the initial pressure. With rising initial temperature is necessary to gradually increase the initial pressure under certain conditions.

  17. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    2011-01-01

    A transcritical carbon dioxide (CO2) Rankine power cycle has been analyzed based on first and second law of thermodynamics. Detailed simulations using distributed models for the heat exchangers have been performed in order to develop the performance characteristics in terms of e.g., thermal effic...... conditions for the high side pressure. In addition the results underline that the investment cost for additional heat exchange components such as an internal heat exchanger may be unprofitable in the case where the heat source is free.......A transcritical carbon dioxide (CO2) Rankine power cycle has been analyzed based on first and second law of thermodynamics. Detailed simulations using distributed models for the heat exchangers have been performed in order to develop the performance characteristics in terms of e.g., thermal...... efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  18. Parametric-Based Thermodynamic Analysis of Organic Rankine Cycle as Bottoming Cycle for Combined-Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    SAMIULLAH QURESHI

    2017-01-01

    Full Text Available In Pakistan, the thermal efficiency of the power plants is low because of a huge share of fuel energy is dumped into the atmosphere as waste heat. The ORC (Organic Rankine Cycle has been revealed as one of the promising technologies to recover waste heat to enhance the thermal efficiency of the power plant. In current work, ORC is proposed as a second bottoming cycle for existing CCPP (Combined Cycle Power Plant. In order to assess the efficiency of the plant, a thermodynamic model is developed in the ESS (Engineering Equation Solver software. The developed model is used for parametric analysis to assess the effects of various operating parameters on the system performance. The analysis of results shows that the integration of ORC system with existing CCPP system enhances the overall power output in the range of 150.5-154.58 MW with 0.24-5% enhancement in the efficiency depending on the operating conditions. During the parametric analysis of ORC, it is observed that inlet pressure of the turbine shows a significant effect on the performance of the system as compared to other operating parameters.

  19. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo;

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low......-temperature heat at 90 ◦C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35mole). The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32...

  20. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  1. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda, Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration. (author)

  2. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C...

  3. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  4. Organic Rankine-cycle turbine power plant utilizing low temperature heat sources

    Science.gov (United States)

    Maizza, V.

    1980-03-01

    Utilizing and converting of existing low temperature and waste heat sources by the use of a high efficiency bottoming cycle is attractive and should be possible for many locations. This paper presents a theoretical study on possible combination of an organic Rankine-cycle turbine power plate with the heat pump supplied by waste energy sources. Energy requirements and system performances are analyzed using realistic design operating condition for a middle town. Some conversion systems employing working fluids other than water are being studied for the purpose of proposed application. Thermodynamic efficiencies, with respect to available resource, have been calculated by varying some system operating parameters at various reference temperature. With reference to proposed application equations and graphs are presented which interrelate the turbine operational parameters for some possible working fluids with computation results.

  5. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo;

    2015-01-01

    Organic Rankine cycle power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. Its design process and efficiency estimation are particularly challenging due......-loaded stages in supersonic flow regimes. This paper proposes a design method where the conventional cycle analysis is combined with calculations of the maximum expander performance using a validated mean-line design tool. The high computational cost of the turbine optimization is tackled building a model which...... efficiency of an offshore platform. The analysis of the results obtained using a constant turbine efficiency and the method proposed in this paper indicates a maximum reduction of the expander performance of 10% points for pressure ratios between 10 and 35. This work also demonstrates that this approach can...

  6. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  7. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization...... variables are the working fluid, the turbine inlet pressure and temperature, the condensing temperature, the pinch points and the fluid velocities in the heat exchangers. The optimization process also includes the complete design of the shell and tube heat exchangers utilized in the organic Rankine cycle...

  8. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... and otherwise highresource demands, which through conventional methods cannot be addressed. The global optimal designwas a 1.2MW cycle with 2,2,3,3,4,4,5,5-octafluorohexane as the new fluid. The fluid has no ozone depletionpotential and a global warming potential under the regulatory limit. By using...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  9. An approach for IC engine coolant energy recovery based on low-temperature organic Rankine cycle

    Institute of Scientific and Technical Information of China (English)

    付建勤; 刘敬平; 徐政欣; 邓帮林; 刘琦

    2015-01-01

    To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle (ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%. All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.

  10. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  11. On the coupled system performance of transcritical CO2 heat pump and rankine cycle

    Science.gov (United States)

    Wang, Hongli; Tian, Jingrui; Hou, Xiujuan

    2013-12-01

    As one of the natural refrigerants, CO2 is a potential substitute for synthesized refrigerants with favorable environmental properties. In order to improve the performance of rankine cycle (RankC), the coupled system cycle (CSC) was designed and the performance was analyzed in this paper, which the CSC is combined by the RankC and the transcritical CO2 heat pump cycle with an expander. Based on thermodynamic principles, the performance analysis platform was designed and the performance analysis was employed. The results show that the average efficiency of the RankC is about 30 %, and the extraction cycle is about 32 %, while the CSC is about 39 %, and the last one is better than the others at the same parameters. With increasing of the boiler feed water temperature, the efficiencies of the three kinds of cycles show increasing trend. With increasing of pressure in conderser-evaporator or outlet temperature of gas cooler, the efficiency of the CSC shows a downward trend. Some fundamental data were obtained for increasing the RankC efficiency by waste heat recovery, and play an active role in improvement the efficiency of power plants.

  12. Experimental Investigation of the Performance of a Hermetic Screw-Expander Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Sung-Wei Hsu

    2014-09-01

    Full Text Available In this study, the authors experimentally investigate the performance of the organic Rankine cycle (ORC and screw expander under the influence of supply pressure and pressure ratio over the expander. Three tests were performed with expander pressure ratios of 2.4–3.5, 3.0–4.6, and 3.3–6.1, which cover the over-expansion and under-expansion operating modes. The test results show a maximum expander isentropic efficiency of 72.4% and a relative cycle efficiency of 10.5% at an evaporation temperature of 101 °C and condensation temperature of 45 °C. At a given pressure ratio over the expander, a higher supply pressure to the expander causes a higher expander isentropic efficiency and higher cycle efficiency in the over-expansion mode. However, in the under-expansion mode, the higher supply pressure results in a lower expander isentropic efficiency and adversely affects the cycle efficiency. The results also show that under the condition of operation at a given pressure ratio, a higher supply pressure yields a larger power output owing to the increased mass flow rate at the higher supply pressure. The study results demonstrate that a screw-expander ORC can be operated with a wide range of heat sources and heat sinks with satisfactory cycle efficiency.

  13. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  14. An Innovative Organic Rankine Cycle wtih Gas-liquid Injector for Pressurization

    Institute of Scientific and Technical Information of China (English)

    ZHU Hua-yun; XU Zhi-ming

    2016-01-01

    The organic Rankine cycle ( ORC ) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing , easily-invited cavitations , low efficiency and high cost .Gas-liquid two-phase injector is a device without moving parts , in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam.In this paper , the mechanical circulation pump was replaced with a gas-liquid injector .The effect of the evaporate temperature for the system was studied with the organic fluid R 123.While this novel ORC can not only improves the energy utilization , but also be suitable for some occasions without power .

  15. Effectiveness of Operation of Organic Rankine Cycle Installation Applied in the Liquid Natural Gas Regasification Plant

    Science.gov (United States)

    Kaczmarek, R.; Stachel, A. A.

    2017-05-01

    An analysis of the operation of an Organic Rankine Cycle (ORC) installation heated by a low-temperature heat source is presented for the case where a condenser of a working fluid is cooled by a liquid of ultralow temperature. For this purpose, the process of regasification of liquid natural gas (LNG) is considered. In the process, the condensation heat of the working fluid in ORC is taken by the LNG evaporating subsequently (i.e., undergoing regasification). The paper presents the schematic of this installation and its application, as well as the results of calculations on the basis of the analysis in terms of the power and efficiency. In the analysis, organic fluids used in the ORC as working ones have been selected.

  16. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  17. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-05-15

    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  18. Energy and Exergy Analyses of a Combined Power Cycle Using the Organic Rankine Cycle and the Cold Energy of Liquefied Natural Gas

    OpenAIRE

    2015-01-01

    In this work, energy and exergy analyses are carried out for a combined cycle consisting of an organic Rankine cycle (ORC) and a liquefied natural gas (LNG) Rankine cycle for the recovery of low-grade heat sources and LNG cold energy. The effects of the turbine inlet pressure and the working fluid on the system performance are theoretically investigated. A modified temperature-enthalpy diagram is proposed, which can be useful to see the characteristics of the combined cycle, as well as the te...

  19. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  20. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  1. Performance of Organic Rankine Cycle in Different Refrigerants for Low Temperature Geothermal using Delphi Program

    Directory of Open Access Journals (Sweden)

    Prabowo .

    2010-01-01

    Full Text Available A software has been developed in a Windows-based Delphi programming for analyzing the influence of the transport and thermodynamic properties of the refrigerants on the performance of the Organic Rankine Cycle (ORC. Its user-friendly drag and drop icon format and excellent color graphics make it an interactive tool for teaching and the preliminary design of the ORC system. The research was carried out by analyzing the performance of the system components and the overall ORC based on the several working fluids within R22, R123, R134a and RC318. The pressure of evaporator was varied in two steps 7 and 12 bar, while the condenser was kept constant pressure at 1 bar. The turbine inlet temperature was varied in the range 100 0C to 140 0C where the various isentropic efficiency inputs were applied for pump and turbine. By increasing turbine inlet temperature, R22 has the highest turbine work output and cycle efficiency. Contrary, RC318 has the lowest cycle efficiency and decreases trend with enhancing in turbine inlet temperature. RC318 has low latent heat of vaporization thus vaporizes under relatively very low evaporator heat supply.

  2. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  3. Optimization of Low-Temperature Exhaust Gas Waste Heat Fueled Organic Rankine Cycle

    Institute of Scientific and Technical Information of China (English)

    WANGHui—tao; WANGHua; ZHANGZhu—ming

    2012-01-01

    Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.

  4. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies...

  5. Design of a Condenser-Boiler for a Binary Mercury-Organic Rankine Cycle Solar Dynamic Space Power System

    Science.gov (United States)

    1987-05-15

    support the power needs of the space station. Competitive cycles considered have been Brayton, Rankine, and Stirling cycles powered with either nuclear or...at 644 OK, radiator at 350 OK, and pump and turbine efficiencies at 0.54 and 8.72, respectively. There are pressure losses of 10.7% in the regenerator ...10.4% in the "boiler", and 19% drop from turbine outlet to pump (including regenerator and RFMD). These figures represent the preliminary results

  6. Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC Simulation Tool

    Directory of Open Access Journals (Sweden)

    Davide Ziviani

    2016-05-01

    Full Text Available Despite the increasing interest in organic Rankine cycle (ORC systems and the large number of cycle models proposed in the literature, charge-based ORC models are still almost absent. In this paper, a detailed overall ORC simulation model is presented based on two solution strategies: condenser subcooling and total working fluid charge of the system. The latter allows the subcooling level to be predicted rather than specified as an input. The overall cycle model is composed of independent models for pump, expander, line sets, liquid receiver and heat exchangers. Empirical and semi-empirical models are adopted for the pump and expander, respectively. A generalized steady-state moving boundary method is used to model the heat exchangers. The line sets and liquid receiver are used to better estimate the total charge of the system and pressure drops. Finally, the individual components are connected to form a cycle model in an object-oriented fashion. The solution algorithm includes a preconditioner to guess reasonable values for the evaporating and condensing temperatures and a main cycle solver loop which drives to zero a set of residuals to ensure the convergence of the solution. The model has been developed in the Python programming language. A thorough validation is then carried out against experimental data obtained from two test setups having different nominal size, working fluids and individual components: (i a regenerative ORC with a 5 kW scroll expander and an oil flooding loop; (ii a regenerative ORC with a 11 kW single-screw expander. The computer code is made available through open-source dissemination.

  7. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nafey, A.S.; Sharaf, M.A. [Department of Engineering Science, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-11-15

    Organic Rankine cycles (ORC) have unique properties that are well suited to solar power generation. In this work design and performance calculations are performed using MatLab/SimuLink computational environment. The cycle consists of thermal solar collectors (Flat Plate Solar Collector (FPC), or Parabolic Trough Collector (PTC), or Compound Parabolic Concentrator (CPC)) for heat input, expansion turbine for work output, condenser unit for heat rejection, pump unit, and Reverse Osmosis (RO) unit. Reverse osmosis unit specifications used in this work is based on Sharm El-Shiekh RO desalination plant. Different working fluids such as: butane, isobutane, propane, R134a, R152a, R245ca, and R245fa are examined for FPC. R113, R123, hexane, and pentane are investigated for CPC. Dodecane, nonane, octane, and toluene are allocated for PTC. The proposed process units are modeled and show a good validity with literatures. Exergy and cost analysis are performed for saturation and superheated operating conditions. Exergy efficiency, total exergy destruction, thermal efficiency, and specific capital cost are evaluated for direct vapor generation (DVG) process. Toluene and Water achieved minimum results for total solar collector area, specific total cost and the rate of exergy destruction. (author)

  8. Simulation of an Innovative Stand-Alone Solar Desalination System Using an Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Jürgen Karl

    2007-12-01

    Full Text Available

    The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source, solar radiation. Thermal energy produced by the solar array evaporates a working fluid, which is used in an organic Rankine cycle that drives the pumps needed for the reverse osmosis process. Due to the fluctuation of solar irradiation, the dynamic simulation of such a system is necessary in order to assure the sufficient supply of water throughout a year. The simulation provides important information for optimum system sizing and design. The aim of this work is to present a modelling of a solar desalination system and to investigate the impact of different working fluids, thermodynamic parameters and cycle variations on the efficiency and water production of such a system.

    • An initial version of this paper was published in October, 2005 in the proceedings of SIMS'05, Trondheim, Norway. 

  9. A thermodynamics comparison of subcritical and transcritical organic Rankine cycle system for power generation

    Institute of Scientific and Technical Information of China (English)

    朱家玲; 薄华宇; 李太禄; 胡开永; 刘克涛

    2015-01-01

    A comparison on subcritical and transcritical organic Rankine cycle (ORC) system with a heat source of 110 °C geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient (U) and the total heat exchange area (A) (UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 kW obtained by R218, and that of subcritical systems is 13.57 kW obtained by R600a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.

  10. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  11. Analysis of the solar powered/fuel assisted Rankine cycle cooling system. Phase 1: Revision

    Science.gov (United States)

    Lior, N.; Koai, K.; Yeh, H.

    1985-04-01

    The subject of this analysis is a solar cooling system which consists of a conventional open-compressor chiller, driven by a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100C, and it is then superheated to about 600C in a fossil-fuel fired superheater. The steam drives a novel counter-rotating turbine, some of the heat from it is regenerated, and it is then condensed. Thermal storage is implemented as an integral part of the cycle, by means of hot-water which is flashed to steam when needed for driving the turbine. For the solar energy input, both evacuated and double-glazed flat-plate collectors were considered. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Each component was described by a separate subroutine to compute its performance from basic principles, and special attention was given to the parasitic losses, including pumps, fans and pressure drops in the piping and heat exchangers, and to describe the off-design performance of the components. The thermophysical properties of the fluids used are also described in separate subroutines. Transient simulation of the entire system was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, DC, and Phoenix, AZ) for a number of system configurations.

  12. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  13. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to purefluids. In order to properly account for turbine performance...... for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...

  14. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database “REFPROP”

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base “REFPROP” and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base “REFPROP” describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature

  15. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...

  16. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  17. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  18. Effect of working fluids on organic Rankine cycle for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bo Tau Liu; Kuo Hsiang Chien; Chi Chuan Wang [Industrial Technology Research Inst., Hsinchu, Taiwan (China). Energy and Resources Lab.

    2004-06-01

    This study presents an analysis of the performance of organic Rankine cycle (ORC) subjected to the influence of working fluids. The effects of various working fluids on the thermal efficiency and on the total heat-recovery efficiency have been investigated. It is found that the presence of hydrogen bond in certain molecules such as water, ammonia, and ethanol may result in wet fluid conditions due to larger vaporizing enthalpy, and is regarded as inappropriate for ORC systems. The calculated results reveal that the thermal efficiency for various working fluids is a weak function of the critical temperature. The maximum value of the total heat-recovery efficiency occurs at the appropriate evaporating temperature between the inlet temperature of waste heat and the condensing temperature. In addition, the maximum value of total heat-recovery efficiency increases with the increase of the inlet temperature of the waste heat source and decreases it by using working fluids having lower critical temperature. Analytical results using a constant waste heat temperature or based on thermal efficiency may result in considerable deviation of system design relative to the varying temperature conditions of the actual waste heat recovery and is regarded as inappropriate. (author)

  19. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  20. Assessment Alternative Energy for Organic Rankine Cycle Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2015-02-01

    Full Text Available This paper studies the possibility of power generation by using alternative energy in Thailand which are geothermal energy, solar energy and waste energy based on the energy and economy indicators. An Organic Rankine Cycle (ORC is used to generate electricity from heat sources of hot springs, solar water heating system and RDF-5, respectively. In this study, a 20 kW ORC system with using R-245fa as working fluid was tested and evaluated the system efficiency. It could be found that the efficiency of ORC system was around 8%, when hot water temperature was higher than 100 ºC. The values of levelized electricity costs (LEC of geothermal energy, solar energy and waste energy were 0.148, 0.547 and 0.442 USD/kWh, respectively. The suitable alternative energy for generating electricity was the geothermal energy which was beneficial than the solar and waste energy power plants in terms of energy and economy results.

  1. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  2. Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power

    Institute of Scientific and Technical Information of China (English)

    郭美茹; 朱启的; 孙志强; 周天; 周孑民

    2015-01-01

    To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles (ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area (UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15−363.15 K or 443.15−453.15 K, heptane is more suitable at 373.15−423.15 K, and R245ca is a good option at 483.15−503.15 K.

  3. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  4. A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Ben-Ran Fu

    2016-09-01

    Full Text Available This study explored effects of off-design heat source temperature (TW,in or flow rate (mW on heat transfer characteristics and performance of an organic Rankine cycle system by controlling the flow rate of working fluid R245fa (i.e., the operation flow rate of R245fa was controlled to ensure that R245fa reached saturation liquid and vapor states at the outlets of the preheater and evaporator, respectively. The results showed that the operation flow rate of R245fa increased with TW,in or mW; higher TW,in or mW yielded better heat transfer performance of the designed preheater and required higher heat capacity of the evaporator; heat transfer characteristics of preheater and evaporator differed for off-design TW,in and mW; and net power output increased with TW,in or mW. The results further indicated that the control strategy should be different for various off-design conditions. Regarding maximum net power output, the flow rate control approach is optimal when TW,in or mW exceeds the design point, but the pressure control approach is better when TW,in or mW is lower than the design point.

  5. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...... regarding control strategies and enhancement of the global system are drawn. A control strategy with a low storage temperature set-point (50˚C) allows reducing electrical consumption from 11% up to 24% when compared to higher set-point (60˚C). The system performance to produce power could also be optimized......This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...

  6. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  7. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application

    Directory of Open Access Journals (Sweden)

    Osoko Shonda

    2012-06-01

    Full Text Available Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the Engineering Equation Solver (EES environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer’s data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7%. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.

  8. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  9. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

      To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  10. Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications

    OpenAIRE

    Quoilin, Sylvain

    2011-01-01

    This thesis contributes to the knowledge and the characterization of small-scale Organic Rankine Cycles (ORC). It is based on experimental data, thermodynamic models and case studies. The experimental studies include: 1. A prototype of small-scale waste heat recovery ORC using an open-drive oil-free scroll expander, declined in two successive versions with major improvements. 2. A prototype of hermetic scroll expander tested on vapor test rig designed for that purpose. The achieve...

  11. 有机朗肯循环系统变工况特性分析%Analysis of organic Rankine's cycle in the variable working condition

    Institute of Scientific and Technical Information of China (English)

    林红良; 付保荣

    2014-01-01

    Organic Rankine's cycle power generation system internal parameters closely related to the external environment, the change of heat source parameters, cooling water temperature fluctuations can cause various points within the system parameter change, resulting in power system operation for a long time in the rating system thermal efficiency is low. Based on cyclic working substance of R245fa organic Rankine's cycle as the research object, through the establishment of evaporator and condenser heat transfer model, it is concluded that organic Rankine's circulation in different heat source temperature, evaporation temperature, condensation temperature of cooling water temperature changes, thereby gaining evaporation temperature, condensation temperature and the function relation between the heat source temperature, cooling water temperature. In actual organic Rankine's circulation waste heat power generation project, there are many unstable factors, so the analysis of the organic Rankine's circulation the variable working condition characteristics is necessary, to improve overall system performance has guiding significance.%有机朗肯循环系统发电系统内部参数与外界环境紧密相关,热源参数的变化、冷却水温度的变化都会使得系统内部各个点参数改变,从而导致系统长期运行在非额定工况热效率低。该文以循环工质为R245fa的有机朗肯循环系统作为研究对象,通过建立蒸发器和冷凝器换热模型,得出有机朗肯循环系统在不同热源温度、不同冷却水温度下的最佳蒸发温度、凝结温度变化情况,从而获得蒸发温度、凝结温度与热源温度、冷却水温度之间的函数关系。在实际有机朗肯循环系统余热发电工程中,存在着很多不稳定因素,因此对有机朗肯循环系统变工况特性分析是非常有必要的,对于提高系统整体性能具有指导性意义。

  12. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-04-15

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of

  13. Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cycle for Use in Geothermal Power Plant

    Directory of Open Access Journals (Sweden)

    Haile Araya Nigusse

    2014-08-01

    Full Text Available The global energy demand increases with the economic growth and population rise. Most electrical power is currently generated by conventional methods from fossil fuels. Despite the high energy demand, the conventional energy resources such as fossil fuels have been declining. In addition to this harmful combustion byproducts are resulting global warming. However, the increase of environmental concerns and energy crisis can be minimized by sustainable utilization of the low to medium temperature heat resources. The Organic Rankine Cycle power plant is a very effective option for utilization of low grade heat sources for power generation. Heat exchangers are the main components of the Organic Rankine Cycle power plant which receives heat energy from the heat source to evaporate and condense the low boiling temperature organic working fluid which in turn drives the turbine to generate power. This paper presents a simplified approach to the design, fabrication and performance assessment of a shell tube heat exchanger designed for condenser in a model Organic Rankine Cycle geothermal power plant. The design involved sizing of heat exchanger (condenser using the LMTD method based on an expected heat transfer rate. The heat exchanger of the model power plant was tested in which hot water simulated geothermal brine. The results of the experiment indicated that the heat exchanger is thermally suitable for the condenser of the model power plant.

  14. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  15. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... in cycle efficiency. Furthermore, the results indicated that non-flammable fluids were able to produce near optimum efficiency in recuperated high pressure processes....

  16. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    -life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...... that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...

  17. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  18. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  19. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  20. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  1. DESIGN AND PARAMETRIC OPTIMIZATION OF AN ORGANIC RANKINE CYCLE POWERED BY SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2013-01-01

    Full Text Available This study presents the simulation and performance analysis of a regenerative and superheated Organic Rankine Cycle (ORC. To this scope, anew simulation model has been developed. The model is based on zero-dimensional energy and mass balances for all the components of the system. Shell and tube heat expanders with single shell and double tube pass have been chosen. Pump and expander have been considered only form a thermodynamic point of view, with constant compressor and expansion efficiency. The simulations have been carried out in order to find different optimization criteria to use as preliminary design tools, especially for the organic fluid choice and the heat exchanger design. Firstly, the ORC performances have been evaluated for different organic medium, varying the temperature of the heat source. The global efficiency of the plant, the net electric power generation and the volumetric expansion ratio has been considered as evaluation parameters. The simulation results show that two hydrocarbons demonstrate good performance for low, medium and high heat source, namely Isobutene, n-Butene; R245fa can add to them for the exploitation of heat source up to 170°C. Additional simulations have been carried out to discover an optimization criterion for the heat exchanger design. The plant performances have been first evaluated varying one by one the following parameters: tube length, tube number and shell diameter. Then a global optimization was also performed using the Golden Search technique. The total cost of the plant has been considered as objective functions. With respect to the objective function, higher the boiling heat transfer area higher the electric power generation and the economical benefit. The optimal configuration, compared to the initial one, shows an increase of incomes and mechanical power equal to 60.1 and 48.2% respectively, against a decrease of global efficiency equal to 10.9%.

  2. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  3. The role of outlet temperature of flue gas in organic Rankine cycle considering low temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shuang Ying; Li, Chun; Xiao, Lan; Li, You Rong; Liu, Chao [Chongqing University, Chongqing (China)

    2014-12-15

    This paper gives a special focus on the role of outlet temperature of flue gas (T{sub go}) in organic Rankine cycle (ORC) system for low temperature flue gas waste heat recovery. The variations of performance indicators: net work (W{sub net}), exergy efficiency (η{sub ex}) and levelized energy cost (LEC) versus T{sub go} are discussed. Considering the corrosion of low temperature flue gas, the necessity and reasonability of limiting T{sub go} at its minimum allowed discharge temperature (355.15 K) are analyzed. Results show that there exist optimal T{sub go} (T{sub go,opt}) for W{sub net} and LEC, while T{sub go,opt} for η{sub ex} does not appear under the investigated range of T{sub go}. Moreover, the T{sub go,opt} for W{sub net} is always lower than 355.15 K, the T{sub go,opt} for LEC, despite being greater than the one for W{sub net}, is just slightly higher than 355.15 K when the inlet temperature of flue gas varies from 408.15 K to 463.15 K. For the waste heat recovery of low temperature flue gas, it is reasonable to fix T{sub go} at 355.15K if W{sub net} or LEC is selected as primary performance indicator under the pinch point temperature difference of evaporator (ΔT{sub e}) below 20K.

  4. Design and optimization of organic rankine cycle for low temperature geothermal power plant

    Science.gov (United States)

    Barse, Kirtipal A.

    Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R

  5. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  6. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  7. Improvement of the cascading closed loop cycle system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guoqiang; CAI Ruixian

    2007-01-01

    Aspen Plus was used to simulate and get more information about the cascading closed loop cycle (CCLC)system [1-3].Following evaluation of the variable temperature heat source (e.g.gas turbine flue gas) utilized by the CCLC,both qualitative and quantitive comparisons between the system and simple steam Rankine cycle,were made.The results indicate that CCLC has the advantage in recuperating exergy from flue gas,but it cannot sufficiently convert the recuperated exergy to useful work.To improve the utilization of low temperature flue gas heat,the properties and parameters of the working substance must match conditions of the low temperature heat source.A better cycle scheme and pressure distribution was proposed to raise the efficiency of the CCLC.In addition,the multifunction system concept was introduced to improve the performance of CCLC with solar energy.

  8. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  9. Parametric Optimization of Organic Rankine Cycle with R245fa/R601a as Working Fluid

    Institute of Scientific and Technical Information of China (English)

    Zhu Jialing; Kang Zhenhua; An Qingsong; Li Tailu

    2015-01-01

    In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245fa is mixed with R601a atgeothermal water temperature of 110℃. Based on thermodynamics, the characteristics of mixture and its influence on the performance of ORC under different evaporating temperatures and composition proportionsare analyzed. Results show that the zeotropic mixture R245fa/R601a(0.4/0.6) has the highest performance. When the evaporating temperature reaches 67℃, the outlet temperature of geothermal water is 61℃, the net power output is the highest and the thermal efficiency is about 9%.

  10. Altheim geothermal plant. Power generation by means of an ORC turbogenerator; Geothermieanlagen Altheim. Stromerzeugung mittels Organic-Rankine-Cycle Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G. [Marktgemeindeamt Altheim (Austria)

    1997-12-01

    The report describes the project of the Austrian market town of Altheim to generate electricity by means of an ORC turbogenerator using low-temperature thermal water. The project is to improve the technical and economic situation of the existing industrial-scale geothermal project. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich, Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Grossthermieanlage zu verbessern. (orig.)

  11. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  12. Optimization study of large-scale low-grade energy recovery from conventional Rankine cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, K.M.; Bettle, M.C.; Gerber, A.G.; Hall, J.W. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Mechanical Engineering

    2010-10-10

    This study evaluates large-scale low-grade energy recovery (LS-LGER) from a conventional coal-fired Rankine cycle (RC) as a 'green' option to offsetting the cost of treating pollution. An energy and exergy analysis of a reference-generating station isolates the key areas for investigation into LS-LGER. This is followed by a second law analysis and a detailed optimization study for a revised RC configuration, which provides a conservative estimate of the possible energy recovery. Cycle optimization based on specific power output, and including compact heat exchanger designs, indicates plant efficiency improvements (with high-capacity equipment) of approximately 2 percentage points with reduced environmental impact.

  13. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  14. 重型卡车朗肯-朗肯制冷系统热力学研究%Theoretical Study on the Rankine-Rankine Refrigeration Cycle System Driven by Heavy Truck Waste Heat

    Institute of Scientific and Technical Information of China (English)

    王令宝; 卜宪标; 李华山; 马伟斌

    2014-01-01

    本文针对重型卡车发动机冷却液余热工况,采用R245fa作为循环工质建立了朗肯-朗肯制冷系统,剖析了此系统的基本原理和结构特点,根据系统分析建立了数学模型,模拟分析了发生温度、冷凝温度、蒸发温度对系统性能的影响。结果表明:在发生温度85℃、冷凝温度50℃、蒸发温度5℃时,系统COP达到0.254,虽然此系统的效率要低于相同工况下的吸收制冷循环,但是朗肯-朗肯制冷系统相对于吸收制冷系统具有尺寸小、易于控制和快速响应等优点,利用朗肯-朗肯循环回收重型卡车发动机冷却液余热迚行制冷是可行的。%The paper established a Rankine-Rankine refrigeration cycle system driven by heavy truck engine coolant waste heat, which uses R245fa as working medium. The basic principle and structural characteristics of the system are analyzed. According to the system analysis, the mathematical model is established. The effects of generating temperature, condensation temperature and evaporation temperature on the system performance are investigated. The COP reaches 0.254, when the generating temperature is 85oC, the condensation temperature is 50oC and the evaporation temperature is 5oC. The Rankine-Rankine refrigeration cycle system has the advantages of small size, easy to control and fast response, although the COP is lower than that of the absorption refrigeration under the same condition. We can believe that Rankine-Rankine refrigeration cycle system is feasible to recovery engine coolant waste heat.

  15. Selecting working fluids in an organic Rankine cycle for power generation from low temperature heat sources

    Directory of Open Access Journals (Sweden)

    Fredy Vélez

    2014-01-01

    Full Text Available Este trabajo presenta un estudio termodinámico realizado sobre el uso de fuentes de calor de baja temperatura para la generaci ón de energía a través de un ciclo Rankin e subcrítico con fluidos de trabajo orgánicos. Un análisis d el estado del arte de esta tecn ología muestra como línea de investigación abierta, la selección del fluido de trabajo, pues hasta ahora, no existe un fluido que satisfaga t odos los aspectos medioambientales y técnicos a tener en cuenta en estos ciclos. Por ello, se ha desarrollado una serie de simulaciones que permiten estudiar el comportamiento del ciclo Rankine con difer entes configuraciones y fluidos (húmedo, seco e isoentrópico, permitiendo con ello observar de qué manera influyen cambios ta nto en esos tipos de fluidos utilizados (refrigerantes, hidroca rburos y agua, como de condiciones de temperatura, presión, flujo, etc. , sobre la eficiencia total del ciclo. Con el trabajo realizado se demuestra la viabilidad de este tipo de proceso en la recuperación de calore s en la industria y/o aprovechamiento de fuentes renovables de baja y media temperatura para la producción de energía eléctrica.

  16. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Directory of Open Access Journals (Sweden)

    Liu Yan-Na

    2015-06-01

    Full Text Available In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  17. Energy and Exergy Analyses of a Combined Power Cycle Using the Organic Rankine Cycle and the Cold Energy of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Ho Yong Lee

    2015-09-01

    Full Text Available In this work, energy and exergy analyses are carried out for a combined cycle consisting of an organic Rankine cycle (ORC and a liquefied natural gas (LNG Rankine cycle for the recovery of low-grade heat sources and LNG cold energy. The effects of the turbine inlet pressure and the working fluid on the system performance are theoretically investigated. A modified temperature-enthalpy diagram is proposed, which can be useful to see the characteristics of the combined cycle, as well as the temperature distributions in the heat exchangers. Results show that the thermal efficiency increases with an increasing turbine inlet pressure and critical temperature of the working fluid. However, the exergy efficiency has a peak value with respect to the turbine inlet pressure, and the maximum exergy efficiency and the corresponding optimum turbine inlet pressure are significantly influenced by the selection of the working fluid. The exergy destruction at the condenser is generally the greatest among the exergy destruction components of the system.

  18. Expansion of organic Rankine cycle working fluid in a cylinder of a low-speed two-stroke ship engine

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Wronski, Jorrit; Andreasen, Jesper Graa

    2017-01-01

    Electricity and power produced from waste heat is particularly relevant in shipping because fuel expenses constitute the majority of the cost of operating the ships; however, the cost-benefit aspect limits the widespread implementation of waste heat recovery power units on ships. This paper...... for this concept. The evaluation of 104 working fluids points to cyclopropane, R245fa and R1234ze(z) as the most promising. The results suggest that the power produced by the organic Rankine cycle cylinder is at least equivalent to that of the cylinders operating with the diesel process. This enables potential...... fuel savings and emissions reductions of about 8.3% in the studied scenario....

  19. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  20. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    Science.gov (United States)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  1. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    Science.gov (United States)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  2. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  3. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  4. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  5. Study Analysis of Flue Gas Utilization as Alternative Power Generation in Cement Plant Using Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Rahmat Ranggonang Anwar

    2017-01-01

    Full Text Available Abstract—Cement plant produce large amount of heat source in cement making process, due to inefficiency of system there still waste heat available in form of flue gas that can be utilize. Flue gas  in cement plant can be utilized as alternative power generation. With the 200-300oC temperature output range of flue gas from suspension preheater and air quenching cooler (AQC in cement plant, organic rankine cycle (ORC can be suitable option for alternative power generation. ORC is development of rankine cycle, the different is the working fluid in ORC using refrigerant. In cement plant that produce 8466 TPD kiln production, used flue gas from suspension preheater to dry raw material and produce 163888 m3/h flue gas from AQC that still not utilized. Flue gas with 235oC temperature from AQC can utilized for power generation purpose using ORC system. Waste heat recovery calculation carried out to know the potential recovery. Operating condition of the ORC system will determine power produced that can be generated and ORC components calculated and selected according to the operating condition of the system. Using R141b as working fluid with 8 bar pressure and 110oC temperature inlet to turbine, power produced by turbine is 666 kW. For the components, evaporator and condenser use shell and tube heat exchanger, with evaporator heat transfer area is 676.49 m2 while condenser has 510 m2 of heat transfer area. And for working fluid pump it needs 16.235 Kw power to pump R141b back to evaporator.

  6. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Science.gov (United States)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.

  7. THERMODYNAMIC ANALYSIS OF DIFFERENT WORKING FLUIDS USED IN ORGANIC RANKINE CYCLE FOR RECOVERING WASTE HEAT FROM GT-MHR

    Directory of Open Access Journals (Sweden)

    AMIN HABIBZADEH

    2016-01-01

    Full Text Available In this paper, the performance of 13 working fluids in two Organic Rankine Cycles, which operate as the bottoming cycles for recovering waste heat from gas turbine modular helium reactor (GT-MHR, is investigated. Working fluids are classified in three dry, isentropic and wet fluids. The effect of varying pump temperature and evaporator pressure on the thermal efficiency, total exergy loss of the combined cycle is studied for each category, and the results are compared. The results are calculated for an optimum pressure ratio in which thermal efficiency is maximum. According to the results, dry fluids show a higher thermal efficiency while wet fluids have the lowest values. However, the highest value for thermal efficiency is for R141b, which is an isentropic fluid. Furthermore, the results indicate that pump temperature increase, reduces the total thermal efficiency and increases the total exergy loss of the combined cycle. Increasing evaporator pressure leads to an optimum pressure that maximizes total thermal efficiency. According to the optimized pressure ratio and evaporator pressure, R141b in isentropic fluids, R123 in dry fluids and R717 in wet fluids have the highest thermal efficiency values.

  8. Investigation of the Criteria for Fluid Selection in Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Burak Atakan

    2011-07-01

    ="Colorful List Accent 6" />

    The organic Rankine cycle is a promising way for the conversion of low temperature heat to electricity. Different fluids can be used in Rankine cycles for the utilization of waste heat.  The suitability of a certain fluid will depend on

  9. System and component modelling and optimisation for an efficient 10 kWe low-temperature organic Rankine cycle utilising a radial inflow expander

    OpenAIRE

    2015-01-01

    Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recovery and solar power present a significant development opportunity but limited prototypes have been developed. This paper aims to address this by describing a system modelling tool which is used to select a working fluid, optimise cycle conditions, and preliminarily size a radial inflow rotor for an experimental test rig. The program is a steady-state sizing and optimisation tool which advances on cu...

  10. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  11. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  12. Reactor applications of the compact fusion advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.A.; Logan, B.G.; Campbell, R.B.

    1988-03-01

    We have made a preliminary design of a D-T fusion reactor blanket and MHD power conversion system based on the CFAR concept, and found that the performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boilling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection trmperatures, and only a relatively small natural-draft heat exhanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although we have not yet performed a detailed cost analysis, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity. 11 refs., 5 figs., 2 tabs.

  13. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  14. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  15. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC System

    Directory of Open Access Journals (Sweden)

    Piotr Kolasiński

    2015-04-01

    Full Text Available Organic Rankine Cycle (ORC power systems are nowadays an option for local and domestic cogeneration of heat and electric power. Very interesting are micropower systems for heat recovery from low potential (40–90 °C waste and renewable heat sources. Designing an ORC system dedicated to heat recovery from such a source is very difficult. Most important problems are connected with the selection of a suitable expander. Volumetric machines, such as scroll and screw expanders, are adopted as turbine alternative in small-power ORC systems. However, these machines are complicated and expensive. Vane expanders on the other hand are simple and cheap. This paper presents a theoretical and experimental analysis of the operation of a micro-ORC rotary vane expander under variable heat source temperature conditions. The main objective of this research was therefore a comprehensive analysis of relation between the vane expander output power and the heat source temperature. A series of experiments was performed using the micropower ORC test-stand. Results of these experiments are presented here, together with a mathematical description of multivane expanders. The analysis presented in this paper indicates that the output power of multivane expanders depend on the heat source temperature, and that multivane expanders are cheap alternatives to other expanders proposed for micropower ORC systems.

  16. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  17. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    Directory of Open Access Journals (Sweden)

    Theresa Weith

    2014-08-01

    Full Text Available The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM and octamethyltrisiloxane (MDM are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process simulations using the simulation tool Aspen Plus show an increase in second law efficiency of 1.3% in case of 97/03 wt % MM/MDM-mixture, whereas for the combined heat and power mode a 60/40 wt % MM/MDM-mixture yields the highest efficiency with an increase of nearly 3% compared to most efficient pure fluid. Next to thermodynamic analysis, measurements of heat transfer coefficients of these siloxanes as well as their mixtures are conducted and Kandlikar’s correlation is chosen to describe the results. Based on that, heat exchanger areas for preheater and evaporator are calculated in order to check whether the poorer heat transfer characteristics of mixtures devalue their efficiency benefit due to increased heat transfer areas. Results show higher heat transfer areas of 0.9% and 14%, respectively, compared to MM.

  18. Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions

    Directory of Open Access Journals (Sweden)

    Ben-Ran Fu

    2014-06-01

    Full Text Available An organic Rankine cycle system comprised of a preheater, evaporator, condenser, turbine, generator, and pump was used to study its off-design performance and the operational control strategy. R245fa was used as the working fluid. Under the design conditions, the net power output is 243 kW and the system thermal efficiency is 9.5%. For an off-design heat source flow rate (mW, the operating pressure was controlled to meet the condition that the R245fa reached the liquid and vapor saturation states at the outlet of the preheater and the evaporator, respectively. The analytical results demonstrated that the operating pressure increased with increasing mW; a higher mW yielded better heat transfer performance of the preheater and required a smaller evaporator heat capacity, and the net power output and system thermal efficiency increased with increasing mW. For the range of mW studied here, the net power output increased by 64.0% while the total heat transfer rate increased by only 9.2%. In summary, off-design operation of the system was examined for a heat source flow rate which varied by –39.0% to +78.0% from the designed rate, resulting in –29.2% to +16.0% and –25.3% to +12.6% variations in the net power output and system thermal efficiency, respectively.

  19. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  20. Studi Eksperimen Perbandingan Pengaruh Variasi Tekanan Inlet Turbin danVariasi Pembebanan Terhadap Karakteristik Turbin Pada Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Dwi Dharma Risqiawan

    2013-12-01

    Full Text Available Sistem pembangkit listrik telah berinovasi pada saat ini untuk tetap memenuhi kebutuhan akan ketersediaan listrik salah satunya dengan Organic Rankine Cycle (ORC. Sistem ini terdiri dari empat komponen utama yaitu evaporator, turbin, kondensor, dan pompa.Fluida kerja dipompa ke evaporator untuk membangkitkan uap lalu digunakan menggerakkan turbin.Uap hasil ekspansi turbin dikondensasi dan dialirkan oleh pompa kembali ke evaporator.Sistem ini mampu memanfaatkan sumber energi yang memiliki temperatur dan tekanan rendah untuk membangkitkan uap fluida organik. Penelitian ini dilakukan untuk mengevaluasi kinerja turbin pada sistem ORC dengan memvariasikan tekanan masuk turbin dan pembebanan dengan menggunakan R-123 sebagai fluida kerja .Pengambilan data dilakukan dengan memvariasikan tekanan masuk turbin pada setiap variasi pembebanan generator.Pengamatan dilakukan hanya pada turbin untuk mengetahui karakteristik turbin yang digunakan saat ini.Pengambilan data dilakukan dengan R-123 sebagai fluida kerja. Dari eksperimen didapatkan temperatur masuk dan keluar turbin,kecepatan putaran turbin dalam rpm, dan enthalpy dapat diketahui. Enthalpy digunakan untuk mengitung kerja yang dihasilkan turbin, efisiensi turbin dan efisiensi sudu turbin.Pada tekanan masuk turbin 8 bar dan beban 1000 Watt data dengan nilai terbaik didapatkan.Hasil perhitungan data didapatkan kerja yang dihasilkan turbin yang terbesar adalah 5,4 KW. Hasil lain yang dapat diketahui adalah efisiensi turbin tertinggi 88%. Efisiensi sudu turbin tertinggi yang terhitung adalah 42,9%.

  1. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  2. Working fluids of a low-temperature geothermally-powered Rankine cycle for combined power and heat generation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids.

  3. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  4. Structures closed into cycles in globular proteins.

    Science.gov (United States)

    Efimov, A V

    2011-12-01

    Different types of structures closed into cycles are widespread at all the levels of structural organization of proteins. β-Hairpins, triple-stranded β-sheets, and βαβ-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into larger cycles by means of different superhelices, split β-hairpins, or SS-bridges results in formation of complex structural motifs such as abcd-units, φ-motifs, five- and seven-segment α/β-motifs, etc. At the level of tertiary structure many proteins and domains fold into structures closed into cylinders. Apparently, closing the motifs and domains into cycles and cylinders results in formation of more cooperative and stable structures as compared with open ones, and this may be the reason for high frequencies of occurrence of the motifs in proteins.

  5. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  6. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    combustion, geothermal and solar heat sources. The working fluid is essential to the performance of the cycle. In order to evaluate and test promising fluid candidates, an appropriate Equation of State (EoS) [1] is necessary. For ORC applications, an EoS is commonly selected based on goodness-of-fits to data...

  7. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin;

    2016-01-01

    and generate electricity, coupled to a solar thermal collector roof. This reversible HP/organic Rankine cycle unit presents three operating modes: direct heating, HP and organic Rankine cycle. This work focuses on describing the dynamic model of the multi-component system followed by a techno-economic analysis...... of the system under different operational conditions. Sensitivity studies include: building envelope, climate, appliances, lighting and heat demand profiles. It is concluded that the HP/ORC unit can turn a single-family house into a PEB under certain weather conditions (electrical production of 3012 k......Wh/year and total electrical consumption of 2318 kWh/year) with a 138.8 m2 solar roof in Denmark....

  8. Design of organic Rankine cycles using a non-conventional optimization approach

    DEFF Research Database (Denmark)

    Andreasen, J. G.; Larsen, Ulrik; Haglind, F.

    2015-01-01

    90 °C to 285 °C. The results suggest that the conventional optimization approach is not suitable for estimating the performance potential when the temperature profiles in the heat exchangers are closely matched. This is exemplified for the fluid MDM where the temperature profile of preheating aligns...

  9. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System

    OpenAIRE

    Gaosheng Li; Hongguang Zhang; Fubin Yang; Songsong Song; Ying Chang; Fei Yu; Jingfu Wang; Baofeng Yao

    2016-01-01

    A novel free piston expander-linear generator (FPE-LG) integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC) system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE) was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timi...

  10. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  11. Variants of closing the nuclear fuel cycle

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  12. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    OpenAIRE

    Gunnar Latz; Olof Erlandsson; Thomas Skåre; Arnaud Contet; Sven Andersson; Karin Munch

    2016-01-01

    The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR) system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when u...

  13. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  14. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  15. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  16. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  17. Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine

    Directory of Open Access Journals (Sweden)

    Christoph J.W. Kirmse

    2016-06-01

    Full Text Available The Up-THERM heat converter is an unsteady, two-phase thermofluidic oscillator that employs an organic working fluid, which is currently being considered as a prime-mover in small- to medium-scale combined heat and power (CHP applications. In this paper, the Up-THERM heat converter is compared to a basic (sub-critical, non-regenerative organic Rankine cycle (ORC heat engine with respect to their power outputs, thermal efficiencies and exergy efficiencies, as well as their capital and specific costs. The study focuses on a pre-specified Up-THERM design in a selected application, a heat-source temperature range from 210 °C to 500 °C and five different working fluids (three n-alkanes and two refrigerants. A modeling methodology is developed that allows the above thermo-economic performance indicators to be estimated for the two power-generation systems. For the chosen applications, the power output of the ORC engine is generally higher than that of the Up-THERM heat converter. However, the capital costs of the Up-THERM heat converter are lower than those of the ORC engine. Although the specific costs (£/kW of the ORC engine are lower than those of the Up-THERM converter at low heat-source temperatures, the two systems become progressively comparable at higher temperatures, with the Up-THERM heat converter attaining a considerably lower specific cost at the highest heat-source temperatures considered.

  18. Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-07-01

    Full Text Available The Organic Rankine Cycle (ORC is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

  19. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  20. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  1. Closed cycle propulsion for small unmanned aircraft

    Science.gov (United States)

    Hays, Thomas Chadwick

    This study evaluates the merit of closed cycle propulsion systems for use in unmanned systems. The complexity and added weight of closed cycle engines is offset by benefits in high altitude performance, operation in polluted air environments, multi-fuel operation, and potential for flight in low oxygen environments using generic thermal heat sources. Although most closed thermal cycles cannot match the efficiency and power density potential of internal combustion engines (ICE) and turbomachines in aircraft propulsion applications, the addition of design requirements regarding noise output, and operation at high altitude results in IC and CC engine's performance becoming much more comparable. Muffling devices increase backpressure on internal combustion engines thereby reducing power output and efficiency. Multi stage turbo supercharging for operation at high altitude can in some cases increase efficiency of ICE's, but at the result of significant additional complexity and cost that also reduces practical reliability because of the often intricate mechanisms involved. It is in these scenarios that closed cycle engines offer a comparable performance alternative that may prove to be simpler, cheaper, and more reliable than high altitude or low noise internal combustion or turbomachine propulsion systems.

  2. Design and development of an automotive organic Rankine-cycle powerplant with a reciprocating expander. Final report. Volume II. Detailed discussion

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Work performed for the design and development of an organic Rankine-cycle engine for automobile propulsion is reported. An automotive power plant using an organic Rankine-cycle system with a reciprocating expander has been designed, built, and tested on an engine dynamometer in a preprototype configuration. The system is designed to provide performance approximately equivalent to that of a 351-CID internal combustion engine in the reference car, a 1972 Ford Galaxie 500. A description of the preprototype system, major components, and results from component and system testing are presented. The fuel economy based on steady-state measurements is estimated to be 10.2 mpg over the federal driving cycle with a maximum of 16 mpg at 30 mph. Projections of steady-state emission measurements show compliance with the 1970 Clean Air Act standards for 1978 vehicle emissions. The levels for unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were 41 percent, 6 percent, and 69 percent of the standards, respectively. At the conclusion of the preprototype phase of the program, a prototype design effort was initiated to upgrade and improve the performance of the preprototype system. The reference vehicle for this prototype design is a compact car in the weight class of a 1974 Ford Pinto. The results of this design study, including performance projections, are also presented.

  3. An introduction to closed cycle cryogenic coolers

    Science.gov (United States)

    Chellis, F. F.

    1980-01-01

    Closed cycle cryogenic coolers are used extensively for cooling infrared detectors and other specialized electronic devices. Because of the special requirements of each electro-optical system it is generally necessary to custom design the cryocooler to fit the requirements. Early and close cooperation between the electro-optical systems designer and the cryocooler manufacturer is important to the successful marriage of the cryocooler with the total electro-optical system. Limitations of various cryocooling techniques are presented, and consideration for cryocooling integration are addressed.

  4. Gemini helium closed cycle cooling system

    Science.gov (United States)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  6. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  7. Closed cycle electric discharge laser design investigation

    Science.gov (United States)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  8. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part II: Plant Simulation and Optimisation Study

    Science.gov (United States)

    Chaczykowski, Maciej

    2016-06-01

    After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.

  9. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  10. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  11. Monitoring environmental and related performance parameters for a Rankine-cycle turbine electric generator utilizing geothermal energy at the Gila Hot Springs, New Mexico

    Science.gov (United States)

    Starkey, A. H.; Icerman, L.

    1984-08-01

    The environmental effects associated with the operation of a privately owned Rankine-cycle turbogenerator unit using low temperature geothermal resources in the form of free-flowing hot springs to produce electricity in a remote, rural area were studied. The following conclusions pertain to the operation of the turbogenerator system: (1) the heat exchanger could not provide sufficient freon vapor at the required pressures to provide adequate thermal input to the turbine; (2) conversion or redesign of the condenser and return pump to function adequately represents a problem of unknown difficulty; (3) all pressure and heat transfer tests indicated that a custom designed heat exchanger built on-site would provide adequate vapor at pressures high enough to power a 10-kW (sub e) or perhaps larger generator; and (4) automated control systems are needed for the hot and cold water supplies and the freon return pump.

  12. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    In energy systems with high share of renewable energy sources, like wind and solar power, it is paramount to deal with their intrinsic variability. The interaction between electric and thermal energy (heating and cooling) demands representa potential area for balancing supply and demand that could...... of the users. Results show that real load control logic can lessen the adverse effects ofcycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...... come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  13. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected...

  14. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  15. Thermodynamic analysis of R134a in an Organic Rankine Cycle for power generation from low temperature sources

    Directory of Open Access Journals (Sweden)

    Fredy Vélez

    2014-01-01

    Full Text Available Este trabajo presenta los principales resultados del estudio termodinámico realizado sobre el uso de una fuente de calor de baja temperatura (150oC como máximo para la generación de energía a través de un ciclo Rankine subcrítico con R134a como fluido de trabajo. El procedimiento para analizar el comportamiento del ciclo propuesto consistió en modificar la presión y temperatura de entrada y/o descarga de la turbina, con el fluido de trabajo en condiciones tanto de saturación, como sobrecalentamiento. Como resultado, se puede indicar que la eficiencia del ciclo con este fluido es una débil función de la temperatura, es decir, sobrecalentar el fluido a la entrada de la turbina no causa un cambio significativo en la eficiencia. Sin embargo, cuando la relación de presión en la turbina aumenta, la eficiencia incrementa, y también, conforme la temperatura de entrada a la turbina aumenta, la eficiencia aumenta pronunciadamente. Además, se analizó el efecto de adicionar un intercambiador interno de calor que aumentó los valores de eficiencia obtenidos, dando como resultado, una eficiencia máxima del 11% y 14% para el ciclo básico y con el intercambiador interno de calor, respectivamente.

  16. Parametric and exergetic analysis of a two-stage transcritical combined organic Rankine cycle used for multiple grades waste heat recovery of diesel engine

    Science.gov (United States)

    Tian, H.; Zhang, J.; Xu, X. F.; Shu, G. Q.; Wei, H. Q.

    2013-12-01

    Diesel engine has multiple grades of waste heat with different ratios of combustion heat, exhaust is 400 °C with the ratio of 21% and coolant is 90 °C with 19%. Few previous publications investigate the recovery of multiple grades waste heat together. In this paper, a two-stage transcritical combined organic rankine cycle (CORC) is presented and analyzed. In the combined system, the high and low temperature stages transcritical cycle recover the high grades waste heat, and medium to low grades waste heat respectively, and being combined efficiently. Meanwhile, the suitable working fluids for high stage are chosen and analyzed. The cycle parameters, including thermal efficiency (ηth), net power output (Pnet), energy efficiency (ηexg) and global thermal efficiency of DE-CORC(ηglo) have also been analyzed and optimized. The results indicate that this combined system could recover all the waste heat with a high recovery ratio (above 90%) and obtain a maximum power output of 37kW for a DE of 243kW. The global thermal efficiency of DE-CORC can get a max value of 46.2% compared with 40% for single DE. The results also indicate that all the energy conversion process have a high exergy efficiency.

  17. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  18. Engine Waste Heat Recovery Based on Organic Rankine Cycle%基于有机朗肯循环的发动机余热回收技术

    Institute of Scientific and Technical Information of China (English)

    郭丽华; 覃峰; 陈江平; 刘杰

    2012-01-01

    Eight kinds of cycle media in organic Rankine cycle (ORC) were compared during the thermodynamic process. Considering the systemic, reliable and environmental factors, R245fa was the optimum selection for ORC. For the application of Cummins heavy duty vehicle engine, the power generation system with the waste heat recovery was designed. Recovering the heat from charge air, tail pipe gas and exhaust gas, the power generation was realized. The efficiency of waste heat recovery in the system was 10. 4%.%通过比较8种循环工质在有机朗肯循环(ORC)系统中的热力过程,从系统性能、可靠性、环保等角度综合考虑,验证了R245fa用于ORC循环工质的优势.以康明斯某重型车用发动机为应用目标,设计了一套余热回收发电系统,通过回收增压空气、尾管废气、发动机废气的热量,用于发电.经过计算,该系统的余热回收效率为10.4%.

  19. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources

    Directory of Open Access Journals (Sweden)

    Armando Fontalvo

    2017-09-01

    Full Text Available Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC. This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targeting small-scale applications. Maximum power output is lower than 45 KW while the temperature of the heat source varies in the range 100–200 °C. The studied working fluids, namely R1234yf, R1234ze(E and R1234ze(Z, are selected based on environmental, safety and thermal performance criteria. Levelized Cost of Electricity (LCOE and Specific Investment Cost (SIC for two operation conditions are presented: maximum power output and maximum thermal efficiency. Results showed that R1234ze(Z achieves the highest net power output (up to 44 kW when net power output is optimized. Regenerative ORC achieves the highest performance when thermal efficiency is optimized (up to 18%. Simple ORC is the most cost-effective among the studied cycle configurations, requiring a selling price of energy of 0.3 USD/kWh to obtain a payback period of 8 years. According to SIC results, the working fluid R1234ze(Z exhibits great potential for simple ORC when compared to conventional R245fa.

  20. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  1. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  2. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  3. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  4. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  5. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  6. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  7. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs

    Directory of Open Access Journals (Sweden)

    Daniel Maraver

    2014-04-01

    Full Text Available This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs, coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling demands in the tertiary sector. The thermodynamic approach was complemented, to avoid its possible limitations, by the technological constraints of the expander, the heat exchangers and the pump of the ORC. The working fluids considered are: n-pentane, n-heptane, octamethyltrisiloxane, toluene and dodecamethylcyclohexasiloxane. In addition, the energy and environmental performance of the different optimal CCHP plants was investigated. The optimal plant from the energy and environmental point of view is the one integrated by a toluene recuperative ORC, although it is limited to a development with a turbine type expander. Also, the trigeneration plant could be developed in an energy and environmental efficient way with an n-pentane recuperative ORC and a volumetric type expander.

  8. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  9. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  10. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  11. Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2015-07-01

    Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.

  12. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  13. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Nielsen, Mads Pagh; Elmegaard, Brian

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly......In energy systems with high share of renewable energy sources, like wind and solar power, it is paramount to deal with their intrinsic variability. The interaction between electric and thermal energy (heating and cooling) demands represent a potential area for balancing supply and demand that could...

  14. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real...

  15. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...... power. This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years. Based on the aforementioned model and real...

  16. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  17. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  18. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  19. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    National Research Council Canada - National Science Library

    Hu, Bing; Cao, Yuanshu; Ma, Weibin

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making...

  20. Selection of Working Fluids and Thermodynamic Analysis for Low-temperature Organic Rankine Cycles System%低温有机朗肯循环的工质选择及系统性能分析

    Institute of Scientific and Technical Information of China (English)

    韩中合; 于一达; 王智; 杜燕

    2013-01-01

    Under the proposed working conditions,R123,R141 b,R245ca,R245fa,R601,R601 a are chosen as the working fluids of the low-temperature Rankine cycle system,then those working fluids are investigated and compared based on first law of thermodynamics and second law of thermodynamics.Results show that R141b is an available and effective working fluid for low-temperature Rankine cycle.The impact of the turbine output temperature and pressure on the system performance of organic Rankine system was investigated.Including system net output power,heat absorption capacity and thermal efficiency.%选取R123,R141b,R245ca,R245fa,R601,R601a作为有机朗肯循环的工质,在不同蒸发温度条件下,对其热力循环特性进行了计算分析,以热力学第一定律和第二定律为基础进行了比较.结果表明,R141b是适合本循环系统的最佳工质.同时还研究了汽轮机进口温度和进口压力对该系统的净功量、吸热量及热效率的影响.

  1. Test and evaluation of a solar-powered laboratory turbocompressor system for building heating and cooling. Final technical report. [Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Biancardi, F.R.; Meader, M.D. Melikian, G.; Landerman, A.M.; Hall, J.B.

    1977-03-01

    Extensive testing of an available laboratory Rankine-cycle turbocompressor cooling system was conducted over a range of temperatures consistent with present-day flat-plate and advanced medium-concentration solar collectors and at air- and water-cooled condenser temperature levels. Over 700 hours of testing demonstrated the high performance potential of such systems over a wide range of operational conditions and has provided design guidelines and preliminary specifications for future systems. Minor modifications were made to the laboratory system. These modifications included: (1) demonstration of three tons of cooling at a turbine inlet temperature of about 160 F, (2) efficient operation (i.e., COP of approximately 0.45) at turbine inlet temperatures of 240 F at air-cooled condenser temperatures, and (3) a COP in excess of 0.5 and more than five tons of cooling at system turbine inlet temperature levels of 200 F with water-cooled condenser temperatures. Generally, the test data correlated very well with detailed analytical design and off-design performance projections over the range of operating conditions. These data correlations indicate that the achieved performance levels were limited by mismatching of the existing turbomachinery elements. Data and experience obtained in this program substantiate the judgment that incorporating well-matched turbomachinery, based on existing technology, would result in the achievement of the full potential of a turbocompressor system for both air- and water-cooled operation. Prototype turbocompressor systems can be designed and developed which demonstrate high performance, (i.e., a COP approaching 1.0 and 0.75 for water and air-cooled operation, respectively), versatile operational features, permitting use of different collectors with a range of temperature capability, and potential for significant energy savings when used as solar-powered heating and cooling systems.

  2. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  3. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  4. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  5. Structural motifs are closed into cycles in proteins.

    Science.gov (United States)

    Efimov, Alexander V

    2010-08-27

    Beta-hairpins, triple-strand beta-sheets and betaalphabeta-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into large cycles by means of different superhelices, split beta-hairpins or SS-bridges results in the formation of more complex structural motifs having unique overall folds and unique handedness such as abcd-units, phi-motifs, five- and seven-segment alpha/beta-motifs. Apparently, the complex structural motifs are more cooperative and stable and this may be one of the main reasons of high frequencies of occurrence of the motifs in proteins.

  6. Sub-millikelvin stabilization of a closed cycle cryocooler.

    Science.gov (United States)

    Dubuis, Guy; He, Xi; Božović, Ivan

    2014-10-01

    Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.

  7. Power Cycle Analysis for Mid-Low Temperature Waste Heat Resource Based on Rankin Cycle and Kalina Cycle%基于朗肯循环和卡琳娜循环的中低温余热动力循环分析

    Institute of Scientific and Technical Information of China (English)

    聂晶

    2015-01-01

    中低温朗肯循环、 Kalina循环、 氨吸收式动力循环和槽式太阳能Kalina发电循环系统都是低温余热动力循环的主要方式, 对其热力学原理以及Kalina循环的影响因素进行分析, 认为研究推广中低温朗肯循环及Kalina循环和多种应用形式的Kalina循环对提高中低温余热循环效率更加有效, 而且Kalina循环技术相比其它热力循环具有更加光明的发展前景和更加广泛的工业应用范围.%This article introduces main cycle systems of waste heat utilization in the range of mid-low temperature, including Rankine cycle in mid-low temperature, Kalina cycle, ammonia absorption power cycle and trough solar thermal power plant system, and also deeply analysis the thermodynamic principles and influence factors of Kalina cycle. It is universally acknowledge that studying and spreading Rankine cycle system, Kalina cycle system and vari-ous forms of other Kalina cycle systems are necessary for improving the power cycle efficiency of mid-low tempera-ture waste heat utilization. Compared with other thermodynamic cycles in power cycle technology, Kalina cycle has a prospective development and more extensive range of industrial applications.

  8. 太阳能有机朗肯循环系统的实验特性%Experimental characteristics of solar organic Rankine cycle system

    Institute of Scientific and Technical Information of China (English)

    宋建忠; 张小松; 李舒宏; 姚启矿; 顾维维

    2014-01-01

    To study the performance of solar organic Rankine cycle (ORC) system, a low temperature solar ORC system is proposed and constructed. The system employs R245fa as the working fluid in the power cycle and WD350 heat transfer oil as the heat transfer fluid in the solar collector. The experimental installation consists of a trough solar collector, a screw expander, a working fluid pump, a heat regenerator, a water cooled condenser, and a vapour generator. When the solar beam radiation is about 400 W·m−2 in the experiment, the thermal oil temperature at the outlet of solar heat collector can reach up to 140℃. The collecting efficiency of the collector is 60% at the outlet oil temperature of 110℃. When the working mode of system changes from basic ORC to regenerative cycle, the calculated efficiency of the system is improved from 9.3% to 10.8%, and the experimental value is improved from 1.57% to 1.67%. The measured exergy efficiency of the system is about 10%. The value under regenerative cycle mode is higher than that under the basic ORC mode. The cycle performance at different working fluid flow rates was also studied. The measured maximum average power output was obtained at 386.27 W and working fluid flow rate of 6.88 kg·min−1. With the increase of working fluid flow rate, both expander inlet pressure and work output increase at fixed heat source temperature. With the increase of heat source temperature, the expander inlet temperature and pressure, and the power output increase at fixed flow rate.%为研究中低温太阳能驱动的有机朗肯循环系统的性能,设计并建造了太阳能驱动的有机朗肯循环实验台。实验中以R245fa为有机朗肯循环工质,以WD350导热油为槽式集热器循环工质,对太阳能有机朗肯循环系统进行了实验研究。实验结果表明,当太阳直射辐射强度在400 W·m−2左右时,集热器出口导热油温度可达140℃。当集热器出口导热油温度在110℃附近

  9. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Gunnar Latz

    2016-06-01

    Full Text Available The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

  10. A closed-cycle 1 K refrigeration cryostat

    Science.gov (United States)

    Wang, Chao; Lichtenwalter, Ben; Friebel, Aaron; Tang, Hong X.

    2014-11-01

    A 1 K closed-cycle cryostat has been developed to provide continuous cooling to a photon detector below 2 K. A two-stage 4 K pulse tube cryocooler is used to liquefy evacuated vapor from a 1 K pumping port to form a closed-cycle refrigeration loop. A 1 K instrumentation chamber, attached to the 1 K cooling station, is designed to operate with helium inside and provide more uniform cooling. The design of the cryostat has no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station resulting in almost no vibration transfer to instrumentation chamber. The cryostat can reach a no-load temperature of 1.62 K and provide 250 mW cooling power at 1.84 K.

  11. A proposal for the modular integration of the renewable energy sources, via hydrogen, and the Rankine power cycle; Una propuesta de integracion modular de las fuentes de energia renovables, via hidrogeno, y el ciclo de potencia Rankine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Dirzo, Rafael

    2004-07-01

    This thesis synthesizes the state-of-the-art of the modular integration of the renewable energy sources and the Ranking power cycle. This is possible to obtain due to the development of the hydrogen production technologies and with it the chemical storage of the energies solar, Aeolian (wind) and tidal, among others. The purpose of this thesis is the assessment of hydrogen as fuel, its obtaining through the breaking of the water molecule using the renewable energies and the thermodynamic analysis of two prototypes for its energy conversion into electricity and power, voltage and fixed frequency: the first one at laboratory scale of 800 W and the second one, on industrial scale of 1 GW of power. Included here is the synthesis of the increasing bibliography on the development of the hydrogen technologies and the renewable energies, passing through the mass and energy balance in the power cycles until proposing, at the level of Process Flow Charts of the results of the proposed prototypes. The products show the possibility of constructing and operating the experimental prototype, whereas the thermodynamic analysis suggests that the industrial prototype is viable. The economic analysis of both proposals is part of a doctorate project in process. [Spanish] Esta tesis sintetiza el estado del arte de la integracion modular de las fuentes de energia renovables y el ciclo de potencia Ranking. Esto es posible lograrlo debido al desarrollo de las tecnologias de produccion de hidrogeno y con ello el almacenamiento quimico de las energias solar, eolica y maremotriz, entre otras. Es objetivo de esta tesis la valoracion del hidrogeno como combustible, su obtencion a traves del rompimiento de la molecula del agua utilizando las energias renovables y el analisis termodinamico de dos prototipo para su conversion energetica en electricidad a potencia, voltaje y frecuencia fijos: el primero a escala de laboratorio de 800 W y el segundo, a escala industrial de 1 GW de potencia. Se

  12. A cold ejector for closed-cycle helium refrigerators

    Science.gov (United States)

    Johnson, D. L.; Daggett, D. L.

    1987-11-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  13. A cold ejector for closed-cycle helium refrigerators

    Science.gov (United States)

    Johnson, D. L.; Daggett, D. L.

    1987-01-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  14. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    Science.gov (United States)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.

  15. A Concept of An Accelerator Closed Nuclear Fuel Cycle

    Science.gov (United States)

    Eremeev, I. P.

    1997-05-01

    The physical approach (I.P.Eremeev. Proc. of the PAC-95. Vol.1, p.98.) is applied for technology of nuclear fuel cycle. It is proposed the cycle to be closed by such an accelerator based process link, which would allow, on the one hand, the most hazardous of "equilibrium" radionuclides to be transmuted to stable isotopes or incinerated and, on the other hand, additional fissile fuel to be produced to compensate the energy consumption. Parameters of the technology, such as an intensity and energy "cost" of a transmutation event, a flux of photoneutrons produced have been determined for model targets. It is shown that the approach allows the above fission/transuranium radionuclides to be transmuted/ incinerated at a much greater rate than that of their build-up in operating NPP reactors at a much less energy consumption than an energy produced under their formation and at considerable compensation of the consumed energy through breeding fissile isotopes. A possibility of going to a closed Th-U fuel cycle is discussed. To realize the technology proposed requirements to a system of electron accelerators are formulated.

  16. Thermodynamic Analysis of Organic Rankine Cycle System with R1234yf%R1234yf有机朗肯循环系统热力学性能研究

    Institute of Scientific and Technical Information of China (English)

    梁立鹏; 曹园树; 胡冰; 卜宪标; 马伟斌

    2014-01-01

    为提高有机朗肯循环(Organic Rankine Cycle, ORC)在中低温地热収电领域的效率,本文以R1234yf为工质,依据热力学第一定律与第二定律分析了系统单位质量热水净収电功率和系统㶲效率,幵与目前应用广泛的R245fa工质进行了性能对比。研究结果表明,存在最佳蒸収温度和最佳冷凝温度,使得ORC収电系统单位质量热水净収电功率、㶲效率最大。对于热源温度为110℃~150℃的ORC収电系统,R1234yf对应的最大系统单位质量热水净収电功率和最大㶲效率均大于R245fa。%This paper presents a study on optimizing low-medium temperature geothermal Organic Rankine Cycle (ORC) power generation. Here we examine the effect of working fluid R1234yf on net power output per kilogram of geothermal water and exergy efficiency of the system by using first and second thermodynamic laws. The overall system performance is then compared with the system using R245fa. The results show that there exist the optimum evaporation and condensation temperature which can maximize net power output per kilogram geothermal water and exergy efficiency of the system. The maximum net power output per kilogram of geothermal water and exergy efficiency is higher by using R1234yf as working fluid at the geothermal source temperature ranging from 110oC to 150oC.

  17. A closed-cycle dilution refrigerator for space applications

    Science.gov (United States)

    Chaudhry, Gunaranjan; Volpe, Angela; Camus, Philippe; Triqueneaux, Sébastien; Vermeulen, Gerard

    2012-10-01

    We discuss the development of a gravity-insensitive dilution refrigerator adapted from the open-cycle refrigerator used for the Planck mission. Since the 3He and 4He components are circulated (the 4He by a fountain-effect pump operating at about 2 K, the 3He by a compressor at room temperature) rather than ejected into space, the lifetime of a closed-cycle refrigerator is not limited by the quantity of 3He and 4He available. In this work, we concentrate on the design and performance of the cold end (counterflow heat exchanger and mixing chamber) of the refrigerator. We discuss the sizing of the heat exchanger and present cooling power measurements. We detail the working of the fountain pump. We also briefly touch upon some practical issues including the choice of a 3He compressor and the pre-cooling requirements for the dilution refrigerator.

  18. Operational Results of a Closed Brayton Cycle Test-Loop

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert; Lipinski, Ronald J.; Nichols, Kenneth; Brown, Nicholas

    2005-02-01

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ˜1000 K.

  19. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  20. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  1. Idealized Closed Form Performance Modeling of a Closed Cycle Joule-Thomson Cryocooler

    Science.gov (United States)

    Maytal, B.-Z.

    2004-06-01

    The characteristic parameters of a closed cycle Joule-Thomson cryocooler would be: the charging pressure, discharge and suction volumes of the loop, volumetric displacement of the compressor and the extent of throttling restriction. A series of idealizing assumption are applied. The volumetric behavior of the coolant is assumed to obey the ideal gas equation. The recuperator and compressor's volumetric delivery are completely efficient. There are no pressure losses along the circulating path. On this basis is developed a closed form model of the system, interrelating the relevant parameters. Performance at steady state is expressed in terms of the circulating flow rate, discharge and suction pressures and cooling power. The model predicts the optimal size of equivalent orifice and the maximized cooling power. Also derived is the hydrodynamic time constant of building up the discharge pressure. This analysis is relevant for mixed coolants as well as for pure coolants closed cycles. The former typically employ lower pressure and therefore the idealized assumptions are even more applicable.

  2. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  3. 具有热阻和热漏的联合普适和朗肯热机循环性能分析%Performance analysis for combined universal and Rankine heat engine cycle with heat resistance and heat leakage

    Institute of Scientific and Technical Information of China (English)

    程刚; 倪何; 孙丰瑞

    2009-01-01

    用有限时间热力学的方法分析联合循环, 导出了存在热阻和热漏损失时,由两个绝热过程、一个加热过程和一个放热过程组成的空气标准普适循环和郎肯循环组成的联合动力循环的性能特性,并由数值计算分析了热阻和热漏对联合循环的输出功率和效率的影响,所得结果包含了顶循环为Carnot、 Otto、 Brayton、 Diesel、 Atkinson和 Braysson循环时联合循环的特性.当热源温度和工质流量相同时,联合热机的最佳功率、效率以及工作范围关系:Carnot和Rankine>Brayton和Rankine>Otto和Rankine;相同条件下如果换热器热导率为定值,联合热机的最佳功率、效率关系:Brayson和Rankine> Brayton和Rankine>Diesel和Rankine>Atkinson和Rankine>Otto和Rankine.

  4. Thermodynamic analysis of low-temperature power generation based on solar organic Rankine cycle%基于太阳能的有机朗肯循环低温热发电系统热力性能分析

    Institute of Scientific and Technical Information of China (English)

    韩中合; 叶依林; 王璟; 郑庆宇

    2011-01-01

    The impact of the turbine output temperature and pressure on the system performance of organic Rankine system was investigated. In this paper, nine kinds of organic fluids including R600, R600a, R245fa, R236fa, R236ea, R601, R601a, RC318 and R227ea were taken as cycle working medium. Based on the first and second law of thermodynamics, the thermodynamics analysis revealed the relationship between these two parameters and cycle performances, primarily covering system thermal efficiency, net output power and system irreversibility.%研究了汽轮机进口温度和进口压力对基于太阳能的有机朗肯循环系统性能的影响.以R600,R600a,R245fa,R236fa,R236ea,R601,R601a,RC318,R227ea九种有机工质为例,基于热力学第一定律和第二定律,研究了这两个参数对系统性能变化的影响,主要是对系统热效率、净输出功率以及系统总不可逆损失的影响.

  5. Optimization of R134a-Organic Rankine Cycle Based on Evolutionary Algorithm%基于进化算法的有机朗肯循环优化设计

    Institute of Scientific and Technical Information of China (English)

    付剑波

    2016-01-01

    The model on the thermodynamic analysis of the Organic Rankine Cycle (ORC) was established. The performance of an ORC system which using the waste gas of a cement kiln as the low-quality heat source, R134a as working lfuid was analyzed. Based on the NSGA-II method, the optimization design of the ORC system was developed, which aim to optimize the net output power of the cycle.%建立有机朗肯循环热力分析模型,对采用R134a为工质,以某水泥窑废气为低品质热源的有机朗肯循环进行了系统性能分析。基于NSGA-II算法,发展了有机郎肯循环性能优化设计方法,以循环净输出功率为目标进行了优化设计。

  6. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  7. An active thermal compensator for closed-cycle helium refrigerators

    Science.gov (United States)

    Jennings, D. E.; Hillman, J. J.

    1977-01-01

    A technique was developed for reducing the amplitude of the temperature oscillation in He closed-cyle refrigerators. The device uses a semiconductor diode as a heating element to actively supply a small oscillating input of heat at a point between the laser and the cold-tip to cancel the heat oscillations due to the refrigerator. It was found that the heater diode could drive the temperature of the heat sink more effectively, i.e., with lower current and therefore less heat, if the heat sink was insulated slightly from the rest of the mount. A sine-wave generator was used to drive the programmable supply which provided the offset current to the heater diode. By matching the frequency and phase of the oscillator to that of the refrigerator cycle, and by adjusting the amplitude of the oscillator signal, the temperature fluctuations at the laser could be minimized. Residual fluctuations were about 0.003K peak-to-peak, at an operating temperature of 9.5K.

  8. ECOFERM. The closed-cycle farm; ECOFERM. De kringloopboerderij

    Energy Technology Data Exchange (ETDEWEB)

    Van Liere, J. [Van Liere Management, Utrecht (Netherlands); Boosten, G. [Stichting DOTank, Bussum (Netherlands); Van Dijk, L. [Sustec Consulting Contracting, Wageningen (Netherlands); Hemke, G. [Hemke Nutriconsult, Best (Netherlands); Verschoor, A. [Ingrepro, Borculo (Netherlands); Van Kasteren, J. (ed.)

    2011-06-15

    The Dutch pig farming sector is under pressure. Social resistance is growing and protests against factory farming in general and 'megastalls' in particular are becoming more vociferous. Individuals and social organizations - with policy-makers and politicians following in their wake - are pressing for more dignified living conditions for the animals. Animal health issues and the frequent use of antibiotics are raising questions, partly because of concerns over antibiotic resistance and the consequences for human health. The effects of manure and greenhouse gases on the environment and climate are also high on the agenda. The massive importation of soy as animal feed is having a destructive impact on nature and biodiversity in the production countries, and in the Netherlands it has created a persistent manure surplus. These problems are closely interconnected, which entails that fundamental changes are necessary on many fronts. InnovationNetwork has developed an idea to make pig farming more sustainable and to close the cycles involved. This concept is called ECOFERM Central to the ECOFERM concept is the principle of closed cycles. The 'waste' products from pig farming (manure, ammonia, water vapour, CO2 and residual heat) are used for the production of algae, biogas, electricity and clean water. It starts with the daily and separate removal of the manure from the stalls. This reduces the release of ammonia and other harmful substances, leading to a much more agreeable stall climate for the animals and the farmer. The CO2, water vapour and body heat produced by the animals are fed, together with the ammonia emissions in the stalls, through a reactor and used for algae cultivation. The removed, partially dehydrated manure, goes to a central fermenter for the production of biogas and electricity in a CHP facility. The thin manure fraction and the treated digestate yield the minerals (mainly nitrogen and phosphorus) required for algae cultivation

  9. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    system test cases, so zeros out in the Life Cycle Cost Analysis (LCCA) results. 15 The success criterion is that the simple payback period should...site prep , installation/ commissioning. Source: ElectraTherm. Capital Component: FP250, Investment Cost, Residual Value $0 % Straight line

  10. Closing the water and nutrient cycles in soilless cultivation systems

    NARCIS (Netherlands)

    Beerling, E.A.M.; Blok, C.; Maas, van der A.A.; Os, van E.A.

    2014-01-01

    Soilless cultivation systems are common in Dutch greenhouse horticulture, i.e., less than 20% of the greenhouse area is still soil grown. For long, it was assumed that in these so-called closed systems the emission of nutrients and plant protection products (PPPs) was close to zero. However, Water

  11. 二次抽汽回热式有机朗肯循环系统热力性能分析%Thermodynamic performance analysis of graded regenerative extraction organic Rankine cycle system

    Institute of Scientific and Technical Information of China (English)

    余廷芳; 李爽

    2016-01-01

    以R365mfc和R245ca作为循环工质,设计了低温余热驱动的二次抽汽回热式有机朗肯循环系统.采用REFPROP 8.0制冷剂物性计算软件及 MATLAB 对该回热系统的热力性能进行计算,并对系统最佳抽汽压力的3种备选方案进行比较.结果表明:以冷凝器出口温度和蒸发器进口温度的3分点温度对应的饱和压力作为抽汽压力(方案3)所对应的系统热效率最高,而采用汽轮机进出口焓值等分点对应压力作为抽汽压力(方案1)所对应的系统单位工质做功能力最大;随着工质蒸汽过热度增大,系统热效率减小,但减小幅度较小,因此,二次抽汽回热式有机朗肯循环系统无需通过增加过热度来提高系统热效率.%Using R245ca and R365mfc as the working fluid,a secondary regenerative extraction organic Ran-kine cycle system driven by low temperature waste heat was designed.The MATLAB software and REF-PROP 8.0 software for refrigerants'physical property(offered by NIST)calculation and were applied to analyze the thermodynamic performance of this regenerative system.Moreover,three candidate schemes for the optimum extraction pressure were compared.The results show that,the system applying scheme III has the highest heat efficiency,in which the saturation pressure corresponding to the trisection temperature of the condenser outlet temperature and the generator inlet temperature is taken as the extraction steam pres-sure.The system applying scheme I has the best ability to work,in which the pressure corresponding to the trisection enthalpy at the steam turbine inlet and outlet is taken as the extraction steam pressure.As the degree of superheat of the steam increases,the heat efficiency and exergy efficiency of the system reduces with low rate.Therefore,the heat efficiency and exergy efficiency of the graded regenerative extraction or-ganic Rankine cycle system can be increased without increasing the degree of superheat of

  12. 考虑环境影响的ORC系统综合评价指标及性能分析%Comprehensive evaluation index and performance analysis of organic Rankine cycle system considering environment impact

    Institute of Scientific and Technical Information of China (English)

    张新铭; 余柄宪; 王春

    2014-01-01

    In order to consider thermal economic performance and environmental impact of an organic Rankine cycle(ORC)system, the exergy parameter is used to quantify the environment influence of working fluids and composite performance indicator“comprehensive exergy efficiency integrated environmental influence” is proposed, which combines the environmental effect and cycle thermal economic performance. At thermal source of 150℃, the performance of working fluids of subcritical and transcritical ORC systems is evaluated by the composite performance indicator. Results show that R123 and R32 are suitable for subcritical and transcritical ORC systems respectively when considering the cycle thermal economic performance and refrigerant environmental impact. Although the net power output of transcritical ORC system is higher, the composite performance indicator shows that due to its high circulation evaporation pressure the leakage of working fluids increases. Therefore, subcritical ORC system is a better choice with considering the environmental protection and circulation performance.%为综合评价有机朗肯循环(ORC)系统的热经济和环保性能,采用㶲参数量化工质的环境影响,提出了结合工质环境影响和循环热经济性能的综合评价指标“综合环境影响㶲效率”,在150℃的低温热源条件下,对考虑工质环境影响的亚临界有机朗肯循环和跨临界有机朗肯循环的系统性能进行了分析对比,结果表明,综合考虑循环热经济性能和工质环境影响因素时,R123和 R32分别为亚临界有机朗肯循环系统和跨临界朗肯循环系统的最佳工质;跨临界ORC系统循环净输出功率要高于亚临界ORC系统,但是跨临界ORC系统较高的循环蒸发压力会引起工质泄漏量的增加,进而造成综合环境影响㶲效率并不高,所以综合考虑环保和循环性能时,亚临界ORC系统是较好的选择。

  13. Two-watt, 4-Kelvin closed cycle refrigerator performance

    Science.gov (United States)

    Britcliffe, M.

    1987-01-01

    A 2-watt, 4-K helium refrigerator using the Gifford-McMahon/Joule Thomson cycle is described. The unit features a removable displacer cylinder and high-efficiency, low-pressure drop heat exchangers. These improvements result in a 100 percent increase in cooling power over the existing Deep Space Network system. The effects of the heat exchanger efficiency and Gifford-McMahon expander performance on refrigerator capacity are also discussed.

  14. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  15. 云扰动下太阳能驱动有机朗肯循环发电系统的动态特性%Dynamic Performance of Solar Driven Organic Rankine Cycle Power System Under Cloud Disturbance

    Institute of Scientific and Technical Information of China (English)

    赵力; 赵玮奇; 邓帅

    2016-01-01

    Based on the demonstration project of 200,kW focused organic Rankine cycle(ORC)power system driven by solar parabolic trough collector(PTC),a dynamic model was built with Simulink. In terms of the meteorological data of Tianjin City,an analysis was conducted on the dynamic performance of developed solar-ORC system under typical design working conditions and under unconventional working conditions mainly caused by cloud shadow. The results show that power/thermal capacity values of main components have the same variation trend with solar radiation and the average system efficiency is 12.68% under conventional working conditions. Under unconventional working conditions,a linear correlation exists between the variation of heat source temperature and the deteriorative time of system performance,the linear dependence coefficient being about 4.04. In addition,the impact of various heat source temperatures on the power generation of turbine is 1.67 and 2.08 times higher than thermal capacities of evapo-rator and condenser,respectively. The power output of turbine shows a high sensitivity to the variation of heat source temperature.%基于200,kW级聚焦型槽式太阳能集热驱动的有机朗肯循环发电系统示范工程,通过Simulink软件建立了系统的动态模型,采用天津地区的气象数据作为输入,分别分析了典型日系统常规工况和太阳受云遮挡造成直射辐射迅速衰减的非常规工况下系统的动态特性.结果表明:常规工况中系统热、电功率与太阳直射辐射两者变化趋势相同,系统平均效率为 12.68%;非常规工作状况中系统热源温度变化与达到恶劣工况的时间线性相关,相关系数为4.04;汽轮机发电功率受热源温度突变量影响分别是蒸发器和冷凝器的1.67倍和2.08倍,汽轮机输出对热源温度变化呈现高敏感性.

  16. Thermodynamic Analysis of a Rankine Cycle Powered Refrigeration System Using Low-Temperature Geothermal Energy%基于有机朗肯循环的低温地热制冷系统热力学分析

    Institute of Scientific and Technical Information of China (English)

    胡冰; 马伟斌

    2014-01-01

    为有效利用低温地热资源,本文以有机朗肯-蒸汽压缩制冷系统为研究对象,建立了系统的热力学模型,分析比较了分别以R290、R600、R600a、R601、R601a和R1270为工质时的系统性能,并以系统整体COP和每kW制冷量所对应的工质流量为关键指标对工质进行了优选。分析结果表明:当地热水温度为60℃~90℃、冷凝温度为30℃~55℃、蒸发温度为-15℃~15℃时,R601是系统的最佳工质。当地热水温度为90℃,其余参数为典型工况值时,工质R601所对应的系统性能系数COP为0.49。%To efficiently utilize low-temperature geothermal energy, an organic Rankine cycle-vapor compression refrigeration (ORC-VCR) system was employed and a thermodynamic model was developed. Six working fluids of R290, R600, R600a, R601, R601a and R1270 were analyzed and evaluated in order to identify suitable working fluids which may yield high system efficiencies. The overall COP and working fluid mass flow rate of per kW cooling capacity are chosen as key performance indicators. The calculated results show that R601 is the best working fluid for the ORC-VCR system as the geothermal water temperature is between 60oC and 90oC, the condensation temperature ranges from 30oC to 55oC and the evaporation temperature varies from 30oC to 55oC. When the geothermal water temperature reaches 90oC and the other input parameters are in typical values, the overall COP of the R601 case reaches 0.49.

  17. Aerodynamic Heat-Power Engine Operating on a Closed Cycle

    Science.gov (United States)

    Ackeret, J.; Keller, D. C.

    1942-01-01

    Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.

  18. Power Generation Systems Using Continuous Blowdown Waste Heat From Drum Boilers Driving an Organic Rankine Cycle%利用汽包锅炉连续排污余热的有机朗肯循环发电系统

    Institute of Scientific and Technical Information of China (English)

    刘强; 段远源; 万绪财

    2013-01-01

    A power generation system which used the continuous blowdown waste heat to drive an organic Rankine cycle (ORC) was developed to improve the energy efficiency. The blowdown waste heat was recovered by organic fluid, and then generates power by expansion through a turbine. The analysis model of thermal performance for the system was established. The performance of seven ORC working fluids including R227ea, RC318, R236ea, R245fa, R245ca, R123 and R113 were optimized using the GRG algorithm, and the maximum power output was obtained. The results show that the optimum turbine inlet temperature increases as the critical temperature of the working fluid decreases for the o2 cycle which has saturated vapor entering the turbine. However, the superheating in the o3 cycle reduces the waste heat utilization ratio. Supercritical ORC improves the match of temperature profiles between the heat source and the working fluid, which helps to increase the system power output. But the high operation pressure and heat transfer deterioration due to the large specific heat near the critical point must be considered in the system design. The thermal performance and the power output of R236ea are better than the six other fluids.%提出了一种利用汽包锅炉排污系统余热的有机朗肯循环发电系统,有机工质回收扩容器疏水的热量,并通过气轮机发电。建立了系统的热力性能分析模型,并对 R227ea、RC318、R236ea、R245fa、R245ca、R123和R113等7种工质的热力性能进行了优化。结果表明,临界温度高的工质,其 o2循环的最佳主气温度(蒸发温度)反而低;亚临界循环采用干流体时,过热不利于余热的利用;超临界循环可以改善热源与工质间的温度匹配,有利于增大系统输出功,但是其运行压力高、大比热区的传热恶化等问题是实际运行和设计需要考虑的因素;R236ea的热力性能优于其余6种工质。

  19. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  20. More Jabber about the Collatz Conjecture and a Closed Form for Detecting Cycles on Special Subsequences [Assertion: Collatz cycles

    CERN Document Server

    Lynch, Thomas W

    2011-01-01

    Professor Cadogan at the University of the West Indies identified special starting points that yield long subsequences where the normalization constant, k, is always one. I studied these special sequences and found an implicit mixed integer equation in closed form which if solved would produce seed values in cycling subsequences. Such cycles only occur among extremely large numbers, causing the equation to be difficult to solve numerically.

  1. The basic features of a closed fuel cycle without fast reactors

    Science.gov (United States)

    Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.

    2017-01-01

    In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021

  2. Life Cycle Assessment of Farmed Salmon, Comparing a Closed with an Open Sea Cage System

    OpenAIRE

    2014-01-01

    Ole Jonny Nyhus, Marine Technology, Norwegian University of Science and Technology.Abstract of Master's Thesis, levert 8. juni, 2014:Life Cycle Assessment of Farmed Salmon, Comparing a Closed with an Open Sea Cage System.The goal of this Master's Thesis is to do a Life Cycle Assessment (LCA) on a closed fish farm system and compare it to an open fish farm system, for so to make recommendations based on the results.Life Cycle Assessment is a method to calculate the environmental impa...

  3. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. 工质流量对ORC低温余热发电系统性能的影响%Effect of mass flow rate on performance of organic Rankine cycle for power generation system with low-temperature waste heat

    Institute of Scientific and Technical Information of China (English)

    王慧; 马新灵; 孟祥睿; 魏新利

    2015-01-01

    搭建了以自行研发的向心透平为膨胀机的ORC低温余热发电系统实验平台,研究了R123质量流量对循环系统的性能影响。结果表明:液压隔膜泵的温升和熵增均较小,所消耗的功率随流量的增加而增加。工质在蒸发器内的压降明显大于冷凝器内的压降,均随流量的增加而增加;向心透平的等熵效率随质量流量的增加先增加后减小,存在最佳流量0.215 kg·s−1使透平等熵效率达到最大值0.775;系统输出的电功率随流量的增加而增加,流量为0.283 kg·s−1时输出系统最大功率为2.009 kW;蒸发器的㶲损率占系统总㶲损率的比重最大,冷凝器次之,向心透平第三,在本实验最佳质量流量下,三者的㶲损率分别为62%、32%、6%。%An experimental prototype of organic Rankine cycle (ORC) was built for low-temperature waste heat power generation. With R123 as working fluid, heat transfer oil as the waste heat source, and radial inflow turbine as expander, a series of tests were carried out by adjusting the R123 mass flow rate to evaluate the performance of apparatus and system. The temperature rise and entropy increase of hydraulic diaphragm pump were lower, and consumed power increased with the mass flow rate. The pressure drop in the evaporator was greater than that in the condenser, and both increased with the mass flow rate of R123. The isentropic efficiency of the radial inflow turbine increased first and then decreased with the increase of R123 flow rate, with the maximum value of 0.775 kg·s−1 and the optimum value of 0.215 kg·s−1. The system output power increased monotonously to 2.009 kW as the flow rate of R123 increased to 0.283 kg·s−1. Exergy destruction rate of evaporator was the largest parts in total exergy destruction rate, followed by condenser and radial inflow turbine, about 62%, 32% and 6%, respectively, under the optimum condition.

  5. Performance of Organic Rankine Cycle Using Zeotropic Working Fluids for Geothermal Utilization%地热源非共沸工质有机朗肯循环发电性能分析

    Institute of Scientific and Technical Information of China (English)

    郭丛; 杜小泽; 杨立军; 杨勇平

    2014-01-01

    建立有机朗肯循环热力学模型和蒸发器传热模型;基于工质的实验经验状态方程,利用REFPROP 8.0软件获得非共沸工质物性;以获得最佳的凝汽器温度匹配为原则选择工质。采用种温度的地热能,在给定的蒸发器和凝汽器夹点温差下,分析了采用组分比例为0.64:0.36的R600a/R601非共沸工质的有机朗肯循环发电系统的特性,并与R601纯工质发电循环进行了比较。结果表明:以对外输出功为目标函数的利用地热的中低温有机朗肯循环发电系统中不宜加入回热器;对于蒸发器热源进出口温差较小的工况,如热源来自水蒸气凝结放热,采用混合工质的循环的性能不如纯工质的;有机朗肯循环采用混合工质时其最大对外输出功要高于纯工质的,且热源温度越低时,这种优势越明显。%Thermodynamic model of organic Rankine cycle (ORC) and heat transfer model for evaporator were developed, and thermal properties for mixture working fluid were obtained by REFPROP 8.0 on the basis of the empirical equations of state. The selection principle for working fluids was based on the matching between working fluid and cooling water in the condenser. Geothermal energy in three heat source temperatures was simulated, and a zeotropic mixture, R600a/R601 with mole fraction 0.64/0.36, was used as the working fluid of ORC for power generation with the given pinch temperature for the evaporator and condenser. Its performance was analyzed and compared with that of pure working fluid, R601. The analytical results show that it is not suitable to introduce the internal heat exchanger (IHX) to the ORC system using medium or low temperature geothermal energy as heat source with work output as objective function. ORC system with pure working fluid has a better performance than that with mixture under the condition that temperature difference between inlet and outlet of heat source is small (i

  6. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  7. Nant-De-Chatillon: electric power generation by ORC (organic Rankine cycle) using waste heat from the Chatillon biogas plant; Nant-de-Chatillon: Production d'electricite par ORC a partir des rejets de chaleur du site de methanisation de Chatillon. Resume

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Gay, B.

    2005-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.

  8. Power, power density and efficiency optimization for a closed cycle helium turbine nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lingen E-mail: lgchenna@public.wh.hb.cn; Zheng Junlin; Sun Fengrui; Wu Chih

    2003-09-01

    The performance of a closed cycle helium turbine nuclear power plant for submarine propulsion is optimized in this paper. The power output, power density (ratio of power output to maximum specific volume in the cycle) and thermal efficiency of the cycle are derived. The maximum power, power density and efficiency are obtained by searching for the optimum heat conductance distribution among the hot side heat exchanger (intermediate heat exchanger), cold side heat exchanger (precooler) and recuperator for fixed total heat exchanger inventory with respect to the corresponding optimization objectives. The optimum results are compared with those reported in recent references for the conceptual design of a closed cycle helium turbine nuclear power plant for submarine propulsion. The numerical example shows that the method herein is valid and effective.

  9. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-01

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  10. Combined System of Organic Rankine Cycle and Brackish Water Desalination for Industrial Gas Flue Waste Heat Recycling Utilization%利用烟气余热的有机朗肯循环与苦咸水淡化联合系统

    Institute of Scientific and Technical Information of China (English)

    刘乙成; 闫广; 高传昌; 王为术

    2013-01-01

    Aimint at the problems of industrial flue gas waste heat emissions and shortage of fresh water in coastal and the northwest areas, a system combined with organic rankine cycle (ORC) and brackish water desalination was designed to reclaim industrial gas flue waste heat and produce fresh water and electricity. The thermal process of the system was dynamic integrated with ORC and flash evaporation. The pentane as working medium was promoted to calculate cycle efficiency of the ORC system with variable parameter method. And then the optimal parameters of the system operation was determined. Compared with water rankine cycle, the advantage of this system was proved.%针对沿海和西北内陆地区淡水紧缺和工业烟气余热的排放问题,设计了一种有机朗肯循环与苦咸水淡化的联合系统对工业烟气余热进行有效回收,以生产淡水和电能.该联合系统将闪蒸法与有机朗肯循环进行有机结合,通过变参数法计算采用戊烷作为工质的有机朗肯循环的循环效率,确定该系统运行的最佳参数,并与水工质朗肯循环进行对比,证明了联合系统的优越性.

  11. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  12. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  13. Closed-cycle gas flow system for cooling of high Tc d.c. SQUID magnetometers

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1995-01-01

    A high Tc.d.c SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system in

  14. A closed cycle cascade Joule Thomson refrigerator for cooling Josephson junction magnetometers

    Science.gov (United States)

    Tward, E.; Sarwinski, R.

    1985-01-01

    A closed cycle cascade Joule Thomson refrigerator designed to cool Josephson Junction magnetometers to liquid helium temperature is being developed. The refrigerator incorporates 4 stages of cooling using the working fluids CF4 and He. The high pressure gases are provided by a small compressor designed for this purpose. The upper stages have been operated and performance will be described.

  15. An Automated Ac Susceptibility Set up Fabricated Using a Closed-Cycle Helium Refrigerator

    CERN Document Server

    Kundu, S

    2011-01-01

    We have described here the design and operation of an automated ac susceptibility set up using a closed cycle helium refrigerator. This set up is useful for measuring linear and nonlinear magnetic susceptibilities of various magnetic materials. The working temperature range is 2 K to 300 K. The overall sensitivity of the set up is found to be 10-3 emu.

  16. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  17. A closed cycle 3He- 4He dilution refrigerator insensitive to gravity

    Science.gov (United States)

    Martin, Florian; Vermeulen, Gerard; Camus, Philippe; Benoit, Alain

    2010-09-01

    The cooling power and the lifetime of an open cycle dilution refrigerator as developed for the Planck mission (100 nW at 100 mK during 30 months) are limited by the quantity of the helium isotopes carried on the satellite at launch, because the helium mixture obtained after the dilution process is rejected into space. Future space missions require to increase the cooling power and lifetime significantly (1 μW at 50 mK during 5 years). Therefore we are extending the open cycle dilution refrigerator with a helium isotope separator operating at 1 K to close the cycle. A first prototype to demonstrate the principle of the closed cycle dilution refrigerator has been tested and a cooling power of 1 μW at temperatures below 60 mK has been obtained. We present the apparatus and the experimental results and give some elements for its integration in a complete cooling chain. The advantages (continuous operation, absence of magnetic field, less weight) of a closed cycle dilution refrigerator with respect to an adiabatic demagnetization refrigerator are also discussed.

  18. Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Yanlin Ge, Fengrui Sun

    2014-01-01

    Full Text Available An endoreversible closed regenerative Brayton cycle CCHP (combined cooling, heating and power plant coupled to constant-temperature heat reservoirs is presented using finite time thermodynamics (FTT. The CCHP plant includes an endoreversible closed regenerative Brayton cycle, an endoreversible four-heat-reservoir absorption refrigerator and a heat recovery device of thermal consumer. The heat-resistance losses in the hot-, cold-, thermal consumer-, generator-, condenser-, evaporator- and absorber-side heat exchangers and regenerator are considered. The performance of the CCHP plant is studied from the exergetic perspective, and the analytical formulae about exergy output rate and exergy efficiency are derived. Through numerical calculations, the pressure ratio of regenerative Brayton cycle is optimized, the effects of heat conductance of regenerator and ratio of heat demanded by the thermal consumer to power output on dimensionless exergy output rate and exergy efficiency are analyzed.

  19. Bifurcations of limit cycles in open and closed loop reverse flow reactors

    Science.gov (United States)

    Russo, Lucia; Crescitelli, Silvestro; Brasiello, Antonio

    2013-10-01

    The present work analyses the bifurcations of limit cycles in open and loop reverse flow reactors. The open loop system consists of a reactor where the flow direction is periodically forced whereas in the closed loop system, the flow inversion is dictated by a control law which activates when the temperature at the edge of catalytic bed falls below the set-point value. We performed the bifurcation analysis of the open loop system as the switch time is varied and we constructed the solution diagram through the application of continuation technique. Many Naimark-Sacker bifurcations leading to quasi-periodic regimes have been found on the limit cycles branches. Finally, we compared these limit cycles with those of the closed loop system where the flow inversion is dictated by a control system which acts if the temperature measured at the edge of reactor falls below a set-point value.

  20. 'Design of CO-O2 recombination catalysts for closed-cycle CO2 lasers'

    Science.gov (United States)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1989-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. This paper will discuss the performance criteria and constraints involved in the design of monolith catalyst configurations for use in a closed-cycle laser and will present a design study performed with a computerized design program that had been written. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables will be discussed.

  1. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  2. Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    Science.gov (United States)

    Hanson, T. R.

    1992-01-01

    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.

  3. Hampson’s type cryocoolers with distributed Joule-Thomson effect for mixed refrigerants closed cycle

    Science.gov (United States)

    Maytal, Ben-Zion

    2014-05-01

    Most previous studies on Joule-Thomson cryocoolers of mixed refrigerants in a closed cycle focus on the Linde kind recuperator. The present study focuses on four constructions of Hampson’s kind miniature Joule-Thomson cryocoolers based on finned capillary tubes. The frictional pressure drop along the tubes plays the role of distributed Joule-Thomson expansion so that an additional orifice or any throttle at the cold end is eliminated. The high pressure tube is a throttle and a channel of recuperation at the same time. These coolers are tested within two closed cycle systems of different compressors and different compositions of mixed coolants. All tests were driven by the same level of discharge pressure (2.9 MPa) while the associated suction pressures and the associated reached temperatures are dependent on each particular cryocooler and on the closed cycle system. The mixture of higher specific cooling capacity cannot reach temperatures below 80 K when driven by the smaller compressor. The other mixture of lower specific cooling capacity driven by the larger compressor reaches lower temperatures. The examined parameters are the cooldown period and the reachable temperatures by each cryocooler.

  4. Development of the cold end of a gravity-insensitive closed cycle dilution refrigerator

    Science.gov (United States)

    Chaudhry, Gunaranjan; Volpe, Angela; Camus, Philippe; Triqueneaux, Sebastian; Vermeulen, Gerard

    2012-06-01

    This work presents the experimental results and analytical modelling of the cold end of a closed-cycle gravity-insensitive dilution refrigerator adapted from the open-cycle dilution refrigerator used for the Planck mission. The refrigerator is designed to provide 1 μW of cooling at a temperature of 50 mK. The cold end of the refrigerator comprises a counterflow heat exchanger (which pre-cools the 3He and 4He components down from a temperature of about 1 K to below 100 mK), a mixing chamber and a load heat exchanger at about 50 mK. We discuss the counterflow heat exchanger designs that were considered and present experimental results. The best configuration shows a cooling power of 1 μW at 45 mK. We develop analytical models for the heat exchangers and the mixing chamber and compare them with experimental data.

  5. Status of the Closed-Cycle Dilution Refrigerator Development for Space Astrophysics

    Science.gov (United States)

    Camus, Philippe; Vermeulen, Gérard; Volpe, Angela; Triqueneaux, Sébastien; Benoit, Alain; Butterworth, James; d'Escrivan, Stéphane; Tirolien, Thierry

    2014-09-01

    The closed-cycle dilution refrigerator for space applications is an on-going development to improve the performance of the open-cycle dilution refrigerator successfully used on the Planck mission. This solution has been considered in various projects in X-ray and far-infrared space instruments for astrophysics (ATHENA, SPICA) and in advanced studies for future CMB polarization surveys (COrE). It is shown that for sub-Kelvin applications, this refrigerator is fully competitive with some ADR-based solutions. Compared to ADR, the main advantages are (1) a stable cooling power adapted to long uninterrupted sky surveys (2) a low mass of the coldest stages (3) the absence of magnetic field. We present the current status of the development and discuss the options for the He compressor.

  6. Optimum distribution of heat exchanger inventory for power density optimization of an endoreversible closed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lingen Chen; Junlin Zheng; Fengrui Sun [Naval Univ. of Engineering, Faculty 306, Wuhan (China); Chih Wu [U.S. Naval Academy, Mechanical Engineering Dept., Annapolis, MD (United States)

    2001-02-07

    In this paper, the power density (defined as the ratio of the power output to the maximum specific volume in the cycle) is taken as the objective for performance optimisations of an endoreversible closed Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite-time thermodynamics (FTT) or entropy generation minimisation (EGM). The optimum heat conductance distribution corresponding to the optimum power density of the hot- and cold-side heat exchangers for the fixed heat exchanger inventory is analysed using numerical examples. The influence of some design parameters on the optimum heat conductance distribution and the maximum power density and the optimum pressure ratio corresponding to the maximum power density are provided. The power plant design with optimisation leads to higher efficiency and smaller size. (Author)

  7. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China.

  8. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    Science.gov (United States)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  9. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    Science.gov (United States)

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  10. Recultivation of Podmreka quarry by means of closed cycle of mineral resources extraction - chances for future

    Directory of Open Access Journals (Sweden)

    Gorazd Žibret

    2004-06-01

    Full Text Available The main idea is how we could use the scrapped construction materials for the recultivation of abandoned extraction sites in the means of closed cycle from extraction of the non metallic mineral resourced, consumption and deposition at the end. In the article the Slovenian law concerning this area and the case study of Podsmreka quarry is described. The process takes the opposite direction from extraction, which means that the company does not need a lot of additional equipment. This is a good option for the environment, society and for the companies after finishing the exploitation.

  11. Traveling-wave maser closed-cycle refrigerator data acquisition and display system

    Science.gov (United States)

    Fowler, L.; Britcliffe, M.

    1987-01-01

    A data acquisition and display system that automatically monitors the performance of the 4.5-K closed-cycle refrigerators used to cryogenically cool traveling-wave masers is described. The system displays and stores operating parameters for the purpose of providing status information, failure prediction, and analysis. A prototype of this system will be installed at Deep Space Network 12 in the near future. The advantages of using commercial data acquisition hardware with installed operating systems and BASIC programs for this application are discussed.

  12. Traveling-wave maser closed-cycle refrigerator data acquisition and display system

    Science.gov (United States)

    Fowler, L.; Britcliffe, M.

    1987-11-01

    A data acquisition and display system that automatically monitors the performance of the 4.5-K closed-cycle refrigerators used to cryogenically cool traveling-wave masers is described. The system displays and stores operating parameters for the purpose of providing status information, failure prediction, and analysis. A prototype of this system will be installed at Deep Space Network 12 in the near future. The advantages of using commercial data acquisition hardware with installed operating systems and BASIC programs for this application are discussed.

  13. Application of solar hot water and geothermal principles to closed-cycle aquaculture

    Science.gov (United States)

    Yanzito, R. A.

    1981-04-01

    The design of an underground silo where warm water food fish could be raised to market size under controlled conditions. The building and solar concept analysis for the closed cycle aquaculture system are described. Energy conservation features of the design include Earth berming and insulation of the production silo and enclosure, a waste water reclaim system and a solar heating system. Much of the water surface area is covered with removable plants to minimize evaporative heat losses. An energy conservation analysis is also reported and the F-Chart computer program is described. The system chosen utilizes single glazed flat plate collectors in a closed loop antifreeze system. Makeup water is introduced during an 8 hour period each day. Solar energy is transferred from the antifreeze solution to the makeup water after it leaves the waste water heat exchanger.

  14. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Olga V. Vysokomornaya

    2015-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analysis of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  15. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Vysokomorny Vladimir S.

    2016-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  16. Comparison of energy performance of organic Rankine and Kalina cycles considering different waste heat sources%不同余热情况下有机朗肯循环和卡琳娜循环能量性能对比

    Institute of Scientific and Technical Information of China (English)

    王梦颖; 冯霄; 王彧斐

    2016-01-01

    有机朗肯循环和卡琳娜循环都是发展前景广阔的低温余热动力利用技术,这两种技术在余热利用方面各有其优势和劣势。在炼厂中,余热资源分布广泛,针对不同余热热源选择合适的动力循环系统对能量的有效利用具有实际意义。热效率和㶲效率是评价动力循环系统的两个重要指标。通过将余热资源分成3类,即显热热源、复合热源和潜热热源,用Aspen Hysys软件对有机朗肯循环和卡琳娜循环进行流程模拟,考察了余热资源特性对有机朗肯循环和卡琳娜循环能量性能的影响。结果表明当余热为显热热源时,卡琳娜循环系统优于有机朗肯循环;当余热为复合热源且潜热与显热比R=1或当余热为潜热热源时,有机朗肯循环优于卡琳娜循环。%Organic Rankine cycle (ORC) and Kalina cycle are both promising ways for low temperature waste heat utilization, and these two technologies have their own advantages and disadvantages on using waste heat. In refineries, there is considerable waste heat. It is significant to choose a proper cycle system considering different waste heat sources for efficient utilization of energy. Thermal efficiency and exergy efficiency are two key parameters to evaluate energy performance of power cycle systems. In this paper, the waste heat sources are classified into three types (i.e., sensible heat source, combined heat source and latent heat source). An organic Rankine cycle and a Kalina cycle for low waste heat recovery are simulated by Aspen Hysys considering the characteristics of waste heat sources. The results show that when the waste heat is sensible heat source, the energy performance of Kalina cycle is better than that of ORC, while when waste heat is combined heat source and the ratio of latent heat source and sensible heat source (R) is equal to 1 or when waste heat is latent heat source, the energy performance of ORC is better than that of

  17. The SCSE Organic Rankine engine

    Science.gov (United States)

    Boda, F. P.

    1981-05-01

    The engine is the heart of a Power Conversion Subsystem (PCS) located at the focal point of a sun-tracking parabolic dish concentrator. The ORC engine employs a single-stage axial-flow turbine driving a high speed alternator to produce up to 25 kW electrical output at the focus of each dish. The organic working fluid is toluene, circulating in a closed-loop system at temperatures up to 400 C (750 F). Design parameters, system description, predicted performance and program status are described.

  18. 基于有机朗肯循环的柴油机稳态工况废热回收的探讨%Investigation on the Recovery of Waste Heat Based on Steady State of Rankine Cycle in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    韩永强; 王先锋; 张雷; 王虎; 刘洪涛

    2015-01-01

    In order to study the effect of organic Rankine cycle system of reciprocating piston expansion engine with variable expansion ratio on the exhaust gas waste heat utilization, a GT-power simulation model is built based on a 6-cylinder turbocharged diesel engine to analyze the relationship between the organic working medium evaporation pressure and expansion ratio on the expansion engine efficiency and equivalent recovery efficiency of the waste heat recovery system. Results show that with the specific expansion ratio, the output power, efficiency and recovery efficiency of the expansion engine increase with the rise of evaporation pressure. While with the specific evaporation pressure, efficiency and equivalent recovery efficiency of the expansion engine increase firstly and then decrease with the rise of expansion ratio. Thus, the optimum matching between evaporating pressure and expansion ratio can make full use of the potential of waste heat recovery system of organic Rankine cycle.%为了探究可变膨胀比往复活塞式膨胀机有机朗肯循环系统对柴油机尾气余热利用的影响程度,基于某6缸增压柴油机构建GT-power仿真模型,在13工况下仿真并分析有机工质蒸发压力、膨胀比等与余热回收系统膨胀机效率和当量回收效率的关系。结果表明,膨胀比一定时,膨胀机输出的功率、效率及当量回收效率随蒸发压力的上升而提升;蒸发压力一定时,,膨胀机效率和当量回收效率随膨胀比上升先升高后降低;最佳的蒸发压力和膨胀比匹配可充分发挥有机朗肯循环余热回收系统潜力。

  19. A vibration free closed-cycle 1 K cryostat with a 4 K pulse tube cryocooler

    Science.gov (United States)

    Wang, Chao; Lichtenwalter, Ben

    2014-01-01

    A 1 K closed-cycle cryostat, pre-cooled by a 4 K pulse tube cryocooler, has been developed. The Cryomech PT410 pulse tube cryocooler liquefies helium in a vacuum insulated sleeve at a pressure of ˜1 atm. Liquid helium flows through a JT valve and into a 1 K pot that is evacuated by a vacuum pump. The discharged gas from the vacuum is routed to the top of the sleeve to be liquefied. This design accomplishes closed-cycle 1 K refrigeration and provides continuous cooling below 2 K. Using two XDS10 vacuum pumps and with the JT valve optimized for maximum cooling capacity, the 1 K cooling station can reach a no-load temperature of 1.51 K and provide a capacity of 225 mW at 1.76 K. The temperature oscillations on the 4 K and 1 K cooling stations are ± 3 mK. The cryostat is designed so that there is no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station. This design feature enables exceptionally low vibration operation at the 1 K cooling station.

  20. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Science.gov (United States)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  1. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  2. Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective

    Science.gov (United States)

    Halsey, David G.; Fox, David A.

    2006-01-01

    Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s

  3. Economic Evaluation on the MOX Fuel in the Closed Fuel Cycle

    Directory of Open Access Journals (Sweden)

    Youqi Zheng

    2012-01-01

    Full Text Available The mixed oxide (MOX fuel is one of the most important fuels for the advanced reactors in the future. It is flexible to be applied either in the thermal reactor like pressurized water reactor (PWR or in the fast reactor (FR. This paper compares the two approaches from the view of fuel cost. Two features are involved. (1 The cost of electricity (COE is investigated based on the simulation of realistic operation of a practical PWR power plant and a typical fast breeder reactor design. (2 A new economic analysis model is established, considering the discount rate and the revenue of the reprocessed plutonium besides the traditional costs in the processes of fuel cycle. The sensitivity of COE to the changing parameters is also analyzed. The results show that, in the closed fuel cycle, the fuel cost of applying MOX fuels in the FBR is about 25% lower than that in the PWR at the current operating and fuel cycle level.

  4. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  5. 分级抽汽回热式太阳能低温有机朗肯循环系统的热力性能分析%Thermodynamic Analysis of Graded Regenerative Extraction Low-temperature Power Generation Based on Solar-heated Organic Rankine Cycle

    Institute of Scientific and Technical Information of China (English)

    韩中合; 叶依林; 王璟

    2012-01-01

    The The performances of low-temperature power generation system are investigated based on the graded regenerative extraction Organic Rankine Cycle (ORC) driven by solar. R600 and R245fa are are chosen as the working fluids, thermodynamics analysis and comparison of graded regenerative ORC system and common ORC system are conducted by evaporation temperature and pressure ratio, based on the first law of thermodynamics and the second law of thermodynamics. The conclusion is that the graded regenerative extraction ORC system has higher thermal efficiency,higher second law efficiency,lower irreversible loss and better performance.%研究了分级抽汽回热式太阳能低温有机朗肯循环系统的热力性能.以R600和R245fa作为循环工质,利用热力学第一定律和第二定律,在不同的蒸发温度和膨胀比的条件下,对分级抽汽回热式系统和基本有机朗肯循环系统的热力性能变化进行比较和分析,指出分级抽汽回热式系统的热效率和(炯)效率更高,产生的不可逆损失更小,具有更优越的性能.

  6. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  7. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  8. Multipurpose closed-cycle cryocooler for liquefying hydrogen, helium-4 or helium-3

    Science.gov (United States)

    Winter, Calvin

    1990-08-01

    A cryogenic refrigerator utilizing helium-4 gas in closed-cycle Gifford-McMahon and Joule-Thomson cooling loops was built and achieves continuous operating temperatures of 2.8R. The object cooled is a thin walled (0.1mm) seamless electroformed nickel target sample cell with a volume of 160m1. Room temperature hydrogen, helium-4 or helium-3 gas, supplied at a pressure slightly above atmospheric, is liquefied by the cryocooler and fills the cell. Unusual features include: horizontal operation; a long narrow extension on the vacuum shroud (900mm long, 76mm diameter) and special valves to select an operating temperature appropriate to the sample gas and maximize the cooling power available at that temperature.

  9. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    Science.gov (United States)

    Sooby, Elizabeth; Adams, Marvin; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Phongikaroon, Supathorn; Pogue, Nathaniel; Sattarov, Akhdiyor; Simpson, Michael; Tripathy, Prabhat; Tsevkov, Pavel

    2013-04-01

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  10. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  11. A closed-cycle refrigerator for cooling maser amplifiers below 4 Kelvin

    Science.gov (United States)

    Britcliffe, M.

    1989-01-01

    A helium refrigerator utilizing the Gifford-McMahon/Joule-Thomson (GM/JT) cycle was designed and tested to demonstrate the feasibility of using small closed-cycle refrigerators as an alternative to batch-filled cryostats for operating temperatures below 4 K. The systems could be used to cool low-noise microwave maser amplifiers located in large parabolic antennas. These antennas tilt vertically, making conventional liquid-filled dewars difficult to use. The system could also be used for a non-tilting beam waveguide antenna to reduce the helium consumption of a liquid helium cryostat. The prototype system is adjustable to provide 700 mW of cooling at 2.5 K to 3 W at 4.3 K. Performance of the unit is not significantly affected by physical orientation. The volume occupied by the refrigerator is less than 0.1 cu m. Two JT expansion stages are used to maximize cooling capacity per unit mass flow. The heat exchangers were designed to produce minimum pressure drop in the return gas stream. Pressure drop for the entire JT return circuit is less than 5 kpa at a mass flow of 0.06 g/sec when operating at 2.5 K.

  12. Tokamak D T fusion neutron source requirements for closing the nuclear fuel cycle

    Science.gov (United States)

    Stacey, W. M.

    2007-03-01

    This paper summarizes a series of conceptual design studies conducted with the purpose of determining if tokamak fusion neutron sources based on ITER physics and technology could meet the neutron source requirements for sub-critical fast-spectrum nuclear reactors that would help to close the nuclear fuel cycle by transmuting the transuranics in spent nuclear fuel. The studies were constrained to nuclear reactor and materials technologies under consideration in the US nuclear programme. Fuel cycle studies indicate that fusion neutron sources in the range ~200-500 MW would meet the needs of transmutation reactors, depending on other constraints such as materials damage to the nuclear fuel. A tokamak with R = 3.75 m, a = 1.1 m, B = 5.7-5.9 T, q95 = 3.00-4.0, I = 8.3-10 MA, βN = 2.0-2.85, HIPB98 = 1.0-1.06, γcd = 0.6 A Wm-2 would meet these requirements.

  13. Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update

    Science.gov (United States)

    Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2008-01-01

    The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.

  14. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  15. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in...

  16. Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources

    Science.gov (United States)

    Kulikov, G. G.; Apse, V. A.

    2017-01-01

    The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear

  17. The water cycle in closed ecological systems: Perspectives from the Biosphere 2 and Laboratory Biosphere systems

    Science.gov (United States)

    Nelson, Mark; Dempster, W. F.; Allen, J. P.

    2009-12-01

    To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle - recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m 2 with a combined volume of 200,000 m 3 with a total water capacity of some 6 × 10 6 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere - a small (40 m 3 volume) soil-based plant growth facility with a footprint of 15 m 2 - is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 10 6 L, soil with 1 to 2 × 10 6 l, primary storage tank with 0 to 8 × 10 5 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 10 5 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller - humidity in the atmosphere (2 × 10 3 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 10 4 L). Key technologies included condensation from

  18. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    Science.gov (United States)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted

  19. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL ASSOCIATED WITH A CLOSED FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C. G.; Ebbinghaus, B.; Sleaford, Brad W.; Wallace, R. K.; Collins, Brian A.; Hase, Kevin R.; Robel, Martin; Jarvinen, G. D.; Bradley, Keith S.; Ireland, J. R.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

    2010-06-11

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.

  20. Closing the data life cycle: using information management in macrosystems ecology research

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Janine; Gries, Corinna; Bond-Lamberty, Benjamin; Bowen, Gabriel; Felzer, Benjamin; McIntyre, Nancy; Soranno, Patricia; Vanderbilt, Kristen; Weathers, Kathleen

    2014-02-01

    An important goal of macrosystems ecology research is to advance understanding of ecological systems at both fine and broad temporal and spatial scales. Our premise in this paper is that such projects require information management that is integrated into projects from their inception. Such efforts will lead to improved communication and sharing of knowledge among diverse project participants, better science outcomes, and more open science. We promote "closing the data life cycle" by publishing well-documented data sets, which allows for re-use of data to answer new and different questions from the ones conceived by the original projects. The practice of documenting and submitting data sets to publicly accessible data repositories ensures that research results and data are accessible to and useable by other researchers, thus fostering open science. Ecologists are often not familiar with the information management tools and requirements to effectively preserve data, however, and receive little institutional or professional incentive to do so. This paper describes recommended steps to these ends, and gives examples from current macrosystem ecology projects of why information management is so critical to ensuring that scientific results can be both reproduced and data shared for future use.

  1. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lingen Chen; Junlin Zheng; Fengrui Sun [Naval Univ. of Engineering, Faculty 306, Wuhan (China); Chih Wu [US Naval Academy, Mechanical Engineering Dept., Annapolis, MD (United States)

    2001-06-07

    In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is taken as the objective for performance analysis and optimisation of an irreversible regenerated closed Brayton cycle coupled to variable-temperature heat reservoirs from the viewpoint of finite time thermodynamics (FTT) or entropy generation minimisation (EGM). The analytical formulae about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, the pressure drop losses at the heater, cooler and regenerator as well as in the piping, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion, and the advantages and disadvantages of maximum power density design are analysed. The maximum power density optimisation is performed in two stages. The first is to search the optimum heat conductance distribution corresponding to the optimum power density among the hot- and cold-side heat exchangers and the regenerator for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the optimum power density between the working fluid and the high-temperature heat source for a fixed ratio of the thermal capacitance rates of two heat reservoirs. The influences of some design parameters, including the effectiveness of the regenerator, the inlet temperature ratio of the heat reservoirs, the effectiveness of the heat exchangers between the working fluid and the heat reservoirs, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance

  2. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lingen Chen; Junlin Zheng; Fengrui Sun [Naval University of Engineering, Wuhan (China). Faculty 306; Chih Wu [US Naval Academy, Annapolis, MD (United States). Mechanical Engineering Dept.

    2001-06-07

    In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is taken as the objective for performance analysis and optimization of an irreversible regenerated closed Brayton cycle coupled to variable-temperature heat reservoirs from the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, the pressure drop losses at the heater, cooler and regenerator as well as in the piping, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion, and the advantages and disadvantages of maximum power density design are analysed. The maximum power density optimization is performed in two stages. The first is to search the optimum beat conductance distribution corresponding to the optimum power density among the hot- and cold-side heat exchangers and the regenerator for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the optimum power density between the working fluid and the high-temperature heat source for a fixed ratio of the thermal capacitance rates of two heat reservoirs. The influences of some design parameters, including the effectiveness of the regenerator, the inlet temperature ratio of the heat reservoirs, the effectiveness of the heat exchangers between the working fluid and the heat reservoirs, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution, the optimum thermal capacitance rate matching, and the maximum power density are provided by

  3. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle.

    Science.gov (United States)

    Denger, Karin; Weiss, Michael; Felux, Ann-Katrin; Schneider, Alexander; Mayer, Christoph; Spiteller, Dieter; Huhn, Thomas; Cook, Alasdair M; Schleheck, David

    2014-03-01

    Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.

  4. Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system.

    Science.gov (United States)

    Arumugam, S; Manivannan, N; Murugeswari, A

    2007-06-01

    A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd(2)O(3), Er(2)O(3), and Fe(NH(4)SO(4))(2)6H(2)O], Fe(3)O(4), Gd metal, Dy metal, superconductor (YBa(2)Cu(3)O(7)), manganite (La(1.85)Ba(0.15)MnO(3)), and spin glass material (Pr(0.8)Sr(0.2)MnO(3)). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La(1.85)Ba(0.15)MnO(3) single crystal with P||c axis. The Curie temperature (T(c)) decreases as a function of pressure with P||c axis (dT(c)dP(||c axis)=-11.65 KGPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell.

  5. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    Directory of Open Access Journals (Sweden)

    Bobrov Evgenii

    2016-01-01

    Full Text Available This paper shows basic features of different fuel assembly (FA application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water–fuel ratio in the VVER FA affects on the fuel characteristics produced by REMIX technology during multiple recycling.

  6. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    Science.gov (United States)

    2016-02-05

    dependent resistivity of the Au film constituting the wire . The heating is considerably enhanced when the incident polarization is aligned...Zolotavin, Douglas Natelson. Plasmonic Heating in Au nanowires at Low Temperatures, ACS Nano (02 2016) TOTAL: 1 Books Number of Manuscripts: Patents...Inventions (DD882) Scientific Progress See attachment. Technology Transfer Final report: A closed-cycle optical cryostat and

  7. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-15

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR.

  8. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    Science.gov (United States)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  9. Selection of a closed Brayton cycle gas turbine for an intermediate-duty solar-electric power plant

    Science.gov (United States)

    Vieth, G. L.; Plummer, D. F.

    1980-03-01

    Subsystem and system analyses were performed to select the preferred working gas, performance characteristics and size of a closed cycle gas turbine for an intermediate-duty solar-electric power plant. Capital costs for all major subsystems were evaluated, but the principal selection criterion was the projected cost of electricity produced by the plant. Detailed analyses of the power conversion loop were conducted for both air and helium systems. Since the plant was intended for use on an intermediate-duty cycle, thermal storage was required. The coupling of the storage and power conversion loops in combination with the daily operating cycle influenced plant performance and energy costs in addition to the selection of the power conversion cycle.

  10. Closed orbits and limit cycles of second-order autonomous Birkhoff systems

    Institute of Scientific and Technical Information of China (English)

    陈向炜

    2003-01-01

    In this paper,the existence of periodic orbits and the non-existence of limit cycles for the second-order autonomous Birkhoff system are studied.Further the existence of algebraic limit cycles for a generalized second-order autonomous Birkhoff system is studied.

  11. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  12. Energy balance of the closed oxygen cycle and processes causing thermal runaway in valve-regulated lead/acid batteries

    Science.gov (United States)

    Pavlov, D.

    A model for the reactions involved in the closed oxygen cycle in valve-regulated lead/acid batteries and the associated energy transformations is proposed. When electric current flows through the closed oxygen cycle, a certain amount of electric energy is converted via electrochemical processes into chemical energy, i.e. the products obtained may interact spontaneously as a result of which the system returns to its initial state. During these spontaneous reactions, the chemical energy is converted into heat. Depending on the type of the reactions involved in oxygen reduction on the negative plate, the closed oxygen cycle may proceed in two different electrochemical systems: (i) oxygen is reduced through electrochemical reactions yielding the electrochemical system PbO 2//H 2OO/O 2///O 2//H 2OO/Pb, and (ii) oxygen is reduced through chemical reactions forming the electrochemical system PbO 2//H 2OO/O 2///PbSO 4//Pb. The energy introduced into the system for activation of the closed oxygen cycle is different for the two electrochemical systems. The quantity of this energy is calculated in the present work using thermodynamic data. During the closed oxygen cycle the electric energy is transformed into chemical energy which, in turn, is converted into heat. Part of this heat causes the cell temperature to increase and another part dissipates into the surrounding air. The amount of the former heat depends on the heat capacity of the battery and is influenced most strongly by the quantity of the electrolyte. It has been established that the rate of oxygen evolution on the positive plate depends strongly on the temperature. When the heat exchange between the battery and the surrounding medium is poor, the reactions of the closed oxygen cycle may enter (through the heat and oxygen flows between the positive and the negative plates) into self-accelerating interrelations, which may lead to thermal runaway. To avoid this, an adequate heat exchange should be maintained between

  13. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2015-05-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show that the working fluid type and the temperatures of heat source and condensation have important effects on the system performance. The system can achieve optimal performance when use R245fa as power and refrigeration medium. The ice quantity generated from per ton hot water is 86.42 kg and the ice-making rate for per kW waste heat is 2.27 kg/h, when the temperatures of hot water and condensation are respectively 100 and 40°C. A conclusion can be draw by the calculation and analysis that using organic Rankine-vapor compression system for ice making from food industry waste heat is feasible.

  14. Performance Analysis for Waste Heat Recovery System of Vehicle Diesel Engine Based on Organic Rankine Cycle%基于有机朗肯循环的车用柴油机排气余热回收系统性能分析

    Institute of Scientific and Technical Information of China (English)

    杨富斌; 董小瑞; 王震; 杨凯; 张健; 张红光

    2015-01-01

    An organic Rankine cycle (ORC) was designed to recover the exhaust energy from a heavy‐duty vehicle diesel en‐gine and the distribution of diesel engine waste heat under various operating conditions was acquired through the engine bench test .The effects of evaporation pressure ,superheated degree and diesel engine operating condition on the ORC system per‐formances were analyzed and the optimum evaporation pressure of the ORC system was determined by taking the net output power and thermal efficiency as the optimization objectives .The results showed that the maximum net output power of the ORC system was 12 .69 kW and the thermal efficiency was 11 .19% when the evaporation pressure was 1 .8 MPa .It was aslo found that the superheated state of working fluid could not improve the net output power of the ORC system effectively .%利用设计的有机朗肯循环系统回收某重型车用柴油机的排气能量,通过台架试验,获得了变工况下柴油机排气余热能分布特性。分析了有机工质蒸发压力、过热度以及柴油机工况变化对有机朗肯循环系统性能的影响,以系统净输出功率和热效率为优化目标,确定了适用于有机朗肯循环系统的最佳蒸发压力。研究结果表明,当有机工质蒸发压力为1.8 M Pa时,有机朗肯循环系统的净输出功率最大可以达到12.69 kW ,热效率可以达到11.19%;将有机工质加热至过热状态并不能明显提高有机朗肯循环系统的净输出功率。

  15. Performance Analysis of Exhaust Waste Heat Recovery System with Organic Rankine Cycle for Stationary CNG Engine%基于有机朗肯循环的固定式天然气发动机排气余热回收系统性能分析

    Institute of Scientific and Technical Information of China (English)

    娄宗勇; 张红光; 宋松松

    2015-01-01

    An organic Rankine cycle (ORC) system with an internal heat exchanger (IHE) is designed to recover exhaust energy from a stationary compressed natural gas (CNG) engine. According to the ifrst and second laws of thermodynamics, the performances of the ORC system are analyzed. Thereafter, the stationary CNG engine-ORC with IHE combined system is presented. The electric efifciency and the brake speciifc fuel consumption (BSFC) are chosen to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5 MPa and the engine is operating at the rated condition, the net power output and the thermal efifciency of ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efifciency of the combined system can be increased by 6.0%, while the BSFC can be reduced by a maximum 5.0%.%针对一台固定式天然气发动机的排气能量变化规律,设计了带回热器的有机朗肯循环排气余热回收系统。基于热力学第一定律和第二定律,对固定式天然气发动机排气余热回收系统性能指标进行了理论计算和分析,进而构建了固定式天然气发动机-带回热器有机朗肯循环联合系统,并采用发电效率和有效燃料消耗率评价联合系统的性能。研究结果表明:当蒸发压力为3.5 MPa,发动机运行在额定工况点时,带回热器有机朗肯循环系统最大净输出功率和热效率分别为62.7 kW和12.5%;与固定式天然气发动机相比,联合系统发电效率最大可提高6.0%,有效燃料消耗率最大可降低5%。

  16. 基于双有机朗肯循环的柴油机余热回收系统性能分析%Performance Analysis of Waste Heat Recovery With a Dual Loop Organic Rankine Cycle System for Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    张红光; 王宏进; 杨凯; 杨富斌; 宋松松; 常莹; 贝晨

    2015-01-01

    To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle ( ORC ) system was designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. Aspen plus software was used to model the dual loop ORC system. According to the simulation model, the operating performance of the dual loop ORC system and the fuel economy of the diesel engine wereinvestigated. The results show that the thermodynamic performance and economy performance of the diesel engine can be effectively improved by using the dual loop ORC system. Under the certain engine operating conditions, namely, engine speedis 2 000 r/min and engine torqueis 1 313 N·m, the total net power output of the dual loop ORC system is up to 43. 65 kW. The brake specific fuel consumption ( BSFC ) and the thermal efficiency of the diesel engine-dual loop ORC combined system are 191. 24 g/( kW·h) and 37. 57%, respectively. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13. 69% and the BSFC can be reduced by 15. 86%.%为了有效回收柴油机的尾气、冷却介质和进气中冷的能量,针对一台六缸柴油机,设计了一套双有机朗肯循环系统,结合Aspen plus软件对该系统进行建模,研究双有机朗肯循环系统的运行性能,分析柴油机燃油经济性.经研究发现,加装双有机朗肯循环系统可有效改善原柴油机的热力学性能和经济性能.在设定的柴油机工况下(转速2000 r/mⅰn、转矩1313 N·m),双有机朗肯循环系统的总净输出功率最高可达43.65 kW,柴油机-双有机朗肯循环联合系统的有效燃油消耗率和热效率分别可达191.24 g/( kW·h )和37.57%,相比于原柴油机可分别改善13.69%和15.86%.

  17. Moteurs composites à allumage par compression et cycle de Rankine Dual Fuel Compression Ignition Engines Operating on the Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Daugas C.

    2006-11-01

    Full Text Available Sur les 60 % de l'énergie introduite dans un groupe électrogène et perdue sous forme de chaleur, une bonne partie peut être utilisée pour fabriquer à nouveau de l'électricité à partir d'une turbine à vapeur. Les moteurs dual fuel brûlant essentiellement du gaz naturel sont remarquablement placés pour une telle récupération, dont le rendement est meilleur aux charges partielles que celui des moteurs diesel classiques. Les différents types de fluides utilisés pour la récupération sont examinés : avantages des fluides organiques sur l'eau. Études d'une réalisation concrète. Fonctionnement aux charges partielles. Influence des différents paramètres pour obtenir le meilleur rapport prix/puissance. Of the 60% of input energy lost in the form of heat in a generating set, a sizeable part can be used to generate electricity again by means of a steam turbine. Dual fuel engines which mainly burn natural gas are outstandingly suitable for such a recovery process, the efficiency under partial loads being better than that of conventional diesel engines. The author considers the different types of fluids used for the recovery process superiority of organic fluids over water. Study of a concrete example. Operation with partial loads. Influence of the different parameters in the quest for the best cost-power ratio.

  18. On the Rankin-Selberg method for higher genus string amplitudes

    CERN Document Server

    Florakis, Ioannis

    2016-01-01

    Closed string amplitudes at genus $h\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langla...

  19. On the Rankin-Selberg method for higher genus string amplitudes

    CERN Document Server

    Florakis, Ioannis

    2017-01-01

    Closed string amplitudes at genus $h\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langla...

  20. 渔船余热朗肯-朗肯制冰系统研究%Research on Rankine-Rankine Ice Making System Using Fishing Boats Waste Heat

    Institute of Scientific and Technical Information of China (English)

    卜宪标; 王令宝; 李华山

    2013-01-01

      为有效利用渔船烟气和冷却水的余热,本文采用有机朗肯-朗肯系统进行制冰,建立了系统的热力学模型,研究了系统的性能参数和影响因素,评价了单位质量热水以及单位功率热源的制冰能力。结果表明:余热温度和冷凝温度对系统性能有重要影响,而冷凝器的过冷温度对系统性能的影响很小。在热源温度为100℃,冷凝温度为40℃时,每吨热水的制冰量为86.4kg/t,单位功率余热每小时的制冰量为2.27kg/(kW· h),论证了有机朗肯-朗肯循环系统用于渔船余热制冰的可行性。%To efficiently utilize the waste heat from fishing boats , the organic Rankine-Rankine cycle system was employed to generate ice .A thermodynamic model was developed , and the system performance parameters and influencing factors were re-searched and the ice making capacity from unit mass hot water and unit power heat source are evaluated .The results show that the temperature of heat source and condensation have an important influence on the system performance ;however ,the supercooling of condenser has not .The ice quantity generated from per ton hot water is 86.4 kg,and the ice-making rate for unit power hot source is 2.27kg/(kW· h),when the temperature of hot water and condensation are 100℃and 40℃.A conclusion is draw by the cal-culation and analysis that using organic Rankine-Rankine cycle for ice making from fishing boats waste heat is feasible .

  1. Closing the life cycle of phosphorus in an urban food system: the case Almere (NL)

    NARCIS (Netherlands)

    Dijk, van W.; Jansma, J.E.; Sukkel, W.; Reuler, van H.; Vermeulen, T.; Visser, A.J.

    2017-01-01

    In order to explore the possibilities of a local food system and its effects on the nutrient cycle, a desk study was executed for the urban region Almere, a Dutch city located in the Flevo Polder with about 200,000 inhabitants. This desk study takes this urban perspective as starting point in the

  2. AB Method of Irrigation without Water (Closed-loop water cycle)

    CERN Document Server

    Bolonkin, Alexander

    2007-01-01

    Author suggests and researches a new revolutionary idea for a closed-loop irrigation method. He offers to cover a given site by a thin closed film with controlled heat conductivity and clarity located at an altitude of 50 300 m. The film is supported at altitude by small additional atmospheric overpressure and connected to the ground by thin cables. Authors show that this closed dome allows full control of the weather in a given region (the day is always fine, the rain is only at night, no strong winds). The dome (having control of the clarity of film and heat conductivity) converts the cold regions to subtropics, hot deserts and desolate wildernesses to prosperous regions with a temperate climate. This is a realistic and cheap method of evaporation economical irrigation and virtual weather control on Earth at the current time.

  3. Mathematical model of a closed hot air engine cycle using MATLAB Simulink

    Science.gov (United States)

    Oršanský, Pavol; Ftorek, Branislav; Durčanský, Peter

    2014-08-01

    In our work we present a model of a closed hot air engine, which we simulate in MATLAB®Simulink® environment. That gives us many opportunities of investigating the influence of extreme demanding conditions on the stability and functionality of the device. We were also able to try the conditions that would real device cannot resist as high temperature or pressure.

  4. Disturbances in closed water cycle papermaking; Vaehaevetisen paperinvalmistuksen haeirioetekijaet - MPKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Nyblom, I.; Asikainen, J.; Salerma, M.; Schlupp, K. [Finnish Pulp and Paper Research Institute, Espoo (Finland)

    1998-12-31

    There are fears that reducing water consumption at paper mills will make the papermaking process more susceptible to disturbances. Substances accumulating in the circulating water will give rise to fouling and precipitates as well as flaws in the paper web. A wet end simulator, to be built at KCL (The Finnish Pulp and Paper Research Institute) this year, will be used to test water cycle closure equivalent to a specific water consumption of 3-4 m{sup 3}/t of pulp. The first part of the investigation will examine fouling and precipitate formation due to temperature and pH disturbances. In the second part, tests will be made on the use of on-line measuring instruments in contaminated water cycles. (orig.)

  5. 对流热采油页岩过程低温余热ORC系统热力分析%Thermodynamic Analysis of a Low Temperature Waste Heat Organic Rankine Cycle System in the Process of the Convection Heat-based Oil Shale Exploitation

    Institute of Scientific and Technical Information of China (English)

    杨新乐; 赵阳升; 冯增朝; 戴文智

    2012-01-01

    To recover the low temperature waste heat steam produced during the convection heat - based oil shale exploitation, presented and designed was an organic Rankine cycle system for power generation. Under the condition of specific waste heat steam parameters,based on the working medium R245fa for the cycle,a calculation program was prepared to simulate and analyze the law governing the influence of the off - design condition parameters of the ORC system on its thermal efficiency and output power. The numerical simulation results show that when the back pressure of the steam turbine is set at 0.25 MPa,the highest evaporation pressure of the working medium can reach 2. 566 MPa. Within this range of the evaporation pressure, the thermal efficiency of the system will monotonically increase with an increase of the evaporation pressure. Under a same evaporation pressure, it will not increase obviously with an increase of the flow rate of the working medium .however,more net output power can be obtained. When the evaporation pressure is set 1.5 MPa,with a drop of the waste heat discharging temperature,the net output power of the system will increase markedly. With a drop of the back pressure of the steam turbine, the thermal efiGciency of the system will be obviously improved. However, the drop of the back pressure of the steam turbine increases the difficulty for condensing the working medium and the proper back pressure is regarded as 0. 2 MPa.%为回收利用对流热采油页岩过程中产生的低温余热蒸汽,提出并设计有机朗肯循环(ORC)系统进行热力发电.在特定余热蒸汽参数条件下,基于R245fa循环工质,编制计算程序模拟分析了ORC系统变工况参数对该系统热效率及输出功率的影响规律.数值模拟结果表明:设定汽轮机背压为0.25MPa时,工质最高蒸发压力为2.566MPa,在此范围内,系统热效率随蒸发压力升高单调增加,增幅减缓;取蒸发器出口温度85℃时,对于不同的蒸

  6. Short evaluations on hydroponic systems with closed cycle; Prime valutazioni su sistemi idroponici a ciclo chiuso

    Energy Technology Data Exchange (ETDEWEB)

    Martignon, G. [ENEL DSR, Centro Ricerche Ambiente e Materiali, Milan (Italy); Venezia, A. [MIRAAF, Istituto Sperimentale per l`Orticultura (Italy) Sezione di Montanaso Lombardo

    1996-01-01

    In the experimental station at Tavazzano from 1993 to 1995 several trials were carried out growing vegetables, cut flowers and ornamental species with soil less culture. Different soil less techniques were utilized (on substrate in begs with open system; NFT, Ebb-Flood, sub irrigation on substrate in pot with closed system). The results obtained till now give the possibility to make some comments about management and problems of the soil less systems. The paper shows aspects related to the management of plant nutrition (nutrient solution, irrigation, substrates)and to fruit or flower production. The environmental effects of the different closed soil less culture systems tested are described, with respect to the cultivation on substrate in beg with open system, still generally utilized.

  7. Goethermal power plant with Kalina cycle

    Energy Technology Data Exchange (ETDEWEB)

    Renz, M.; Filipovic, A. [M+W Zander Facility Engineering GmbH, Stuttgart (Germany). Marketing-Communications

    2005-04-01

    Several factors are creating an increased market for small power plant technology. These include the need for distributed/decentralised power systems, the need to generate more electricity by non-combustion renewable processes, the need for sustainable power for economic growth in developing countries and the deregulation and privatization of the electrical generation sector. Basically there are 2 alternate principles to improve the efficiency of the Rankine steam cycle for low temperature applications: Replacing water by a one-component fluid with lower boiling points, e.g. different organic substances like n-pentane, isobutene, perfluoropen-tane. (Organic Rankine Cycle, ORC). Replacing water by a binary working fluid like ammonia-water as proposed by Kalina. Kalina and ORC power cycles are primarily used for lower temperature heat sources, such as goethermal or waste-heat recovery. The primary advantage of this technology is the operation at low temperature which is given at renewable heat sources and waste heat. Further the power cycles are simple and generally can be operated remotely, without licensed operators, allowing for increased use of self-diagnostics. M+W Zander is working closely with partners to establish an alternative technology for geothermal applications. (orig.)

  8. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  9. PWR-FBR with closed fuel cycle for a sustainable nuclear energy supply in China

    Institute of Scientific and Technical Information of China (English)

    XU Mi

    2007-01-01

    From the thermal reactor to the fast reactor and then to the fusion reactor; this is the three-step strategy that has been decided for a sustainable nuclear energy supply in China. As the main thermal reactor type, the commercialized development phase of the pressurized water reactor (PWR) has been stepped up. The development of the fast reactor (FBR) is still in the early stage, marked by China experimental fast reactor (CEFR), which is currently under construction. According to the strategy study on the fast reactor development in China, its engineering development will be divided into three steps: the CEFR with a power of 65 MWt 20 Mwe; the China prototype fast reactor (CPFR) with a power of 1 500 MWt/600 Mwe; and the China demonstration fast reactor (CDFR) with a power of 2 500-3 750 MWt 1 000-1 500 Mwe. With regards to the fuel cycle, a 100 ta PWR spent fuel reprocessing pilot plant and a 500 kg/a MOX fabrication plant are under construction. A project involving the construction of an industrial reprocessing plant and an MOX fabrication plant are also under application phase.

  10. Dynamic modelling and simulation of CSP plant based on supercritical carbon dioxide closed Brayton cycle

    Science.gov (United States)

    Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari

    2017-06-01

    Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.

  11. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle.

    Science.gov (United States)

    Linder, Ewert; Varjo, Sami; Thors, Cecilia

    2016-06-17

    Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of "smartphones" is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and "micro swimmers" of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the "vinegar eel." The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as "diagnostic fingerprints."

  12. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle

    Directory of Open Access Journals (Sweden)

    Ewert Linder

    2016-06-01

    Full Text Available Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.”

  13. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle

    Science.gov (United States)

    Linder, Ewert; Varjo, Sami; Thors, Cecilia

    2016-01-01

    Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.” PMID:27322330

  14. Artificial soil formation and stabilization of material cycles in closed ecological systems for Mars habitats

    Science.gov (United States)

    Borchardt, Joshua D.

    Scientists are increasingly pressured to investigate novel ways in which to feed astronauts for the first mission to Mars in the 2030s. It is the aim of this thesis to conduct a preliminary investigation for soil formation of NASA JSC Mars-1A Regolith Simulant in an environmentally closed ecosystem to simulate plant growth within these initial habitats, and the prospect of soil formation from a Mars parent material for agricultural purposes. The rhizosphere and plant stress will be the main regions of research focus. It is hypothesized rhizosphere activity will determine the rate of stable soil formation adequate to support the agricultural needs of Mars's first human inhabitants. A Brassica rapa (Wisconsin FastPlant(TM)) was grown on several different substrates, and evaluated for plant stress, elemental analysis, soil fertility, and mineralogical analysis to identify the biogeochemical factors related to areas inside and outside of the rhizosphere, which affect soil formation. In addition, multiple plant generations were grown to investigate bioavailability of nutrients within the system, and lay down preliminary approaches for mathematical model development in order to predict & evaluate future conditions and applications under reduced resource availability situations. Overall, the story of early soil formation from a Mars regolith simulant is further defined to aid in the success of our first human adventurers to the red planet.

  15. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  16. PHYTOREMEDIATION ASSISTED DEGRADED LAND USING CLOSED CYCLE ORGANIC WASTE MATTER IN NATURE

    Directory of Open Access Journals (Sweden)

    Wioleta Stępień

    2017-10-01

    Full Text Available The thesis has evaluated the impact of the composition of the compost mixture containing sewage sludge, grass and organic fraction of municipal waste, on the effectiveness of the composting process as well as the influence of the obtained composts on the effectiveness of soil phytoremediation. In the first stage, the composting process was carried out and in the second stage of the research, a pot experiment was conducted and the soil supplements were gradually applied, then their influence on the process of degraded soil renourishment was evaluated. During the research, the physical and chemical properties of the soils after the use of resources such as compost and bio-fertilizer gained from the processing of sewage sludge during the process of assisted phytoremediation of highly degraded soil (high content of heavy metals were assessed. The composting process was carried out in two stages, the first of which lasted for four weeks and was carried out in a closed bioreactor with a flow of added oxygen. The second stage, on the other hand, included so-called ripening. This process lasted for six weeks and it also included the flow of added oxygen. By the end of the process, both mixtures were characterized by high content of nutrients and low content of heavy metals which qualified them to be used in the process of renourishment of degraded soils. The conducted research confirms the possibility of using the obtained composts for fertilization. Moreover, the granulate obtained from the processing of the sewage sludge showed positive influence on the examined soil. All of the supplements increased the increment of the obtained biomass, introducing the missing nutrients into the soil.

  17. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  18. Interim storage of power reactor spent nuclear fuel (SNF) and its potential application to SNF separations and closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.com

    2009-10-15

    Interim, centralized, engineered (dry cask) storage facilities for USA light water power reactor spent nuclear fuel (SNF) should be implemented to complement and to offer much needed flexibility while the Nuclear Regulatory Commission is funded to complete its evaluation of the Yucca Mountain License and to subject it to public hearings. The interim sites should use the credo reproduced in Table 1 [Bunn, M., 2001. Interim Storage of Spent Nuclear Fuel. Harvard University and University of Tokyo] and involve both the industry and government. The sites will help settle the 50 pending lawsuits against the government and the $11 billion of potential additional liabilities for SNF delay damages if Yucca Mountain does not being operation in 2020 [DOE, 2008a. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Stations (December)]. Under the developing consensus to proceed with closed fuel cycles, it will be necessary to develop SNF separation facilities with stringent requirements upon separation processes and upon generation of only highly resistant waste forms. The location of such facilities at the interim storage sites would offer great benefits to those sites and assure their long term viability by returning them to their original status. The switch from once-through to closed fuel cycle will require extensive time and development work as illustrated in 'The Path to Sustainable Nuclear Energy' [DOE, 2005. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles. DOE (September)]. A carefully crafted long term program, funded for at least 5 years, managed by a strong joint government-industry team, and subjected to regular independent reviews should be considered to assure the program stability and success. The new uncertainty about Yucca Mountain role raises two key issues: (a) what to do with the weapons and other high level government

  19. Singular conformally invariant trilinear forms and generalized Rankin Cohen operators

    CERN Document Server

    Jean-Louis, Clerc

    2011-01-01

    The most singular residues of the standard meromorphic family of trilinear conformally invariant forms on $\\mathcal C^\\infty_c(\\mathbb R^d)$ are computed. Their expression involves covariant bidifferential operators (generalized Rankin Cohen operators), for which new formul\\ae \\ are obtained. The main tool is a Bernstein-Sato identity for the kernel of the forms.

  20. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Science.gov (United States)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  1. Ecosystem services in coupled social-ecological systems: Closing the cycle of service provision and societal feedback.

    Science.gov (United States)

    Nassl, Michael; Löffler, Jörg

    2015-12-01

    Both the 'cascade model' of ecosystem service provision and the Driver-Pressure-State-Impact-Response framework individually contribute to the understanding of human-nature interactions in social-ecological systems (SES). Yet, as several points of criticism show, they are limited analytical tools when it comes to reproducing complex cause-effect relationships in such systems. However, in this paper, we point out that by merging the two models, they can mutually enhance their comprehensiveness and overcome their individual conceptual deficits. Therefore we closed a cycle of ecosystem service provision and societal feedback by rethinking and reassembling the core elements of both models. That way, we established a causal sequence apt to describe the causes of change to SES, their effects and their consequences. Finally, to illustrate its functioning we exemplified and discussed our approach based on a case study conducted in the Alpujarra de la Sierra in southern Spain.

  2. Improved analysis on multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2011-08-01

    An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.

  3. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors.

    Science.gov (United States)

    Richter, Peter R; Strauch, Sebastian M; Ntefidou, Maria; Schuster, Martin; Daiker, Viktor; Nasir, Adeel; Haag, Ferdinand W M; Lebert, Michael

    2014-10-01

    Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.

  4. Closing carbon cycles

    NARCIS (Netherlands)

    Patel, Martin

    2001-01-01

    Fossil fuels are used as raw materials for the manufacture of synthetic organic materials, e.g. plastics, fibres, synthetic rubber, paints, solvents, fertilisers, surfactants, lubricants and bitumen. Since fossil carbon is embodied in these products they may be particularly relevant to climate ch

  5. Comparison of Gas-Turbine Cycles for Space Applications

    Science.gov (United States)

    English, Robert E.; Slone, Henry O.

    1960-01-01

    On the basis of the radiator area required for rejecting cycle waste heat, Rankine vapor cycles are far superior to the basic Brayton gas cycle for space turbogenerating powerplants. The present analysis considers modifications of the basic Brayton cycle and compares the modified cycles to the basic cycle with radiator area as the criterion of merit. The results indicate that reductions in radiator area attainable by modifying the basic Brayton cycle are small, and thus the competitive position of gasturbine cycles relative to Rankine vapor cycles is unchanged.

  6. On the Rankin-Selberg problem in short intervals

    CERN Document Server

    Ivić, Aleksandar

    2011-01-01

    If $$ \\Delta(x) \\;:=\\; \\sum_{n\\leqslant x}c_n - Cx\\qquad(C>0) $$ denotes the error term in the classical Rankin-Selberg problem, then we obtain a non-trivial upper bound for the mean square of $\\Delta(x+U) - \\Delta(x)$ for a certain range of $U = U(X)$. In particular, under the Lindel\\"of hypothesis for $\\zeta(s)$, it is shown that $$ \\int_X^{2X} \\Bigl(\\Delta(x+U)-\\Delta(x)\\Bigr)^2\\,{\\roman d} x \\;\\ll_\\epsilon\\; X^{9/7+\\epsilon}U^{8/7}, $$ while under the Lindel\\"of hypothesis for the Rankin-Selberg zeta-function the integral is bounded by $X^{1+\\epsilon}U^{4/3}$. An analogous result for the discrete second moment of $\\Delta(x+U)-\\Delta(x)$ also holds.

  7. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

    Science.gov (United States)

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation. PMID:27803661

  8. On certain Rankin-Selberg integrals on $GE_{6}$

    OpenAIRE

    2008-01-01

    In this paper we begin the study of two Rankin-Selberg integrals defined on the exceptional group of type $GE_{6}$. We show that each factorizes and that the contribution from the unramified places is, in one case, the degree 54 Euler product $L^{S}(\\pi \\times \\tau, E_{6} \\times GL_{2}, s)$ and in the other case the degree 30 Euler product $L^{S}(\\pi \\times \\tau, \\wedge^{2} \\times GL_{2}, s)$.

  9. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  10. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle.

    Science.gov (United States)

    Schulz, Sarah; Gietl, Andreas; Smollett, Katherine; Tinnefeld, Philip; Werner, Finn; Grohmann, Dina

    2016-03-29

    Transcription is an intrinsically dynamic process and requires the coordinated interplay of RNA polymerases (RNAPs) with nucleic acids and transcription factors. Classical structural biology techniques have revealed detailed snapshots of a subset of conformational states of the RNAP as they exist in crystals. A detailed view of the conformational space sampled by the RNAP and the molecular mechanisms of the basal transcription factors E (TFE) and Spt4/5 through conformational constraints has remained elusive. We monitored the conformational changes of the flexible clamp of the RNAP by combining a fluorescently labeled recombinant 12-subunit RNAP system with single-molecule FRET measurements. We measured and compared the distances across the DNA binding channel of the archaeal RNAP. Our results show that the transition of the closed to the open initiation complex, which occurs concomitant with DNA melting, is coordinated with an opening of the RNAP clamp that is stimulated by TFE. We show that the clamp in elongation complexes is modulated by the nontemplate strand and by the processivity factor Spt4/5, both of which stimulate transcription processivity. Taken together, our results reveal an intricate network of interactions within transcription complexes between RNAP, transcription factors, and nucleic acids that allosterically modulate the RNAP during the transcription cycle.

  11. Value of EMG analysis of mandibular elevators in open-close-clench cycle to diagnosing TMJ disturbance syndrome.

    Science.gov (United States)

    Chong-Shan, S; Hui-Yun, W

    1989-01-01

    The EMGs of the temporal and masseter muscle, in sixty patients with temporomandibular joint disturbance syndrome (TMJDS) and thirty normal controls, were recorded during rhythmical open-close-clench cycle movement and before and after occlusal splint therapy. The duration of the muscle contraction before initial tooth contact (DMC), the latent period (LP) and the silent period (SP) of the myoelectrical activity were used as indices for exploring their diagnostic value. In contrast with the controls, DMC, LP and SP lengthened in the patients. The DMC was prolonged in those patients where there were TMJ sounds, the inter-cuspated position did not coincide with the muscular contact position and there was deviated mandibular movement. An increase of the SP was related to tooth contact on the balancing side. After treatment, the DMC and SP in the patients returned to the level of the controls. It was found that the internal correction rate of Fisher's linear discriminate function established for the DMC and SP of the temporal and masseter muscles was 80.9% and 85.1% respectively. The results show that the DMC and SP of the temporal and masseter muscles have some value in diagnosing muscular dysfunction and discriminating therapeutic effectiveness.

  12. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    Science.gov (United States)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  13. Number theory and modular forms papers in memory of Robert A Rankin

    CERN Document Server

    Ono, Ken

    2003-01-01

    Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

  14. Comparison of open and closed U-Pu equilibrium fuel cycles for Generation-IV fast reactors with the EQL3D procedure

    Energy Technology Data Exchange (ETDEWEB)

    Krepel, Jiri, E-mail: Jiri.Krepel@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pelloni, Sandro; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyze open and closed fuel cycle of GFR, SFR, and LFR cores by means of ERANOS based EQL3D procedure. Black-Right-Pointing-Pointer Equilibrium of open and closed fuel cycles were compared in terms of their performance and safety parameters. Black-Right-Pointing-Pointer All three cores act in equilibrium closed cycle as iso-breeder and have similar fuel composition. Black-Right-Pointing-Pointer In spite of the same fuel composition the Dopper constants and void reactivities strongly differ between the cores. Black-Right-Pointing-Pointer All three systems seem capable, from neutronics point of view, for the fuel cycle closure. - Abstract: The advanced fast reactors of the fourth generation should enable an indirect burning of poorly fissile {sup 238}U through {sup 239}Pu breeding and recycling of the actinides from their own spent fuel. The recycling or actually the fuel cycle closure can significantly reduce the amount of long-lived radioactive waste and the {sup 238}U burning can multiply the sustainability of the uranium fueled reactors. Regular periodic operation with the fuel recycling converges to an equilibrium cycle. To enable its simulation a numerical tool named equilibrium fuel cycle procedure for fast reactors (EQL3D) was developed in the FAST group of LRS at Paul Scherrer Institut. The procedure is based on the ERANOS code and can be used to yield the description of two basic situations: the equilibrium of an open fuel cycle and the equilibrium of a closed fuel cycle. The goals of the present study are (i) to apply EQL3D to the Gas-cooled Fast Reactor (GFR), Sodium-cooled Fast Reactor (SFR), and Lead-cooled Fast Reactor (LFR), (ii) to simulate and confirm the GFR, SFR, and LFR neutronics capability for closed fuel cycle, and (iii) to evaluate and compare the equilibrium cycle safety and performance parameters. The EQL3D capability enables to characterize the equilibrium cycle for complex reloading patterns

  15. A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles

    Science.gov (United States)

    Peters, M. T.; Ewing, R. C.

    2007-05-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U6+-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behaviour of the source term over long time periods (greater than 105 years). Such a fundamental and integrated experimental and modelling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings.

  16. Production integrated treatment of industrial wastewater by closing raw material cycles; Produktionsintegrierte Behandlung industrieller Abwaesser zur Schliessung von Stoffkreislaeufen

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.

    2003-07-01

    The book presents the possibilities to introduce the production integrated environmental protection by closing raw material cycles exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a nontrivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of azo-dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. On the basis of current developments and technical implementations the principles of the treatment and recycling of colored wastewater from textile finishing industries are discussed. A combined biological and chemical process of the purification of residual dyehouse split flows was developed and investigated. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dye-residuals by advanced oxidation. A treatment and recycling plant has been realized on technical scale in co-operation with a medium sized textile mill, which produces 330,000 m{sup 3} of colored process water effluents per year. The share of recycling water is amounted to 60%. An economic treatment could be realized on the basis of water recycling rate of 26%. By means of the biological-chemical treatment process it is possible to increase the quality of the treated split flows for recycling purposes as well as the dye capacity of the textile mill, and to minimize the operating costs. Furthermore, the municipal wastewater treatment plant from which the textile finishing water is discharged, needs not to enhance its capacity. (orig.)

  17. Analysis of fourth-grade flat machines with movable close-cycle formed by the rods and two complex links

    Directory of Open Access Journals (Sweden)

    S.О. Koshel

    2016-09-01

    Full Text Available Complex multielement mechanisms are increasingly used in the technical equipment of consumer industry. The lack of a universal method of kinematic research of these mechanisms asserts the relevance of work on the kinematic analysis of multielement mechanisms. Aim: The aim of this research is to develop an algorithm kinetic research of velocities of the points that coincide with geometric centers kinematic pairs of structure group of the 4th class and 3rd order with movable close-cycle formed by connecting rod and two complex links. Materials and Methods: The graphic-analytical method of a kinematic research will be used to achieve the goals of research. Development of an algorithm is based on provisions of the theory of mechanisms and engines about property of high classes mechanisms to change its class depending on another possible initial mechanism chosen conditionally which comes to structure of the conducted structural groups of the mechanism links and provisions of theoretical mechanics relatively to instantaneous center of speeds. Results: Velocity vectors of points of Assur group links of the 4th class and 3rd order of the composite flat mechanism are determined by a graphic-analytical method, where the initial mechanism speeds that led to decrease of a class of the mechanism and allowed to investigate it. Unlike the known erroneous statements method which is applied to research the structural groups of the 3rd class, the offered algorithm of the kinematic analysis allows to investigate mechanisms of the 4th class without need to rebuild the plan which was constructed in a uncertain scale, with the subsequent calculation of the real scale parameter of provided plotting of a graph.

  18. Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers

    Science.gov (United States)

    Wang, Chao; Sun, Limin; Lichtenwalter, Ben; Zerkle, Brent; Okada, Yoshio

    2016-06-01

    A closed-cycle helium recycler was developed for continuous uninterrupted operation for magnetometer-based whole-head magnetoencephalography (MEG) systems. The recycler consists of a two stage 4 K pulse-tube cryocooler and is mounted on the roof of a magnetically shielded room (MSR). A flexible liquid helium (LHe) return line on the recycler is inserted into the fill port of the MEG system in the MSR through a slotted opening in the ceiling. The helium vapor is captured through a line that returns the gas to the top of the recycler assembly. A high-purity helium gas cylinder connected to the recycler assembly supplies the gas, which, after it is liquefied, increases the level of LHe in the MEG system during the start-up phase. No storage tank for evaporated helium gas nor a helium gas purifier is used. The recycler is capable of liquefying helium with a rate of ∼17 L/d after precooling the MEG system. It has provided a fully maintenance-free operation under computer control for 7 months without refill of helium. Although the recycler is used for single-orientation operation at this initial testing site, it is designed to operate at ±20° orientations, allowing the MEG system to be tilted for supine and reclining positions. Vibration of the recycler is dampened to an ultra-low level by using several vibration isolation methods, which enables uninterrupted operation during MEG measurements. Recyclers similar to this system may be quite useful even for MEG systems with 100% magnetometers.

  19. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    Science.gov (United States)

    McCann, Larry D.

    2007-01-01

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  20. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  1. Time domain Rankine-Green panel method for offshore structures

    Science.gov (United States)

    Li, Zhifu; Ren, Huilong; Liu, Riming; Li, Hui

    2017-02-01

    To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is proposed. In this numerical method, the fluid domain is decomposed by an imaginary control surface, at which the continuous condition should be satisfied. Then the Rankine Green function is adopted in the inner domain. The transient free surface Green function is applied in the outer domain, which is used to find the relationship between the velocity potential and its normal derivative for the inner domain. Besides, the velocity potential at the mean free surface between body surface and control surface is directly solved by the integration scheme. The wave exciting force is computed through the convolution integration with wave elevation, by introducing the impulse response function. Additionally, the nonlinear Froude-Krylov force and hydrostatic force, which is computed under the instantaneous incident wave free surface, are taken into account by the direct pressure integration scheme. The corresponding numerical computer code is developed and first used to compute the hydrodynamic coefficients of the hemisphere, as well as the time history of a ship with large flare; good agreement is obtained with the analytical solutions as well as the available numerical results. Then the hydrodynamic properties of a FPSO are studied. The hydrodynamic coefficients agree well with the results computed by the frequency method; the influence of the time interval and the truncated time is investigated in detail.

  2. Development of a 1-week cycle menu for an Advanced Life Support System (ALSS) utilizing practical biomass production data from the Closed Ecology Experiment Facilities (CEEF).

    Science.gov (United States)

    Masuda, Tsuyoshi; Arai, Ryuuji; Komatsubara, Osamu; Tako, Yasuhiro; Harashima, Emiko; Nitta, Keiji

    2005-01-01

    Productivities of 29 crops in the Closed Ecology Experiment Facilities (CEEF) were measured. Rice and soybean showed higher productivities than these given by the Advanced Life Support System Modeling and Analysis Project Baseline Values and Assumption Document (BVAD), but productivities of some other crops, such as potato and sweet potato, were lower. The cultivation data were utilized to develop a 1-week cycle menu for Closed Habitation Experiment. The menu met most of the nutritional requirements. Necessary cultivation area per crew was estimated to be 255 m2. Results from this study can be used to help design the future Advanced Life Support System (ALSS) including the CEEF.

  3. Systems efficiency and specific mass estimates for direct and indirect solar-pumped closed-cycle high-energy lasers in space

    Science.gov (United States)

    Monson, D. J.

    1978-01-01

    Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).

  4. Standing Rankine-Hugoniot Shocks in Black Hole Accretion Discs

    Institute of Scientific and Technical Information of China (English)

    GU Wei-Min; LU Ju-Fu

    2004-01-01

    @@ We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.

  5. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources.

    Science.gov (United States)

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-06-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.

  6. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Directory of Open Access Journals (Sweden)

    Patrick Linke

    2015-05-01

    Full Text Available Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods.

  7. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.; Robel, Martin; Prichard, Andrew W.; Smith, Brian W.; Collins, Brian A.; Hase, Kevin R.; Jarvinen, G. D.; Ireland, J. R.; Johnson, M. W.; Bathke, Charles G.; Wallace, R. K.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.

  8. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  9. Análise teórica da recuperação de calor para geração de energia em indústrias de cimento e cal utilizando o ciclo de Rankine orgânico

    Directory of Open Access Journals (Sweden)

    Ricardo Carrasco Carpio

    2015-06-01

    Full Text Available O presente trabalho consiste em uma apresentação do estado da arte do Ciclo Rankine Orgânico, um ciclo termodinâmico que usa um fluido orgânico como fluido de trabalho e que pode ser usado para recuperação de calor rejeitado em processos industriais, gerando assim energia elétrica para abastecer a própria indústria, o que consequentemente causa uma redução no custo de produção da empresa. São apresentados alguns fluidos orgânicos e alguns de seus parâmetros termodinâmicos.Palavras-chave: Cogeração. Ciclo Rankine Orgânico. Fluidos de Trabalho.ABSTRACTTheoretical analysis of heat recovery for power generation in cement and lime industries using the organic Rankine cycleThis work aims to present the state of the art of the Organic Rankine Cycle, a thermodynamic cycle that uses an organic fluid as a working fluid that can be used to recover the rejected heat in industrial processes, thus generating electricity to supply industry itself, which causes a reduction in the production cost of the company. It also presents some organic fluids and some of their thermodynamic parameters.Keywords: Cogeneration. Organic Rankine Cycle. Working Fluids.

  10. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2009-04-01

    Full Text Available Anaerobic digestion is an optimal way to treat organic waste matter, resulting in biogas and residue. Utilization of the residue as a crop fertilizer should enhance crop yield and soil fertility, promoting closure of the global energy and nutrient cycles. Consequently, the requirement for production of inorganic fertilizers will decrease, in turn saving significant amounts of energy, reducing greenhouse gas emissions to the atmosphere, and indirectly leading to global economic benefits. However, application of this residue to agricultural land requires careful monitoring to detect amendments in soil quality at the early stages.

  11. Multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle with pressurized heavy-water reactor external feed

    Indian Academy of Sciences (India)

    G Pandikumar; A John Arul; P Puthiyavinayagam; P Chellapandi

    2015-10-01

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with self-sufficiency. It was found that the change in Pu composition becomes negligible (less than 1%) after a few cycles. The core-1 Pu increases by 3% from the beginning of cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th by only 0.3%. In this work, the possibility of multiple recycling of PFBR fuel with external plutonium feed from pressurized heavy-water reactor (PHWR) is examined. Modified in-core cooling and reprocessing periods are considered. The impact of multiple recycling on PFBR core physics parameters due to the changes in the fuel composition has been brought out. Instead of separate recovery considered for the core and axial blankets in the earlier studies, combined fuel recovery is considered in this study. With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% from cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th is only 0.35%. A comparison of the studies done with different external plutonium options viz., PHWR and PFBR radial blanket has also been made.

  12. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  13. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    Science.gov (United States)

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  14. The elevation of the degree of closing of the water cycle of an art paper mill; Taidepaperitehtaan sulkemisasteen nosto - EKY 05

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, M. [Metsae-Serla Oyj, Aeaenekoski (Finland)

    1998-12-31

    A development project, the target of which was to create an optimised total plan and a realisation plan for the elevation of the degree of closing of the water cycle of a three-times coated fine grade paper producing mill on the basis of a critical inspection of the different phases of a complete paper production process. The main objective of the elevation of the degree of closing of the water cycle is to obtain a remarkable increment of the profitability of the plant. The aim is to return 50 % of the solid matter, running off with waste waters, back into the process, and hence to reduce the demand of purified water by 30 %. Annual raw material cost savings of several millions of marks are sought in the projects. The solid matter and COD emissions are simultaneously reduced by over 50 %. The project is in schedule and the investments for the recovery and utilisation of waste paste were completed by the end of 1997. The paste-containing waste waters are concentrated by membrane filtration technique, and the concentrate is used by the side of fresh paste. The solid matter recovered from fiber-containing waste waters is recycled, after being treated, back into raw material flow feeded into the paper machine. UF-permeate is used for replacing the chemically purified water in spraying waters. Other measures are also needed in order to reduce the need for chemically purified water. The design of these measures is going on. The elevation of the degree of closing of the water cycle of a paper mill may not reduce the operability of the paper machine. The project also includes the follow-up of the chemical and biochemical state of the wet end of the machine, and the investigation of the changes needed for the chemical dosage system. The results will be applied at the other paper mills of the company. The project will end at December 1998. (orig.)

  15. Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler

    Directory of Open Access Journals (Sweden)

    Roberto Pili

    2017-04-01

    Full Text Available Organic Rankine Cycles (ORCs are nowadays a valuable technology to produce electricity from low and medium temperature heat sources, e.g., in geothermal, biomass and waste heat recovery applications. Dynamic simulations can help improve the flexibility and operation of such plants, and guarantee a better economic performance. In this work, a dynamic model for a multi-pass kettle evaporator of a geothermal ORC power plant has been developed and its dynamics have been validated against measured data. The model combines the finite volume approach on the tube side and a two-volume cavity on the shell side. To validate the dynamic model, a positive and a negative step function in heat source flow rate is applied. The simulation model performed well in both cases. The liquid level appeared the most challenging quantity to simulate. A better agreement in temperature was achieved by increasing the volume flow rate of the geothermal brine by 2% over the entire simulation. Measurement errors, discrepancies in working fluid and thermal brine properties and uncertainties in heat transfer correlations can account for this. In the future, the entire geothermal power plant will be simulated, and suggestions to improve its dynamics and control by means of simulations will be provided.

  16. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    Science.gov (United States)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  17. The Rankin Inlet Birthing Centre: community midwifery in the Inuit context

    National Research Council Canada - National Science Library

    Douglas, Vasiliki Kravariotis

    2011-01-01

    To trace the historical development of the Rankin Inlet Birthing Centre since its inception in 1993 in the context of plans to make it the nucleus of a system of community birthing centres throughout Nunavut...

  18. The Rankin Inlet Birthing Centre: community midwifery in the Inuit context

    National Research Council Canada - National Science Library

    Vasiliki Kravariotis Douglas

    2011-01-01

      To trace the historical development of the Rankin Inlet Birthing Centre since its inception in 1993 in the context of plans to make it the nucleus of a system of community birthing centres throughout Nunavut...

  19. Study of practical cycles for geothermal power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eskesen, J.H.

    1977-04-01

    A comparison is made of the performance and cost of geothermal power cycles designed specifically, utilizing existing technology, to exploit the high temperature, high salinity resource at Niland and the moderate temperature, moderately saline resource at East Mesa in California's Imperial Valley. Only two kinds of cycles are considered in the analysis. Both employ a dual flash arrangement and the liberated steam is either utilized directly in a condensing steam turbine or used to heat a secondary working fluid in a closed Rankine (binary) cycle. The performance of several organic fluids was investigated for the closed cycle and the most promising were selected for detailed analysis with the given resource conditions. Results show for the temperature range investigated that if the noncondensible gas content in the brine is low, a dual flash condensing steam turbine cycle is potentially better in terms of resource utilization than a dual flash binary cycle. (The reverse is shown to be true when the brine is utilized directly for heat exchange.) It is also shown that despite the higher resource temperature, the performance of the dual flash binary cycle at Niland is degraded appreciably by the high salinity and its output per unit of brine flow is almost 20 percent lower than that of the steam turbine cycle at East Mesa. Turbine designs were formulated and costs established for power plants having a nominal generating capacity of 50 MW. Three cycles were analyzed in detail. At East Mesa a steam turbine and a binary cycle were compared. At Niland only the binary cycle was analyzed since the high CO/sub 2/ content in the brine precludes the use of a steam turbine there. In each case only the power island equipment was considered and well costs and the cost of flash separators, steam scrubbers and piping to the power plant boundary were excluded from the estimate.

  20. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  1. MWMTBD234V8柴油机闭式循环仿真%The Simulation of MWMTBD234V8 Diesel Engine under the Closed Cycle Condition

    Institute of Scientific and Technical Information of China (English)

    陈新传; 徐定海; 敖晨阳

    2001-01-01

    Through setting up a mathematical model, the simulation calculation of the MWMTBD234V8 diesel engine under closed cycle condition is processed. The factors to effect diesel engine performance include: increasing pressure, exhaust pressure, compression ratio, spray oil ahead angle, exhaust temperature. In the end, this paper presents some significant conclusions about how the diesel engine is refitted into a closed cycle diesel engine.%通过建立数学模型,对MWMTBD234V8柴油机模拟闭式工作状态进行了仿真计算,包括增压压力、排气背压、压缩比、喷油提前角对功率、耗油率、爆压、排温的影响,并针对该柴油机如何改为闭式循环柴油机提出了有意义的建议。

  2. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  3. The power features of Masseter muscle activity in tension-type and migraine without aura headache during open-close clench cycles

    Directory of Open Access Journals (Sweden)

    Behrouz Alizadeh Savareh

    2017-07-01

    Full Text Available Introduction Different types of headaches and TMJ click influence the masseter muscle activity. The aim of this study was to assess the trend of energy level of the electromyography (EMG activity of the masseter muscle during open-close clench cycles in migraine without aura (MOA and tension-type headache (TTH with or without TMJ click. Methods Twenty-five women with MOA and twenty four women with TTH participated in the study. They matched with 25 healthy subjects, in terms of class of occlusion and prevalence of temporomandibular joint (TMJ with click. The EMG of both masseter muscles were recorded during open-close clench cycles at a rate of 80 cycles per minute for 15 seconds. The mouth opening was restricted to two centimeters by mandibular motion frame. Signal processing steps have been done on the EMG as: noise removing, smoothing, feature extraction, and statistical analyzing. The six statistical parameters of energy computed were mean, Variance, Skewness, Kurtosis, and first and second half energy over all signal energy. Results A three-way ANOVA indicated that during all the cycles, the mean of energy was more and there was a delay in showing the peak of energy in the masseter of the left side with clicked TMJ in MOA group compared to the two other groups, while this pattern occurred inversely in the side with no-clicked TMJ (P < 0.009. The variation of energy was significantly less in MOA group compared to the two other groups in the no-clicked TMJ (P < 0.003. However, the proportion of the first or second part of signal energy to all energy showed that TTH group had less energy in the first part and more energy in the second part in comparison to the two other groups (P < 0.05. Conclusion The study showed different changes in the energy distribution of masseter muscle activity during cycles in MOA and TTH. MOA, in contrast to TTH, had lateralization effect on EMG and interacted with TMJ click.

  4. Enhancement studies on operation and control of water usage in closed cycle paper mills; Vaehaevetisen paperikoneen vesijaerjestelmaen dynamiikan tutkiminen - PMSY 01

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, I. [VTT Automation, Espoo (Finland)

    1998-12-31

    The dynamics of pulp and water systems of a closed cycle paper mill was studied in the project using a detailed simulation model. The model covers the main parts of the manufacture of the body paper from the pulp containers to the rollers of a paper machine. The main adjustments of the process and parts of the automation are included in the simulation model. The first application of the model was the preliminary training of the operators of the mill. The objective of the training was to develop the process control and to teach, by the aid of the model, the operation of the new mill under different operating conditions. Valmet Datamatic XD process control system, commercially available, was used in the training for operation of the simulator, due to which the training was realistic. The same simulation model was used for analysis of the dynamics of the water consumption of the mill under different, which are normal operation, change of the quality, breaks in the machine, and the process and equipment failures. The model was also used for investigation of interfering substances in the flow networks of the mill. All the simulations were carried out before the mill start-up with the APMS software developed by VTT Automation. Dynamic simulation appeared to be an efficient method for validation of the process and automation planning of a closed cycle paper mill, as well as for training of operators. Due to proper training the start-up of the mill is easy. The methods developed in the project for water cycles and quality management of a paper machine are directly applicable for other corresponding process plants. (orig.)

  5. Collagen and glycosaminoglycan profiles in the canine cervix during different stages of the estrous cycle and in open- and closed-cervix pyometra.

    Science.gov (United States)

    Linharattanaruksa, Pichanun; Srisuwatanasagul, Sayamon; Ponglowhapan, Suppawiwat; Khalid, Muhammad; Chatdarong, Kaywalee

    2014-03-01

    The extracellular matrix of the cervix that comprises collagen, elastin, proteoglycans and glycosaminoglycans (GAGs) is thought to have an essential role in cervical relaxation. This study investigated the proportion of collagen and smooth muscle as well as the GAGs in cervices obtained from healthy bitches at different stages of the estrous cycle and bitches with open- and closed-cervix pyometra. Cervices were collected after ovariohysterectomy. The proportion of collagen to smooth muscle was determined using Masson's trichrome staining. Alcian blue staining was used to evaluate the relative distribution of cervical GAGs. The proportion of cervical collagen relative to smooth muscle was higher at estrus compared to anestrus (P≤0.05). It was also higher (P≤0.05) in bitches with open- compared to those with closed-cervix pyometra. Overall, hyaluronan (HA) was the predominant GAG in the canine cervix. In the luminal epithelium, the staining intensity for HA was stronger in estrus than in anestrus (P≤0.05), but not in diestrus (P>0.05). On the contrary, the intensity for the combined keratan sulfate (KS) and heparan sulfate (HS) was stronger in anestrus than in estrus and diestrus (P≤0.05). In bitches with pyometra, the staining intensity of the stroma for KS and HS was weaker in open- compared to closed-cervix pyometra (P≤0.05). Collectively, the different profiles of collagen and GAG suggest that the metabolism of both collagen and GAGs in the canine cervix is associated with hormonal statuses during the estrous cycle and cervical patency of bitches with pathological uterine conditions, such as pyometra.

  6. 球床高温气冷堆闭式循环特性%Characteristics of closed fuel cycles in the pebble bed high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    位金锋; 孙玉良; 李富

    2012-01-01

    The reuse of uranium and plutonium from high temperature gas-cooled reactor(HTGR) spent fuel will improve resource usage and minimize waste.The characteristics of different closed fuel cycles were studied here for uranium and plutonium recycled from 250 MWth high-temperature gas-cooled reactor pebble-bed-module(HTR-PM) spent fuel from a U-Pu fueled core.PuO2 and MOX fuel elements using recycled plutonium and uranium were then used in new PuO2 or MOX fueled cores with the same geometry as the original reactor.PuO2 from LWR spent fuel was also evaluated.The characteristics of the fuel utilization and transuranic incineration in these closed fuel cycles were studied with the VSOP program.The natural uranium utilization closed fuel for these closed fuel cycle is increased by 6%,8% and 20%,while the plutonium burn rates are 40%,41% and 63%,respectively.Thus,these HTGR closed fuel cycles can effectively burn plutonium isotopes and increase natural uranium utilization.%从提高天然铀利用率和改进废物管理方面考虑,研究球床高温气冷堆乏燃料中铀钚的再利用和不同闭式燃料循环的特性。在250MW热功率球床模块式高温气冷堆示范电站铀钚循环的乏燃料中提取铀和钚为核燃料,设计了PuO2和混合氧化物(MOX)燃料元件,将新设计的燃料元件重新装入与示范电站有同样结构和尺寸的堆芯,分别形成纯钚燃料循环和MOX燃料循环。还研究了基于轻水堆级钚的燃料循环。采用了高温气冷堆物理设计程序VSOP,研究了高温气冷堆不同闭式循环的燃料利用和超铀元素焚烧特性。不同闭式循环钚消耗率分别为50%、46%和71%,天然铀的电利用率分别提高了6%、8%和20%。结果表明:高温气冷堆闭式燃料循环能有效焚烧钚同位素,适度提高天然铀的利用率。

  7. Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy by means of a distiller and an electrochemical cell

    CERN Document Server

    Carati, Andrea; Brogioli, Doriano

    2013-01-01

    We analyse a device aimed at the conversion of heat into electrical energy, based on a closed cycle in which a distiller generates two solutions at different concentrations, and an electrochemical cell consumes the concentration difference, converting it into electrical current. We first study an ideal model of such a process. We show that, if the device works at a single fixed pressure (i.e. with a "single effect"), then the efficiency of the conversion of heat into electrical power has an upper bound, given by the efficiency of a reversible Carnot engine operating between the boiling temperatures of the concentrated solution and of the pure solvent. When two heat reservoirs with a higher temperature difference are available, the overall efficiency can be incremented by employing an arrangement of multiple cells working at different pressures ("multiple effects"). We find that a given efficiency can be achieved with a reduced number of effects by using solutions with a high boiling point elevation.

  8. Relationships between movements of the lower limb joints and the pelvis in open and closed kinematic chains during a gait cycle

    Directory of Open Access Journals (Sweden)

    Svoboda Zdenek

    2016-06-01

    Full Text Available Lots of athletic skills performed during practice or competition are initiated by the legs, where athletes either walk or run prior to executing specific skills. Kinematic chains are used to describe the relationships between body segments and joints during movement. The aim of this study was to determine the relationships between movements of lower limb segments and the pelvis in open and closed kinematic chains while walking. The experimental group consisted of 32 males (age 23.3 ± 2.5 years, body mass 78.1 ± 8.7 kg, body height 182 ± 6 cm. For 3D analysis, an optoelectronic system Vicon MX (7 cameras, frequency 200 Hz was used. Positioning of the segments was determined by the PlugInGait Model. Each participant executed five trials at speeds ranging from 1.38 to 1.52 m·s-1. The relationships between angle variables of the lower limbs and the pelvis in selected gait cycle phases were evaluated using STATISTICA software (version 10.0 and the Spearman correlation. The highest numbers of moderate and large correlations were found at opposite toe off, heel rise and initial contact for the sagittal and transversal planes in comparison to the frontal plane. The closed kinematic chain had a stronger impact on determining the movement pattern. The instructions or interventions focusing on closed kinematic chain alternation are more effective for changes in a movement pattern. The preferred limb initiates kinematics in the direction of propulsion, while the non-preferred limb in internal and external rotation.

  9. A new integrated power plant with a small scale turbine for the organic Rankine cycle

    OpenAIRE

    2012-01-01

    Combined heat and power (CHP or cogeneration) describes the simultaneous generation of electrical power and heat. CHP has been well established for medium and high power ranges (> 100 kW el. power). The Kompakte Dampf Turbine (KDT, meaning compact steam turbine) addresses the low-end of power generation (~2 kW el. power). The KDT is a highly integrated power plant of small dimensions able to use various heat sources. Its simple design promises a low-cost CHP for residential homes.

  10. Using waste energy from the Organic Rankine Cycle cogeneration in the Portland cement industry

    OpenAIRE

    José Pablo Paredes-Sánchez; Oscar Jaime Restrepo-Baena; Beatriz Álvarez-Rodríguez; Adriana Marcela Osorio-Correa; Gloria Restrepo

    2015-01-01

    Este artículo describe una herra mienta de simulación bajo el en torno de Matlab®, que puede ser utilizada para estimar la auton omía de un vehículo con baterías o híbrido con pila de combustible y bater ías. El modelo es función de variables mecánicas y físicas que dependerán no solo del propio vehículo sino también del terreno. Su uso es extendido para recorridos obtenidos mediante dispositivos GPS y para ciclos estándar. Pueden obtenerse diferentes variables de salid a tales como: e...

  11. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit;

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...

  12. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...... the temperature distribution inside the primary heat exchanger by engaging a detailed and distributed model of the system and available measurements. Simulation results prove the robustness of the unscented Kalman filter with respect to process noise, measurement disturbances and initial conditions....

  13. Uncertainty assessment of equations of state with application to an organic Rankine cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    Evaluations of equations of state (EoS) should include uncertainty. This study presents a genericmethod to analyse EoS from a detailed uncertainty analysis of the mathematical form and the dataused to obtain EoS parameter values. The method is illustrated by comparison of Soave–Redlich–Kwong (SRK...

  14. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  15. Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers

    Science.gov (United States)

    Mikielewicz, Jarosław; Mikielewicz, Dariusz

    2012-08-01

    In the paper presented are the issues related to the design and operation of micro heat exchangers, where phase changes can occur, applicable to the domestic micro combined heat and power (CHP) unit. Analysed is the stability of the two-phase flow in such unit. A simple hydraulic model presented in the paper enables for the stability analysis of the system and analysis of disturbance propagation caused by a jump change of the flow rate. Equations of the system dynamics as well as properties of the working fluid are strongly non-linear. A proposed model can be applicable in designing the system of flow control in micro heat exchangers operating in the considered CHP unit.

  16. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  17. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using compact fusion advanced Brayton (CFAB) cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, K.; Ohnishi, M.; Yamamoto, Y. [Kyoto Univ. (Japan)] [and others

    1994-12-31

    Key issues on a D-T Tokamak fusion reactor with advanced blanket concept using CFAB (Compact Fusion Advanced Brayton) cycle are presented. Although the previously proposed and studied compact fusion advanced Rankine cycle using mercury liquid metal has shown, in general, excellent performance characteristics in extracting energy and electricity with high efficiency by the {open_quotes}in-situ{close_quotes} nonequilibrium MHD disk generator, and in enhancing safety potential, there was a fear about uses of hazardous mercury as primary coolant as well as its limited natural resources. To overcome these disadvantages while retaining the advantage features of a ultra-high temperature coolant inherent in the synchrotron energy-enhanced D-T tokamak reactor, a compact fusion advanced Brayton cycle using helium was reexamined which was once considered relatively not superior in the CFAR study, at the expense of high, but acceptable circulation power, lower heat transfer characteristics, and probably of a little bit reduced safety.

  18. The Rankin Inlet Birthing Centre: community midwifery in the Inuit context.

    Science.gov (United States)

    Douglas, Vasiliki Kravariotis

    2011-04-01

    To trace the historical development of the Rankin Inlet Birthing Centre since its inception in 1993 in the context of plans to make it the nucleus of a system of community birthing centres throughout Nunavut. This is an analytical historical study using a combination of oral history interviews, government documents and existing literature. Oral history interviews with current and former employees of the Birthing Centre, founding organizers and women who gave birth there were combined with a review of the literature using MEDLINE, Anthropology PLUS, CINAHL and Historical Abstracts, as well as a search of the records of the Nunavut Government and the debates of the Nunavut Legislature and its predecessor, the NWT Legislature. Results. The Rankin Inlet Birthing Centre has been successful, but only marginally so. The majority of births for residents of this region still occur in southern hospitals, either in Churchill or Winnipeg. Although the long-term plan for the Centre is to train and employ Inuit midwives, thus far only two maternity care workers are employed at the Centre. All the midwives are from southern Canada and rotate through the Centre and the community on fixed terms. The Centre has been very successful at gaining and retaining support at the political level, with a strong official commitment to it from the Nunavut Legislature, and active support from the medical communities in the Kivalliq and in Manitoba through the Northern Health Unit at the University of Manitoba. Community support within Rankin Inlet is less apparent and has been halting. Plans to extend the model of the Centre to other communities are long-standing, but have been slow to come to fruition. The Rankin Inlet Birthing Centre has remained an important, but peripheral, institution in Rankin Inlet. It is in many ways a southern institution located in the Arctic; for this reason, and due to the social networks present in Rankin Inlet itself, it has suffered from a lack of enthusiastic

  19. Property Uncertainty Analysis and Methods for Optimal Working Fluids of Thermodynamic Cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome

    There is an increasing interest in recovering industrial waste heat at low tempera-tures (70-250◦C). Thermodynamic cycles, such as heat pumps or organic Rankine cycles, can recover this heat and transfer it to other process streams or convert it into electricity. The working fluid, circulating...... in the context of an industrial organic Rankine cycle, used for the recovery of waste heat from an engine of a marine container ship. The study illustrates that the model structure is vital for the uncertainties of equations of state and suggests that uncertainty becomes a criterion (along with e.g. goodness......-of-fit or ease of use) for the selection of an equation of state for a specific application. Furthermore, two studies on the identification of suitable working fluids for thermodynamic cycles are presented. The first one selects and assesses working fluid candidates for an organic Rankine cycle system to recover...

  20. Direct generation of steam and electricity in a open cycle Rankine; Generacion directa de vapor y electricidad en un ciclo Rankine abierto

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael; Flores, Vicente [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    In this work the results of the experimental tests about steam and electricity generation are presented. This work carried out in the solar thermal power plant of the Institute of Engineering with direct steam generation in parabolic through. The global efficiency of the system is studied as for the conversion solar-electricity. The efficiency is determined and it describes the obtaining process of the main plant components, like they are, the solar steam generator, the steam motor and the electric generator. [Spanish] En este trabajo se presentan los resultados de las pruebas experimentales de la generacion de vapor y electricidad realizadas en la planta solar del Instituto de Ingenieria con generacion directa de vapor en concentradores de canal parabolico. Se estudia la eficiencia global del sistema en cuanto a la conversion de energia solar-electricidad. Se determina la eficiencia y describe el proceso de obtencion de la misma y de los principales componentes de la planta como son, el generador de vapor solar, el motor de pistones de vapor y el alternador electrico.

  1. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  2. Theoretical evaluation of the vapor compression cycle with a liquid-line/suction-line heat exchanger, economizer, and ejector

    Energy Technology Data Exchange (ETDEWEB)

    Domanski, P.A.

    1995-03-01

    The report presents a theoretical analysis of three vapor compression cycles which are derived from the Rankine cycle by incorporating a liquid-line/suction-line heat exchanger, economizer, or ejector. These addendums to the basic cycle reduce throttling losses using different principles, and they require different mechanical hardware of different complexity and cost. The theoretical merits of the three modified cycles were evaluated in relation to the reversed Carnot and Rankine cycle. Thirty-eight fluids were included in the study using the Carnahan-Starling-DeSantis equation of state. In general, the benefit of these addendums increases with the amount of the throttling losses realized by the refrigerant in the Rankine cycle.

  3. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo;

    2016-01-01

    engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...

  4. Study of advanced radial outflow turbine for solar steam Rankine engines

    Science.gov (United States)

    Martin, C.; Kolenc, T.

    1979-01-01

    The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.

  5. An iterative Rankine boundary element method for wave diffraction of a ship with forward speed

    Institute of Scientific and Technical Information of China (English)

    何广华

    2014-01-01

    A 3-D time-domain seakeeping analysis tool has been newly developed by using a higher-order boundary element method with the Rankine source as the kernel function. An iterative time-marching scheme for updating both kinematic and dynamic free-surface boundary conditions is adopted for achieving numerical accuracy and stability. A rectangular computational domain moving with the mean speed of ship is introduced. A damping beach at the outer portion of the truncated free surface is installed for satisfying the radiation condition. After numerical convergence checked, the diffraction unsteady problem of a Wigley hull traveling with a constant forward speed in waves is studied. Extensive results including wave exciting forces, wave patterns and pressure distributions on the hull are presented to validate the efficiency and accuracy of the proposed 3-D time-domain iterative Rankine BEM approach. Computed results are compared to be in good agreement with the corresponding experimental data and other published numerical solutions.

  6. Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    2016-01-01

    Packaging, representing the second largest source of aluminium scrap at global level, deserves a key role in the transition towards the circular economy. Life Cycle Assessment (LCA) of aluminium products has been typically based on one life cycle considering pure aluminium flows and neglecting...

  7. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  8. Influence of stroke infarct location on functional outcome measured by the modified rankin scale.

    Science.gov (United States)

    Cheng, Bastian; Forkert, Nils Daniel; Zavaglia, Melissa; Hilgetag, Claus C; Golsari, Amir; Siemonsen, Susanne; Fiehler, Jens; Pedraza, Salvador; Puig, Josep; Cho, Tae-Hee; Alawneh, Josef; Baron, Jean-Claude; Ostergaard, Leif; Gerloff, Christian; Thomalla, Götz

    2014-06-01

    In the early days after ischemic stroke, information on structural brain damage from MRI supports prognosis of functional outcome. It is rated widely by the modified Rankin Scale that correlates only moderately with lesion volume. We therefore aimed to elucidate the influence of lesion location from early MRI (days 2-3) on functional outcome after 1 month using voxel-based lesion symptom mapping. We analyzed clinical and MRI data of patients from a prospective European multicenter stroke imaging study (I-KNOW). Lesions were delineated on fluid-attenuated inversion recovery images on days 2 to 3 after stroke onset. We generated statistic maps of lesion contribution related to clinical outcome (modified Rankin Scale) after 1 month using voxel-based lesion symptom mapping. Lesion maps of 101 patients with middle cerebral artery infarctions were included for analysis (right-sided stroke, 47%). Mean age was 67 years, median admission National Institutes of Health Stroke Scale was 11. Mean infarct volumes were comparable between both sides (left, 37.5 mL; right, 43.7 mL). Voxel-based lesion symptom mapping revealed areas with high influence on higher modified Rankin Scale in regions involving the corona radiata, internal capsule, and insula. In addition, asymmetrically distributed impact patterns were found involving the right inferior temporal gyrus and left superior temporal gyrus. In this group of patients with stroke, characteristic lesion patterns in areas of motor control and areas involved in lateralized brain functions on early MRI were found to influence functional outcome. Our data provide a novel map of the impact of lesion localization on functional stroke outcome as measured by the modified Rankin Scale. © 2014 American Heart Association, Inc.

  9. On the Rankin-Selberg problem: higher power moments of the Riesz mean error term

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    LetΔ1(x;φ) be the error term of the first Riesz mean of the Rankin-Selberg problem. We study the higher power moments ofΔ1(x;φ) and derive an asymptotic formula for the 3-rd, 4-th and 5-th power moments by using Ivic’s large value arguments and other techniques.

  10. Instability of a two-step Rankine vortex in a reduced gravity QG model

    OpenAIRE

    Perrot, Xavier; Carton, Xavier

    2014-01-01

    We investigate the stability of a steplike Rankine vortex in a one-active-layer, reduced gravity, quasi-geostrophic model. After calculating the linear stability with a normal mode analysis, the singular modes are determined as a function of the vortex shape to investigate short-time stability. Finally we determine the position of the critical layer and show its influence when it lies inside the vortex.

  11. Instability of a two-step Rankine vortex in a reduced gravity QG model

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Xavier [Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France); Carton, Xavier, E-mail: xperrot@lmd.ens.fr, E-mail: xcarton@univ-brest.fr [Laboratoire de Physique des Océans, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, F-29200 Brest (France)

    2014-06-01

    We investigate the stability of a steplike Rankine vortex in a one-active-layer, reduced gravity, quasi-geostrophic model. After calculating the linear stability with a normal mode analysis, the singular modes are determined as a function of the vortex shape to investigate short-time stability. Finally we determine the position of the critical layer and show its influence when it lies inside the vortex. (papers)

  12. Control system options and strategies for supercritical CO2 cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  13. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  14. Sensitivity analysis of molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    identify the target properties of the CAMD problem for working fluids. In this study the CAMD problem for the development of novel working fluids for organic Rankine cycles (ORC) is formulated mathematically. It integrates both a system model for the ORC and property models including the Peng...... will be applied in a case study of an Organic Rankine Cycle (ORC) with a low-temperature heat source. The heat source is a hot water stream from waste heat of a chemical site. Giving this pre-exquisite the method allows to identify the most favorable working fluid along with the corresponding optimal process...... conditions in order to get the highest possible power output. The study presents a new approach for the identification of target properties of CAMD problems based on sensitivity analysis and shows its application for the development of novel working fluids of organic Rankine cycles for low temperature heat...

  15. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.M.

    1985-07-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  16. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  17. Combined Cycle for Power Generation and Refrigeration Using Low Temperature Heat Sources

    OpenAIRE

    Vijay Chauhan; P. Anil Kishan; Sateesh Gedupudi

    2014-01-01

    A combined refrigeration and power cycle, which uses ammonia-water as the working fluid, is proposed by combining Rankine and vapour absorption cycles with an advantage of varying refrigeration capacity to power output ratio. The study investigates the usage of low temperature heat sources for the cycle operation. Results of parametric analysis are presented, which show the scope for optimization. Results of thermodynamic optimization of the cycle for second law efficiency performed using gen...

  18. Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes

    Science.gov (United States)

    2012-11-01

    Rankine Vortex (RV) model [25], the SLOSH model [28], the Holland model [29], the vortex simulation model [30], and the Willoughby and Rahn model [31...www.asme.org/terms/Terms_Use.cfm where Pn ¼ Pc 20:69 þ 1:33Vm þ 0:11u (3) Willoughby et al. [34] provide an alternative formula to estimate Rm as a function of...MacAfee and Pearson [26], and Willoughby et al. [34] also made adjustments which were tailored for mid- latitude applications. 3 Adjustments to the RV

  19. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  20. Materials technology programs in support of a mercury Rankine space power system

    Science.gov (United States)

    Stone, P. L.

    1973-01-01

    A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.

  1. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats

    CERN Document Server

    Pain, J C

    2007-01-01

    Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.

  2. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  3. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  4. [The reliability of stroke scales. The german version of NIHSS, ESS and Rankin scales].

    Science.gov (United States)

    Berger, K; Weltermann, B; Kolominsky-Rabas, P; Meves, S; Heuschmann, P; Böhner, J; Neundörfer, B; Hense, H W; Büttner, T

    1999-02-01

    Aim of the study was the translation of three frequently used stroke scales ("National Institutes of Health Stroke Scale" NIHSS, "European Stroke Scale" ESS and "Rankin Scale") into German and the analysis of the interrater reliability of the respective German versions. The translation process followed the protocol of the Medical Outcomes Trust (Boston) and included two independent forward, one backward translation and a consensus conference for the German versions. Interrater reliability was assessed using the weighted kappa statistic. For this study 43 patients with an ischemic stroke determined by computed tomography or magnetic resonance imaging were recruited from two university hospitals. Excluded were patients with an intracerebral hemorrhage or TIA. The interrater reliability of the three German versions was substantial to excellent. Mean Kappa for the NIHSS was 0.80, for the ESS 0.79 and 0.76 for the Rankin Scale using simple weights in the analysis. Additional analysis revealed the influence of preselected weights on the results of the kappa statistic. The use of German versions of frequently used stroke scales can reduce bias that is introduced by different levels of knowledge of the English language and thus improve the standardised assessment of neurological deficits in stroke.

  5. Experience with two large-scale Hell-cryostats for a superconducting RF particle separator working in closed cycle with a 300 W refrigerator

    CERN Document Server

    Barth, W

    1976-01-01

    The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).

  6. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  7. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  8. Optimization of the ship type using waveform by means of Rankine source method; Rankine source ho ni yoru hakei wo mochiita funagata saitekika ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, A.; Eguchi, T. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-04-10

    Among the numerical calculation methods for steady-state wave-making problems, the panel shift Rankine source (PSRS) method has the advantages of rather precise determination of wave pattern of practical ship types, and short calculation period. The wave pattern around the hull was calculated by means of the PSRS method. The waveform analysis was carried out for the wave, to obtain an amplitude function of the original ship type. Based on the amplitude function, a ship type improvement method aiming at the optimization of ship type was provided using a conditional calculus of variation. A Series 60 (Cb=0.6) ship type was selected for the ship type improvement, to apply this technique. It was suggested that optimum design can be made for reducing the wave making resistance by means of this method. For the improvement of Series 60 ship type using this method, a great degree of reduction in the wave making resistance was recognized from the results of numerical waveform analysis. It was suggested that the ship type improvement aiming at the reduction of wave-making resistance can be made in shorter period and by smaller labor compared with the method using a waveform analysis of cistern tests. 5 refs., 9 figs.

  9. Influence of freezing and thawing cycles on mechanical properties of closed-cell expanded perlite cemented soil%冻融循环对闭孔珍珠岩水泥土力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    侯宇慧; 申向东

    2013-01-01

    Due to poor frost resistance of cement-soil,in permafrost and seasonal frozen soil area,the application and promotion of the soil cement is subject to a certain limit,how to improve the strength and durability of cemented soil in repeated freeze-thaw conditions to ensure the service life of the engineering is the key for further promotion and application of soil cement material in cold regions.By adding closed-cell expanded perlite in cemented soil,it came to the strength that cemented soil in different closed-cell expanded perlite under freezing and thawing cycles,analyzed the effect of freezing and thawing cycles on closed-cell expanded perlite and the changes before and after freezing and thawing cycles closed-cell expanded perlite cemented soil.The cemented soil adding closed-cell expanded perlite are preliminary analyzed.%由于水泥土抗冻性能较差,在多年冻土和季节性冻土地区,水泥土的应用和推广受到了一定的限制,如何提高反复冻融条件下水泥土的强度和耐久性,保证工程的使用寿命,是水泥土材料在寒冷地区进一步推广应用的关键.通过在水泥土中加入闭孔珍珠岩,得出水泥土在不同闭孔珍珠岩掺量下冻融循环后的强度值,分析了冻融循环次数对闭孔珍珠岩水泥土性能的影响及冻融循环前后闭孔珍珠岩水泥土强度变化,对掺入闭孔珍珠岩的水泥土做了初步的机理分析.

  10. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  11. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    Science.gov (United States)

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  12. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-09-01

    Full Text Available The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS and the total mass flow rate of the working fluid for each kW cooling capacity (ṁtotal. The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest ṁtotal under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  13. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    Science.gov (United States)

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H2O/O2), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrOx core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface

  14. Study on Integrated Closed-loop Product Life Cycle Management Based on IOT%基于物联网的闭环产品生命周期集成管理系统研究

    Institute of Scientific and Technical Information of China (English)

    秦新生

    2012-01-01

    In this paper, in order to improve product life cycle management and maximize the advantage of the Internet of Things system, we analyzed the current status of the supply chain management of manufacturing enterprises and, from the perspective of enterprise application system integration and commercial mode innovation, designed the closed-loop product life cycle management system based on the IOT technology, and introduced the operational process of the system.%为了改进产品生命周期管理,使物联网系统的优势最大化,分析了当前制造企业供应链管理的现状,从企业应用系统集成和商务模式创新的角度,设计基于物联网技术的闭环产品生命周期管理系统,并介绍了系统的运作流程.

  15. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  16. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea;

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility, but limitede......Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility...

  17. Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cycle for Use in Geothermal Power Plant

    OpenAIRE

    2014-01-01

    The global energy demand increases with the economic growth and population rise. Most electrical power is currently generated by conventional methods from fossil fuels. Despite the high energy demand, the conventional energy resources such as fossil fuels have been declining. In addition to this harmful combustion byproducts are resulting global warming. However, the increase of environmental concerns and energy crisis can be minimized by sustainable utilization of the low to ...

  18. INVESTIGATION OF DIFFERENT MODELS OF COMBINED PARALLEL FLASH BINARY CYCLES

    OpenAIRE

    A. Jafar Yazdi*

    2017-01-01

    The aim of this paper is a comparative study of the different geothermal power plant concepts, based on the energy and exergy analysis. The cycles studied in this paper are the combination of single and double flash power plants with two different ORC cycles as basic Organic Rankine Cycle (ORC), ORC with IHE, regenerative ORC and regenerative ORC with an IHE. The main gain due to using combined flash-binary power plants with various types of ORCs is to achieve optimum and efficient energy uti...

  19. [Closing diastemas].

    Science.gov (United States)

    Vieira, L C; Pereira, J C; Coradazzi, J L; Francischone, C E

    1990-01-01

    The authors describe a clinical case of closing upper central incisives diastema, reconstructiva of a conoid upper lateral and the rechaping of an upper canine to a lateral incisive. The material used was composite resin.

  20. Closed-Cycle Nutrient Supply For Hydroponics

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.