WorldWideScience

Sample records for close pairs keys

  1. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  2. Error-correcting pairs for a public-key cryptosystem

    International Nuclear Information System (INIS)

    Pellikaan, Ruud; Márquez-Corbella, Irene

    2017-01-01

    Code-based Cryptography (CBC) is a powerful and promising alternative for quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate cryptography and hash-based cryptography are the principal available techniques for post-quantum cryptography. CBC was first introduced by McEliece where he designed one of the most efficient Public-Key encryption schemes with exceptionally strong security guarantees and other desirable properties that still resist to attacks based on Quantum Fourier Transform and Amplitude Amplification. The original proposal, which remains unbroken, was based on binary Goppa codes. Later, several families of codes have been proposed in order to reduce the key size. Some of these alternatives have already been broken. One of the main requirements of a code-based cryptosystem is having high performance t -bounded decoding algorithms which is achieved in the case the code has a t -error-correcting pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic geometry codes are in fact using an error-correcting pair as a secret key. That is, the security of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-correcting pair. In this paper, the class of codes with a t -ECP is proposed for the McEliece cryptosystem. Moreover, we study the hardness of distinguishing arbitrary codes from those having a t -error correcting pair. (paper)

  3. Certificateless Key-Insulated Generalized Signcryption Scheme without Bilinear Pairings

    Directory of Open Access Journals (Sweden)

    Caixue Zhou

    2017-01-01

    Full Text Available Generalized signcryption (GSC can be applied as an encryption scheme, a signature scheme, or a signcryption scheme with only one algorithm and one key pair. A key-insulated mechanism can resolve the private key exposure problem. To ensure the security of cloud storage, we introduce the key-insulated mechanism into GSC and propose a concrete scheme without bilinear pairings in the certificateless cryptosystem setting. We provide a formal definition and a security model of certificateless key-insulated GSC. Then, we prove that our scheme is confidential under the computational Diffie-Hellman (CDH assumption and unforgeable under the elliptic curve discrete logarithm (EC-DL assumption. Our scheme also supports both random-access key update and secure key update. Finally, we evaluate the efficiency of our scheme and demonstrate that it is highly efficient. Thus, our scheme is more suitable for users who communicate with the cloud using mobile devices.

  4. Two current experimental problems in heavy lepton physics: tau decay modes and close mass pairs

    International Nuclear Information System (INIS)

    Perl, M.L.

    1987-08-01

    This paper investigates tau lepton decay modes and close-mass lepton pairs. The major part of the paper discusses branching functions from experimental and theoretical viewpoints. Finally, the lack of experimental signatures of close-mass lepton pairs are reviewed. 15 refs., 2 figs., 11 tabs

  5. Two current experimental problems in heavy lepton physics: tau decay modes and close mass pairs

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1987-08-01

    This paper investigates tau lepton decay modes and close-mass lepton pairs. The major part of the paper discusses branching functions from experimental and theoretical viewpoints. Finally, the lack of experimental signatures of close-mass lepton pairs are reviewed. 15 refs., 2 figs., 11 tabs. (JDH)

  6. USING CLOSE WHITE DWARF + M DWARF STELLAR PAIRS TO CONSTRAIN THE FLARE RATES IN CLOSE STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dylan P.; West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Becker, Andrew C., E-mail: dpmorg@bu.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H α in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz -bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  7. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    Science.gov (United States)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  8. Detection of no-model input-output pairs in closed-loop systems.

    Science.gov (United States)

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Close near-degeneracy in a pair of four-quasiparticle bands in 194Tl

    International Nuclear Information System (INIS)

    Masiteng, P.L.; Lawrie, E.A.; Ramashidzha, T.M.; Bark, R.A.; Carlsson, B.G.; Lawrie, J.J.; Lindsay, R.; Komati, F.; Kau, J.; Maine, P.; Maliage, S.M.; Matamba, I.; Mullins, S.M.; Murray, S.H.T.; Mutshena, K.P.; Pasternak, A.A.; Ragnarsson, I.

    2013-01-01

    A pair of rotational bands associated with the πh 9/2 ⊗νi 13/2 −1 configuration at lower spins and with the πh 9/2 ⊗νi 13/2 −3 configuration at higher spins is found in 194 Tl. The two 4-quasiparticle bands show exceptionally close near-degeneracy in the excitation energies. Furthermore close similarity is also found in their alignments and B(M1)/B(E2) reduced transition probability ratios. Such close near-degeneracy probably indicates chiral geometry in the angular momentum space

  10. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-01

    In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.

  11. Tutorial guide to the tau lepton and close-mass lepton pairs

    International Nuclear Information System (INIS)

    Perl, M.L.

    1988-10-01

    This is a tutorial guide to present knowledge of the tau lepton, to the tau decay mode puzzle, and to present searches for close-mass lepton pairs. The test is minimal; the emphasis is on figures, tables and literature references. It is based on a lecture given at the 1988 International School of Subnuclear Physics: The Super World III. 54 refs., 9 figs., 7 tabs

  12. Experimental investigation of quantum key distribution with position and momentum of photon pairs

    International Nuclear Information System (INIS)

    Almeida, M.P.; Walborn, S.P.; Souto Ribeiro, P.H.

    2005-01-01

    We investigate the utility of Einstein-Podolsky-Rosen correlations of the position and momentum of photon pairs from parametric down-conversion in the implementation of a secure quantum key distribution protocol. We show that security is guaranteed by the entanglement between down-converted pairs, and can be checked by either direct comparison of Alice and Bob's measurement results or evaluation of an inequality of the sort proposed by Mancini et al. [Phys. Rev. Lett. 88, 120401 (2002)

  13. Key-value store with internal key-value storage interface

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.; Tzelnic, Percy; Gupta, Uday; Grider, Gary; Bonnie, David J.

    2018-01-16

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or more batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.

  14. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  15. Initial behavior of a quantized scalar field and the associated pair-creation in several isotropic closed and open universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1981-01-01

    The concept of a positive frequency part near the initial epoch in a big-bang universe or its counterpart in other (say, de Sitter) one for a canonically quantized scalar field is important in discussing the associated pair-creation of those particles. Therefore, an attempt is made to define the positive frequency part in such isotropic closed and open universes that the scalar wave equation can be exactly solved. Except for some closed universe, the parts in question and, therefore, the Feynman propagators in the remaining universes are uniquely settled. Then it is shown that (1) the pair-creation in the Friedmann open universe (which is very interesting not only from observational, but also from theoretical viewpoints) is essentially equivalent to that in the Chitre-Hartle universe with flat 3-space and (2) the respective pair-creations in expanding metrics with open and flat 3-spaces of the de Sitter universe are different from each other, as insisted upon by Gibbons and Hawking basing on the original static metric. (author)

  16. Initial behavior of a quantized scalar field and the associated pair-creation in several isotropic closed and open universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1982-01-01

    The concept of a positive frequency part near the initial epoch in a big-bang universe or its counterpart in other (say, de Sitter) one for a canonically quantized scalar field is important in discussing the associated pair-creation of those particles. Therefore, an attempt is made to define the positive frequency part in such isotropic closed and open universes that the scalar wave equation can be exactly solved. Except for some closed universe, the parts in question and, therefore, the Feynman propagators in the remaining universes are uniquely settled. Then it is shown that (1) the pair-creation in the Friedmann open universe (which is very interesting not only from observational, but also from theoretical viewpoints) is essentially equivalent to that in the Chitre-Hartle universe with flat 3-space and (2) the respective pair-creations in expanding metrics with open and flat 3-spaces of the de Sitter universe are different from each other, as insisted upon by Gibbons and Hawking basing on the original static metric. (author)

  17. Covering All the Bases in Genetics: Simple Shorthands and Diagrams for Teaching Base Pairing to Biology Undergraduates

    Directory of Open Access Journals (Sweden)

    Sergei Kuchin

    2011-03-01

    Full Text Available Explaining base pairing is an important element in teaching undergraduate genetics. I propose a teaching approach that aims to close the gap between the mantra “A pairs with T, and G pairs with C” and the “intimidating” chemical diagrams. The approach offers a set of simple “shorthands” for the key bases that can be used to quickly deduce all canonical and wobble pairs that the students need to know. The approach can be further developed to analyze mutagenic mismatch pairing.

  18. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  19. Time series regression-based pairs trading in the Korean equities market

    Science.gov (United States)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  20. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    International Nuclear Information System (INIS)

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-01-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  1. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    Energy Technology Data Exchange (ETDEWEB)

    Rorai, Alberto; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); White, Martin [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  2. Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.; hide

    2016-01-01

    NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.

  3. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    Science.gov (United States)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  4. Measurement of the small-scale structure of the intergalactic medium using close quasar pairs.

    Science.gov (United States)

    Rorai, Alberto; Hennawi, Joseph F; Oñorbe, Jose; White, Martin; Prochaska, J Xavier; Kulkarni, Girish; Walther, Michael; Lukić, Zarija; Lee, Khee-Gan

    2017-04-28

    The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgrounds that reionized the universe. Copyright © 2017, American Association for the Advancement of Science.

  5. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  6. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  7. VLA Reveals a Close Pair of Potential Planetary Systems

    Science.gov (United States)

    1998-09-01

    Planets apparently can form in many more binary-star systems than previously thought, according to astronomers who used the National Science Foundation's Very Large Array (VLA) radio telescope to image protoplanetary disks around a close pair of stars. "Most stars in the universe are not alone, like our Sun, but are part of double or triple systems, so this means that the number of potential planets is greater than we realized," said Luis Rodriguez, of the National Autonomous University in Mexico City, who led an international observing team that made the discovery. The astronomers announced their results in the Sept. 24 issue of the scientific journal Nature. The researchers used the VLA to study a stellar nursery - a giant cloud of gas and dust - some 450 light-years distant in the constellation Taurus, where stars the size of the Sun or smaller are being formed. They aimed at one particular object, that, based on previous infrared and radio observations, was believed to be a very young star. The VLA observations showed that the object was not a single young star but a pair of young stars, separated only slightly more than the Sun and Pluto. The VLA images show that each star in the pair is surrounded by an orbiting disk of dust, extending out about as far as the orbit of Saturn. Such dusty disks are believed to be the material from which planets form. Similar disks are seen around single stars, but the newly-discovered disks around the stars in the binary system are about ten times smaller, their size limited by the gravitational effect of the other, nearby star. Their existence indicates, however, that such protoplanetary disks, though truncated in size, still can survive in such a close double-star system. "It was surprising to see these disks in a binary system with the stars so close together," said Rodriguez. "Each of these disks contains enough mass to form a solar system like our own," said David Wilner, of the Harvard-Smithsonian Center for Astrophysics

  8. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  9. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  10. Efficient Implementation of the Pairing on Mobilephones Using BREW

    Science.gov (United States)

    Yoshitomi, Motoi; Takagi, Tsuyoshi; Kiyomoto, Shinsaku; Tanaka, Toshiaki

    Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant ηT pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. Moreover, we compare the processing speed of the pairing with that of the other standard public key cryptosystems, i. e. RSA cryptosystem and elliptic curve cryptosystem. Indeed the processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over F397. In addition, the pairing is more efficient than the other public key cryptosystems, and the pairing can be achieved enough also on BREW mobilephones. It has become efficient enough to implement security applications, such as short signature, ID-based cryptosystems or broadcast encryption, using the pairing on BREW mobilephones.

  11. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  12. Proton-neutron correlations in a broken-pair model

    International Nuclear Information System (INIS)

    Akkermans, J.N.L.

    1981-01-01

    In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)

  13. Key ecological challenges for closed systems facilities

    Science.gov (United States)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  14. Homometrism in close-packed structures

    International Nuclear Information System (INIS)

    Mardix, S.

    1990-01-01

    Homometric structures are non-congruent structures having identical X-ray intensity distributions. It has so far been assumed that such structures, while theoretically interesting, would not be realized in practice. Homometrism in close-packed structures is shown to be a realistic possibility. Some general rules applicable to homometric pairs are presented; it is shown that an infinite number of them can be derived from one-dimensional homometric pairs. An exhaustive search of close-packed structures with periods of up to 26 reveals that the smallest period of a homometric pair is 15 and that their number increases rapidly with the period. Homometrism in polytypic structures is further discussed. (orig.)

  15. Quasars Probing Quasars. X. The Quasar Pair Spectral Database

    Science.gov (United States)

    Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.

    2018-06-01

    The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.

  16. Heteroditopic receptors for ion-pair recognition.

    Science.gov (United States)

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  18. Property (RD) for Hecke Pairs

    International Nuclear Information System (INIS)

    Shirbisheh, Vahid

    2012-01-01

    As the first step towards developing noncommutative geometry over Hecke C ∗ -algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G, H) is finite, we show that the Hecke pair (G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant’s works in Jolissaint (J K-Theory 2:723–735, 1989; Trans Amer Math Soc 317(1):167–196, 1990) to the setting of Hecke C ∗ -algebras and show that when a Hecke pair (G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗ -algebra. Hence they have the same K 0 -groups.

  19. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  20. Partitioned key-value store with atomic memory operations

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2017-02-07

    A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from the local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.

  1. Signature scheme based on bilinear pairs

    Science.gov (United States)

    Tong, Rui Y.; Geng, Yong J.

    2013-03-01

    An identity-based signature scheme is proposed by using bilinear pairs technology. The scheme uses user's identity information as public key such as email address, IP address, telephone number so that it erases the cost of forming and managing public key infrastructure and avoids the problem of user private generating center generating forgery signature by using CL-PKC framework to generate user's private key.

  2. Close pairs of relative equilibria for identical point vortices

    DEFF Research Database (Denmark)

    Dirksen, Tobias; Aref, Hassan

    2011-01-01

    Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are fou...

  3. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  4. Enhanced stability of bound pairs at nonzero lattice momenta

    International Nuclear Information System (INIS)

    Kornilovitch, Pavel

    2004-01-01

    A two-body problem on the square lattice is analyzed. The interaction potential consists of strong on-site repulsion and nearest-neighbor attraction. The exact pairing conditions are derived for s-, p-, and d-symmetric bound states. The pairing conditions are strong functions of the total pair momentum K. It is found that the stability of pairs increases with K. At weak attraction, the pairs do not form at the Γ point but stabilize at lattice momenta close to the Brillouin zone boundary. The phase boundaries in the momentum space, which separate stable and unstable pairs, are calculated. It is found that the pairs are formed easier along the (π,0) direction than along the (π,π) direction. This might lead to the appearance of 'hot pairing spots' on the K x and K y axes

  5. Solving the Richardson equations close to the critical points

    Energy Technology Data Exchange (ETDEWEB)

    DomInguez, F [Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares (Spain); Esebbag, C [Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares (Spain); Dukelsky, J [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2006-09-15

    We study the Richardson equations close to the critical values of the pairing strength g{sub c}, where the occurrence of divergences precludes numerical solutions. We derive a set of equations for determining the critical g values and the non-collapsing pair energies. Studying the behaviour of the solutions close to the critical points, we develop a procedure to solve numerically the Richardson equations for arbitrary coupling strength.

  6. minimal pairs of polytopes and their number of vertices

    African Journals Online (AJOL)

    Preferred Customer

    Using this operation we give a new algorithm to reduce and find a minimal pair of polytopes from the given ... Key words/phrases: Pairs of compact convex sets, Blaschke addition, Minkowski sum, mnimality ... product K(X)×K(X) by K2. (X).

  7. [Paired kidneys in transplant].

    Science.gov (United States)

    Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús

    2009-02-01

    Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.

  8. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  9. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter

    2015-07-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within

  10. Quantum key distribution via quantum encryption

    CERN Document Server

    Yong Sheng Zhang; Guang Can Guo

    2001-01-01

    A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed. (21 refs).

  11. Quantifying inbreeding avoidance through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females' alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females' within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  13. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    International Nuclear Information System (INIS)

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  14. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, C. Kevin [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Jarrett, Thomas H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa)

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  15. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    International Nuclear Information System (INIS)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  16. Spatial patterns of close relationships across the lifespan

    Science.gov (United States)

    Jo, Hang-Hyun; Saramäki, Jari; Dunbar, Robin I. M.; Kaski, Kimmo

    2014-11-01

    The dynamics of close relationships is important for understanding the migration patterns of individual life-courses. The bottom-up approach to this subject by social scientists has been limited by sample size, while the more recent top-down approach using large-scale datasets suffers from a lack of detail about the human individuals. We incorporate the geographic and demographic information of millions of mobile phone users with their communication patterns to study the dynamics of close relationships and its effect in their life-course migration. We demonstrate how the close age- and sex-biased dyadic relationships are correlated with the geographic proximity of the pair of individuals, e.g., young couples tend to live further from each other than old couples. In addition, we find that emotionally closer pairs are living geographically closer to each other. These findings imply that the life-course framework is crucial for understanding the complex dynamics of close relationships and their effect on the migration patterns of human individuals.

  17. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  18. Practical quantum key distribution with polarization-entangled photons

    International Nuclear Information System (INIS)

    Poppe, A.; Fedrizzi, A.; Boehm, H.; Ursin, R.; Loruenser, T.; Peev, M.; Maurhardt, O.; Suda, M.; Kurtsiefer, C.; Weinfurter, H.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: We present an entangled-state quantum cryptography system that operated for the first time in a real-world application scenario. The full key generation protocol was performed in real-time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. A source for polarization-entangled photons delivered about 8200 entangled photon pairs per second. After transmission to the distant receivers, a mean value of 468 pairs per second remained for the generation of a raw key, which showed an average qubit error rate of 6.4 %. The raw key was sifted and subsequently processed by a classical protocol which included error correction and privacy amplification. The final secure key bit rate was about 76 bits per second. The generated quantum key was then handed over and used by a secure communication application. (author)

  19. Pair breaking and charge relaxation in superconductors

    International Nuclear Information System (INIS)

    Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.

    1982-01-01

    We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering

  20. Quantum key distribution without alternative measurements

    CERN Document Server

    Cabello, A

    2000-01-01

    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator. (20 refs).

  1. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  2. Electron–Positron Pair Creation Close to a Black Hole Horizon: Redshifted Annihilation Line in the Emergent X-Ray Spectra of a Black Hole. I.

    Science.gov (United States)

    Laurent, Philippe; Titarchuk, Lev

    2018-06-01

    We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.

  3. METHODS OF STEREO PAIR IMAGES FORMATION WITH A GIVEN PARALLAX VALUE

    Directory of Open Access Journals (Sweden)

    Viktoriya G. Chafonova

    2014-11-01

    Full Text Available Two new complementary methods of stereo pair images formation are proposed. The first method is based on finding the maximum correlation between the gradient images of the left and right frames. The second one implies the finding of the shift between two corresponding key points of images for a stereo pair found by a detector of point features. These methods give the possibility to set desired values of vertical and horizontal parallaxes for the selected object in the image. Application of these methods makes it possible to measure the parallax values for the objects on the final stereo pair in pixels and / or the percentage of the total image size. It gives the possibility to predict the possible excesses in parallax values while stereo pair printing or projection. The proposed methods are easily automated after object selection, for which a predetermined value of the horizontal parallax will be exposed. Stereo pair images superposition using the key points takes less than one second. The method with correlation application requires a little bit more computing time, but makes it possible to control and superpose undivided anaglyph image. The proposed methods of stereo pair formation can find their application in programs for editing and processing images of a stereo pair, in the monitoring devices for shooting cameras and in the devices for video sequence quality assessment

  4. Electron-positron pair production in inhomogeneous electromagnetic fields

    International Nuclear Information System (INIS)

    Kohlfürst, C.

    2015-01-01

    The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de

  5. Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    International Nuclear Information System (INIS)

    Su Yanli; Jiang Qichang; Ji Xuanmang

    2010-01-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Pairing Behavior of the Monogamous King Quail, Coturnix chinensis.

    Directory of Open Access Journals (Sweden)

    Elizabeth Adkins-Regan

    Full Text Available Animals with socially monogamous mating systems are valuable for discovering proximate mechanisms of prosocial behavior and close social relationships. Especially powerful are comparisons between related species that differ in monogamous tendency. Birds are the most socially monogamous vertebrates. Thus far most research on mechanisms of pairing has used zebra finches, which do not have a relative with a different mating system, however. The goal of the experiments reported here was to develop a new comparative avian system by studying the pairing behavior of a reportedly strongly monogamous quail, the king quail (Coturnix chinensis, a species in the same clade as the less monogamous Japanese quail (Coturnix japonica, the subject of much prior research. In Experiment 1 male-female pairs of king quail housed together were initially avoidant or aggressive but most rapidly progressed to allopreening and huddling. A separation-reunion paradigm reliably elicited both of these behaviors in males that had cohabited for one week. In Experiment 2 the allopreening and huddling behavior of males in cohabiting pairs was highly selective, and a majority of the males were aggressive toward a familiar female that was not the cohabitation partner. In Experiment 3 males were separated from their female cohabitation partners for 9-10 weeks and then given two-choice tests. All but one male spent more time near an unfamiliar female, which may have reflected aggression and shows recognition of and memory for the past pairing experience. Thus king quail show robust, selective and easy to measure pairing behavior that can be reliably elicited with simple separation-reunion testing procedures. Copulation is rarely seen during tests. The behavior of king quail is a striking contrast to that of Japanese quail, providing a new comparative system for discovering mechanisms of behavior related to close social relationships and monogamy.

  7. Pairing Behavior of the Monogamous King Quail, Coturnix chinensis.

    Science.gov (United States)

    Adkins-Regan, Elizabeth

    2016-01-01

    Animals with socially monogamous mating systems are valuable for discovering proximate mechanisms of prosocial behavior and close social relationships. Especially powerful are comparisons between related species that differ in monogamous tendency. Birds are the most socially monogamous vertebrates. Thus far most research on mechanisms of pairing has used zebra finches, which do not have a relative with a different mating system, however. The goal of the experiments reported here was to develop a new comparative avian system by studying the pairing behavior of a reportedly strongly monogamous quail, the king quail (Coturnix chinensis), a species in the same clade as the less monogamous Japanese quail (Coturnix japonica), the subject of much prior research. In Experiment 1 male-female pairs of king quail housed together were initially avoidant or aggressive but most rapidly progressed to allopreening and huddling. A separation-reunion paradigm reliably elicited both of these behaviors in males that had cohabited for one week. In Experiment 2 the allopreening and huddling behavior of males in cohabiting pairs was highly selective, and a majority of the males were aggressive toward a familiar female that was not the cohabitation partner. In Experiment 3 males were separated from their female cohabitation partners for 9-10 weeks and then given two-choice tests. All but one male spent more time near an unfamiliar female, which may have reflected aggression and shows recognition of and memory for the past pairing experience. Thus king quail show robust, selective and easy to measure pairing behavior that can be reliably elicited with simple separation-reunion testing procedures. Copulation is rarely seen during tests. The behavior of king quail is a striking contrast to that of Japanese quail, providing a new comparative system for discovering mechanisms of behavior related to close social relationships and monogamy.

  8. Pumping Electron-Positron Pairs from a Well Potential.

    Science.gov (United States)

    Wang, Qiang; Liu, Jie; Fu, Li-Bin

    2016-04-29

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.

  9. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  10. Theoretical study of GC+/GC base pair derivatives

    International Nuclear Information System (INIS)

    Meng Fancui; Wang Huanjie; Xu Weiren; Liu Chengbu

    2005-01-01

    The geometries of R (R=CH 3 , CH 3 O, F, NO 2 ) substituted GC base pair derivatives and their cations have been optimized at B3LYP/6-31G* level and the substituent effects on the neutral and cationic geometric structures and energies have been discussed. The inner reorganization energies of various base pair derivatives and the native GC base pair have been calculated to discuss the substituent effects on the reorganization energy. NBO (natural bond orbital) analysis has been carried out on both the neutral and the cationic systems to investigate the differences of the charge distributions and the electronic structures. The outcomes indicate that 8-CH 3 O-G:C has the greatest reorganization energy and 8-NO 2 -G:C has the least, while the other substituted base pairs have a reorganization energy close to that of G:C. The one charge is mostly localized on guanine part after ionization and as high as 0.95e. The bond distances of N1-N3'andN2-O2' in the cationic base pair derivatives shortened and that of O6-N4' elongated as compared with the corresponding bond distances of the neutral GC base pair derivatives

  11. Research of user key management mechanisms in the cloud

    Directory of Open Access Journals (Sweden)

    Іван Федорович Аулов

    2016-06-01

    Full Text Available The results of comparison and recommendations on the use of existing user key management mechanisms in the cloud environment are given. New generation and installing mechanism of a private key pair between the N-means of key management in the cloud by using a modified Diffie-Hellman protocol is proposed

  12. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  13. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs

    International Nuclear Information System (INIS)

    Chu, Wally; Weerasekera, Akila; Kim, Chul-Hyun

    2017-01-01

    Two identical 5′GACG3′ tetra-loop motifs with different stem sequences (called H2 and H3) are found in the 5′ end region of Moloney Murine Leukemia Virus (MMLV) genomic RNA. They play important roles in RNA dimerization and encapsidation through two identical tetra-loops (5′GACG3′) forming a loop-to-loop kissing complex, the smallest RNA kissing complex ever found in nature. We examined the effects of a loop-closing base pair as well as a stem sequence on the conformational stability of the kissing complex. UV melting analysis and gel electrophoresis were performed on eight RNA sequences mimicking the H2 and H3 hairpin tetra-loops with variation in loop-closing base pairs. Our results show that changing the loop-closing base pair from the wildtype (5′A·U3′ for H3, 5′U·A3′ for H2) to 5′G·C3’/5′C·G3′ has significant effect on the stability of the kissing complexes: the substitution to 5′C·G3′ significantly decreases both thermal and mechanical stability, while switching to the 5′G·C3′ significantly increases the mechanical stability only. The kissing complexes with the wildtype loop-closing base pairs (5′A·U3′ for H3 and 5′U·A3′ for H2) show different stability when attached to a different stem sequence (H2 stem vs. H3 stem). This suggests that not only the loop-closing base pair itself, but also the stem sequence, affects the conformational stability of the RNA kissing complex. - Highlights: • Thermodynamic parameters of the smallest RNA kissing interactions were measured. • The effects of loop-closing base pairs on the RNA kissing complex was investigated. • Changing the base pair to 5′CG3′ decreases the stability of the kissing complex. • Changing it to 5′GC3′ increases the mechanical resilience of the kissing complex. • Difference in its stem sequence also affects the stability of the kissing complex.

  14. Pair production by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    Solutions are obtained for the Dirac and Klein-Gordon equations with a one-dimensional symmetric potential well, having a flat bottom and arbitrary depth, width and field strengths at the walls. Quasi-stationary solutions describing a pair production by the well and the inverse process are obtained. It is shown that if the pair production probability is small, it is expressed in terms of the pair production probability on one wall and the particle oscillation frequency in the well. If the well has a supercritical depth, the lower continuum contains positron resonance scattering states at energies close to the real part of the quasi-stationary level energy (Zeldovich's effect). The qualitative dependence of the positron penetration coefficient through the wall on its energy and the well depth is an evidence that the solution of the so called one-particle Dirac equation describes in fact a many-particle system with a charge of 0 or 1

  15. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  16. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  17. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  18. The pairing theory - its physical basis and its consequences

    International Nuclear Information System (INIS)

    Schrieffer, J.R.

    1992-01-01

    The key developments which set the scene for the microscopic theory of superconductivity are discussed and the physical reasoning which lead to the pairing theory is presented. Consequences of the BCS theory are reviewed. (orig.)

  19. Paired-pulse flash-visual evoked potentials: new methods revive an old test.

    Science.gov (United States)

    Cantello, Roberto; Strigaro, Gionata; Prandi, Paolo; Varrasi, Claudia; Mula, Marco; Monaco, Francesco

    2011-08-01

    We aimed at reviving with modern technology the paired flash-visual evoked potential (F-VEP) testing of the visual system excitability. In the 1960s, methodological problems hindered this test, which was expected to provide important physiologic information. We studied 22 consenting healthy subjects (10 men). We recorded F-VEPs from electrodes over occipital and central brain regions. We delivered single flashes, mixed at random to flash pairs at the interstimulus interval (ISI) of 333, 125, 62.5, 50, 33, and 16.5 ms, (i.e. an internal frequency (IF) of 3, 8, 16, 20, 30, and 60 Hz). Recordings were performed with the subject's eyes closed and opened. The F-VEP was split into a "main complex" and an "afterdischarge", which we analyzed statistically in relation to the eye state (closed or open) and to the changes due to paired stimulation. The eye state affected the single F-VEP size, latency and shape significantly (p<0.05). On paired stimulation, the test (second) F-VEP exhibited significant (p<0.05), ISI-dependent size changes, such as a progressive decrease for ISIs from 62.5 to 16.5 ms (IFs of 16-60 Hz), whose timing/amount varied significantly (p<0.05) according to the eye state and to the F-VEP epoch considered. Suppression of the test F-VEP was never complete, even for the shortest ISI (ISI=16.5 ms, IF=60 Hz). The eye state (closed or open) must be considered meticulously when studying F-VEPs. F-VEP changes on paired stimulation express neural inhibition within the visual system, which can be depicted as ISI-dependent curves. Modern equipment and simplified measures render this an easy test, with statistical validity, providing specific information on the excitability properties of the visual system. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Shell and pairing effects in spherical nuclei close to the nucleon drip lines

    International Nuclear Information System (INIS)

    Beiner, M.; Lombard, R.J.

    1975-01-01

    The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr

  1. Validity of the broken-pair approximation for N = 50, even-A nuclei

    International Nuclear Information System (INIS)

    Haq, S.; Gambhir, Y.K.

    1977-01-01

    The validity of the broken-pair approximation as an approximation to the seniority shell model is investigated. The results of the broken-pair approximation and the seniority shell model, obtained by employing identical input information (single-particle levels and their energies, effective two-body matrix elements, 88 Sr inert core) for N = 50, even-A nuclei are compared. A close agreement obtained between the calculated broken-pair approximation and the seniority shell model energies for 90 Zr, 92 Mo, 94 Ru, and 96 Pd nuclei and large (95--100 %) overlaps between the broken-pair approximation and the senority shell model wave functions for 92 Mo, demonstrates the validity of the broken-pair approximation in this region and in general its usefulness as a good approximation to the seniority shell model

  2. Existence and consequences of Coulomb pairing of electrons in a solid

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Thyagaraja, A.

    1996-11-01

    It is shown from first principles that, in the periodic potential of a crystalline solid, short-range (i.e., screened) binary Coulomb interactions can lead to a two-electron bound state. It is further suggested that these composite bosonic states (charge -2e, and typically spin zero) could mediate an effectively attractive interaction between pairs of conduction electrons close to the Fermi level. This necessarily short range attractive interaction, which is crucially dependent on the band structure of the solid, and is complementary to the phonon-mediated one, may provide a source for the existence and properties of short correlation-length electron pairs (analogous to but distinct from Cooper pairs) needed to understand high temperature superconductivity. Several distinctive and observable characteristics of the proposed pairing scheme are discussed

  3. Efficient KDM-CCA Secure Public-Key Encryption via Auxiliary-Input Authenticated Encryption

    Directory of Open Access Journals (Sweden)

    Shuai Han

    2017-01-01

    Full Text Available KDM[F]-CCA security of public-key encryption (PKE ensures the privacy of key-dependent messages f(sk which are closely related to the secret key sk, where f∈F, even if the adversary is allowed to make decryption queries. In this paper, we study the design of KDM-CCA secure PKE. To this end, we develop a new primitive named Auxiliary-Input Authenticated Encryption (AIAE. For AIAE, we introduce two related-key attack (RKA security notions, including IND-RKA and weak-INT-RKA. We present a generic construction of AIAE from tag-based hash proof system (HPS and one-time secure authenticated encryption (AE and give an instantiation of AIAE under the Decisional Diffie-Hellman (DDH assumption. Using AIAE as an essential building block, we give two constructions of efficient KDM-CCA secure PKE based on the DDH and the Decisional Composite Residuosity (DCR assumptions. Specifically, (i our first PKE construction is the first one achieving KDM[Faff]-CCA security for the set of affine functions and compactness of ciphertexts simultaneously. (ii Our second PKE construction is the first one achieving KDM[Fpolyd]-CCA security for the set of polynomial functions and almost compactness of ciphertexts simultaneously. Our PKE constructions are very efficient; in particular, they are pairing-free and NIZK-free.

  4. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  5. Noninteractive Verifiable Outsourcing Algorithm for Bilinear Pairing with Improved Checkability

    Directory of Open Access Journals (Sweden)

    Yanli Ren

    2017-01-01

    Full Text Available It is well known that the computation of bilinear pairing is the most expensive operation in pairing-based cryptography. In this paper, we propose a noninteractive verifiable outsourcing algorithm of bilinear pairing based on two servers in the one-malicious model. The outsourcer need not execute any expensive operation, such as scalar multiplication and modular exponentiation. Moreover, the outsourcer could detect any failure with a probability close to 1 if one of the servers misbehaves. Therefore, the proposed algorithm improves checkability and decreases communication cost compared with the previous ones. Finally, we utilize the proposed algorithm as a subroutine to achieve an anonymous identity-based encryption (AIBE scheme with outsourced decryption and an identity-based signature (IBS scheme with outsourced verification.

  6. Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives

    Science.gov (United States)

    Niu, Y. F.; Niu, Z. M.; Colò, G.; Vigezzi, E.

    2018-05-01

    The nuclear β-decay half-lives of Ni and Sn isotopes, around the closed shell nuclei 78Ni and 132Sn, are investigated by computing the distribution of the Gamow-Teller strength using the Quasiparticle Random Phase Approximation (QRPA) with quasiparticle-vibration coupling (QPVC), based on ground-state properties obtained by Hartree-Fock-Bogoliubov (HFB) calculations. We employ the effective interaction SkM* and a zero-range effective pairing force. The half-lives are strongly reduced by including the QPVC. We study in detail the effects of isovector (IV) and isoscalar (IS) pairing. Increasing the IV strength tends to increase the lifetime for nuclei in the proximity of, but lighter than, the closed-shell ones in QRPA calculations, while the effect is significantly reduced by taking into account the QPVC. On the contrary, the IS pairing mainly plays a role for nuclei after the shell closure. Increasing its strength decreases the half-lives, and the effect at QRPA and QRPA+QPVC level is comparable. The effect of IS pairing is particularly pronounced in the case of the Sn isotopes, where it turns out to be instrumental to obtain good agreement with experimental data.

  7. Pair formation by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    We obtain solutions of the Dirac and Klein-Gordon equations for a symmetric one-dimensional potential well with a flat bottom, and arbitrary depth, width, and field strength at the walls. Quasistationary solutions are found describing pair creation by the well, and the inverse process. It is shown that when the probability of pair creation by the well is small, it can be expressed in terms of the probability of pair creation at one of the walls and the oscillation frequency of the particle in the well. Among the states of the lower continuum, there are positron resonance scattering states for supercritical well depths. The energies of these states are close to the real part of the quasistationary energy level (the Zel'dovich effect). The qualitative dependence of the transmission coefficient of the positron through the well on its energy and the well width supports the idea that the solution of the so-called one-particle Dirac equation describes a many-particle system with charge 0 or 1

  8. Multi-user distribution of polarization entangled photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  9. PAIR'14 / PAIR'15 STUDENT CONFERENCES ON PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS

    Directory of Open Access Journals (Sweden)

    Editorial Foreword

    2015-12-01

    Full Text Available Dear Readerthe original idea of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR is to join young researchers from particular laboratories in Czech Republic, where planning problems are investigated from artificial intelligence (AI or robotics points of view. The first year of PAIR has been organized at the Dept. of Computer Science, Faculty Electrical Engineering, Czech Technical University in 2014.At PAIR 2014, laboratories from Prague and Brno were presented. In particular, students and researchers from Charles University, Czech Technical University in Prague, Brno University of Technology, and Central European Institute of Technology participated at the event. Beside an introduction of the particular research groups and their topics, students presented contributions on their current research results. Ten papers were presented on topics ranging from domain–independent planning, trajectory planning to applications for unmanned aerial and legged robots. This first event provides us an initial experience with the community of young researchers in Czech Republic that are working planning in robotic or AI. Based on the success of PAIR 2014, we decided to continue with our effort to establish a suitable fora for students that are geographically very close, but usually do not meet, because of participation on different Robotics and AI events.The second student conference on Planning in Artificial Intelligence and Robotics (PAIR 2015 successfully continues the tradition of the first year of the conference organized in Prague. This year, the conference was collocated with 10th anniversary of RoboTour contest in Písek. This format enable us to extend the impact of the PAIR conference and improve the visibility of the growing student community. The conference reached a good amount of interesting papers focused on image processing for mobile robots, swarm control, driving simulation, robot control, or domain

  10. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  11. On the efficient determination of most near neighbors horseshoes, hand grenades, web search and other situations when close is close enough

    CERN Document Server

    Manasse, Mark S

    2012-01-01

    The time-worn aphorism ""close only counts in horseshoes and hand-grenades"" is clearly inadequate. Close also counts in golf, shuffleboard, archery, darts, curling, and other games of accuracy in which hitting the precise center of the target isn't to be expected every time, or in which we can expect to be driven from the target by skilled opponents. This lecture is not devoted to sports discussions, but to efficient algorithms for determining pairs of closely related web pages -- and a few other situations in which we have found that inexact matching is good enough; where proximity suffices.

  12. On magnon mediated Cooper pair formation in ferromagnetic superconductors

    Directory of Open Access Journals (Sweden)

    Rakesh Kar

    2014-08-01

    Full Text Available Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling (J multiplied by average spin (S per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe2 and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett. 87, 167007 (2001]. We compute the critical temperatures of URhGe at ambient pressure and of UGe2 under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.

  13. Nuclear squid: Diabolic pair transfer in rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, R S; Ring, P; Canto, L F

    1987-02-19

    A new unexpected behavior of pair transfer matrix elements in superfluid rotating nuclei is predicted. With increasing angular velocity they drop to zero, change their sign and in some cases even oscillate between positive and negative values. This effect is related to diabolical points in rotating quasiparticle spectra and is closely analogous to the DC-Josephson effect in superconductors in the presence of a magnetic field.

  14. Test of local realism with entangled kaon pairs and without inequalities

    International Nuclear Information System (INIS)

    Bramon, Albert; Garbarino, Gianni

    2002-01-01

    We propose the use of entangled pairs of neutral kaons, considered as a promising tool to close the well known loopholes affecting generic Bell's inequality tests, in a specific Hardy-type experiment. Hardy's contradiction without inequalities between local realism and quantum mechanics can be translated into a feasible experiment by requiring ideal detection efficiencies for only one of the observables to be alternatively measured. Neutral kaons are near to fulfill this requirement and therefore to close the efficiency loophole

  15. To pair or not to pair: Sources of social variability with white-faced saki monkeys (Pithecia pithecia) as a case study.

    Science.gov (United States)

    Thompson, Cynthia L

    2016-05-01

    Intraspecific variability in social systems is gaining increased recognition in primatology. Many primate species display variability in pair-living social organizations through incorporating extra adults into the group. While numerous models exist to explain primate pair-living, our tools to assess how and why variation in this trait occurs are currently limited. Here I outline an approach which: (i) utilizes conceptual models to identify the selective forces driving pair-living; (ii) outlines novel possible causes for variability in social organization; and (iii) conducts a holistic species-level analysis of social behavior to determine the factors contributing to variation in pair-living. A case study on white-faced sakis (Pithecia pithecia) is used to exemplify this approach. This species lives in either male-female pairs or groups incorporating "extra" adult males and/or females. Various conceptual models of pair-living suggest that high same-sex aggression toward extra-group individuals is a key component of the white-faced saki social system. Variable pair-living in white-faced sakis likely represents alternative strategies to achieve competency in this competition, in which animals experience conflicting selection pressures between achieving successful group defense and maintaining sole reproductive access to mates. Additionally, independent decisions by individuals may generate social variation by preventing other animals from adopting a social organization that maximizes fitness. White-faced saki inter-individual relationships and demographic patterns also lend conciliatory support to this conclusion. By utilizing both model-level and species-level approaches, with a consideration for potential sources of variation, researchers can gain insight into the factors generating variation in pair-living social organizations. © 2014 The Authors. American Journal of Primatology published by Wiley Periodicals, Inc.

  16. Micromechanics of base pair unzipping in the DNA duplex

    International Nuclear Information System (INIS)

    Volkov, Sergey N; Paramonova, Ekaterina V; Yakubovich, Alexander V; Solov’yov, Andrey V

    2012-01-01

    All-atom molecular dynamics (MD) simulations of DNA duplex unzipping in a water environment were performed. The investigated DNA double helix consists of a Drew-Dickerson dodecamer sequence and a hairpin (AAG) attached to the end of the double-helix chain. The considered system is used to examine the process of DNA strand separation under the action of an external force. This process occurs in vivo and now is being intensively investigated in experiments with single molecules. The DNA dodecamer duplex is consequently unzipped pair by pair by means of the steered MD. The unzipping trajectories turn out to be similar for the duplex parts with G⋅C content and rather distinct for the parts with A⋅T content. It is shown that during the unzipping each pair experiences two types of motion: relatively quick rotation together with all the duplex and slower motion in the frame of the unzipping fork. In the course of opening, the complementary pair passes through several distinct states: (i) the closed state in the double helix, (ii) the metastable preopened state in the unzipping fork and (iii) the unbound state. The performed simulations show that water molecules participate in the stabilization of the metastable states of the preopened base pairs in the DNA unzipping fork. (paper)

  17. LOCKS AND KEYS SERVICE

    CERN Multimedia

    Locks and Keys Service

    2002-01-01

    The Locks and Keys service (ST/FM) will move from building 55 to building 570 from the 2nd August to the 9th August 2002 included. During this period the service will be closed. Only in case of extreme urgency please call the 164550. Starting from Monday, 12th August, the Locks and Keys Service will continue to follow the activities related to office keys (keys and locks) and will provide the keys for furniture. The service is open from 8h30 to 12h00 and from 13h00 to 17h30. We remind you that your divisional correspondents can help you in the execution of the procedures. We thank you for your comprehension and we remain at your service to help you in solving all the matters related to keys for offices and furniture. Locks and Keys Service - ST Division - FM Group

  18. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    Science.gov (United States)

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  19. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  20. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  1. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  2. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  3. Quantitative evaluation of pairs and RS steganalysis

    Science.gov (United States)

    Ker, Andrew D.

    2004-06-01

    We give initial results from a new project which performs statistically accurate evaluation of the reliability of image steganalysis algorithms. The focus here is on the Pairs and RS methods, for detection of simple LSB steganography in grayscale bitmaps, due to Fridrich et al. Using libraries totalling around 30,000 images we have measured the performance of these methods and suggest changes which lead to significant improvements. Particular results from the project presented here include notes on the distribution of the RS statistic, the relative merits of different "masks" used in the RS algorithm, the effect on reliability when previously compressed cover images are used, and the effect of repeating steganalysis on the transposed image. We also discuss improvements to the Pairs algorithm, restricting it to spatially close pairs of pixels, which leads to a substantial performance improvement, even to the extent of surpassing the RS statistic which was previously thought superior for grayscale images. We also describe some of the questions for a general methodology of evaluation of steganalysis, and potential pitfalls caused by the differences between uncompressed, compressed, and resampled cover images.

  4. Dynamics and Instabilities of Vortex Pairs

    Science.gov (United States)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  5. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    Science.gov (United States)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  6. Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jarrod A.; Ho, Isaac; Sunkara, Sirisha; Luo, Shujun; Schroth, Gary P.; Rokhsar, Daniel S.; Salzberg, Steven L.

    2011-08-18

    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ~280 bp or ~3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed.

  7. On the origin of the close pair of degenerate dwarf L870-2

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1988-01-01

    The double star found recently can be a postalgol binary consisting of two helium degenerate stars. The ratio of masses in such systems is limited to rather narrow range 0.87±0.02 what is close to the observed value

  8. WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121

    International Nuclear Information System (INIS)

    Piconcelli, Enrico; Fiore, Fabrizio; Maiolino, Roberto; Nicastro, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Mathur, Smita; Guainazzi, Matteo; Lanzuisi, Giorgio

    2010-01-01

    We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (N H ∼ 5 x 10 23 cm -2 ), Seyfert-like (L 2-10keV = 4.7 x 10 42 erg s -1 ) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in the case of a Compton-thick absorber, and only the emission produced by Compton scattering ('reflection') of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.

  9. Three-color Sagnac source of polarization-entangled photon pairs.

    Science.gov (United States)

    Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton

    2009-12-07

    We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.

  10. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    shows that the improved treatment plays A role close to magicity, leading to an enhancement of the pair-transfer probability. In midshell regions, part of the error made by approximating the initial and final ground states by A single vacuum is compensated by projecting onto A good particle number. Surface effects are analyzed by using pairing interactions with A different volume/surface mixing. Finally, A simple expression of the pair-transfer probability is given in terms of occupation probabilities in the canonical basis. We show that, in the canonical basis formulation, surface effects that are visible in the transfer probability are related to the fragmentation of single-particle occupancies close to the Fermi energy. This provides A complementary interpretation with respect to the standard quasiparticle representation where surface effects are generated by the integrated radial profiles of the contributing wave functions.

  11. Public Key Encryption Supporting Plaintext Equality Test and User-Specified Authorization

    NARCIS (Netherlands)

    Tang, Qiang

    2011-01-01

    In this paper we investigate a category of public key encryption schemes which supports plaintext equality test and user-specified authorization. With this new primitive, two users, who possess their own public/private key pairs, can issue token(s) to a proxy to authorize it to perform plaintext

  12. Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Lang, Gregory I.; Murray, Andrew W.

    2008-01-01

    Although mutation rates are a key determinant of the rate of evolution they are difficult to measure precisely and global mutations rates (mutations per genome per generation) are often extrapolated from the per-base-pair mutation rate assuming that mutation rate is uniform across the genome. Using budding yeast, we describe an improved method for the accurate calculation of mutation rates based on the fluctuation assay. Our analysis suggests that the per-base-pair mutation rates at two genes...

  13. Electron-positron pair production in ultrastrong laser fields

    Directory of Open Access Journals (Sweden)

    Bai Song Xie

    2017-09-01

    Full Text Available Electron–positron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology. The theoretical and numerical research progress of this challenging topic is reviewed. Many new findings are presented by different approaches such as the worldline instantons, the S-matrix theory, the kinetic method by solving the quantum Vlasov equation or/and the real-time Dirac–Heisenberg–Wigner formalism, the computational quantum field theory by solving the Dirac equation and so on. In particular, the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra. The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented. The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings. These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization. More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.

  14. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  15. Automatically pairing measured findings across narrative abdomen CT reports.

    Science.gov (United States)

    Sevenster, Merlijn; Bozeman, Jeffrey; Cowhy, Andrea; Trost, William

    2013-01-01

    Radiological measurements are one of the key variables in widely adopted guidelines (WHO, RECIST) that standardize and objectivize response assessment in oncology care. Measurements are typically described in free-text, narrative radiology reports. We present a natural language processing pipeline that extracts measurements from radiology reports and pairs them with extracted measurements from prior reports of the same clinical finding, e.g., lymph node or mass. A ground truth was created by manually pairing measurements in the abdomen CT reports of 50 patients. A Random Forest classifier trained on 15 features achieved superior results in an end-to-end evaluation of the pipeline on the extraction and pairing task: precision 0.910, recall 0.878, F-measure 0.894, AUC 0.988. Representing the narrative content in terms of UMLS concepts did not improve results. Applications of the proposed technology include data mining, advanced search and workflow support for healthcare professionals managing radiological measurements.

  16. SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei

    Science.gov (United States)

    Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike

    2018-04-01

    We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.

  17. Genetic basis of hybrid male sterility among three closely related species of Drosophila.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, B N

    2005-05-01

    The genetic basis of hybrid male sterility among three closely related species, Drosophila bipectinata, D. parabipectinata and D. malerkotliana has been investigated by using backcross analysis methods. The role of Y chromosome, major hybrid sterility (MHS) genes (genetic factors) and cytoplasm (non-genetic factor) have been studied in the hybrids of these three species. In the species pair, bipectinata--parabipectinata, Y chromosome introgression of parabipectinata in the genomic background of bipectinata and the reciprocal Y chromosome introgression were unsuccessful as all males in second backcross generation were sterile. Neither MHS genes nor cytoplasm was found important for sterility. This suggests the involvement of X-Y, X-autosomes or polygenic interactions in hybrid male sterility. In bipectinata--malerkotliana and parabipectinata--malerkotliana species pairs, Y chromosome substitution in reciprocal crosses did not affect male fertility. Backcross analyses also show no involvement of MHS genes or cytoplasm in hybrid male sterility in these two species pairs. Therefore, X- autosome interaction or polygenic interaction is supposed to be involved in hybrid male sterility in these two species pairs. These findings also provide evidence that even in closely related species, genetic interactions underlying hybrid male sterility may vary.

  18. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    International Nuclear Information System (INIS)

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garcés, Ane; Catalán, Silvia; Silvestri, Nicole M.

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types ≤ M7. Our results show that early-type M dwarfs (≤M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  19. Differential Fault Analysis on CLEFIA with 128, 192, and 256-Bit Keys

    Science.gov (United States)

    Takahashi, Junko; Fukunaga, Toshinori

    This paper describes a differential fault analysis (DFA) attack against CLEFIA. The proposed attack can be applied to CLEFIA with all supported keys: 128, 192, and 256-bit keys. DFA is a type of side-channel attack. This attack enables the recovery of secret keys by injecting faults into a secure device during its computation of the cryptographic algorithm and comparing the correct ciphertext with the faulty one. CLEFIA is a 128-bit blockcipher with 128, 192, and 256-bit keys developed by the Sony Corporation in 2007. CLEFIA employs a generalized Feistel structure with four data lines. We developed a new attack method that uses this characteristic structure of the CLEFIA algorithm. On the basis of the proposed attack, only 2 pairs of correct and faulty ciphertexts are needed to retrieve the 128-bit key, and 10.78 pairs on average are needed to retrieve the 192 and 256-bit keys. The proposed attack is more efficient than any previously reported. In order to verify the proposed attack and estimate the calculation time to recover the secret key, we conducted an attack simulation using a PC. The simulation results show that we can obtain each secret key within three minutes on average. This result shows that we can obtain the entire key within a feasible computational time.

  20. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  1. Towards Public Key Encryption Scheme Supporting Equality Test with Fine-Grained Authorization

    NARCIS (Netherlands)

    Tang, Qiang

    2011-01-01

    In this paper we investigate a new category of public key encryption schemes which supports equality test between ciphertexts. With this new primitive, two users, who possess their own public/private key pairs, can issue token(s) to a proxy to authorize it to perform equality test between their

  2. Generalized pairing strategies-a bridge from pairing strategies to colorings

    Directory of Open Access Journals (Sweden)

    Győrffy Lajos

    2016-12-01

    Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.

  3. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  4. Initiation at closely spaced replication origins in a yeast chromosome.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1993-12-10

    Replication of eukaryotic chromosomes involves initiation at origins spaced an average of 50 to 100 kilobase pairs. In yeast, potential origins can be recognized as autonomous replication sequences (ARSs) that allow maintenance of plasmids. However, there are more ARS elements than active chromosomal origins. The possibility was examined that close spacing of ARSs can lead to inactive origins. Two ARSs located 6.5 kilobase pairs apart can indeed interfere with each other. Replication is initiated from one or the other ARS with equal probability, but rarely (< 5%) from both ARSs on the same DNA molecule.

  5. Vehicle Authentication via Monolithically Certified Public Key and Attributes

    OpenAIRE

    Dolev, Shlomi; Krzywiecki, Łukasz; Panwar, Nisha; Segal, Michael

    2015-01-01

    Vehicular networks are used to coordinate actions among vehicles in traffic by the use of wireless transceivers (pairs of transmitters and receivers). Unfortunately, the wireless communication among vehicles is vulnerable to security threats that may lead to very serious safety hazards. In this work, we propose a viable solution for coping with Man-in-the-Middle attacks. Conventionally, Public Key Infrastructure (PKI) is utilized for a secure communication with the pre-certified public key. H...

  6. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  7. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  8. Search for Top Quark Pair Resonances with the CMS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2159607

    2013-07-15

    The Standard Model of particle physics is not the final theory. It breaks at larger (TeV) scales and thus can not explain the hierarchy problem, the unification of couplings and some physical phenomena. Several physical models, referred to as Beyond the Standard Model, have been proposed to account for the phenomena which are not explained by the Standard Model, and to answer to some of these open questions. As the top quark has as an enormous mass of about 173.3 GeV, it plays an essential role in searches for new physics. Various models beyond the Standard Model predict the existence of heavy particles decaying into top quark pairs. These particles manifest themselves as resonant structures in the invariant mass spectrum of the top quark pairs. In this thesis, a model-independent search has been performed for top quark pair resonances in the mass range close to the top quark pair production threshold. The Topcolor Z' model is considered as a reference model. The presented search focuses on top quark pair eve...

  9. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.

    Science.gov (United States)

    Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro

    2005-07-06

    To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.

  10. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  11. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  12. Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfishes

    KAUST Repository

    Nowicki, Jessica; Walker, Stefan; Coker, Darren James; Hoey, Andrew; Nicolet, Katia; Pratchett, Morgan

    2017-01-01

    Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. Pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves.

  13. Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfishes

    KAUST Repository

    Nowicki, Jessica P

    2017-11-14

    Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. Pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves.

  14. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    International Nuclear Information System (INIS)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory

  15. Models of charge pair generation in organic solar cells.

    Science.gov (United States)

    Few, Sheridan; Frost, Jarvist M; Nelson, Jenny

    2015-01-28

    Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.

  16. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  17. Compatibility art of traditional Chinese medicine: from the perspective of herb pairs.

    Science.gov (United States)

    Wang, Shengpeng; Hu, Yangyang; Tan, Wen; Wu, Xu; Chen, Ruie; Cao, Jiliang; Chen, Meiwan; Wang, Yitao

    2012-09-28

    Over the past decades, research of traditional Chinese medicine (TCM) mainly focused on developing potential candidates from Chinese medicinal herbs, while the wisdom of applying these traditional herbs has not been paid as much attention as it deserves. As is well-known, multi-herb therapy is one of the most important characteristics of TCM, but the modernization drive of this conventional wisdom has faced many obstacles due to its unimaginable complexity. Herb pairs, the most fundamental and the simplest form of multi-herb formulae, are a centralized representative of Chinese herbal compatibility. In light of their simplicity and the basic characteristics of complex formulae, herb pairs are of great importance in the studies of herb compatibility. A systematic search of herb pair related research was carried out using multiple online literature databases, books and monographs published in the past 20 years. A comprehensive introduction to the compatibility of TCM, the position of herb pairs in TCM and the progresses of several famous herb pairs were provided in this review. Furthermore, the clinical study and the future research trends of herb pairs were also discussed. Herb pairs have played, and may continue to play a key role in full investigation of general herb compatibility for their indispensable position in TCM. Much more research is needed for the standardization, safety evaluation, and mechanism exploration of herb pairs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. A New Key-lock Method for User Authentication and Access Control

    Institute of Scientific and Technical Information of China (English)

    JI Dongyao; ZHANG Futai; WANG Yumin

    2001-01-01

    We propose a new key-lock methodfor user authentication and access control based onChinese remainder theorem, the concepts of the ac-cess control matrix, key-lock-pair, time stamp, and the NS public key protocol. Our method is dynamicand needs a minimum amount of computation in thesense that it only updates at most one key/lock foreach access request. We also demonstrate how an au-thentication protocol can be integrated into the ac-cess control method. By applying a time stamp, themethod can not only withstand replay attack, butalso strengthen the authenticating mechanism, whichcould not be achieved simultaneously in previous key-lock methods.

  19. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    Science.gov (United States)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  20. User-Centric Key Entropy: Study of Biometric Key Derivation Subject to Spoofing Attacks

    Directory of Open Access Journals (Sweden)

    Lavinia Mihaela Dinca

    2017-02-01

    Full Text Available Biometric data can be used as input for PKI key pair generation. The concept of not saving the private key is very appealing, but the implementation of such a system shouldn’t be rushed because it might prove less secure then current PKI infrastructure. One biometric characteristic can be easily spoofed, so it was believed that multi-modal biometrics would offer more security, because spoofing two or more biometrics would be very hard. This notion, of increased security of multi-modal biometric systems, was disproved for authentication and matching, studies showing that not only multi-modal biometric systems are not more secure, but they introduce additional vulnerabilities. This paper is a study on the implications of spoofing biometric data for retrieving the derived key. We demonstrate that spoofed biometrics can yield the same key, which in turn will lead an attacker to obtain the private key. A practical implementation is proposed using fingerprint and iris as biometrics and the fuzzy extractor for biometric key extraction. Our experiments show what happens when the biometric data is spoofed for both uni-modal systems and multi-modal. In case of multi-modal system tests were performed when spoofing one biometric or both. We provide detailed analysis of every scenario in regard to successful tests and overall key entropy. Our paper defines a biometric PKI scenario and an in depth security analysis for it. The analysis can be viewed as a blueprint for implementations of future similar systems, because it highlights the main security vulnerabilities for bioPKI. The analysis is not constrained to the biometric part of the system, but covers CA security, sensor security, communication interception, RSA encryption vulnerabilities regarding key entropy, and much more.

  1. Evolution of the major merger galaxy pair fraction at z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H. [Academia Sinica Institute for Astronomy and Astrophysics, Taipei, Taiwan (China); Foucaud, S. [Shanghai Jiao Tong University, Shanghai (China); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland)

    2014-11-10

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  2. Evolution of the major merger galaxy pair fraction at z < 1

    International Nuclear Information System (INIS)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H.; Foucaud, S.; De Propris, R.

    2014-01-01

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10 8 -10 12 L ☉ , in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f pair ∝(1 + z) m than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  3. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  4. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    Science.gov (United States)

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  5. Role of pn-pairs in nuclear structure

    International Nuclear Information System (INIS)

    Nie, G.K.

    2003-01-01

    An α-cluster model of nuclear structure based on power of proton + neutron (pn)-pairs to bind themselves to α-clusters is proposed. The α-cluster is taken as the perfect condition of coupling of 2 pn- pairs, reminding complete electron shell in atomic physics. Pn-pairs create 2 other types of coupling of considerably less power between pn-pairs of nearby α-clusters ε α c and between pn-pair not bound into α-cluster with pn-pairs of nearby cluster ε pn c . Last two types of coupling are called covalent because of reminding similar electron coupling in chemistry. According the model nucleus is a liquid drop consisting of molecules, which are α-clusters, tied by covalent coupling with those ones which are in close vicinity. Then in case of even-even nuclei spin of the nucleus has to be zero I=0 + as sum of spinless particles. In case of nucleus has some nucleons (i) in intermolecular space, I=Σj i ; with taking into account that there is coupling of p and n in pn-pair. Therefore for 6 Li (1=0)I=2·1/2=1 + . The values ε α c , ε pn c and binding energy of the pn-pair itself ε pn have been estimated from analysis of binding energy of nuclei 6 Li, 10 B and 12 C. With the values the binding energy of the other nuclei with N=Z up to 58 Cu have been described with difference between experimental values and model ones in average less than 0.4 MeV. The structure reveals some regular forms, in which every cluster has reduced amount of covalent coupling, 3 or 4, and free pn-pair has 6 covalent coupling with 3 nearby clusters pn-pairs. Then the magic numbers are supposed to be the matter of geometry, when total amount of covalent couplings is optimal (minimal for the amount of clusters), α- clusters are placed in the same fixed distant from center of mass. It means that protons of the clusters can be considered as belonging to one shell. In the cluster model single particle effects have to be considered as single particle binding in one of the surface

  6. Galactic Pairs in the Early Universe

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    In the spirit of Valentines Day, today well be exploring apparent pairs of galaxies in the distant, early universe. How can we tell whether these duos are actually paired galaxies, as opposed to disguised singles?Real Pair, or Trick of the Light?In the schematic timeline of the universe, the epoch of reionization is when the first galaxies and quasars began to form and evolve. [NASA]The statistics of merging galaxies throughout the universe reveal not only direct information about how galaxies interact, but also cosmological information about the structure of the universe. While weve observed many merging galaxy pairs at low redshift, however, its much more challenging to identify these duos in the early universe.A merging pair of galaxies at high redshift appears to us as a pair of unresolved blobs that lie close to each other in the sky. But spotting such a set of objects doesnt necessarily mean were looking at a merger! There are three possible scenarios to explain an observed apparent duo:Its a pair of galaxies in a stage of merger.Its a projection coincidence; the two galaxies arent truly near each other.Its a single galaxy being gravitationally lensed by a foreground object. This strong lensing produces the appearance of multiple galaxies.Hubble photometry of one of the three galaxy groups identified at z 8, with the galaxies in the image labeled with their corresponding approximate photometric redshifts. [Adapted from Chaikin et al. 2018]Hunting for Distant DuosIn a recent study led by Evgenii Chaikin (Peter the Great St. Petersburg Polytechnic University, Russia), a team of scientists has explored the Hubble Ultra Deep Field in search ofhigh-redshift galaxies merging during the epoch of reionization, when the first galaxies formed and evolved.Using an approach called the dropout technique, which leverages the visibility of the galaxies in different wavelength filters, Chaikin and collaborators obtain approximate redshifts for an initial sample of 7

  7. Mathematical analysis of endothelial sibling pair cell-cell interactions using time-lapse cinematography data.

    Science.gov (United States)

    Brown, L M; Ryan, U S; Absher, M; Olazabal, B M

    1982-01-01

    The sibling pairs from two different endothelial cell cultures were analysed by time-lapse cinematography. It was shown that wounded and regular (low density seeded) cultures differed in the behaviour patterns of their siblings. The cultures differed most significantly in the minimum interdivision time (IDT) which was 27% lower for the wounded culture. In the wounded culture there was a greater correlation of IDT values between sibling pairs. IDT values recorded both for paired and for unpaired cells were shorter for the wounded than for the regular culture. The mean IDT for unpaired cells was longer than the mean IDT for paired cells in the regular culture. Thus paired cells in the regular culture, had shorter IDTs, but not as short as in the wounded culture. It was significant that in the wounded culture the first generation of siblings were very close (less than 150 microns apart) at division. Overall the behaviour differences between the two cultures resulted in a higher rate of increase in cell numbers, and thus faster repair, of the wounded monolayer.

  8. Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes

    Directory of Open Access Journals (Sweden)

    Ji-Jian Chin

    2014-01-01

    Full Text Available Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user’s secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions.

  9. Efficient and provable secure pairing-free security-mediated identity-based identification schemes.

    Science.gov (United States)

    Chin, Ji-Jian; Tan, Syh-Yuan; Heng, Swee-Huay; Phan, Raphael C-W

    2014-01-01

    Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user's secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI) was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions.

  10. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    Science.gov (United States)

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

  11. Authenticated group Diffie-Hellman key exchange: theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chevassut, Olivier [Catholic Univ. of Louvain, Louvain-la-Neuve (Belgium)

    2002-10-01

    Authenticated two-party Diffie-Hellman key exchange allows two principals A and B, communicating over a public network, and each holding a pair of matching public/private keys to agree on a session key. Protocols designed to deal with this problem ensure A (B resp.)that no other principals aside from B (A resp.) can learn any information about this value. These protocols additionally often ensure A and B that their respective partner has actually computed the shared secret value. A natural extension to the above cryptographic protocol problem is to consider a pool of principals agreeing on a session key. Over the years several papers have extended the two-party Diffie-Hellman key exchange to the multi-party setting but no formal treatments were carried out till recently. In light of recent developments in the formalization of the authenticated two-party Diffie-Hellman key exchange we have in this thesis laid out the authenticated group Diffie-Hellman key exchange on firmer foundations.

  12. Excitons and Cooper pairs two composite bosons in many-body physics

    CERN Document Server

    Combescot, Monique

    2015-01-01

    This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or grad...

  13. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Matone, Marco [Universita di Padova, Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Padua (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua (Italy)

    2016-11-15

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  14. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    International Nuclear Information System (INIS)

    Matone, Marco

    2016-01-01

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  15. Entangled quantum key distribution with a biased basis choice

    International Nuclear Information System (INIS)

    Erven, Chris; Ma Xiongfeng; Laflamme, Raymond; Weihs, Gregor

    2009-01-01

    We investigate a quantum key distribution (QKD) scheme that utilizes a biased basis choice in order to increase the efficiency of the scheme. The optimal bias between the two measurement bases, a more refined error analysis and finite key size effects are all studied in order to assure the security of the final key generated with the system. We then implement the scheme in a local entangled QKD system that uses polarization entangled photon pairs to securely distribute the key. A 50/50 non-polarizing beamsplitter (BS) with different optical attenuators is used to simulate a variable BS in order to allow us to study the operation of the system for different biases. Over 6 h of continuous operation with a total bias of 0.9837/0.0163 (Z/X), we were able to generate 0.4567 secure key bits per raw key bit as compared to 0.2550 secure key bits per raw key bit for the unbiased case. This represents an increase in the efficiency of the key generation rate by 79%.

  16. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  17. Attacking 44 Rounds of the SHACAL-2 Block Cipher Using Related-Key Rectangle Cryptanalysis

    Science.gov (United States)

    Lu, Jiqiang; Kim, Jongsung

    SHACAL-2 is a 64-round block cipher with a 256-bit block size and a variable length key of up to 512 bits. It is a NESSIE selected block cipher algorithm. In this paper, we observe that, when checking whether a candidate quartet is useful in a (related-key) rectangle attack, we can check the two pairs from the quartet one after the other, instead of checking them simultaneously; if the first pair does not meet the expected conditions, we can discard the quartet immediately. We next exploit a 35-round related-key rectangle distinguisher with probability 2-460 for the first 35 rounds of SHACAL-2, which is built on an existing 24-round related-key differential and a new 10-round differential. Finally, taking advantage of the above observation, we use the distinguisher to mount a related-key rectangle attack on the first 44 rounds of SHACAL-2. The attack requires 2233 related-key chosen plaintexts, and has a time complexity of 2497.2 computations. This is better than any previously published cryptanalytic results on SHACAL-2 in terms of the numbers of attacked rounds.

  18. Propagators for a quantized scalar field in a static closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  19. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  20. Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy-galaxy pairs from z = 3 to z ˜ 0

    Science.gov (United States)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Ferguson, Henry C.; Kodra, Dritan; Newman, Jeffrey A.; Rafelski, Marc; Somerville, Rachel S.; Conselice, Christopher J.; Cook, Joshua S.; Hathi, Nimish P.; Koo, David C.; Lotz, Jennifer M.; Simmons, Brooke D.; Straughn, Amber N.; Snyder, Gregory F.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; Lee, Seong-Kook; Lucas, Ray A.; Pacifici, Camilla; Peth, Michael A.; Barro, Guillermo; Dahlen, Tomas; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Guo, Yicheng; Mobasher, Bahram; Nayyeri, Hooshang; Pérez-González, Pablo G.; Pforr, Janine; Santini, Paola; Stefanon, Mauro; Wiklind, Tommy

    2018-04-01

    The rate of major galaxy-galaxy merging is theoretically predicted to steadily increase with redshift during the peak epoch of massive galaxy development (1 ≤ z ≤ 3). We use close-pair statistics to objectively study the incidence of massive galaxies (stellar M1 > 2 × 1010 M⊙) hosting major companions (1 ≤ M1/M2 ≤ 4; i.e. 4:1) companions at z > 1. We show that these evolutionary trends are statistically robust to changes in companion proximity. We find disagreements between published results are resolved when selection criteria are closely matched. If we compute merger rates using constant fraction-to-rate conversion factors (Cmerg,pair = 0.6 and Tobs,pair = 0.65 Gyr), we find that MR rates disagree with theoretical predictions at z > 1.5. Instead, if we use an evolving Tobs,pair(z) ∝ (1 + z)-2 from Snyder et al., our MR-based rates agree with theory at 0 history.

  1. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...

  2. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  3. Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. A.; Agol, E.; Chaplin, W. J.; Basu, S.; Bedding, T. R.; Buchhave, L. A.; Christensen-Dalsgaard, J.; Deck, K. M.; Elsworth, Y.; Fabrycky, D. C.; Ford, E. B.; Fortney, J. J.; Hale, S. J.; Handberg, R.; Hekker, S.; Holman, M. J.; Huber, D.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lissauer, J. J.; Lopez, E. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Rogers, L. A.; Stello, D.; Borucki, W. J.; Bryson, S.; Christiansen, J. L.; Cochran, W. D.; Geary, J. C.; Gilliland, R. L.; Haas, M. R.; Hall, J.; Howard, A. W.; Jenkins, J. M.; Klaus, T.; Koch, D. G.; Latham, D. W.; MacQueen, P. J.; Sasselov, D.; Steffen, J. H.; Twicken, J. D.; Winn, J. N.

    2012-06-21

    In the Solar system the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal, and that planets' orbits can change substantially after their formation. Here we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10%, and densities differing by a factor of 8. One planet is likely a rocky `super-Earth', whereas the other is more akin to Neptune. These planets are thirty times more closely spaced--and have a larger density contrast--than any adjacent pair of planets in the Solar system.

  4. TDA's validity to study 18O collectivity in terms of collective pair model

    International Nuclear Information System (INIS)

    Gao Yuanyi; Vitturi, A.; Catara, F.; Sambataro, M.

    1991-01-01

    Conclusion proved that if the authors calculate 18 O collective spectra in terms of the Collective Pair Model, the authors can get the positive low laying levels of 18 O which are of the particle particle pair, independent on the excitation of hole within closed shell. 1 - low laying levels are of non-collective 3 particle 1 hole states. 1 - fourth level is of collective 3 particle 1 hole states. 3 - low laying levels are of collective 3 particle 1 hole states. 1 - , 3 - low laying levels agree very well with the experiment data. Hence the TDA is sufficient for the calculations of 1 - ,3 - collective low levels of 18 O

  5. Initial behavior of a quantized scalar field the associated pair-creation in several anisotropic universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1981-01-01

    As a sequel to previous works on the definition of a positive frequency part of a quantized scalar field near an initial stage of several Robertson-Walker universes with flat, open or closed 3-space and the associated pair-creation of those particles, an attempt is made to seek for the same concept in several Bianchi-type I anisotropic universes. It is shown that, if the positive frequency part is introduced, the pair-creation of scalar particles and their spectral law are uniquely determined, as in the case of isotropic universes. (author)

  6. Switching features of GMO single crystals by contrary motion of pair planar domain boundaries

    International Nuclear Information System (INIS)

    Alekseev, A.N.

    2003-01-01

    Gadolinium molybdate single crystal specimens in the form of square plates 1.2 mm thick, which provide similar conditions of nucleation of domains with differently oriented planar domain boundaries (PDB), are used to study processes of total change-over of orientation states by compressing mechanical action applied alternately to one of two pairs of opposite end faces of the specimen. It is revealed that successive acts of such change-over are always carried out by PDB pairs of alternating mutually orthogonal orientation. A closing stage for every successive change-over is realized through a collapse of either wedge-like or lenticular domain [ru

  7. Effects of ion pairs on the dynamics of erbium doped fiber laser in the inhomogeneous model

    International Nuclear Information System (INIS)

    Keyvaninia, Sh.; Karvar, M.; Bahrampour, A.

    2006-01-01

    In a high concentration erbium doped fiber, the erbium ions are so closed together that the ion pairs and clusters are formed. In such fiber amplifiers, the ion pairs and clusters acting as a saturable absorber are distributed along the fiber laser. The inhomogeneous rate equations for the laser modes in a high-concentration EDFA are written. The governing equations are an uncountable system of partial differential equations. For the first time we introduced an approximation method that the system of partial differential equations is converted to a finite system of ordinary differential equations. The effects of ion pairs concentration on erbium doped fiber are analyzed that is in good agreement whit the experimental result.

  8. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  9. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica; Pratchett, Morgan; Walker, Stefan; Coker, Darren James; O'Connell, Lauren A.

    2017-01-01

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  10. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  11. Attitudes and Experiences of Close Interethnic Friendships Among Native Emerging Adults: A Mixed-Methods Investigation

    OpenAIRE

    Jones, Merrill L.

    2017-01-01

    This study included 114 Native adults and 6 Native/non-Native pairs of friends (age 18-25). Experiences and attitudes for close interethnic friendships were investigated. Friendship patterns and predictors were quantitatively assessed for the 114 Natives, with qualitative examination of the development and qualities of the six friend pairs. Results of quantitative analysis revealed that 80% of this sample reported friendship investment with Whites, and 55% reported friendship investment wi...

  12. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition.

    Science.gov (United States)

    Ju, Zhe; Wang, Shi-Yun

    2018-04-22

    As one of the most important and common protein post-translational modifications, citrullination plays a key role in regulating various biological processes and is associated with several human diseases. The accurate identification of citrullination sites is crucial for elucidating the underlying molecular mechanisms of citrullination and designing drugs for related human diseases. In this study, a novel bioinformatics tool named CKSAAP_CitrSite is developed for the prediction of citrullination sites. With the assistance of support vector machine algorithm, the highlight of CKSAAP_CitrSite is to adopt the composition of k-spaced amino acid pairs surrounding a query site as input. As illustrated by 10-fold cross-validation, CKSAAP_CitrSite achieves a satisfactory performance with a Sensitivity of 77.59%, a Specificity of 95.26%, an Accuracy of 89.37% and a Matthew's correlation coefficient of 0.7566, which is much better than those of the existing prediction method. Feature analysis shows that the N-terminal space containing pairs may play an important role in the prediction of citrullination sites, and the arginines close to N-terminus tend to be citrullinated. The conclusions derived from this study could offer useful information for elucidating the molecular mechanisms of citrullination and related experimental validations. A user-friendly web-server for CKSAAP_CitrSite is available at 123.206.31.171/CKSAAP_CitrSite/. Copyright © 2017. Published by Elsevier B.V.

  13. AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    OpenAIRE

    Sager, Sebastian; Elizalde, Benjamin; Borth, Damian; Schulze, Christian; Raj, Bhiksha; Lane, Ian

    2016-01-01

    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus cons...

  14. The paired-domination and the upper paired-domination numbers of graphs

    Directory of Open Access Journals (Sweden)

    Włodzimierz Ulatowski

    2015-01-01

    Full Text Available In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph \\(G\\ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of \\(G\\, denoted by \\(\\gamma_{p}(G\\, is the minimum cardinality of a PDS of \\(G\\. The upper paired-domination number of \\(G\\, denoted by \\(\\Gamma_{p}(G\\, is the maximum cardinality of a minimal PDS of \\(G\\. Let \\(G\\ be a connected graph of order \\(n\\geq 3\\. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998, 199-206], showed that \\(\\gamma_{p}(G\\leq n-1\\ and they determine the extremal graphs \\(G\\ achieving this bound. In this paper we obtain analogous results for \\(\\Gamma_{p}(G\\. Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007, 1-12] determine \\(\\Gamma_{p}(P_n\\, instead in this paper we determine \\(\\Gamma_{p}(C_n\\. Moreover, we describe some families of graphs \\(G\\ for which the equality \\(\\gamma_{p}(G=\\Gamma_{p}(G\\ holds.

  15. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.

    Directory of Open Access Journals (Sweden)

    Michael F Sloma

    2017-11-01

    Full Text Available Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.

  16. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.

    Science.gov (United States)

    Sloma, Michael F; Mathews, David H

    2017-11-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.

  17. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  18. The gut microbial community of Midas cichlid fish in repeatedly evolved limnetic-benthic species pairs.

    Science.gov (United States)

    Franchini, Paolo; Fruciano, Carmelo; Frickey, Tancred; Jones, Julia C; Meyer, Axel

    2014-01-01

    Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.

  19. Pair- ${v}$ -SVR: A Novel and Efficient Pairing nu-Support Vector Regression Algorithm.

    Science.gov (United States)

    Hao, Pei-Yi

    This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory. Moreover, pair--SVR has additional advantage of using parameter for controlling the bounds on fractions of SVs and errors. Furthermore, the upper bound and lower bound functions of the regression model estimated by pair--SVR capture well the characteristics of data distributions, thus facilitating automatic estimation of the conditional mean and predictive variance simultaneously. This may be useful in many cases, especially when the noise is heteroscedastic and depends strongly on the input values. The experimental results validate the superiority of our pair--SVR in both training/prediction speed and generalization ability.This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory

  20. Goldstone mode and pair-breaking excitations in atomic Fermi superfluids

    Science.gov (United States)

    Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.

    2017-10-01

    Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.

  1. Report on Pairing-based Cryptography.

    Science.gov (United States)

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  2. Clock synchronization by remote detection of correlated photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com

    2009-04-15

    In this study, we present an algorithm to detect the time and frequency differences of independent clocks based on observation of time-correlated photon pairs. This enables remote coincidence identification in entanglement-based quantum key distribution schemes without dedicated coincidence hardware, pulsed sources with a timing structure or very stable reference clocks. We discuss the method for typical operating conditions and show that the requirement for reference clock accuracy can be relaxed by about five orders of magnitude in comparison with previous schemes.

  3. Quantum key distribution with an entangled light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  4. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  5. Viability of meta-populations of wetland birds in a fragmented landscape: Testing the key-patch approach

    NARCIS (Netherlands)

    Vermaat, J.E.; Vigneau, N.; Omtzigt, N.

    2008-01-01

    The key patch approach assumes that metapopulations in fragmented landscapes are likely to be viable with at least one "key" sub-population that is sufficiently large to ensure re-colonization of surrounding minor habitat patches. It is based on a minimum viable number of breeding pairs and

  6. Climate Neutral Campus Key Terms and Definitions | Climate Neutral Research

    Science.gov (United States)

    Campuses | NREL Neutral Campus Key Terms and Definitions Climate Neutral Campus Key Terms and Definitions The term climate neutral evolved along with net zero and a number of other "green" and accuracy in these areas lets research campuses know exactly how close they are to climate

  7. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  8. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  9. Social isolation affects partner-directed social behavior and cortisol during pair formation in marmosets, Callithrix geoffroyi.

    Science.gov (United States)

    Smith, Adam S; Birnie, Andrew K; French, Jeffrey A

    2011-10-24

    Pair-bonded relationships form during periods of close spatial proximity and high sociosexual contact. Like other monogamous species, marmosets form new social pairs after emigration or ejection from their natal group resulting in periods of social isolation. Thus, pair formation often occurs following a period of social instability and a concomitant elevation in stress physiology. Research is needed to assess the effects that prolonged social isolation has on the behavioral and cortisol response to the formation of a new social pair. We examined the sociosexual behavior and cortisol during the first 90-days of cohabitation in male and female Geoffroy's tufted-ear marmosets (Callithrix geoffroyi) paired either directly from their natal group (Natal-P) or after a prolonged period of social isolation (ISO-P). Social isolation prior to pairing seemed to influence cortisol levels, social contact, and grooming behavior; however, sexual behavior was not affected. Cortisol levels were transiently elevated in all paired marmosets compared to natal-housed marmosets. However, ISO-P marmosets had higher cortisol levels throughout the observed pairing period compared to Natal-P marmoset. This suggests that the social instability of pair formation may lead to a transient increase in hypothalamic-pituitary-adrenal (HPA) axis activity while isolation results in a prolonged HPA axis dysregulation. In addition, female social contact behavior was associated with higher cortisol levels at the onset of pairing; however, this was not observed in males. Thus, isolation-induced social contact with a new social partner may be enhanced by HPA axis activation, or a moderating factor. Published by Elsevier Inc.

  10. Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC

    Science.gov (United States)

    Mason, Brian D.; Hartkopf, William I.; Miles, Korie N.

    2017-11-01

    A new relative orbit solution with new dynamical masses is determined for the nearby white dwarf-red dwarf pair 40 Eri BC. The period is 230.09 ± 0.68 years. It is predicted to close slowly over the next half-century, getting as close as 1.″32 in early 2066. We determine masses of 0.575 ± 0.018 {{ M }}⊙ for the white dwarf and 0.2041 ± 0.0064 {{ M }}⊙ for the red dwarf companion. The inconsistency of the masses determined by gravitational redshift and dynamical techniques, due to a premature orbit calculation, no longer exists.

  11. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  12. On changing the size of the atmosphere of a vortex pair embedded in a periodic external shear flow

    International Nuclear Information System (INIS)

    Ryzhov, E.A.

    2011-01-01

    The dynamics of fluid particles in the vicinity of a self-propagating vortex pair, embedded in a nonstationary shear flow, is studied. When the shear flow is steady, the vicinity of the pair, which is called as a vortex atmosphere, consists of closed stream-lines, which coincide with fluid particles' trajectories. When the shear flow is nonstationary, the trajectories' behaviour changes drastically, then chaotic advection occurs. It is shown in the Letter that the vortex pair propagation velocity varies with the parameters (amplitude, and frequency) of the nonstationary shear flow. It is demonstrated, that changing of the mean velocity leads to changing of the size of the atmosphere. -- Highlights: → A three-layered model of an inviscid incompressible geophysical flow is formulated. → A vortex pair is studied in the middle layer when a periodic shear flow is superimposed. → Dynamics of fluid particles inside the vortex atmosphere of the pair on it is studied. → When the external flow is nonstationary, then chaotic advection of fluid particles emerges. → Vortex pair's mean velocity of self-propelling changes depending on amplitude and frequency.

  13. On adiabatic pair potentials of highly charged colloid particles

    Science.gov (United States)

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  14. Key Management Strategies for Safeguards Authentication and Encryption

    International Nuclear Information System (INIS)

    Coram, M.; Hymel, R.; McDaniel, M.; Brotz, J.

    2015-01-01

    Management of cryptographic keys for the authentication and encryption of safeguards data can be the critical weak link in the practical implementation of information security. Within the safeguards community, there is the need to validate that data has not been modified at any point since generation and that it was generated by the monitoring node and not an imposter. In addition, there is the need for that data to be transmitted securely between the monitoring node and the monitoring party such that it cannot be intercepted and read while in transit. Encryption and digital signatures support the required confidentiality and authenticity but challenges exist in managing the cryptographic keys they require. Technologies developed at Sandia National Laboratories have evolved in their use of an associated key management strategy. The first generation system utilized a shared secret key for digital signatures. While fast and efficient, it required that a list of keys be maintained and protected. If control of the key was lost, fraudulent data could be made to look authentic. The second generation changed to support public key / private key cryptography. The key pair is generated by the system, the public key shared, and the private key held internally. This approach eliminated the need to maintain the list of keys. It also allows the public key to be provided to anyone needing to authenticate the data without allowing them to spoof data. A third generation system, currently under development, improves upon the public key / private key approach to address a potential man-in-the-middle attack related to the sharing of the public key. In a planned fourth generation system, secure key exchange protocols will distribute session keys for encryption, eliminating another fixed set of keys utilized by the technology and allowing for periodic renegotiation of keys for enhanced security. (author)

  15. The development and validation of the Closed-set Mandarin Sentence (CMS) test.

    Science.gov (United States)

    Tao, Duo-Duo; Fu, Qian-Jie; Galvin, John J; Yu, Ya-Feng

    2017-09-01

    Matrix-styled sentence tests offer a closed-set paradigm that may be useful when evaluating speech intelligibility. Ideally, sentence test materials should reflect the distribution of phonemes within the target language. We developed and validated the Closed-set Mandarin Sentence (CMS) test to assess Mandarin speech intelligibility in noise. CMS test materials were selected to be familiar words and to represent the natural distribution of vowels, consonants, and lexical tones found in Mandarin Chinese. Ten key words in each of five categories (Name, Verb, Number, Color, and Fruit) were produced by a native Mandarin talker, resulting in a total of 50 words that could be combined to produce 100,000 unique sentences. Normative data were collected in 10 normal-hearing, adult Mandarin-speaking Chinese listeners using a closed-set test paradigm. Two test runs were conducted for each subject, and 20 sentences per run were randomly generated while ensuring that each word was presented only twice in each run. First, the level of the words in each category were adjusted to produce equal intelligibility in noise. Test-retest reliability for word-in-sentence recognition was excellent according to Cronbach's alpha (0.952). After the category level adjustments, speech reception thresholds (SRTs) for sentences in noise, defined as the signal-to-noise ratio (SNR) that produced 50% correct whole sentence recognition, were adaptively measured by adjusting the SNR according to the correctness of response. The mean SRT was -7.9 (SE=0.41) and -8.1 (SE=0.34) dB for runs 1 and 2, respectively. The mean standard deviation across runs was 0.93 dB, and paired t-tests showed no significant difference between runs 1 and 2 (p=0.74) despite random sentences being generated for each run and each subject. The results suggest that the CMS provides large stimulus set with which to repeatedly and reliably measure Mandarin-speaking listeners' speech understanding in noise using a closed-set paradigm.

  16. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  17. Top-quark pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Valentin

    2011-12-08

    In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy {radical}(s), we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both

  18. Autoshaping and automaintenance of a key-press response in squirrel monkeys.

    Science.gov (United States)

    Gamzu, E; Schwam, E

    1974-03-01

    Following exposure for a minimum of 500 to 600 trials, three of four naive squirrel monkeys eventually pressed a response key, illumination of which always preceded delivery of a food pellet. Three other naive monkeys did not press the key when the pellets were delivered randomly with respect to key illumination. Despite some similarities to autoshaping using pigeons, the data indicate many points of difference when squirrel monkeys are used as subjects. Although key-food pairings were shown to be important in the acquisition of the key-press response, they were ineffective in maintaining the response when either a negative response-reinforcer dependency was introduced, or when there was no scheduled response-reinforcer dependency (fixed trial). Not all demonstrations of autoshaping can be considered to be under the control of those processes that are primarily responsible for the phenomena obtained in pigeons.

  19. VLBA Reveals Closest Pair of Supermassive Black Holes

    Science.gov (United States)

    2006-05-01

    black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy. "Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found. Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna. "Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs. Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their

  20. Hearing Receipts and Closing Pending, FY 1985 - FY 2009

    Data.gov (United States)

    Social Security Administration — A presentation for the public to view historical information about two key workload indicators ﴾hearing case receipts and hearing case closing pending﴿, we are...

  1. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  2. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  3. HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

    International Nuclear Information System (INIS)

    Cao, Chen; Xu, Cong Kevin; Lu, Nanyao; Mazzarella, Joe; Domingue, Donovan; Ronca, Joseph; Jacques, Allison; Buat, Veronique; Cheng, Yi-Wen; Gao, Yu; Huang, Jiasheng; Jarrett, Thomas H.; Lisenfeld, Ute; Sun, Wei-Hsin; Wu, Hong; Yun, Min S.

    2016-01-01

    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M dust ) are derived from the IR SED fitting. The mass of total gas (M gas ) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M gas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR

  4. Intermittent pair-housing, pair relationship qualities, and HPA activity in adult female rhesus macaques.

    Science.gov (United States)

    Hannibal, Darcy L; Cassidy, Lauren C; Vandeleest, Jessica; Semple, Stuart; Barnard, Allison; Chun, Katie; Winkler, Sasha; McCowan, Brenda

    2018-05-02

    Laboratory rhesus macaques are often housed in pairs and may be temporarily or permanently separated for research, health, or management reasons. While both long-term social separations and introductions can stimulate a stress response that impacts inflammation and immune function, the effects of short-term overnight separations and whether qualities of the pair relationship mediate these effects are unknown. In this study, we investigated the effects of overnight separations on the urinary cortisol concentration of 20 differentially paired adult female rhesus macaques (Macaca mulatta) at the California National Primate Research Center. These females were initially kept in either continuous (no overnight separation) or intermittent (with overnight separation) pair-housing and then switched to the alternate pair-housing condition part way through the study. Each study subject was observed for 5 weeks, during which we collected measures of affiliative, aggressive, anxious, abnormal, and activity-state behaviors in both pair-housing conditions. Additionally, up to three urine samples were collected from each subject per week and assayed for urinary free cortisol and creatinine. Lastly, the behavioral observer scored each pair on four relationship quality attributes ("Anxious," "Tense," "Well-meshed," and "Friendly") using a seven-point scale. Data were analyzed using a generalized linear model with gamma distribution and an information theoretic approach to determine the best model set. An interaction between the intermittent pairing condition and tense pair adjective rating was in the top three models of the best model set. Dominance and rates of affiliation were also important for explaining urinary cortisol variation. Our results suggest that to prevent significant changes in HPA-axis activation in rhesus macaque females, which could have unintended effects on research outcomes, pairs with "Tense" relationships and overnight separations preventing tactile contact

  5. Key-lock colloids in a nematic liquid crystal.

    Science.gov (United States)

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  6. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  7. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  8. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  9. I'm Outgoing and She's Reserved: The Reciprocal Dynamics of Personality in Close Friendships in Young Adulthood

    OpenAIRE

    Nelson, Paul A.; Thorne, Avril; Shapiro, Lauren A.

    2011-01-01

    Close college-age friendships provide differential opportunities for reinforcing dispositional tendencies and fostering accommodation or change. This finding was obtained from a cross-sectional study of 66 pairs of same-sex college-age friends (58% female). Each pair of friends was extreme and either very similar or different with regard to extraversion-introversion. Interviews with each friend were analyzed for references to each other's role in various friendship domains, including the sett...

  10. Analysis of Multicomponent Adsorption Close to a Dew Point

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We develop the potential theory of multicomponent adsorption close to a dew point. The approach is based on an asymptotic adsorption equation (AAE) which is valid in a vicinity of the dew point. By this equation the thickness of the liquid film is expressed through thermodynamic characteristics...... and the direct calculations, even if the mixture is not close to a dew point.Key Words: adsorption; potential theory; multicomponent; dew point....

  11. Schwinger pair creation of Kaluza-Klein particles: Pair creation without tunneling

    International Nuclear Information System (INIS)

    Friedmann, Tamar; Verlinde, Herman

    2005-01-01

    We study Schwinger pair creation of charged Kaluza-Klein (KK) particles from a static KK electric field. We find that the gravitational backreaction of the electric field on the geometry--which is incorporated via the electric KK-Melvin solution--prevents the electrostatic potential from overcoming the rest mass of the KK particles, thus impeding the tunneling mechanism which is often thought of as responsible for the pair creation. However, we find that pair creation still occurs with a finite rate formally similar to the classic Schwinger result, but via an apparently different mechanism, involving a combination of the Unruh effect and vacuum polarization due to the E-field

  12. Top quark pair production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baernreuther, Peter

    2012-06-28

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair

  13. Top quark pair production at the LHC

    International Nuclear Information System (INIS)

    Baernreuther, Peter

    2012-01-01

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 (∝7.3 pb at the Tevatron to ∝800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair production in quark anti

  14. S-pairing in neutron matter: I. Correlated basis function theory

    International Nuclear Information System (INIS)

    Fabrocini, Adelchi; Fantoni, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.

    2008-01-01

    S-wave pairing in neutron matter is studied within an extension of correlated basis function (CBF) theory to include the strong, short range spatial correlations due to realistic nuclear forces and the pairing correlations of the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator contains central as well as tensor components. The correlated BCS scheme of [S. Fantoni, Nucl. Phys. A 363 (1981) 381], developed for simple scalar correlations, is generalized to this more realistic case. The energy of the correlated pair condensed phase of neutron matter is evaluated at the two-body order of the cluster expansion, but considering the one-body density and the corresponding energy vertex corrections at the first order of the Power Series expansion. Based on these approximations, we have derived a system of Euler equations for the correlation factors and for the BCS amplitudes, resulting in correlated nonlinear gap equations, formally close to the standard BCS ones. These equations have been solved for the momentum independent part of several realistic potentials (Reid, Argonne v 14 and Argonne v 8 ' ) to stress the role of the tensor correlations and of the many-body effects. Simple Jastrow correlations and/or the lack of the density corrections enhance the gap with respect to uncorrelated BCS, whereas it is reduced according to the strength of the tensor interaction and following the inclusion of many-body contributions

  15. Environment of the quasar PG 1613 + 65 (Mkn 876) - a close interacting pair

    International Nuclear Information System (INIS)

    Yee, H.K.C.; Green, R.F.; Kitt Peak National Observatory, Tucson, AZ)

    1987-01-01

    Spectroscopic and two-color imaging of the environment of the bright, low-redshift quasar PG 1613 + 65 = Mkn 876 is presented. The quasar is situated in a poor cluster of galaxies of Abell richness class 0. The quasar's morphology includes a 25 arcsec long tidal tail emanating from the east side, 180 deg from the position angle of a secondary nucleus 1.9 arcsec from the main nucleus. The nebulous component of the quasar is analyzed and found to be more than twice as bright as a first-rank cluster galaxy. The average colors of the tidal tail and the main body are consistent with those of late-type spiral galaxies. The possibility that the quasar host is interacting with a very close neighbor is assessed, and the star-forming effects of such an interaction on the host galaxy are considered. 43 references

  16. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  17. Mesoscopic pairing without superconductivity

    Science.gov (United States)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  18. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    Science.gov (United States)

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  19. Common Criteria for Information Technology Security Evaluation: Department of Defense Public Key Infrastructure and Key Management Infrastructure Token Protection Profile (Medium Robustness)

    Science.gov (United States)

    2002-03-22

    may be derived from detailed inspection of the IC itself or from illicit appropriation of design information. Counterfeit smart cards can be mass...Infrastructure (PKI) as the Internet to securely and privately exchange data and money through the use of a public and a private cryptographic key pair...interference devices (SQDIS), electrical testing, and electron beam testing. • Other attacks, such as UV or X-rays or high temperatures, could cause erasure

  20. PandA : pairings and arithmetic

    NARCIS (Netherlands)

    Chuengsatiansup, C.; Naehrig, M.; Ribarski, P.; Schwabe, P.; Cao, Z.; Zhang, F.

    2014-01-01

    This paper introduces PandA, a software framework for Pairings and Arithmetic. It is designed to bring together advances in the efficient computation of cryptographic pairings and the development and implementation of pairing-based protocols. The intention behind the PandA framework is to give

  1. Filipino au pairs on the move

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...

  2. Hidden Pair of Supermassive Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  3. Comparability of results from pair and classical model formulations for different sexually transmitted infections.

    Directory of Open Access Journals (Sweden)

    Jimmy Boon Som Ong

    Full Text Available The "classical model" for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC and Chlamydia (CT over much broader partnership and gap combinations. Predictions on the critical level of condom use (C(c required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher C(c values for GC and CT, while C(c predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences.

  4. General review of solar-powered closed sorption refrigeration systems

    International Nuclear Information System (INIS)

    Sarbu, Ioan; Sebarchievici, Calin

    2015-01-01

    Highlights: • Provide review of development in solar sorption refrigeration technologies. • Theoretical basis and applications of absorption and adsorption cycles are discussed. • Thermodynamic properties of most common working pairs have been reviewed. • Development of hybrid or thermal energy storage adsorption systems was explored. • A comparison between solar-powered absorption and adsorption systems was performed. - Abstract: The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. Thermally powered refrigeration technologies are classified into two categories: thermo-mechanical technology and sorption technology (open systems or closed systems). This paper provides a detailed review of the solar closed sorption (absorption and adsorption) refrigeration systems, which utilise working pairs (fluids). After an introduction of the basic principles of these systems, the history of development and recent advances in solar sorption refrigeration technologies are reported. The adsorption cooling typically has a lower heat source temperature requirement than the absorption cooling. Based on the coefficient of performance (COP), the absorption systems are preferred over the adsorption systems, and the higher temperature issues can be easily handled with solar adsorption systems. The thermodynamic properties of most common working fluids, as well as the use of ternary mixtures in solar-powered absorption systems, have been reviewed in this study. The paper also refers to new approaches to increase the efficiency and sustainability of the basic adsorption cycles, such as the development of hybrid or thermal energy storage adsorption systems. This research shows that solar-powered closed sorption refrigeration technologies can be attractive alternatives not only to serve the needs for air-conditioning, refrigeration, ice making, thermal

  5. Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars

    International Nuclear Information System (INIS)

    Leinson, L.B.

    2001-01-01

    The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating

  6. A Multipoint Method for Detecting Genotyping Errors and Mutations in Sibling-Pair Linkage Data

    OpenAIRE

    Douglas, Julie A.; Boehnke, Michael; Lange, Kenneth

    2000-01-01

    The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we describe a hidden Markov method for detect...

  7. QSO Pairs across Active Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...

  8. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.

    Science.gov (United States)

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  9. Sexually dimorphic activation of dopaminergic areas depends on affiliation during courtship and pair formation

    Directory of Open Access Journals (Sweden)

    Mai eIwasaki

    2014-06-01

    Full Text Available For many species, dyadic interaction during courtship and pair bonding engage intense emotional states that control approach or avoidance behavior. Previous studies have shown that one component of a common social brain network (SBN, dopaminergic areas, are highly engaged during male songbird courtship of females. We tested whether the level of activity in dopaminergic systems of both females and males during courtship is related to their level of affiliation. In order to objectively quantify affiliative behaviors, we developed a system for tracking the position of both birds during free interaction sessions. During a third successive daily interaction session, there was a range of levels of affiliation among bird pairs, as quantified by several position and movement parameters. Because both positive and negative social interactions were present, we chose to characterize affiliation strength by pair valence. As a potential neural system involved in regulating pair valence, the level of activity of the dopaminergic group A11 (within the central gray was selectively reduced in females of positive valence pairs. Further, activation of non-dopaminergic neurons in VTA was negatively related to valence, with this relationship strongest in ventral VTA of females. Together, these results suggest that inhibition of fear or avoidance networks may be associated with development of close affiliation, and highlight the importance of negative as well as positive emotional states in the process of courtship, and in development of long-lasting social bonds.

  10. The role of social closeness during tape stripping to facilitate skin barrier recovery: Preliminary findings.

    Science.gov (United States)

    Robinson, Hayley; Ravikulan, Abhimati; Nater, Urs M; Skoluda, Nadine; Jarrett, Paul; Broadbent, Elizabeth

    2017-07-01

    Social support is known to reduce the negative effects of stress on health, but there is mixed evidence for the effects of social support on wound healing. This study aimed to investigate whether undergoing a task designed to promote social closeness with a fellow participant and being paired with that person during a tape-stripping procedure could reduce stress and improve skin barrier recovery compared to going through tape stripping alone. Seventy-two healthy adults were randomized to either a social closeness condition where participants completed a relationship-building task and tape stripping in pairs or a control condition where they completed tape stripping alone. Skin barrier recovery was measured using transepidermal water loss. Salivary cortisol and alpha-amylase were collected at four time points as markers of the endocrine and autonomic stress response. Social closeness had a beneficial effect on skin barrier recovery compared to the control condition, t(54) = 2.86, p = .006, r = .36. Social closeness significantly reduced self-reported stress. The effects of the intervention on skin barrier recovery were moderated by self-reported stress reduction (p = .035). There were no significant differences in cortisol between groups, but alpha-amylase increased significantly more from baseline to after tape stripping in the control group compared to the intervention group. This is the first study to show that social closeness with a person going through a similar unfamiliar procedure can positively influence wound healing. Future research needs to replicate these findings in other wound types and in clinical settings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Determination of the pairing-strength constants in the isovector plus isoscalar pairing case

    Science.gov (United States)

    Mokhtari, D.; Fellah, M.; Allal, N. H.

    2016-05-01

    A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.

  12. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    Science.gov (United States)

    2007-12-01

    Neubauer [54][55]. 87 VII. LQR/APF CONTROL ALGORITHM APPROACH The LQR approach can be recursively applied to the multiple spacecraft close... Neubauer and Swartwout’s research [55]. It is generally possible to select a closed map over which the algorithm is stable and robust. For these...can be easily edited and transferred into video format for presentations. Modifications of camera key frames ( camera position and angle) and

  13. Development of pair distribution function analysis

    International Nuclear Information System (INIS)

    Vondreele, R.; Billinge, S.; Kwei, G.; Lawson, A.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO 2 planes of high-T c superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-T c superconductors, although we planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF

  14. Closed-Loop Analysis of Soft Decisions for Serial Links

    Science.gov (United States)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlesinger, Adam M.

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  15. I'm outgoing and she's reserved: the reciprocal dynamics of personality in close friendships in young adulthood.

    Science.gov (United States)

    Nelson, Paul A; Thorne, Avril; Shapiro, Lauren A

    2011-10-01

    Close college-age friendships provide differential opportunities for reinforcing dispositional tendencies and fostering accommodation or change. This finding was obtained from a cross-sectional study of 66 pairs of same-sex college-age friends (58% female). Each pair of friends was extreme and either very similar or different with regard to extraversion-introversion. Interviews with each friend were analyzed for references to each other's role in various friendship domains, including the setting of the friendship and position with regard to chatting, disclosing, expressing opinions about peers, and energizing the friendship. Matched friends mutually reinforced each other's similar dispositional tendencies. Friends with contrasting personalities showed patterns of personality accommodation as well as complementary reinforcement. Implications are discussed for embedding reciprocal theories of personality development in close friendships. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  16. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.

    Science.gov (United States)

    Shankar, Akshaya; Jagota, Anand; Mittal, Jeetain

    2012-10-11

    Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.

  17. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    Science.gov (United States)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  18. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  19. Lung Morphological Changes in Closed Chest Injury (an experimental study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2012-01-01

    Full Text Available Objective: to study lung morphological changes in a closed chest injury model in laboratory animals. Material and methods. Experiments were carried out in 30 male albino nonbred rats weighing 350—380 g. Closed chest injury was simulated, by exposing the chest of anesthetized rats to a 300-g metal cylinder falling from a height of 30 cm. The observation periods were 1, 3, 6, and 24 hours. Results. The signs of evident perivenular edema that was uncharas-teristic to acute respiratory distress syndrome induced by other causes are an important peculiarity of lung morphological changes in this experimental model of closed chest injury. Conclusion. The experimental studies clarified the pattern of lung morphological changes in the early period after closed chest injury. Key words: closed chest injury, pulmonary edema.

  20. Pairing call-response surveys and distance sampling for a mammalian carnivore

    Science.gov (United States)

    Hansen, Sara J. K.; Frair, Jacqueline L.; Underwood, Harold B.; Gibbs, James P.

    2015-01-01

    Density estimates accounting for differential animal detectability are difficult to acquire for wide-ranging and elusive species such as mammalian carnivores. Pairing distance sampling with call-response surveys may provide an efficient means of tracking changes in populations of coyotes (Canis latrans), a species of particular interest in the eastern United States. Blind field trials in rural New York State indicated 119-m linear error for triangulated coyote calls, and a 1.8-km distance threshold for call detectability, which was sufficient to estimate a detection function with precision using distance sampling. We conducted statewide road-based surveys with sampling locations spaced ≥6 km apart from June to August 2010. Each detected call (be it a single or group) counted as a single object, representing 1 territorial pair, because of uncertainty in the number of vocalizing animals. From 524 survey points and 75 detections, we estimated the probability of detecting a calling coyote to be 0.17 ± 0.02 SE, yielding a detection-corrected index of 0.75 pairs/10 km2 (95% CI: 0.52–1.1, 18.5% CV) for a minimum of 8,133 pairs across rural New York State. Importantly, we consider this an index rather than true estimate of abundance given the unknown probability of coyote availability for detection during our surveys. Even so, pairing distance sampling with call-response surveys provided a novel, efficient, and noninvasive means of monitoring populations of wide-ranging and elusive, albeit reliably vocal, mammalian carnivores. Our approach offers an effective new means of tracking species like coyotes, one that is readily extendable to other species and geographic extents, provided key assumptions of distance sampling are met.

  1. Search for top quark pair resonances with the CMS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Wael Haj

    2013-05-29

    The Standard Model of particle physics is not the final theory. It breaks at larger (TeV) scales and thus can not explain the hierarchy problem, the unification of couplings and some physical phenomena. Several physical models, referred to as Beyond the Standard Model, have been proposed to account for the phenomena which are not explained by the Standard Model, and to answer to some of these open questions. As the top quark has as an enormous mass of about 173.3 GeV, it plays an essential role in searches for new physics. Various models beyond the Standard Model predict the existence of heavy particles decaying into top quark pairs. These particles manifest themselves as resonant structures in the invariant mass spectrum of the top quark pairs. In this thesis, a model-independent search has been performed for top quark pair resonances in the mass range close to the top quark pair production threshold. The Topcolor Z' model is considered as a reference model. The presented search focuses on top quark pair events selected from data samples corresponding to 1.09 fb{sup -1} of integrated luminosity collected with the CMS detector in the 2011 run period at a center-of-mass energy of {radical}(s)=7 TeV at the large hadron collider (LHC). A cut based selection is implemented to identify top quark pair candidates decaying in the muon+jets channel, by requiring one isolated muon, missing transverse energy and at least four jets. The identified final state objects are used to reconstruct the invariant top quark pair mass spectrum. No excess is observed in the CMS data over the expectation of the standard model processes, namely no considerable evidence of new physics was found. Therefore, a limit is set on the topcolor Z' boson production cross section as a function of the Z' mass. Leptophobic topcolor Z' bosons with narrow (wide) width 1.2% (10%) are excluded at 95% confidence level for masses below 710 (1145) GeV.

  2. Search for top quark pair resonances with the CMS detector at the LHC

    International Nuclear Information System (INIS)

    Ahmad, Wael Haj

    2013-01-01

    The Standard Model of particle physics is not the final theory. It breaks at larger (TeV) scales and thus can not explain the hierarchy problem, the unification of couplings and some physical phenomena. Several physical models, referred to as Beyond the Standard Model, have been proposed to account for the phenomena which are not explained by the Standard Model, and to answer to some of these open questions. As the top quark has as an enormous mass of about 173.3 GeV, it plays an essential role in searches for new physics. Various models beyond the Standard Model predict the existence of heavy particles decaying into top quark pairs. These particles manifest themselves as resonant structures in the invariant mass spectrum of the top quark pairs. In this thesis, a model-independent search has been performed for top quark pair resonances in the mass range close to the top quark pair production threshold. The Topcolor Z' model is considered as a reference model. The presented search focuses on top quark pair events selected from data samples corresponding to 1.09 fb -1 of integrated luminosity collected with the CMS detector in the 2011 run period at a center-of-mass energy of √(s)=7 TeV at the large hadron collider (LHC). A cut based selection is implemented to identify top quark pair candidates decaying in the muon+jets channel, by requiring one isolated muon, missing transverse energy and at least four jets. The identified final state objects are used to reconstruct the invariant top quark pair mass spectrum. No excess is observed in the CMS data over the expectation of the standard model processes, namely no considerable evidence of new physics was found. Therefore, a limit is set on the topcolor Z' boson production cross section as a function of the Z' mass. Leptophobic topcolor Z' bosons with narrow (wide) width 1.2% (10%) are excluded at 95% confidence level for masses below 710 (1145) GeV.

  3. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  4. Solutions of nuclear pairing

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Pehlivan, Y.

    2007-01-01

    We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators

  5. HAL-2 promotes homologous pairing during Caenorhabditis elegans meiosis by antagonizing inhibitory effects of synaptonemal complex precursors.

    Science.gov (United States)

    Zhang, Weibin; Miley, Natasha; Zastrow, Michael S; MacQueen, Amy J; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M; Villeneuve, Anne M

    2012-01-01

    During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.

  6. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...

  7. (Hymenoptera: Braconidae) and a key to Saudi Arabian species

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... of the related species from Arabian region. A key to Saudi Arabian ... only two of these subgenera viz., Bracotritoma Csiki and. Phanerotoma s.str. .... species is also closely related to P. (B.) ebneri Fahringer from Sudan but ...

  8. Synergy between pair coupled cluster doubles and pair density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Bulik, Ireneusz W. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Henderson, Thomas M. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  9. Secure pairing with biometrics

    NARCIS (Netherlands)

    Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a

  10. Investigations into nuclear pairing

    International Nuclear Information System (INIS)

    Clark, R.M.

    2006-01-01

    This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)

  11. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II – crystal plasticity finite element modeling

    International Nuclear Information System (INIS)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette; Wright, Jonathan P.; Daymond, Mark R.

    2015-01-01

    Stress heterogeneity within each individual grain of polycrystalline Zircaloy-2 is studied using a crystal plasticity finite element (CPFE) model. For this purpose, the weighted Voronoi tessellation method is used to construct 3D geometries of more than 2600 grains based on their center-of-mass positions and volumes as measured by three-dimensional X-ray diffraction (3DXRD) microscopy. The constructed microstructure is meshed with different element densities and for different numbers of grains. Then a selected group of twin and parent pairs are studied. It is shown that the measured average stress for each grain from the 3DXRD experiment is within the stress variation zone of the grain modeled in the CPFE simulation. Also, the CPFE average stress calculation for each grain is in good agreement with the measured average stress values. It is shown that upon considering the stress variations within each grain, stresses in the parent and twin are quite different if they are plotted in the global coordinate system. However, if the stress tensor is rotated into the local coordinate system of the twin habit plane, all the stress components averaged over the presented population are close, except for the shear acting on the twin plane and the transverse stress. This result is significant as it provides information needed to model such parent-twin interactions in crystal plasticity codes

  12. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library.

    Science.gov (United States)

    Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S

    2018-04-01

    Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.

  13. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2013-11-01

    Full Text Available The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE. This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC waves in the 15–25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the

  14. Phenomenology of QCD threshold resummation for gluino pair production at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Pfoh, Torsten

    2013-02-15

    We examine the impact of threshold resummation for the inclusive hadronic production cross section of gluino pairs at next-to-next-to-leading-logarithmic accuracy, compared to the exact next-to-leading- order cross section and the next-to-next-to-leading-order approximation. Here, we apply formulas derived recently in the classical Mellin-space formalism. Moreover, we give the analytic input for the alternative momentum-space formalism and discuss the crucial points of the numeric implementation. We find that soft resummation keeps the hadronic cross section close to the fixed next-to-leading-order result.

  15. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  16. Pairing induced superconductivity in holography

    Science.gov (United States)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  17. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  18. Asymmetries in heavy quark pair and dijet production at an EIC

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Daniël [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Mulders, Piet J. [Nikhef and Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands); Pisano, Cristian [Dipartimento di Fisica, Università di Pavia,via Bassi 6, I-27100 Pavia (Italy); INFN Sezione di Pavia,via Bassi 6, I-27100 Pavia (Italy); Zhou, Jian [School of physics, Key Laboratory of Particle Physics and Particle Irradiation (MOE),Shandong University,Jinan, Shandong 250100 (China); Nikhef and Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands)

    2016-08-01

    Asymmetries in heavy quark pair and dijet production in electron-proton collisions allow studies of gluon TMDs in close analogy to studies of quark TMDs in semi-inclusive DIS. Here we present expressions for azimuthal asymmetries for both unpolarized and transversely polarized proton cases and consider the maximal asymmetries allowed. The latter are found to be rather sizeable, except in certain kinematic limits which are pointed out. In addition, we consider the small-x limit and expectations from a McLerran-Venugopalan model for unpolarized and linearly polarized gluons and from a perturbative, large transverse momentum calculation for the T-odd gluon TMDs. Comparison to related observables at RHIC and LHC is expected to provide valuable information about the process dependence of the gluon TMDs. In particular this will offer the possibility of a sign change test of the gluon Sivers TMD and two other T-odd gluon TMDs. This provides additional motivation for studies of azimuthal asymmetries in heavy quark pair and dijet production at a future Electron-Ion Collider.

  19. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  20. Dual origin of pairing in nuclei

    Science.gov (United States)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  1. Overstable librations can account for the paucity of mean motion resonances among exoplanet pairs

    Energy Technology Data Exchange (ETDEWEB)

    Goldreich, Peter [California Institute of Technology, MC 150-21, Pasadena, CA 91125 (United States); Schlichting, Hilke E., E-mail: pmg@ias.edu, E-mail: hilke@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2014-02-01

    We assess the multi-planet systems discovered by the Kepler satellite in terms of current ideas about orbital migration and eccentricity damping due to planet-disk interactions. Our primary focus is on first order mean motion resonances, which we investigate analytically to lowest order in eccentricity. Only a few percent of planet pairs are in close proximity to a resonance. However, predicted migration rates (parameterized by τ{sub n}=n/| n-dot |) imply that during convergent migration most planets would have been captured into first order resonances. Eccentricity damping (parameterized by τ{sub e}=e/| e-dot |) offers a plausible resolution. Estimates suggest τ {sub e}/τ {sub n} ∼ (h/a){sup 2} ∼ 10{sup –2}, where h/a is the ratio of disk thickness to radius. Together, eccentricity damping and orbital migration give rise to an equilibrium eccentricity, e {sub eq} ∼ (τ {sub e}/τ {sub n}){sup 1/2}. Capture is permanent provided e {sub eq} ≲ μ{sup 1/3}, where μ denotes the planet to star mass ratio. But for e {sub eq} ≳ μ{sup 1/3}, capture is only temporary because librations around equilibrium are overstable and lead to passage through resonance on timescale τ {sub e}. Most Kepler planet pairs have e {sub eq} > μ{sup 1/3}. Since τ {sub n} >> τ {sub e} is the timescale for migration between neighboring resonances, only a modest percentage of pairs end up trapped in resonances after the disk disappears. Thus the paucity of resonances among Kepler pairs should not be taken as evidence for in situ planet formation or the disruptive effects of disk turbulence. Planet pairs close to a mean motion resonance typically exhibit period ratios 1%-2% larger than those for exact resonance. The direction of this shift undoubtedly reflects the same asymmetry that requires convergent migration for resonance capture. Permanent resonance capture at these separations from exact resonance would demand μ(τ {sub n}/τ {sub e}){sup 1/2} ≳ 0.01, a value that

  2. Study of muon pair production in 194 GeV/c π--tungsten collisions. Deviation of Drell-Yan model

    International Nuclear Information System (INIS)

    Varela, J.

    1984-04-01

    The results of an experiment of muon pair production in π - -nucleon interactions on tungsten target at 194 GeV/c are presented. This experiment is realized at the CERN laboratories with a very strong (>10 9 π - /sec) pion beam, with a good acceptance and a good resolution in mass of muon pairs. The production cross section deviate of the Drell-Yan model. The leading logarithm approximation of QCD describe more closely the differential behaviour of the cross section but with little deviations in rapidity distribution by mass intervals. These deviations can be traducing the contribution of the multiple soft gluon emission [fr

  3. Accumulated surface damage on ZnS crystals produced by closely spaced pairs of picosecond laser pulses

    International Nuclear Information System (INIS)

    Chase, L.L.; Lee, H.W.H.

    1988-12-01

    Excitation of a transparent ZnS crystal by repetitive picosecond dye laser pulses causes an accumulated surface modification leading to optical damage. The onset of the damage is detected by an abrupt increase in the emission of neutral Zn (and possibly S 2 ) from the surface. Comparison of the neutral emission thresholds with pulse-pair and single-pulse excitation shows that linear absorption is the dominant laser-surface interaction. In general, this measurement technique shows considerable promise for investigating the possible influence of nonlinear absorption or excitation processes on damage mechanisms. The data suggest that heating of small absorbing regions produces the surface modification that leads to the observed surface ablation. The nature of the damage observed at fluences above the threshold suggests that it is caused by heating of a relatively large (/approximately/10 - 100 μm) surface region that has been modified by the accumulation pulses. 3 refs., 5 figs

  4. Neutron pair and proton pair transfer reactions between identical cores in the sulfur region

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1995-12-01

    Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs

  5. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    Science.gov (United States)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  6. The ultimate security bounds of quantum key distribution protocols

    International Nuclear Information System (INIS)

    Nikolopoulos, G.M.; Alber, G.

    2005-01-01

    Full text: Quantum key distribution (QKD) protocols exploit quantum correlations in order to establish a secure key between two legitimate users. Recent work on QKD has revealed a remarkable link between quantum and secret correlations. In this talk we report on recent results concerning the ultimate upper security bounds of various QKD schemes (i.e., the maximal disturbance up to which the two legitimate users share quantum correlations) under the assumption of general coherent attacks. In particular, we derive an analytic expression for the ultimate upper security bound of QKD schemes that use two mutually unbiased bases. As long as the two legitimate users focus on the sifted key and treat each pair of data independently during the post processing, our results are valid for arbitrary dimensions of the information carriers. The bound we have derived is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is also discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions, however, such equivalence is generally no longer valid. (author)

  7. Dynamical pairing correlations in rotating nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1985-01-01

    When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)

  8. Pair creation at large inherent angles

    International Nuclear Information System (INIS)

    Chen, P.; Tauchi, T.; Schroeder, D.V.

    1992-01-01

    In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer

  9. Radical-pair based avian magnetoreception

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  10. Certificateless short sequential and broadcast multisignature schemes using elliptic curve bilinear pairings

    Directory of Open Access Journals (Sweden)

    SK Hafizul Islam

    2014-01-01

    Full Text Available Several certificateless short signature and multisignature schemes based on traditional public key infrastructure (PKI or identity-based cryptosystem (IBC have been proposed in the literature; however, no certificateless short sequential (or serial multisignature (CL-SSMS or short broadcast (or parallel multisignature (CL-SBMS schemes have been proposed. In this paper, we propose two such new CL-SSMS and CL-SBMS schemes based on elliptic curve bilinear pairing. Like any certificateless public key cryptosystem (CL-PKC, the proposed schemes are free from the public key certificate management burden and the private key escrow problem as found in PKI- and IBC-based cryptosystems, respectively. In addition, the requirements of the expected security level and the fixed length signature with constant verification time have been achieved in our schemes. The schemes are communication efficient as the length of the multisignature is equivalent to a single elliptic curve point and thus become the shortest possible multisignature scheme. The proposed schemes are then suitable for communication systems having resource constrained devices such as PDAs, mobile phones, RFID chips, and sensors where the communication bandwidth, battery life, computing power and storage space are limited.

  11. Basic Research on A-bomb exposed and nonexposed pair of twins and the pilot case study from socio-psycho-historical viewpoint

    International Nuclear Information System (INIS)

    Watanabe, Shoji; Satow, Yukio; Okamoto, Naomasa

    1980-01-01

    A-bomb exposed and nonexposed pair monozygotic twins were investigated. In all the cases, a pair of twins had great similarity in appearance and were connected firmly each other from their childhood. In family relations, each of them was required to take a role as the younger or the elder. Interview and psychological test suggested some psychological trauma in the exposed one compared with the other nonexposed. The mental state of the exposed is little understood even by the other half of twins who are in close relation. (Ueda, J.)

  12. Assessing Intimacy: The Pair Inventory.

    Science.gov (United States)

    Schaefer, Mark T.; Olson, David H.

    1981-01-01

    Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)

  13. Sordaria, a model system to uncover links between meiotic pairing and recombination.

    Science.gov (United States)

    Zickler, Denise; Espagne, Eric

    2016-06-01

    The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    Directory of Open Access Journals (Sweden)

    K. Kealy Peak

    2011-01-01

    Full Text Available Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition.

  15. Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species.

    Directory of Open Access Journals (Sweden)

    Julia J Mlynarek

    Full Text Available Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five "species pairs", or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity. Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species' relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.

  16. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials

    International Nuclear Information System (INIS)

    Kato, Takashi

    2010-01-01

    Graphical abstract: The electron-phonon interactions destroy the electron pairs formed by Coulomb interactions, and at the same time, form the energy gap by which the electron pairs become stable. - Abstract: In order to discuss how the nondissipative delocalized diamagnetic currents in the microscopic sized materials are closely related to the conventional superconductivity in the macroscopic sized materials, the unified theory, by which various sized superconductivity can be explained, is suggested. It has been believed for a long time that the electron-phonon interactions play an essential role in the attractive electron-electron interactions, as described in the Bardeen-Cooper-Schrieffer (BCS) theory in the conventional superconductivity. However, it is suggested in this paper that the electron-phonon interactions do not play an essential role in the attractive electron-electron interactions but play an essential role in the forming of energy gap by which the electron pairs formed by the attractive Coulomb interactions in the conventional superconducting states become more stable than those in the normal metallic states at low temperatures.

  17. Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs.

    Science.gov (United States)

    Khakshoor, Omid; Wheeler, Steven E; Houk, K N; Kool, Eric T

    2012-02-15

    We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions between F and natural bases in nucleic acid duplexes and in a DNA polymerase active site. Since F is widely used to measure electrostatic contributions to pairing and replication, it is important to quantify the impact of this isostere on DNA stability. Here, we studied the pairing stability and selectivity of this compound and a closely related variant, dichlorotoluene deoxyriboside (L), in DNA, using both experimental and computational approaches. We measured the thermodynamics of duplex formation in three sequence contexts and with all possible pairing partners by thermal melting studies using the van't Hoff approach, and for selected cases by isothermal titration calorimetry (ITC). Experimental results showed that internal F-A pairing in DNA is destabilizing by 3.8 kcal/mol (van't Hoff, 37 °C) as compared with T-A pairing. At the end of a duplex, base-base interactions are considerably smaller; however, the net F-A interaction remains repulsive while T-A pairing is attractive. As for selectivity, F is found to be slightly selective for adenine over C, G, T by 0.5 kcal mol, as compared with thymine's selectivity of 2.4 kcal/mol. Interestingly, dichlorotoluene in DNA is slightly less destabilizing and slightly more selective than F, despite the lack of strongly electronegative fluorine atoms. Experimental data were complemented by computational results, evaluated at the M06-2X/6-31+G(d) and MP2/cc-pVTZ levels of theory. These computations suggest that the pairing energy of F to A

  18. Broadband illumination of superconducting pair breaking photon detectors

    International Nuclear Information System (INIS)

    Guruswamy, T; Goldie, D J; Withington, S

    2016-01-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)

  19. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  20. A simple method to design non-collision relative orbits for close spacecraft formation flying

    Science.gov (United States)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  1. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  2. Pair shell model description of collective motions

    International Nuclear Information System (INIS)

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  3. Elucidation of Operon Structures across Closely Related Bacterial Genomes

    Science.gov (United States)

    Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components. PMID:24959722

  4. Pairing correlations. I. Description of odd nuclei in mean-field theories

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported

  5. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  6. Site-Specific Incorporation of Functional Components into RNA by an Unnatural Base Pair Transcription System

    Directory of Open Access Journals (Sweden)

    Rie Kawai

    2012-03-01

    Full Text Available Toward the expansion of the genetic alphabet, an unnatural base pair between 7-(2-thienylimidazo[4,5-b]pyridine (Ds and pyrrole-2-carbaldehyde (Pa functions as a third base pair in replication and transcription, and provides a useful tool for the site-specific, enzymatic incorporation of functional components into nucleic acids. We have synthesized several modified-Pa substrates, such as alkylamino-, biotin-, TAMRA-, FAM-, and digoxigenin-linked PaTPs, and examined their transcription by T7 RNA polymerase using Ds-containing DNA templates with various sequences. The Pa substrates modified with relatively small functional groups, such as alkylamino and biotin, were efficiently incorporated into RNA transcripts at the internal positions, except for those less than 10 bases from the 3′-terminus. We found that the efficient incorporation into a position close to the 3′-terminus of a transcript depended on the natural base contexts neighboring the unnatural base, and that pyrimidine-Ds-pyrimidine sequences in templates were generally favorable, relative to purine-Ds-purine sequences. The unnatural base pair transcription system provides a method for the site-specific functionalization of large RNA molecules.

  7. Topological Nodal Cooper Pairing in Doped Weyl Metals

    Science.gov (United States)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  8. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...

  9. Pairing properties of realistic effective interactions

    Directory of Open Access Journals (Sweden)

    Gargano A.

    2016-01-01

    Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

  10. Finding Maximal Pairs with Bounded Gap

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.

    1999-01-01

    . In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....

  11. Sustainable building with closed cavity facades. Top energy efficiency and more daylight; Nachhaltig bauen mit Closed Cavity Fassaden. Hoechste Energieeffizienz und mehr Tageslicht

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Bernhard

    2012-08-15

    Facades have a key function within the sustainable construction since the energy conservation significantly depends on the building envelope. Beside an enhanced energy efficiency, the Green Building shall offer an improved utilization of day-lighting and comfortable indoor climatic conditions. Here, the innovative Closed Cavity Facade new standards. The former 'Poseidon building' in Frankfurt/Main (Federal Republic of Germany) and the multi-storey building of the Roche company in Basel (Switzerland) are equipped with this facade. The energy costs, operational costs as well as the maintenance costs are reduced sustainably using this closed bivalved facade.

  12. Effects of Worked Examples, Example-Problem Pairs, and Problem-Example Pairs Compared to Problem Solving

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Paas, Fred

    2010-01-01

    Van Gog, T., Kester, L., & Paas, F. (2010, August). Effects of worked examples, example-problem pairs, and problem-example pairs compared to problem solving. Paper presented at the Biannual EARLI SIG meeting of Instructional design and Learning and instruction with computers, Ulm, Germany.

  13. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    Science.gov (United States)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  14. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    Science.gov (United States)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  15. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  16. Pre-critical phenomena of two-flavor color superconductivity in heated quark matter. Diquark-pair fluctuations and non-Fermi liquid behavior

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Kunihiro, Teiji; Koide, Tomoi; Nemoto, Yukio

    2005-01-01

    We investigate the fluctuations of the diquark-pair field and their effects on observables above the critical temperature T c in two-flavor color superconductivity (CSC) at moderate density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode, which has a prominent strength even well above T c . We show that the collective mode is actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific heat and the quark spectrum for T above but close to T c . We find that the specific heat exhibits singular behavior because of the pair fluctuations, in accordance with the general theory of second-order phase transitions. The quarks display a typical non-Fermi liquid behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density of states of the quarks in the vicinity of the critical point. Some experimental implications of the precursory phenomena are also discussed. (author)

  17. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  18. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  19. Generalized nonimaging compound elliptical and compound hyperbolic luminaire designs for pair-overlap illumination applications.

    Science.gov (United States)

    Georlette, O; Gordon, J M

    1994-07-01

    Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.

  20. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    International Nuclear Information System (INIS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-01-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  1. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, Emil T.; Steinhardt, Charles L. [California Institute of Technology, 1200 East-California Boulevard, Pasadena, CA 91125 (United States); Silverman, John D. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-Shi, Chiba 277-8583 (Japan); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Finnerty Road, Victoria, British Columbia, V8P 1A1 (Canada); Mendel, J. Trevor [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching (Germany); Patton, David R., E-mail: ekhabibo@caltech.edu [Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  2. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    Science.gov (United States)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  3. Pairing gaps from nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Maruhn, J.A.

    2000-01-01

    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)

  4. Exploring Pair Programming Benefits for MIS Majors

    Directory of Open Access Journals (Sweden)

    April H. Reed

    2016-12-01

    Full Text Available Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS and Software Engineering (SE majors have identified benefits such as technical productivity, program/design quality, academic performance, and increased satisfaction for their participants. In this paper, pair programming is studied with Management Information Systems (MIS majors, who (unlike CS and SE majors taking several programming courses typically take only one programming course and often struggle to develop advanced programming skills within that single course. The researchers conducted two pair programming experiments in an introductory software development course for MIS majors over three semesters to determine if pair programming could enhance learning for MIS students. The program results, researchers’ direct observations, and participants’ responses to a survey questionnaire were analyzed after each experiment. The results indicate that pair programming appears to be beneficial to MIS students’ technical productivity and program design quality, specifically the ability to create programs using high-level concepts. Additionally, results confirmed increased student satisfaction and reduced frustration, as the pairs worked collaboratively to produce a program while actively communicating and enjoying the process.

  5. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  6. Secret-Key Agreement with Public Discussion subject to an Amplitude Constraint

    KAUST Repository

    Zorgui, Marwen

    2016-04-06

    This paper considers the problem of secret-key agreement with public discussion subject to a peak power constraint A on the channel input. The optimal input distribution is proved to be discrete with finite support. To overcome the computationally heavy search for the optimal discrete distribution, several suboptimal schemes are proposed and shown numerically to perform close to the capacity. Moreover, lower and upper bounds for the secret-key capacity are provided and used to prove that the secret-key capacity converges for asymptotic high values of A, to the secret-key capacity with an average power constraint A2. Finally, when the amplitude constraint A is small (A ! 0), the secret-key capacity is proved to be asymptotically equal to the capacity of the legitimate user with an amplitude constraint A and no secrecy constraint.

  7. Secret-Key Agreement with Public Discussion subject to an Amplitude Constraint

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2016-01-01

    This paper considers the problem of secret-key agreement with public discussion subject to a peak power constraint A on the channel input. The optimal input distribution is proved to be discrete with finite support. To overcome the computationally heavy search for the optimal discrete distribution, several suboptimal schemes are proposed and shown numerically to perform close to the capacity. Moreover, lower and upper bounds for the secret-key capacity are provided and used to prove that the secret-key capacity converges for asymptotic high values of A, to the secret-key capacity with an average power constraint A2. Finally, when the amplitude constraint A is small (A ! 0), the secret-key capacity is proved to be asymptotically equal to the capacity of the legitimate user with an amplitude constraint A and no secrecy constraint.

  8. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  9. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  10. An Entropic Approach for Pair Trading

    Directory of Open Access Journals (Sweden)

    Daisuke Yoshikawa

    2017-06-01

    Full Text Available In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.

  11. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  12. Alexander-equivalent Zariski pairs of irreducible sextics

    DEFF Research Database (Denmark)

    Eyral, Christophe; Oka, Mutsuo

    2009-01-01

    The existence of Alexander-equivalent Zariski pairs dealing with irreducible curves of degree 6 was proved by Degtyarev. However, no explicit example of such a pair is available (only the existence is known) in the literature. In this paper, we construct the first concrete example.......The existence of Alexander-equivalent Zariski pairs dealing with irreducible curves of degree 6 was proved by Degtyarev. However, no explicit example of such a pair is available (only the existence is known) in the literature. In this paper, we construct the first concrete example....

  13. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  14. A fast and automatically paired 2-D direction-of-arrival estimation with and without estimating the mutual coupling coefficients

    Science.gov (United States)

    Filik, Tansu; Tuncer, T. Engin

    2010-06-01

    A new technique is proposed for the solution of pairing problem which is observed when fast algorithms are used for two-dimensional (2-D) direction-of-arrival (DOA) estimation. Proposed method is integrated with array interpolation for efficient use of antenna elements. Two virtual arrays are generated which are positioned accordingly with respect to the real array. ESPRIT algorithm is used by employing both the real and virtual arrays. The eigenvalues of the rotational transformation matrix have the angle information at both magnitude and phase which allows the estimation of azimuth and elevation angles by using closed-form expressions. This idea is used to obtain the paired interpolated ESPRIT algorithm which can be applied for arbitrary arrays when there is no mutual coupling. When there is mutual coupling, two approaches are proposed in order to obtain 2-D paired DOA estimates. These blind methods can be applied for the array geometries which have mutual coupling matrices with a Toeplitz structure. The first approach finds the 2-D paired DOA angles without estimating the mutual coupling coefficients. The second approach estimates the coupling coefficients and iteratively improves both the coupling coefficients and the DOA estimates. It is shown that the proposed techniques solve the pairing problem for uniform circular arrays and effectively estimate the DOA angles in case of unknown mutual coupling.

  15. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  16. Sex-specific differential survival of extra-pair and within-pair offspring in song sparrows, Melospiza melodia.

    Science.gov (United States)

    Sardell, Rebecca J; Arcese, Peter; Keller, Lukas F; Reid, Jane M

    2011-11-07

    It is widely hypothesized that the evolution of female extra-pair reproduction in socially monogamous species reflects indirect genetic benefits to females. However, a critical prediction of this hypothesis, that extra-pair young (EPY) are fitter than within-pair young (WPY), has rarely been rigorously tested. We used 18 years of data from free-living song sparrows, Melospiza melodia, to test whether survival through major life-history stages differed between EPY and WPY maternal half-siblings. On average, survival of hatched chicks to independence from parental care and recruitment, and their total lifespan, did not differ significantly between EPY and WPY. However, EPY consistently tended to be less likely to survive, and recruited EPY survived for significantly fewer years than recruited WPY. Furthermore, the survival difference between EPY and WPY was sex-specific; female EPY were less likely to survive to independence and recruitment and lived fewer years than female WPY, whereas male EPY were similarly or slightly more likely to survive and to live more years than male WPY. These data indicate that extra-pair paternity may impose an indirect cost on females via their female offspring and that sex-specific genetic, environmental or maternal effects may shape extra-pair reproduction.

  17. LHCb: Event display presented at the EPS-HEP 2011 conference showing a B0s meson decaying into a μ+ and μ- pair.

    CERN Multimedia

    LHCb Team

    2011-01-01

    The LHCb physicists have succeeded in setting the limit for an enhanced decay rate of the strange beauty particle B0s, composed of a beauty antiquark (b) bound with a strange quark (s), into a μ+ and μ- pair, as low as about 4 times the rate calculated within the Standard Model. The computer reconstructed images show the most significant event compatible with the strange beauty B0s decay into muon pair seen as a pair of purple tracks traversing the whole detector. The right hand image shows a close-up around the proton-proton interaction point from which many tracks originate. The B0s decays about 1 cm from the proton-proton collision point into two muons (purple tracks). See: http://lhcb-public.web.cern.ch/lhcb-public/

  18. Multi-client quantum key distribution using wavelength division multiplexing

    International Nuclear Information System (INIS)

    Grice, Warren P.; Bennink, Ryan S.; Earl, Dennis Duncan; Evans, Philip G.; Humble, Travis S.; Pooser, Raphael C.; Schaake, Jason; Williams, Brian P.

    2011-01-01

    Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons are emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.

  19. PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Moscibrodzka, M.; Gammie, C. F.; Dolence, J. C.; Shiokawa, H.

    2011-01-01

    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here, we use a self-consistent dynamical and radiative model to investigate pair production by γγ collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate M-dot . Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r -6 M -1 M-dot 6 . We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, M-dot parameter space. If M-dot is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and γγ pair production is relatively unimportant; if M-dot is too high the models are radiatively efficient. We also argue that for a power-law spectrum the pair production rate should scale with the observables L X ≡ X-ray luminosity and M as L 2 X M -4 . We confirm this numerically and argue that this relation likely holds even for radiatively efficient flows. The pair production rates are sensitive to black hole spin and to the ion-electron temperature ratio which are fixed in this exploratory calculation. We finish with a brief discussion of the implications for Sgr A* and M87.

  20. NLO QCD corrections to Higgs pair production including dimension-6 operators

    Energy Technology Data Exchange (ETDEWEB)

    Groeber, Ramona [INFN, Sezione di Roma Tre, Roma (Italy); Muehlleitner, Margarete; Streicher, Juraj [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Theoretische Physik; Spira, Michael [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The role of the Higgs boson has developed from the long-sought particle into a tool for exploring beyond Standard Model (BSM) physics. While the Higgs boson signal strengths are close to the values predicted in the Standard Model (SM), the trilinear Higgs-selfcoupling can still deviate significantly from the SM expectations in some BSM scenarios. The Effective Field Theory (EFT) framework provides a way to describe these deviations in a rather model independent way, by including higher-dimensional operators which modify the Higgs boson couplings and induce novel couplings not present in the SM. The trilinear Higgs-selfcoupling is accessible in Higgs pair production, for which the gluon fusion is the dominant production channel. The next-to-leading (NLO) QCD corrections to this process are important for a proper prediction of the cross section and are known in the limit of heavy top quark masses. In our work, we provide the NLO QCD corrections in the large top quark mass limit to Higgs pair production including dimension-6 operators. The various higher-dimensional contributions are affected differently by the QCD corrections, leading to deviations in the relative NLO QCD corrections of several per-cent, while modifying the cross section by up to an order of magnitude.

  1. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  2. Soliton pair creation at finite temperatures

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.

    1988-01-01

    Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)

  3. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    International Nuclear Information System (INIS)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak; Tung, Nguyen Thanh; Tung, Bui Son; Lam, Vu Dinh

    2014-01-01

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  4. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  5. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  6. Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis

    Science.gov (United States)

    Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.

    2017-05-01

    We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.

  7. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  8. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  9. Drell-Yan lepton pair photoproduction

    International Nuclear Information System (INIS)

    Badalyan, R.G.; Grabskij, V.O.; Matinyan, S.G.

    1989-01-01

    The study of photon structure functions by spectra of massive lepton pairs (M l + l - ≥ 2 GeV) in photon fragmentation region in γp-interactions at high energies is suggested. In calculations of Drell-Yan lepton pair inclusive spectra in γp-interactions for photon structure functions there are used results obtained within QCD, data on γγ-interactions in e + e - → e + e - X on colliders as well as results from the analysis of vector meson non-diffractive photoproduction at high energies. It is shown that there exists a sufficienly wide kinematic region over variables X l + l - and M l + l - , wherein photon structure functions can be studied by spectra of Grell-Yan lepton pairs in the processes of their photoproduction. 31 refs.; 6 figs.; 1 tab

  10. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  11. Effects of disorder on the electron pairing

    International Nuclear Information System (INIS)

    Oviedo-Roa, R.; Wang, C.; Navarro, O.

    1996-01-01

    The electron pairing in randomly disordered lattices is studied by using an attractive Hubbard model, and by mapping the many-body problem onto a tight-binding one in a higher dimensional space, where a diagonal disorder is considered within the coherent-potential approximation. The results show an enhancement of the pair-binding energy as the self-energy difference increases in a binary alloy A x B 1-x . This fact suggests that the pairing process is highly sensitive to the one-particle localization condition. A ground-state phase diagram for on-site interaction disorder shows regions where pairing is avoided for ordered diatomic systems but not for disordered case

  12. Variational study of the pair hopping model

    International Nuclear Information System (INIS)

    Fazekas, P.

    1990-01-01

    We study the ground state of a Hamiltonian introduced by Kolb and Penson for modelling situations in which small electron pairs are formed. The Hamiltonian consists of a tight binding band term, and a term describing the nearest neighbour hopping of electron pairs. We give a Gutzwiller-type variational treatment, first with a single-parameter Ansatz treated in the single site Gutzwiller approximation, and then with more complicated trial wave functions, and an improved Gutzwiller approximation. The calculation yields a transition from a partially paired normal state, in which the spin susceptibility has a diminished value, into a fully paired state. (author). 16 refs, 2 figs

  13. A lattice QCD determination of potentials between pairs of static-light mesons

    International Nuclear Information System (INIS)

    Hetzenegger, Martin

    2011-01-01

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B * , a D or a D * heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z + (4430).

  14. Butterflyfishes as a System for Investigating Pair Bonding

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    For many animals, affiliative relationships such as pair bonds form the foundation of society, and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Stochastic character mapping inferred that within the family, pairing is ancestral, with at least seven independent transitions to group formation and seven transition to solitary behavior from the late Miocene to recent. In six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping, we then verified social systems at Lizard Island, Australia. In situ observations confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15 %) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes (geographic occurrence, parental care, diet, or territoriality). Hence, the proposed butterflyfish populations are promising for comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the utility of these species applies across their geographic disruptions.

  15. Nonrandom network connectivity comes in pairs

    Directory of Open Access Journals (Sweden)

    Felix Z. Hoffmann

    2017-02-01

    Full Text Available Overrepresentation of bidirectional connections in local cortical networks has been repeatedly reported and is a focus of the ongoing discussion of nonrandom connectivity. Here we show in a brief mathematical analysis that in a network in which connection probabilities are symmetric in pairs, Pij = Pji, the occurrences of bidirectional connections and nonrandom structures are inherently linked; an overabundance of reciprocally connected pairs emerges necessarily when some pairs of neurons are more likely to be connected than others. Our numerical results imply that such overrepresentation can also be sustained when connection probabilities are only approximately symmetric.

  16. Local innovation: The key to globalisation

    Directory of Open Access Journals (Sweden)

    Srivardhini K. Jha

    2013-12-01

    Full Text Available The round table discussion draws the panellists to weigh in on how multinational enterprises from developed countries are innovating in and for emerging markets, the challenges faced, and lessons learnt. The key takeaways are that MNEs are increasingly innovating for the Indian market, alongside their contribution to global products. They are doing so by developing close relationships with field facing organisations, co-creating with customers, empowering engineers, and taking a clean slate approach to product development. This approach has given them dividends not only in the local market but also in the global market.

  17. Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture

    Science.gov (United States)

    Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik

    2013-11-01

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.

  18. Framing superiority and closeness: bridging the class gap in Philippine electoral politics

    NARCIS (Netherlands)

    Rutten, R.

    2011-01-01

    Contentious politics produces diverse leadership styles that may all be salient to a country’s electorate. This article explores key cultural frames that allow politicians to project both superiority and closeness to lower-class populations, hinged on different criteria of legitimacy. In the

  19. Competition between the pairing and aligned coupling schemes

    International Nuclear Information System (INIS)

    Rowe, D.J.

    2003-01-01

    We have only give a solution to the pairing plus quadrupole problem in an unrealistic situation. And we have certainly not given a solution to the general problem of a Hamiltonian with components of incompatible symmetry. However, we have valuable insights into the nature of the problem. In particular, we have identified the concept of a quasidynamical symmetry, both of the rigid rotor and SU(3) types, as a characteristic of a soft rotor whose quadrupole shape fluctuations are caused either by centrifugal forces or residual pairing interactions. In this brief review, I have outlined the appearance of highly coherent mixing of rigid rotor and SU(3) irreps in two models. In fact, the idea of a quasi-dynamical symmetry was conceived on purely physical grounds, and phrased mathematically in terms of an embedded representation, before the model examples to illustrate its occurrence were constructed. The underlying idea is that rotational states are seen in nuclei only when the rotational motions are adiabatic relative to other internal degrees of freedom. In such a situation, a rotating intrinsic frame of reference is close to being an inertial frame in as much as the Coriolis and centrifugal forces are negligible. Moreover, in the adiabatic limit, any residual interactions which are rotationally invariant and not functions of the angular momentum, can have strong effects on the intrinsic structure of a rotational nucleus. Moreover, whatever structure emerges should be the same for all states of a rotational band for which the angular momentum and, hence, the inertial forces are sufficiently small. These ideas lead naturally to the concept of quasi-dynamical symmetry. (author)

  20. Becoming independent through au pair migration

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    . This article argues that, despite this critique, au pairing does play an important formative role for young Filipinas because it opens up for experiences abroad that enable them to be recognised as independent adults in Philippine society. Rather than autonomy, however, au pairs define their independence...

  1. Pairing mechanism in oxide superconductors

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    1988-01-01

    A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity

  2. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation.

    Science.gov (United States)

    Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe

    2013-10-08

    We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.

  3. Frequent Pairs in Data Streams: Exploiting Parallelism and Skew

    DEFF Research Database (Denmark)

    Campagna, Andrea; Kutzkow, Konstantin; Pagh, Rasmus

    2011-01-01

    We introduce the Pair Streaming Engine (PairSE) that detects frequent pairs in a data stream of transactions. Our algorithm finds the most frequent pairs with high probability, and gives tight bounds on their frequency. It is particularly space efficient for skewed distribution of pair supports...... items mining in data streams. We show how to efficiently scale these approaches to handle large transactions. We report experimental results showcasing precision and recall of our method. In particular, we find that often our method achieves excellent precision, returning identical upper and lower...... bounds on the supports of the most frequent pairs....

  4. All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote.

    Directory of Open Access Journals (Sweden)

    Wei J Gong

    2005-11-01

    Full Text Available The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three lacO reporter couplets in FM7/X heterozygotes revealed they are paired and synapsed during zygotene/pachytene in 70%-80% of oocytes. Moreover, the regions defined by these lacO couplets undergo double-strand break formation at normal frequency. Thus, even complex aberration heterozygotes usually allow high frequencies of meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. However, the frequencies of failed pairing and synapsis were still 1.5- to 2-fold higher than were observed for corresponding regions in oocytes with two normal sequence X chromosomes, and this effect was greatest near a breakpoint. We propose that heterozygosity for breakpoints creates a local alteration in synaptonemal complex structure that is propagated across long regions of the bivalent in a fashion analogous to chiasma interference, which also acts to suppress crossing over.

  5. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  6. The importance of relationship closeness expectations in brand-page communication in social networking sites

    OpenAIRE

    Frias, Rui Alberto Móia Praça

    2013-01-01

    While there is extensive research regarding the way users in social networking sites (SNSs) connect and communicate with each other, literature on consumer-brand relationships in SNSs is scarce. This paper hypothesizes and tests the impact of varying the source of communication in Facebook brand pages on key characteristics of brand equity, examining whether this impact is conditioned by relationship closeness expectations. More specifically, two experiments assess how relationship closeness ...

  7. Distinct energetics and closing pathways for DNA polymerase β with 8-oxoG template and different incoming nucleotides

    Directory of Open Access Journals (Sweden)

    Wang Yanli

    2007-02-01

    Full Text Available Abstract Background 8-Oxoguanine (8-oxoG is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase β (pol β. To interpret in atomic and energetic detail how pol β processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol β 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues. Results Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 kBT, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP. Conclusion These results suggest that the lower insertion efficiency (larger Km for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol β, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G.

  8. Production rate of $b\\overline{b}$ quark pairs from gluons and $b\\overline{b}b\\overline{b}$ events in hadronic Z decays

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    The rates are measured per hadronic Z decay for gluon splitting to bb(bar) quark pairs, g_bb, and of events containing two bb(bar) quark pairs, g_4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb(bar) quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb(bar) quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of g_bb and g_4b, namely g_bb = (3.07 +- 0.53(stat) +- 0.97(syst))x10^-3 g_4b = (0.36 +- 0.17(stat) +- 0.27(syst))x10^-3

  9. Closing the light sbottom mass window from a compilation of $e^+ e^- \\to$ hadron data

    CERN Document Server

    AUTHOR|(CDS)2051271

    2004-01-01

    The e+e- -> hadron cross section data from PEP, PETRA, TRISTAN, SLC and LEP, at centre-of-mass energies between 20 to 209GeV, are analysed to search for the production of a pair of light sbottoms decaying hadronically via R-parity-violating couplings. This analysis allows the 95% C.L. exclusion of such a particle if its mass is below 7.5GeV/c2. The light sbottom mass window is closed.

  10. On pair-absorption in intrinsic vapours

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Schlueter, D.

    1982-01-01

    The bound-state pair-absorption bands Cs(6 2 S 1 sub(/) 2 ) + Cs(6 2 S 1 sub(/) 2 ) + hν → Cs(5 2 D 5 sub(/) 2 sub(,) 3 sub(/) 2 ) + Cs(6 2 P 1 sub(/) 2 ) and the K-K continuum-state pair-absorptions in the wavelength region 2.350 <= lambda <= 2.850 Angstroem have been investigated experimentally. In the case of the bound-state pair-absorption bands a theoretical approach for the absorption cross section at the band centre is given which is in good agreement with the experimental observation. Differences between our and the theoretical formulas given by the Stanford group are discussed. (orig.)

  11. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  12. Public key infrastructure for DOE security research

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R.; Foster, I.; Johnston, W.E. [and others

    1997-06-01

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  13. Superior coexistence: systematicALLY regulatING land subsidence BASED on set pair theory

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2015-11-01

    Full Text Available Anthropogenic land subsidence is an environmental side effect of exploring and using natural resources in the process of economic development. The key points of the system for controlling land subsidence include cooperation and superior coexistence while the economy develops, exploring and using natural resources, and geological environmental safety. Using the theory and method of set pair analysis (SPA, this article anatomises the factors, effects, and transformation of land subsidence. Based on the principle of superior coexistence, this paper promotes a technical approach to the system for controlling land subsidence, in order to improve the prevention and control of geological hazards.

  14. MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD—MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Zhao, Yinghe; Gao, Y.; Scoville, N.; Capak, P.; Drory, N.

    2012-01-01

    We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of f pair = 10 –1.88(±0.03) (1 + z) 2.2(±0.2) . The best-fitting function for the merger rate is R mg (Gyr –1 ) = 0.053 × (M star /10 10.7 M ☉ ) 0.3 (1 + z) 2.2 /(1 + z/8). This rate implies that galaxies of M star ∼ 10 10 -10 11.5 M ☉ have undergone ∼0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (M star ≥ 10 10.5 M ☉ ) at z ≤ 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of M star ∼ 10.3 M ☉ . Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (M star ≥ 10 11.3 M ☉ ), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.

  15. Short Review on Quantum Key Distribution Protocols.

    Science.gov (United States)

    Giampouris, Dimitris

    2017-01-01

    Cryptographic protocols and mechanisms are widely investigated under the notion of quantum computing. Quantum cryptography offers particular advantages over classical ones, whereas in some cases established protocols have to be revisited in order to maintain their functionality. The purpose of this paper is to provide the basic definitions and review the most important theoretical advancements concerning the BB84 and E91 protocols. It also aims to offer a summary on some key developments on the field of quantum key distribution, closely related with the two aforementioned protocols. The main goal of this study is to provide the necessary background information along with a thorough review on the theoretical aspects of QKD, concentrating on specific protocols. The BB84 and E91 protocols have been chosen because most other protocols are similar to these, a fact that makes them important for the general understanding of how the QKD mechanism functions.

  16. QUANTITATIVE ION-PAIR EXTRACTION OF 4(5)-METHYLIMIDAZOLE FROM CARAMEL COLOR AND ITS DETERMINATION BY REVERSED-PHASE ION-PAIR LIQUID-CHROMATOGRAPHY

    DEFF Research Database (Denmark)

    Thomsen, Mohens; Willumsen, Dorthe

    1981-01-01

    A procedure for quantitative ion-pair extraction of 4(5)-methylimidazole from caramel colour using bis(2-ethylhexyl)phosphoric acid as ion-pairing agent has been developed. Furthermore, a reversed-phase ion-pair liquid chromatographic separation method has been established to analyse the content...

  17. Capturing pair-wise epistatic effects associated with three agronomic traits in barley.

    Science.gov (United States)

    Xu, Yi; Wu, Yajun; Wu, Jixiang

    2018-04-01

    Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.

  18. Generalization decrement and not overshadowing by associative competition among pairs of landmarks in a navigation task.

    Science.gov (United States)

    Chamizo, Victoria D; Rodríguez, Clara A; Espinet, Alfredo; Mackintosh, N J

    2012-07-01

    When they are trained in a Morris water maze to find a hidden platform, whose location is defined by a number of equally spaced visual landmarks round the circumference of the pool, rats are equally able to find the platform when tested with any two of the landmarks (Prados, & Trobalon, 1998; Rodrigo, Chamizo, McLaren, & Mackintosh, 1997). This suggests that none of the landmarks was completely overshadowed by any of the others. In Experiment 1 one pair of groups was trained with four equally salient visual landmarks spaced at equal intervals around the edge of the pool, while a second pair was trained with two landmarks only, either relatively close to or far from the hidden platform. After extensive training, both male and female rats showed a reciprocal overshadowing effect: on a test with two landmarks only (either close to or far from the platform), rats trained with four landmarks spent less time in the platform quadrant than those trained with only two. Experiment 2 showed that animals trained with two landmarks and then tested with four also performed worse on test than those trained and tested with two landmarks only. This suggests that generalization decrement, rather than associative competition, provides a sufficient explanation for the overshadowing observed in Experiment 1. Experiment 3 provided a within-experiment replication of the results of Experiments 1 and 2. Finally, Experiment 4 showed that rats trained with a configuration of two landmarks learn their identity.

  19. Key indicators for organizational performance measurement

    Directory of Open Access Journals (Sweden)

    Firoozeh Haddadi

    2014-09-01

    Full Text Available Each organization for assessing the amount of utility and desirability of their activities, especially in complex and dynamic environments, requires determining and ranking the vital performance indicators. Indicators provide essential links among strategy, execution and ultimate value creation. The aim of this paper is to develop a framework, which identifies and prioritizes Key Performance Indicators (KPIs that a company should focus on them to define and measure progress towards organizational objectives. For this purpose, an applied research was conducted in 2013 in an Iranian telecommunication company. We first determined the objectives of the company with respect to four perspectives of BSC (Balanced Scorecard framework. Next, performance indicators were listed and paired wise comparisons were accomplished by company's high-ranked employees through standard Analytic Hierarchy Process (AHP questionnaires. This helped us establish the weight of each indicator and to rank them, accordingly.

  20. An Expressive, Lightweight and Secure Construction of Key Policy Attribute-Based Cloud Data Sharing Access Control

    Science.gov (United States)

    Lin, Guofen; Hong, Hanshu; Xia, Yunhao; Sun, Zhixin

    2017-10-01

    Attribute-based encryption (ABE) is an interesting cryptographic technique for flexible cloud data sharing access control. However, some open challenges hinder its practical application. In previous schemes, all attributes are considered as in the same status while they are not in most of practical scenarios. Meanwhile, the size of access policy increases dramatically with the raise of its expressiveness complexity. In addition, current research hardly notices that mobile front-end devices, such as smartphones, are poor in computational performance while too much bilinear pairing computation is needed for ABE. In this paper, we propose a key-policy weighted attribute-based encryption without bilinear pairing computation (KP-WABE-WB) for secure cloud data sharing access control. A simple weighted mechanism is presented to describe different importance of each attribute. We introduce a novel construction of ABE without executing any bilinear pairing computation. Compared to previous schemes, our scheme has a better performance in expressiveness of access policy and computational efficiency.

  1. Non-resonant Higgs-pair production in the b anti bb anti b final state at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wardrope, David; Jansen, Eric; Konstantinidis, Nikos; Cooper, Ben; Falla, Rebecca; Norjoharuddeen, Nurfikri [University College London, Department of Physics and Astronomy, London (United Kingdom)

    2015-05-15

    We present a particle-level study of the Standard Model non-resonant Higgs-pair production process in the b anti bb anti b final state, at the Large Hadron Collider at √(s) = 14 TeV. Each Higgs boson is reconstructed from a pair of close-by jets formed with the anti-k{sub t} jet clustering algorithm, with radius parameter R = 0.4. Given the kinematic properties of the produced Higgs bosons, this Higgs reconstruction approach appears to be more suitable than the use of largeradius jets that was previously proposed in the literature.We find that the sensitivity for observing this final state can be improved significantly when the full set of uncorrelated angular and kinematic variables of the 4b system is exploited, leading to a statistical significance of 1.8 per experiment with an integrated luminosity of 3 ab{sup -1}. (orig.)

  2. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Coherent pair creation from beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1989-09-01

    It has recently been recognized that in future linear colliders, there is a finite probability that the beamstrahlung photons will turn into e + e - pairs induced by the same beam-beam field, and this would potentially cause background problems. In this paper, we first review the probability of such a coherent pair creation process. It is seen that the constraint on the beamstrahlung parameter, Υ, is tight of these coherent pairs to be totally suppressed. We then point out that there exists a minimum energy for the pair-created particles, which scales as ∼1/5Υ. When combining this condition with the deflection angle for the low-energy particles, the constraint on the allowable Υ value is much relaxed. Finally, we calculate the effective cross section for producing the weak bosons by the low-energy e + e - pairs. It is shown that these cross sections are substantial for Υ > 1. We suggest that this effect can help to autoscan the particle spectrum in the high energy frontier. 10 refs., 2 figs

  4. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: Comparison of similarity ranking scores and absolute similarity ratings

    International Nuclear Information System (INIS)

    Muramatsu, Chisako; Li Qiang; Schmidt, Robert A.; Shiraishi, Junji; Suzuki, Kenji; Newstead, Gillian M.; Doi, Kunio

    2007-01-01

    The presentation of images that are similar to that of an unknown lesion seen on a mammogram may be helpful for radiologists to correctly diagnose that lesion. For similar images to be useful, they must be quite similar from the radiologists' point of view. We have been trying to quantify the radiologists' impression of similarity for pairs of lesions and to establish a ''gold standard'' for development and evaluation of a computerized scheme for selecting such similar images. However, it is considered difficult to reliably and accurately determine similarity ratings, because they are subjective. In this study, we compared the subjective similarities obtained by two different methods, an absolute rating method and a 2-alternative forced-choice (2AFC) method, to demonstrate that reliable similarity ratings can be determined by the responses of a group of radiologists. The absolute similarity ratings were previously obtained for pairs of masses and pairs of microcalcifications from five and nine radiologists, respectively. In this study, similarity ranking scores for eight pairs of masses and eight pairs of microcalcifications were determined by use of the 2AFC method. In the first session, the eight pairs of masses and eight pairs of microcalcifications were grouped and compared separately for determining the similarity ranking scores. In the second session, another similarity ranking score was determined by use of mixed pairs, i.e., by comparison of the similarity of a mass pair with that of a calcification pair. Four pairs of masses and four pairs of microcalcifications were grouped together to create two sets of eight pairs. The average absolute similarity ratings and the average similarity ranking scores showed very good correlations in the first study (Pearson's correlation coefficients: 0.94 and 0.98 for masses and microcalcifications, respectively). Moreover, in the second study, the correlations between the absolute ratings and the ranking scores were also

  5. Pair replacement on the spawning success of broodstock Seahorse (Hippocampus barbouri

    Directory of Open Access Journals (Sweden)

    . Syafiuddin

    2011-01-01

    Full Text Available Seahorse, (Hippocampus barbouri is one of marine living resources having high commercial values and has commonly been traded especially as live ornamental aquarium fish, raw material of traditional medicine and as souvenirs. This expriment was conducted to determine the succces of spawning rate by replacing the broodstock pair of seahorse. This study was done experimentally with treatment of replacement of broodstock pair after spawning under control condition. The experiment was designed to apply completely randomize design by using the following treatments: Treatment A, without replacement neither male nor female. Treatment B, spawned female broodstock  was being mated with her unpaired male broodstock.  Treatment C, a male broodstock that still brood was being mated with his unpaired female broodstock.  Treatment D, a spawned male broodstock that has released larva was being mated with his unpaired female broodstock.  Results showed that under control condition the replacement of broodstock pairs of seahorse had significantly influenced the spawning interval, number of eggs released and number of juveniles produced (P0,05.  It can be concluded that seahorse is not monogamous, either male or female after being spawned may accept other pair for the next spawning. Key words: pair replacement, broodstock, success spawning, Hippocampus barbouri   ABSTRAK Kuda laut, (Hippocampus barbouri merupakan salah satu sumberdaya hayati laut yang memiliki nilai komersial dan telah banyak diperdagangkan terutama sebagai ikan hias, bahan baku obat tradisional dan juga sebagai suvenir. Penelitian ini dilakukan dengan tujuan untuk mengkaji tingkat keberhasilan pemijahan dengan penggantian pasangan induk kuda laut pada wadah budidaya. Percobaan ini dilakukan secara ekperimental dengan perlakuan penggantian pasangan induk setelah pemijahan dalam wadah budidaya. Percobaan dirancang dengan menggunakan rancangan acak lengkap (RAL dengan perlakuan sebagai berikut

  6. Seniority zero pair coupled cluster doubles theory

    International Nuclear Information System (INIS)

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-01-01

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems

  7. On H-closed and U-closed functions | Cammaroto | Quaestiones ...

    African Journals Online (AJOL)

    In this article, we extend the work on H-closed functions started by Cammaroto, Fedorchuk and Porter in 1998. Also, U-closed functions are introduced and characterized in terms of filters and adherence. The hereditary and productivity properties are examined and developed for both H-closed and U-closed functions.

  8. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  9. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  10. Hadronic production of massive lepton pairs

    International Nuclear Information System (INIS)

    Berger, E.L.

    1982-12-01

    A review is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. I begin with the classical Drell-Yan annihilation model and its predictions. Subsequently, I discuss deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the perturbative QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, transverse-momentum distributions, implications for weak vector boson (W +- and Z 0 ) yields and production properties, nuclear A dependence effects, correlations of the lepton pair with hadrons in the final state, and angular distributions in the lepton-pair rest frame

  11. Learning preferences from paired opposite-based semantics

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Rodríguez, J. Tinguaro; Montero, Javier

    2017-01-01

    Preference semantics examine the meaning of the preference predicate, according to the way that alternatives can be understood and organized for decision making purposes. Through opposite-based semantics, preference structures can be characterized by their paired decomposition of preference...... on the character of opposition, the compound meaning of preference emerges from the fuzzy reinforcement of paired opposite concepts, searching for significant evidence for affirming dominance among the decision objects. Here we propose a general model for the paired decomposition of preference, examining its...

  12. Observing Pair-Work Task in an English Speaking Class

    Directory of Open Access Journals (Sweden)

    Diana Achmad

    2014-01-01

    Full Text Available This paper reports on students’ pair-work interactions to develop their speaking skills in an ELT classroom which consisted of international learners. A number of 16 learners of intermediate proficiency with IELTS score band 5.5 were observed. The teacher had paired those he considered among them to be the more competent ones (hereafter, stronger with the less competent ones (hereafter, weaker; therefore, eight pairs were observed during the lesson. The task given to the students was to express ‘Agree and Disagree’ in the context of giving opinions related to social life. Based on the observations, the task was successfully implemented by six pairs; thus, the two others faced some problems. From the first pair, it was seen that the stronger student had intimated the weaker one into speaking during the task. The other pair, who was both of the same native, did not converse in English as expected and mostly used their native language to speak with one another presumably due to respect from the stronger student towards the weaker one. In situations like this, when pair-work becomes unproductive, rotating pairs is recommended to strengthen information sharing and assigning roles to avoid a student from taking over the activity from his or her pair. In conclusion, pairing international learners with mixed speaking proficiency by teachers must be conducted as effectively as possible by initially identifying their ability and learning culture to profoundly expand the students’ language resources.

  13. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    Science.gov (United States)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  14. Quantum key distribution with an unknown and untrusted source

    Science.gov (United States)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2009-03-01

    The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).

  15. Pair-correlations in swimmer suspensions

    Science.gov (United States)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r > L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  16. Isovectorial pairing in solvable and algebraic models

    International Nuclear Information System (INIS)

    Lerma, Sergio; Vargas, Carlos E; Hirsch, Jorge G

    2011-01-01

    Schematic interactions are useful to gain some insight in the behavior of very complicated systems such as the atomic nuclei. Prototypical examples are, in this context, the pairing interaction and the quadrupole interaction of the Elliot model. In this contribution the interplay between isovectorial pairing, spin-orbit, and quadrupole terms in a harmonic oscillator shell (the so-called pairing-plus-quadrupole model) is studied by algebraic methods. The ability of this model to provide a realistic description of N = Z even-even nuclei in the fp-shell is illustrated with 44 Ti. Our calculations which derive from schematic and simple terms confirm earlier conclusions obtained by using realistic interactions: the SU(3) symmetry of the quadrupole term is broken mainly by the spin-orbit term, but the energies depends strongly on pairing.

  17. Study of Raman-free photon pair generation using inter-modal four-wave mixing in a few-mode silica fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Christensen, Jesper Bjerge; Koefoed, Jacob Gade

    2017-01-01

    Single-photon sources are key components in applications of photonic quantum technologies such as quantum key distribution (QKD) [1]. One way of realizing single-photon sources is generation of photon pairs (PP) using spontaneous four-wave mixing (FWM): two photons from a pump p annihilate...... and create two side-band photons at frequencies determined partly by the energy conservation 2ωρ = ω1 + ω2, where ωp,ω1,ω2 are the frequencies of the pump and the two side-bands, respectively, and partly by the phase-matching condition. PP generated spontaneously arrive at indeterministic times but even so......, they are useful for QKD because one of the photons can be heralded by detecting the other. The heralded photons are then used for transmitting the quantum key....

  18. Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes

    2018-05-01

    We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.

  19. A lattice QCD determination of potentials between pairs of static-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Hetzenegger, Martin

    2011-07-04

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B{sup *}, a D or a D{sup *} heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z{sup +}(4430).

  20. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    Science.gov (United States)

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  1. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  2. Twin photon pairs in a high-Q silicon microresonator

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Steven; Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Jiang, Wei C. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-07-27

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  3. Separable pairing force for relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Tian Yuan; Ma Zhongyu; Ring, Peter

    2009-01-01

    We have introduced a separable pairing force, which was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. This separable pairing force is able to describe in relativistic Hartree-Bogoliubov (RHB) calculations the pairing properties in the ground state of finite nuclei on almost the same footing as the original Gogny interaction. In this work we investigate excited states using the Relativistic Quasiparticle Random-Phase Approximation (RQRPA) with the same separable pairing force. For consistency the Goldstone modes and the convergence with various cutoff parameters in this version of RQRPA are studied. The first excited 2 + states for the chain of Sn isotopes with Z=50 and the chain of isotones with N=82 isotones are calculated in RQRPA together with the 3 - states of Sn isotopes. By comparing our results with experimental data and with the results of the original Gogny force we find that this simple separable pairing interaction is very successful in depicting the pairing properties of vibrational excitations.

  4. ΛΛ pairing in NΛ composite matter

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2003-01-01

    ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  5. ΛΛ pairing in NΛ composite matter

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2002-01-01

    ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  6. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  7. Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212

    Science.gov (United States)

    He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun

    2015-03-01

    Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.

  8. Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators

    International Nuclear Information System (INIS)

    Andreozzi, F.; Covello, A.; Gargano, A.; Ye, L.J.; Porrino, A.

    1985-01-01

    The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v = 0, v = 1, and v = 2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states

  9. STUDI KOMPARATIF MODEL PEMBELAJARAN THINK PAIR SQUARE DAN THINK PAIR SHARE TERHADAP MOTIVASI DAN HASIL BELAJAR SISWA MAPEL TIK KELAS X SMA N 1 SUKASADA

    Directory of Open Access Journals (Sweden)

    Putu Deli Januartini

    2016-10-01

    Abstract The purpose of this study were to determine (1 the significant influence of the application of think pair square and think pair share learning model on student’s learning achievement, (2 better learning achievement between think pair square and think pair share learning model, (3 student’s motivation, (4 the student’s responses. The research was a quasi-experimental design experiment with post test only control group design. The population of study was all the students in grade X. The sample were as X1 class with the application of Think Pair Square learning model, X3 class with the application of Think Pair Share learning model, and X5 class with the application of Direct Instruction learning model. The data was collected by cognitive and psychomotor tests. The student’s learning achievement were analyzed by the prerequisite test with the results of the three groups at normal distribution and homogenous, and the hypothesis tested by One Way Anova which means there is a significant effect on the application of think pair square, think pair share, and direct instruction learning models. Then it was conducted a further test t-Scheffe with the results there are differences in the learning achievement between think pair square, think pair share, and direct instruction learning models. According to the average result we made a conclusion that Think Pair Square was better learning models with higher student’s learning achievement. The questionnaires results shows that Think Pair Square was very high positive response and very high learning motivation, Think Pair Share was high positive response and very high learning motivation.   Keywords :   Think Pair Square, Think Pair Share, Direct Instruction, learning achievement, learning motivation, and student response.

  10. Affected sib pair tests in inbred populations.

    Science.gov (United States)

    Liu, W; Weir, B S

    2004-11-01

    The affected-sib-pair (ASP) method for detecting linkage between a disease locus and marker loci was first established 50 years ago, and since then numerous modifications have been made. We modify two identity-by-state (IBS) test statistics of Lange (Lange, 1986a, 1986b) to allow for inbreeding in the population. We evaluate the power and false positive rates of the modified tests under three disease models, using simulated data. Before estimating false positive rates, we demonstrate that IBS tests are tests of both linkage and linkage disequilibrium between marker and disease loci. Therefore, the null hypothesis of IBS tests should be no linkage and no LD. When the population inbreeding coefficient is large, the false positive rates of Lange's tests become much larger than the nominal value, while those of our modified tests remain close to the nominal value. To estimate power with a controlled false positive rate, we choose the cutoff values based on simulated datasets under the null hypothesis, so that both Lange's tests and the modified tests generate same false positive rate. The powers of Lange's z-test and our modified z-test are very close and do not change much with increasing inbreeding. The power of the modified chi-square test also stays stable when the inbreeding coefficient increases. However, the power of Lange's chi-square test increases with increasing inbreeding, and is larger than that of our modified chi-square test for large inbreeding coefficients. The power is high under a recessive disease model for both Lange's tests and the modified tests, though the power is low for additive and dominant disease models. Allowing for inbreeding is therefore appropriate, at least for diseases known to be recessive.

  11. Statistical mechanics of magnetized pair Fermi gas

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs

  12. Hot accretion disks with electron-positron pairs

    International Nuclear Information System (INIS)

    White, T.R.; Lightman, A.P.

    1989-01-01

    The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs

  13. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  14. Hormonal predictors of women's extra-pair vs. in-pair sexual attraction in natural cycles: Implications for extended sexuality.

    Science.gov (United States)

    Grebe, Nicholas M; Emery Thompson, Melissa; Gangestad, Steven W

    2016-02-01

    In naturally cycling women, Roney and Simmons (2013) examined hormonal correlates of their desire for sexual contact. Estradiol was positively associated, and progesterone negatively associated, with self-reported desire. The current study extended these findings by examining, within a sample of 33 naturally cycling women involved in romantic relationships, hormonal correlates of sexual attraction to or interests in specific targets: women's own primary partner or men other than women's primary partner. Women's sexual interests and hormone (estradiol, progesterone, and testosterone) levels were assessed at two different time points. Whereas estradiol levels were associated with relatively greater extra-pair sexual interests than in-pair sexual interests, progesterone levels were associated with relatively greater in-pair sexual interests. Both hormones specifically predicted in-pair sexual desire, estradiol negatively and progesterone positively. These findings have implications for understanding the function of women's extended sexuality - their sexual proceptivity and receptivity outside the fertile phase, especially during the luteal phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Practical round-robin differential-phase-shift quantum key distribution

    International Nuclear Information System (INIS)

    Zhang, Zhen; Yuan, Xiao; Cao, Zhu; Ma, Xiongfeng

    2017-01-01

    The security of quantum key distribution (QKD) relies on the Heisenberg uncertainty principle, with which legitimate users are able to estimate information leakage by monitoring the disturbance of the transmitted quantum signals. Normally, the disturbance is reflected as bit flip errors in the sifted key; thus, privacy amplification, which removes any leaked information from the key, generally depends on the bit error rate. Recently, a round-robin differential-phase-shift QKD protocol for which privacy amplification does not rely on the bit error rate (Sasaki et al 2014 Nature 509 475) was proposed. The amount of leaked information can be bounded by the sender during the state-preparation stage and hence, is independent of the behavior of the unreliable quantum channel. In our work, we apply the tagging technique to the protocol and present a tight bound on the key rate and employ a decoy-state method. The effects of background noise and misalignment are taken into account under practical conditions. Our simulation results show that the protocol can tolerate channel error rates close to 50% within a typical experiment setting. That is, there is a negligible restriction on the error rate in practice. (paper)

  16. Bonding in Sulfur-Oxygen Compounds-HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Woon, David E; Dunning, Thom H

    2013-10-08

    The ground states (X(2)A″) of HSO and SOH are extremely close in energy, yet their molecular structures differ dramatically, e.g., re(SO) is 1.485 Å in HSO and 1.632 Å in SOH. The SO bond is also much stronger in HSO than in SOH: 100.3 kcal/mol versus 78.8 kcal/mol [RCCSD(T)-F12/AVTZ]. Similar differences are found in the SO2 isomers, SOO and OSO, depending on whether the second oxygen atom binds to oxygen or sulfur. We report generalized valence bond and RCCSD(T)-F12 calculations on HSO/SOH and OSO/SOO and analyze the bonding in all four species. We find that HSO has a shorter and stronger SO bond than SOH due to the presence of a recoupled pair bond in the π(a″) system of HSO. Similarly, the bonding in SOO and OSO differs greatly. SOO is like ozone and has substantial diradical character, while OSO has two recoupled pair π bonds and negligible diradical character. The ability of the sulfur atom to form recoupled pair bonds provides a natural explanation for the dramatic variation in the bonding in these and many other sulfur-oxygen compounds.

  17. Exclusive electroproduction of pion pairs

    International Nuclear Information System (INIS)

    Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.

    2007-01-01

    We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)

  18. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  19. Search for direct top squark pair production in the single lepton final state at $\\sqrt{s}=13~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2016-01-01

    A search for direct top squark pair production in pp collisions at $\\sqrt{s}=13~\\mathrm{TeV}$ is performed using events with a single isolated lepton, jets, and large transverse momentum imbalance. This analysis closely follows the strategy of a similar search for the same signature in 2015, using data collected in 2016 at a center-of-mass energy of 13 TeV with the CMS detector and corresponding to an integrated luminosity of $12.9~\\mathrm{fb}^{-1}$. No significant excess in data is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino.

  20. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2015-07-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  1. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Science.gov (United States)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2015-03-01

    Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  2. Extensions of Bessel sequences to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2013-01-01

    Tight frames in Hilbert spaces have been studied intensively for the past years. In this paper we demonstrate that it often is an advantage to use pairs of dual frames rather than tight frames. We show that in any separable Hilbert space, any pairs of Bessel sequences can be extended to a pair of...... be extended to a pair of dual frames. © 2012 Elsevier Inc. All rights reserved....

  3. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    Science.gov (United States)

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  4. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  5. Pair decay width of the Hoyle state and carbon production in stars

    International Nuclear Information System (INIS)

    Neumann-Cosel, Peter von; Chernykh, Maksym; Richter, Achim; Feldmeier, Hans; Neff, Thomas

    2011-01-01

    The pair decay width of the first excited 0 + state in 12 C (the Hoyle state) is deduced from a novel analysis of the world data on inelastic electron scattering covering a wide momentum transfer range, thereby resolving previous discrepancies. The extracted value Γ π = (62.3 ± 2.0) μeV is independently confirmed by new data at low momentum transfers measured at the S-DALINAC and reduces the uncertainty of the literature values by more than a factor of three. A precise knowledge of Γ π is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process.

  6. On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs

  7. A new species of Pectinaria (Annelida, Pectinariidae), with a key to pectinariids from the South China Sea.

    Science.gov (United States)

    Zhang, Jinghuai; Qiu, Jian-Wen

    2017-01-01

    Pectinariidae is a family of polychaetes building unique ice-cream cone shaped sandy tubes. Pectinaria torquata sp. n. (Pectinariidae) is described from the coastal waters of the northern South China Sea. This new species can be distinguished from all other 25 recognized species in the genus by a combination of characters: 16 chaetigers; 26-32 cirri in the cephalic veil; 11-12 pairs of cephalic spines; uncini with major teeth arranged in two rows, each with 7-8 major teeth; presence of a dorsal posterior lobe on segments 2 and 20; 4-5 pairs of curved scaphal hooks; and an anal flap with a crenulated margin. A key to all recognized pectinariids in the South China Sea is provided.

  8. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  9. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation

    Science.gov (United States)

    Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco

    2018-05-01

    We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

  10. Many-body pairing in a two-dimensional Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Neidig, Mathias

    2017-05-24

    This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be used to simulate key aspects of more complicated systems like for example cuprates which show high-T{sub c} superconductivity. The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice geometry was measured to obtain the coherence properties. For shallow lattices, sharp peaks in the momentum distribution, indicating coherence, were observed at zero momentum as well as at positive and negative lattice momenta along each axis. For deeper lattices, heating impeded the ability to prepare a Mott-insulator. A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi gas in the normal phase throughout the BEC-BCS crossover. The interaction induced energy shifts were measured in the strongly interacting region where they can be on the order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset of pairing in the strongly interacting region was measured as a function of temperature and it was shown that the fraction of free atoms decreases faster than expected from thermal non-interacting theory. At last, the pairing gap was measured using an imbalanced sample. On the BEC side it was found to be in very good agreement with two-body physics as expected. In the strongly interacting regime, however, a deviation from two-body physics indicates that here many-body effects play a role and thus further studies are required.

  11. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  12. Exploring Pair Programming Benefits for MIS Majors

    Science.gov (United States)

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  13. NNLO O(α4s) results for heavy quark pair production in quark-antiquark collisions. The one-loop squared contributions

    International Nuclear Information System (INIS)

    Koerner, J.G.

    2008-02-01

    We calculate the NNLO O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the NNLO O(α 4 s ) radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We find very intriguing factorization properties for the finite part of the amplitudes. (orig.)

  14. Statistical deprojection of galaxy pairs

    Science.gov (United States)

    Nottale, Laurent; Chamaraux, Pierre

    2018-06-01

    Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.

  15. Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations (Extended Abstract)

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knudsen, L.R.; Leander, Gregor

    2012-01-01

    show that the distribution of Fourier coefficients for the cipher over all keys is close to ideal. Lastly, we define a practical instance of the construction with t = 2 using AES referred to as AES2. Any attack on AES2 with complexity below 285 will have to make use of AES with a fixed known key...

  16. The role of visual representations within working memory for paired-associate and serial order of spoken words.

    Science.gov (United States)

    Ueno, Taiji; Saito, Satoru

    2013-09-01

    Caplan and colleagues have recently explained paired-associate learning and serial-order learning with a single-mechanism computational model by assuming differential degrees of isolation. Specifically, two items in a pair can be grouped together and associated to positional codes that are somewhat isolated from the rest of the items. In contrast, the degree of isolation among the studied items is lower in serial-order learning. One of the key predictions drawn from this theory is that any variables that help chunking of two adjacent items into a group should be beneficial to paired-associate learning, more than serial-order learning. To test this idea, the role of visual representations in memory for spoken verbal materials (i.e., imagery) was compared between two types of learning directly. Experiment 1 showed stronger effects of word concreteness and of concurrent presentation of irrelevant visual stimuli (dynamic visual noise: DVN) in paired-associate memory than in serial-order memory, consistent with the prediction. Experiment 2 revealed that the irrelevant visual stimuli effect was boosted when the participants had to actively maintain the information within working memory, rather than feed it to long-term memory for subsequent recall, due to cue overloading. This indicates that the sensory input from irrelevant visual stimuli can reach and affect visual representations of verbal items within working memory, and that this disruption can be attenuated when the information within working memory can be efficiently supported by long-term memory for subsequent recall.

  17. Analysis of Food Pairing in Regional Cuisines of India

    Science.gov (United States)

    Bagler, Ganesh

    2015-01-01

    Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food. PMID:26430895

  18. Analysis of Food Pairing in Regional Cuisines of India.

    Science.gov (United States)

    Jain, Anupam; N K, Rakhi; Bagler, Ganesh

    2015-01-01

    Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food.

  19. Single-flavour and two-flavour pairing in three-flavour quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Cowan, Greig A

    2006-01-01

    We study single-flavour quark pairing ('self-pairing') in colour-superconducting phases of quark matter, paying particular attention to the difference between scenarios where all three flavours undergo single-flavour pairing, and scenarios where two flavours pair with each other ('2SC' pairing) and the remaining flavour self-pairs. We perform our calculations in the mean-field approximation using a pointlike four-fermion interaction based on single gluon exchange. We confirm the result from previous weakly-coupled-QCD calculations that when all three flavours self-pair the favoured channel for each is colour-spin-locked (CSL) pseudoisotropic pairing. However, we find that when the up and down quarks undergo 2SC pairing, they induce a colour chemical potential that disfavours the CSL phase. The strange quarks then self-pair in a 'polar' channel that breaks rotational invariance, although the CSL phase may survive in a narrow range of densities

  20. Overdensity of galaxies in the environment of quasar pairs

    Science.gov (United States)

    Sandrinelli, A.; Falomo, R.; Treves, A.; Scarpa, R.; Uslenghi, M.

    2018-03-01

    We report on a study of the galaxy environments of low redshift physical quasars pairs. We selected 20 pairs having projected separation Survey images, we evaluated the galaxy overdensity around these quasars in pairs and then compare it with that of a sample of isolated quasars with same redshift and luminosity. It is found that on average there is a systematic larger overdensity of galaxies around quasars in pairs with respect to that of isolated quasars. This may represent a significant link between nuclear activity and galaxy environment. However, at odds with that, the closest quasar pairs seem to inhabit poorer environments. Implications of present results and perspectives for future work are briefly discussed.

  1. Finding Question-Answer Pairs from Online Forums

    DEFF Research Database (Denmark)

    Cong, Gao; Wang, Long; Lin, Chin-Yew

    2008-01-01

    Online forums contain a huge amount of valuable user generated content. In this paper we address the problem of extracting question-answer pairs from forums. Question-answer pairs extracted from forums can be used to help Question Answering services (e.g. Yahoo! Answers) among other applications...

  2. A New Secure Pairing Protocol using Biometrics

    NARCIS (Netherlands)

    Buhan, I.R.

    2008-01-01

    Secure Pairing enables two devices, which share no prior context with each other, to agree upon a security association that they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping or to a

  3. Instantons in lepton pair production

    International Nuclear Information System (INIS)

    Brandenburg, A.; Ringwald, A.; Utermann, A.

    2006-05-01

    We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)

  4. Printed Identification Key or Web-Based Identification Guide: An Effective Tool for Species Identification?

    Directory of Open Access Journals (Sweden)

    Thomas Edison E. dela Cruz

    2012-09-01

    Full Text Available Species identification is often done with the aid of traditional dichotomous keys. This printed material is based on one’s decision between two alternatives, which is followed by another pair of alternatives until the final species name is reached. With the advent of internet technology, the use of an online database offers an updatable and accumulative approach to species identification. It can also be accessed anytime, and this is very useful for fast-changing groups of organisms. In this paper, we report the preference of sophomore Bachelor of Science (B.Sc. in Microbiology students to two identification guides as a tool in taxonomy. We wish to test our hypothesis that today’s students will prefer to use web-based ID guides over printed dichotomous keys. We also describe how these printed dichotomous key and web-based ID guides were used by the students as one of their laboratory activities in the course Biology of Algae and Fungi.  

  5. General characteristics and technical subjects on helium closed cycle gas turbine

    International Nuclear Information System (INIS)

    Shimomura, Hiroaki

    1996-06-01

    Making the subjects clarified on nuclear-heated gas turbine that will apply the inherent features of HTGR, the present paper discusses the difference of the helium closed cycle gas turbine, which is a candidate of nuclear gas turbine, with the open cycle gas turbine and indicates inherent problems of closed cycle gas turbine, its effects onto thermal efficiency and turbine output and difficulties due to the pressure ratio and specific speed from use of helium. The paper also discusses effects of the external pressure losses onto the efficiencies of compressor and turbine that are major components of the gas turbine. According to the discussions above, the paper concludes indicating the key idea on heat exchangers for the closed cycle gas turbine and design basis to solve the problems and finally offers new gas turbine conception using nitrogen or air that is changeable into open cycle gas turbine. (author)

  6. Some data on the behaviour of kites (Milvus milvus, Milvus migrans nesting close to two active wind farms in Saxony, Germany

    Directory of Open Access Journals (Sweden)

    Busse Przemysław

    2017-12-01

    Full Text Available The main aim of this study was to evaluate how local pairs of kites behave in the vicinity of two wind farms located in the same region (Saxony, Germany and at farms which are to be re-powered. We observed three pairs that had located their nests close to active wind farms (a few hundred to 1500 m from the wind farm. Special attention was focused on variation in the intensity of flights and its dependence on the local landscape and to active avoidance of existing wind turbines. Observations were made at the end of the breeding time, when the young were still in the nest and shortly after fledging. Despite the short observation periods, the results seem to show clearly how differentiated the flight patterns of these birds are in relation to the landscape features around the farm. The distance from the nest to the wind farm cannot be the only measure of the level of potential wind-farm-related danger to the birds nesting close to the farm site.

  7. Dynamics of chemical equilibrium of hadronic matter close to Tc

    International Nuclear Information System (INIS)

    Noronha-Hostler, J.; Beitel, M.; Greiner, C.; Shovkovy, I.

    2010-01-01

    Quick chemical equilibration times of hadrons (specifically, pp-bar, KK-bar, ΛΛ-bar, and ΩΩ-bar pairs) within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. We compare our model to recent lattice results and find that for both T c =176 MeV and T c =196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. Furthermore, the ratios p/π, K/π, Λ/π, and Ω/π match experimental values well in our dynamical scenario.

  8. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    OpenAIRE

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2014-01-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...

  9. Lax pairs: a novel type of separability

    International Nuclear Information System (INIS)

    Fokas, A S

    2009-01-01

    An attempt is made to place into historical context the fundamental concept of Lax pairs. For economy of presentation, emphasis is placed on the effectiveness of Lax pairs for the analysis of integrable nonlinear evolution PDEs. It is argued that Lax pairs provide a deeper type of separability than the classical separation of variables. Indeed, it is shown that: (a) the solution of the Cauchy problem of evolution equations is based on the derivation of a nonlinear Fourier transform pair, and this is achieved by employing the spectral analysis of one of the two eigenvalue equations forming a Lax pair; thus, although this methodology still follows the reverent philosophy of the classical separation of variables and transform methods, it can be applied to a class of nonlinear PDEs. (b) The solution of initial-boundary-value problems of evolution equations is based on the simultaneous spectral analysis of both equations forming a Lax pair and hence, in a sense, it employs the synthesis instead of the separation of variables; this methodology does not have a direct classical analogue, however, it can be considered as the nonlinearization of a method which combines Green's function classical integral representations with an analogue of the method of images, but which are now formulated in the spectral (Fourier) instead of the physical space. In addition to presenting a general methodology for analysing initial- and initial-boundary-value problems for nonlinear integrable evolution equations in one and two spatial variables, recent progress is reviewed for the derivation and the solution of integrable nonlinear evolution PDEs formulated in higher than two spatial dimensions. (topical review)

  10. BEC-BCS crossover in a (p+ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

    International Nuclear Information System (INIS)

    Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You

    2011-01-01

    We analyse a (p+ip)-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.

  11. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    Science.gov (United States)

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  12. Relativistic quasiparticle random phase approximation with a separable pairing force

    International Nuclear Information System (INIS)

    Tian Yuan; Ma Zhongyu; Ring Peter

    2009-01-01

    In our previous work, we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA) with this separable pairing interaction and calculate the excitation energies of the first excited 2 + states and reduced B(E2; 0 + →2 + ) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction. (authors)

  13. Pair Housing of Dairy Calves and Age at Pairing: Effects on Weaning Stress, Health, Production and Social Networks.

    Science.gov (United States)

    Bolt, Sarah L; Boyland, Natasha K; Mlynski, David T; James, Richard; Croft, Darren P

    2017-01-01

    The early social environment can influence the health and behaviour of animals, with effects lasting into adulthood. In Europe, around 60% of dairy calves are reared individually during their first eight weeks of life, while others may be housed in pairs or small groups. This study assessed the effects of varying degrees of social contact on weaning stress, health and production during pen rearing, and on the social networks that calves later formed when grouped. Forty female Holstein-Friesian calves were allocated to one of three treatments: individually housed (I, n = 8), pair-housed from day five (P5, n = 8 pairs), and pair-housed from day 28 (P28, n = 8 pairs). From day 48, calves were weaned by gradual reduction of milk over three days, and vocalisations were recorded as a measure of stress for three days before, during and after weaning. Health and production (growth rate and concentrate intakes) were not affected by treatment during the weaning period or over the whole study. Vocalisations were highest post-weaning, and were significantly higher in I calves than pair-reared calves. Furthermore, P28 calves vocalised significantly more than P5 calves. The social network of calves was measured for one month after all calves were grouped in a barn, using association data from spatial proximity loggers. We tested for week-week stability, social differentiation and assortment in the calf network. Additionally, we tested for treatment differences in: coefficient of variation (CV) in association strength, percentage of time spent with ex-penmate (P5 and P28 calves only) and weighted degree centrality (the sum of the strength of an individual's associations). The network was relatively stable from weeks one to four and was significantly differentiated, with individuals assorting based on prior familiarity. P5 calves had significantly higher CV in association strength than I calves in week one (indicating more heterogeneous social associations) but there were no

  14. Analysis of Food Pairing in Regional Cuisines of India.

    Directory of Open Access Journals (Sweden)

    Anupam Jain

    Full Text Available Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food.

  15. Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors

    Science.gov (United States)

    Lee, Patrick A.

    2014-07-01

    The enigmatic pseudogap phase in underdoped cuprate high-Tc superconductors has long been recognized as a central puzzle of the Tc problem. Recent data show that the pseudogap is likely a distinct phase, characterized by a medium range and quasistatic charge ordering. However, the origin of the ordering wave vector and the mechanism of the charge order is unknown. At the same time, earlier data show that precursive superconducting fluctuations are also associated with this phase. We propose that the pseudogap phase is a novel pairing state where electrons on the same side of the Fermi surface are paired, in strong contrast with conventional Bardeen-Cooper-Schrieffer theory which pairs electrons on opposite sides of the Fermi surface. In this state the Cooper pair carries a net momentum and belongs to a general class called pair density wave. The microscopic pairing mechanism comes from a gauge theory formulation of the resonating valence bond (RVB) picture, where spinons traveling in the same direction feel an attractive force in analogy with Ampere's effects in electromagnetism. We call this Amperean pairing. Charge order automatically appears as a subsidiary order parameter even when long-range pair order is destroyed by phase fluctuations. Our theory gives a prediction of the ordering wave vector which is in good agreement with experiment. Furthermore, the quasiparticle spectrum from our model explains many of the unusual features reported in photoemission experiments. The Fermi arc, the unusual way the tip of the arc terminates, and the relation of the spanning vector of the arc tips to the charge ordering wave vector also come out naturally. Finally, we propose an experiment that can directly test the notion of Amperean pairing.

  16. Entanglement spectrum and boundary theories with projected entangled-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)

    2012-07-01

    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.

  17. Electron-positron pair production in Coulomb collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.

    1993-01-01

    We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data

  18. Electron Waiting Times of a Cooper Pair Splitter

    Science.gov (United States)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka; Flindt, Christian

    2018-02-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

  19. Electron Waiting Times of a Cooper Pair Splitter

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka

    2018-01-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time...... between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single......-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology....

  20. Magnetoresistance in organic semiconductors: Including pair correlations in the kinetic equations for hopping transport

    Science.gov (United States)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.

    2018-03-01

    We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.

  1. Impact of Inflation Accounting Application on Key Financial Ratios

    Directory of Open Access Journals (Sweden)

    Aydın KARAPINAR

    2012-03-01

    Full Text Available This paper investigates the impact of inflation accounting on key financal ratios. To this end, the financial statements of 132 companies listed in the Istanbul Stock Exchange (ISE are studied. An analyis of paired samples t test has been conducted on the financial ratios of the companies. The results show that a significant difference between adjusted cost based financial ratios and historical cost based financial ratios occurs only for current, ratios, equity ratios and noncurrent turnover ratios. The study does not cover companies operating in the financial sector. The companies reporting in accordance with IFRS for the studied periods that spans 2001-2004 are not included in the study either. The study offers valuable information as to analysing companies operating in hiper inflation economies.

  2. Closing remarks

    International Nuclear Information System (INIS)

    Reig, J.

    2007-01-01

    Good afternoon. Before providing the closing remarks on behalf of the NEA, I would like to take this opportunity and make some personal reflections, if you allow me Mr. Chairman. I have had the opportunity to take part in the three workshops on public communication organised by the NEA. In the first one in Paris in 2000, representing my country, Spain, and in the two last ones in Ottawa in 2004 and Tokyo today, on behalf of the NEA. The topics for the three workshops follow a logical order, first the focus was on investing in trust in a time when public communication was becoming a big challenge for the regulators. Second, maintaining and measuring public confidence to assess how credible regulators are in front of the public; and finally here in Tokyo, transparency, which is a basic element to achieve trust and credibility. In my view, a regulatory decision has three main components, it has to be technically sound. legally correct and well communicated. The emphasis in the early years was in the technical matters, till legal issues became a key element to achieve the political acceptance from governments and local authorities. Finally the public communication aspects resulted into a major effort and challenge to achieve social acceptance. (author)

  3. Inhomogeneous ensembles of radical pairs in chemical compasses

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  4. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    Science.gov (United States)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  5. A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters

    International Nuclear Information System (INIS)

    Maenner, R.

    1989-01-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)

  6. Express penetration of hydrogen on Mg(10͞13) along the close-packed-planes.

    Science.gov (United States)

    Ouyang, Liuzhang; Tang, Jiajun; Zhao, Yujun; Wang, Hui; Yao, Xiangdong; Liu, Jiangwen; Zou, Jin; Zhu, Min

    2015-06-01

    Metal atoms often locate in energetically favorite close-packed planes, leading to a relatively high penetration barrier for other atoms. Naturally, the penetration would be much easier through non-close-packed planes, i.e. high-index planes. Hydrogen penetration from surface to the bulk (or reversely) across the packed planes is the key step for hydrogen diffusion, thus influences significantly hydrogen sorption behaviors. In this paper, we report a successful synthesis of Mg films in preferential orientations with both close- and non-close-packed planes, i.e. (0001) and a mix of (0001) and (10͞13), by controlling the magnetron sputtering conditions. Experimental investigations confirmed a remarkable decrease in the hydrogen absorption temperature in the Mg (10͞13), down to 392 K from 592 K of the Mg film (0001), determined by the pressure-composition-isothermal (PCI) measurement. The ab initio calculations reveal that non-close-packed Mg(10͞13) slab is advantageous for hydrogen sorption, attributing to the tilted close-packed-planes in the Mg(10͞13) slab.

  7. A Golub-Kahan-type reduction method for matrix pairs

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.; Yu, X.

    2015-01-01

    We describe a novel method for reducing a pair of large matrices {A;B} to a pair of small matrices {H;K}. The method is an extension of Golub-Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large

  8. A Golub-Kahan-type reduction method for matrix pairs

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.; Yu, X.

    2015-01-01

    We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large

  9. Extra-pair mating and evolution of cooperative neighbourhoods.

    Directory of Open Access Journals (Sweden)

    Sigrunn Eliassen

    Full Text Available A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans.

  10. QCD pairing in primordial nuggets

    Science.gov (United States)

    Lugones, G.; Horvath, J. E.

    2003-08-01

    We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.

  11. Holographic EPR pairs, wormholes and radiation

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2013-10-01

    As evidence for the ER = EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determines whether the causal structure of the string worldsheet is trivial or not turns out to be the emission of gluonic radiation by the dual quark and antiquark. In the strongly-coupled gauge theory, it is only when radiation is emitted that one obtains an unambiguous separation of the pair into entangled subsystems, and this is what is reflected on the gravity side by the existence of the worldsheet horizon.

  12. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  13. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  14. Imidazopyridine/Pyrrole and hydroxybenzimidazole/pyrrole pairs for DNA minor groove recognition.

    Science.gov (United States)

    Renneberg, Dorte; Dervan, Peter B

    2003-05-14

    The DNA binding properties of fused heterocycles imidazo[4,5-b]pyridine (Ip) and hydroxybenzimidazole (Hz) paired with pyrrole (Py) in eight-ring hairpin polyamides are reported. The recognition profile of Ip/Py and Hz/Py pairs were compared to the five-membered ring pairs Im/Py and Hp/Py on a DNA restriction fragment at four 6-base pair recognition sites which vary at a single position 5'-TGTNTA-3', where N = G, C, T, A. The Ip/Py pair distinguishes G.C from C.G, T.A, and A.T, and the Hz/Py pair distinguishes T.A from A.T, G.C, and C.G, affording a new set of heterocycle pairs to target the four Watson-Crick base pairs in the minor groove of DNA.

  15. A nucleon-pair and boson coexistent description of nuclei

    Science.gov (United States)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-07-01

    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged

  16. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  17. Exclusive production of W pairs in CMS

    CERN Document Server

    INSPIRE-00002838

    2014-01-01

    We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\

  18. Exclusive production of $W$ pairs in CMS

    OpenAIRE

    Da Silveira, Gustavo Gil; CMS

    2014-01-01

    We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\

  19. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  20. Pair formation models for sexually transmitted infections: A primer

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2017-08-01

    Full Text Available For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward transmission of the infection as long as they persist. In addition, for curable infections re-infection from an infected partner may occur. Furthermore, interventions based on contact tracing rely on the possibility of identifying and treating partners of infected individuals. To reflect these features in a mathematical model, pair formation models were introduced to mathematical epidemiology in the 1980's. They have since been developed into a widely used tool in modelling sexually transmitted infections and the impact of interventions. Here we give a basic introduction to the concepts of pair formation models for a susceptible-infected-susceptible (SIS epidemic. We review some results and applications of pair formation models mainly in the context of chlamydia infection. Keywords: Pair formation, Mathematical model, Partnership duration, Sexually transmitted infections, Basic reproduction number

  1. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  2. Electromagnetic lepton-pair production in relativistic collisions

    International Nuclear Information System (INIS)

    Albert, C.J.; Ernst, D.J.; Strayer, M.R.; Bottcher, C.

    1991-01-01

    Electromagnetic lepton-pair production in relativistic collisions is studied in an ab initio approach with no free parameters. After a semi-classical approximation to the relative motion of the two incident particles is made, the resulting second-order diagram is calculated using a Monte Carlo technique to evaluate the resulting seven-dimensional integral. We examine the case of electron-positron pair production in π - p collisions at p pi = 17 GeV. We find that a significant fraction of the measured pairs in this reaction are produced via the magnetic spin-flip current of the proton. Approaches, such as the equivalent photon approximation, which neglect this part of the current predict much too small a cross section. This feature is traced to the cuts imposed in taking the experimental data. Lepton-pair production in the scattering of 3 He, 4 He and 4 He, 4 He is proposed as a clean way of experimentally separating the spin-flip and non-flip processes; predictions are made for these systems

  3. Awakened Oscillations in Coupled Consumer-Resource Pairs

    Directory of Open Access Journals (Sweden)

    Almaz Mustafin

    2014-01-01

    Full Text Available The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as fast-scale and slow-scale variables, respectively, and subsequently considering developments in phase planes of these variables, fast and slow, as if they are independent. When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained oscillatory behavior (although damped oscillations about the equilibrium are admitted. When the consumer-resource pairs are weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific interference competition and lasers coupled via their cavity losses.

  4. Identification key to Nephtyidae (Annelida of the Sea of Okhotsk

    Directory of Open Access Journals (Sweden)

    Inna L. Alalykina

    2017-07-01

    Full Text Available Currently, 15 species of Nephtyidae (Annelida are known from the Sea of Okhotsk (north-western Pacific. A new user-friendly identification key is presented with a brief description for each species. The taxonomic positions of three closely related species, Nephtys brachycephala Moore, 1903, N. schmitti Hartman, 1938 and N. paradoxa Malm, 1874, are revised. The distributions of two species, Nephtys discors Ehlers, 1968 and N. assignis Hartman, 1950, are discussed.

  5. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  6. Isominkowskian theory of Cooper Pairs in superconductors

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1993-01-01

    Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs

  7. e+e--annihilation into baryon-antibaryon pairs

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kuroda, M.

    1976-07-01

    Using GVDM-type form factors we calculate the e + -e - production cross sections for the reactions e + e - → 1 + /2 - anti(1 +- /2), 1 + /2 - anti(3 +- /2), 1 + /2 - anti(5 + /2) and 3 + /2 - anti(3 + /2) including all prominent baryon resonances at energies of present and planned e + -e - storage ring machines. We also evaluate the cross section of charmed baryon pair production. Near their respective thresholds charmed and uncharmed baryon pair production are predicted to constitute comparable fractions of the total hadronic cross section. The calculated cross sections indicate that the interference of direct and 1-photon decay of the PSI-particles into baryon pairs is small. (orig.) [de

  8. On the creation of scalar particles in an early stage of the Friedmann closed-universe II

    International Nuclear Information System (INIS)

    Ishihara, Hideki; Nariai, Hidekazu.

    1982-09-01

    As a sequel to the previous work, the creation of scalar particles in an expanding closed-universe is studied in terms of our Feynman propagator and of fixing a pair of particle states. It is shown that the obtained spectral law for the creation of particles is identical with the previous one derived in terms of the vacuum expectation value at an initial time eta = eta sub(i) of the number operator at late time eta = eta sub(f). (author)

  9. Pair production by a superhard photon in a crystal

    International Nuclear Information System (INIS)

    Kalashnikov, N.P.; Kovalev, G.V.; Strikhanov, M.N.

    1980-01-01

    Electron-positron pair production by a hard photon moving almost parallelly to the crystallographic axis or monocrystal plane is considered. Calculation is conducted of the production differential by the energies of pair components and total cross section of pair production in the case when primary photon moved at a small angle THETA 0 m 2 /U [ru

  10. Secondary partitioning isotope effects on solvolytic ion pair intermediates

    International Nuclear Information System (INIS)

    Abbey, K.J.

    1976-01-01

    The thermal decomposition of N-benzhydryl N-nitrosobenzamide (BNB) has been shown to produce an ion pair which either forms ester or reacts with the solvent. In ethanol, the fraction of ester produced, R, was much smaller than R values obtained from solvolysis or from the diphenyldiazomethane (DDM)-benzoic acid reaction, which was suggested to yield the same ion pair as solvolysis. This difference led to the conclusion that the ionic species for the nitrosamide decomposition is a nitrogen-separated ion pair. This study was initiated on the assumption that BNB led to solvolytic ion pairs, but that both the intimate and solvent-separated ion pairs were produced directly from the nitrosamide. The use of α-tritiated BNB for the study of partitioning isotope effects (PIE's) in this system led to activity ratios much lower than expected from other reported work. Results of studies of ''special'' salt effect were not consistent for all situations, but the results do suggest that the assumption that BNB leads to solvolytic ion pairs is probably valid. The investigation of the more stable p-methoxybenzhydryl benzoate system proved to be highly productive. The ester fraction produced, R, responded dramatically to the addition of common-ion as well as ''special'' salts. The functional relationship of R on salt concentration could be explained in terms of Winstein's solvolytic scheme where the intimate ion pair, the solvent-separated ion pair, and the dissociated ion were important. Tritium-labelled compounds were used for PIE studies on 3 different compounds, and three different methods of reaction are proposed

  11. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  12. Influence of quadrupole pairing on backbending

    International Nuclear Information System (INIS)

    Faessler, A.; Wakai, M.

    1978-01-01

    The backbending phenomenon is attributed to the Coriolis antipairing and the rotational alignment effects. We can consider both effects simultaneously by applying the cranked Hartree-Fock-Bogoliubov theory to the description of the rotational motion of nuclei. In usual treatments of the backbending, however, only the monopole pairing force is considered and pairing forces of other types are neglected. This may be the main reason for starting of the backbending at too small total angular momentum in theoretical results. (orig.) [de

  13. Top quark pair production in ATLAS

    CERN Document Server

    Moreno Llacer, M; The ATLAS collaboration

    2010-01-01

    Top-quark pairs are expected to be produced at the LHC, even at the lower beam energy and luminosity in the first years of running. Establishing the top-pair signal and measuring the production cross-section are important benchmarks for ATLAS, and will help understand the detector performance for events with high-pT leptons, high jet multiplicity, missing transverse energy. The prospects for early top physics measurements will be shown, with a particular emphasis on the progress achieved with data so far.

  14. Holographic EPR Pairs, Wormholes and Radiation

    OpenAIRE

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2013-01-01

    As evidence for the ER=EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determi...

  15. Gluino-pair production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Spira, M.; Zerwas, P.M.

    1995-05-01

    The next-to-leading order QCD corrections to the production of gluino pairs at the Tevatron are presented in this paper. Similar to the production of squark-antisquark pairs, the dependence of the cross section on the renormalization/factorization scale is reduced considerably by including the higher-order corrections. The cross section increases with respect to the lowest-order calculation which, in previous experimental analyses, had been evaluated at the scale of the invariant energy of the partonic subprocesses. (orig.)

  16. Parallel keyed hash function construction based on chaotic maps

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Deng Shaojiang

    2008-01-01

    Recently, a variety of chaos-based hash functions have been proposed. Nevertheless, none of them works efficiently in parallel computing environment. In this Letter, an algorithm for parallel keyed hash function construction is proposed, whose structure can ensure the uniform sensitivity of hash value to the message. By means of the mechanism of both changeable-parameter and self-synchronization, the keystream establishes a close relation with the algorithm key, the content and the order of each message block. The entire message is modulated into the chaotic iteration orbit, and the coarse-graining trajectory is extracted as the hash value. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function. It is simple, efficient, practicable, and reliable. These properties make it a good choice for hash on parallel computing platform

  17. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  18. Considerations on Velocities and Accelerations in Higher Pairs Mechanisms

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-12-01

    Full Text Available The paper proposes a method for finding the velocities and accelerations in the pairs from a mechanism with higher pairs in the case when the curvature radii of the curves achieving the higher pair are finite. There are obtained the characteristic equations of the motion in the higher pair for the case that one of the curves has zero curvature radius, condition characteristic to the knife edge follower. The relations are required to justify the difference between the particular cases of knife edge follower and flat face follower. The methodology is exemplified through an actual example.

  19. Pairing from strong repulsion in triangular lattice Hubbard model

    Science.gov (United States)

    Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.

    2018-04-01

    We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.

  20. Modulation of Human Corticospinal Excitability by Paired Associative Stimulation

    Directory of Open Access Journals (Sweden)

    Richard G. Carson

    2013-12-01

    Full Text Available Paired Associative Stimulation (PAS has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS delivered to the contralateral primary motor cortex (M1. Repeated pairing of the stimuli (i.e. association over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI. It has been suggested that these effects represent a form of associative long-term potentiation (LTP and depression (LTD that bears resemblance to spike-timing dependent plasticity (STDP as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasising the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.

  1. {lambda}{lambda} pairing in N{lambda} composite matter

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Tomonori [Japan Society for the Promotion of Science, Tokyo (Japan); Matsuzaki, Masayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Chiba, Satoshi [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan)

    2002-09-01

    {lambda}{lambda} pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. {lambda} hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological {lambda}{lambda} interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the {lambda}{lambda} pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  2. Na Cl ion pair association in water-DMSO mixtures: Effect of ion pair ...

    Indian Academy of Sciences (India)

    The 12-6-1 potential model predicts running coordination numbers closest to experimental data. Keywords. ... value of interaction energy minimum between the Na. + and Cl. − ..... ion pair mostly remains as a CIP, a fair amount of SAIP is also ...

  3. Theoretical analysis of noncanonical base pairing interactions in ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Noncanonical base pairs in RNA have strong structural and functional implications but are currently not considered ..... Full optimizations of the systems were also carried out using ... of the individual bases in the base pair through the equation.

  4. The coevolution of long-term pair bonds and cooperation.

    Science.gov (United States)

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  5. High Level Rule Modeling Language for Airline Crew Pairing

    Science.gov (United States)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  6. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  7. Quasi spin pairing and the structure of the Lipkin model

    International Nuclear Information System (INIS)

    Cambiaggio, M.C.; Plastino, A.

    1978-01-01

    By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin model is extended to a variable number of particles. The properties of quasi-spin pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin seniority allows one to obtain a simple classification of excited multiplets. A 'pairing plus monopole' model is studied in connection with the Hartree-Fock theory. (orig.) [de

  8. Key Distribution and Changing Key Cryptosystem Based on Phase Retrieval Algorithm and RSA Public-Key Algorithm

    Directory of Open Access Journals (Sweden)

    Tieyu Zhao

    2015-01-01

    Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.

  9. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  10. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  11. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    Science.gov (United States)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  12. The role of familiarity in associative recognition of unitized compound word pairs.

    Science.gov (United States)

    Ahmad, Fahad N; Hockley, William E

    2014-01-01

    This study examined the effect of unitization and contribution of familiarity in the recognition of word pairs. Compound words were presented as word pairs and were contrasted with noncompound word pairs in an associative recognition task. In Experiments 1 and 2, yes-no recognition hit and false-alarm rates were significantly higher for compound than for noncompound word pairs, with no difference in discrimination in both within- and between-subject comparisons. Experiment 2 also showed that item recognition was reduced for words from compound compared to noncompound word pairs, providing evidence of the unitization of the compound pairs. A two-alternative forced-choice test used in Experiments 3A and 3B provided evidence that the concordant effect for compound word pairs was largely due to familiarity. A discrimination advantage for compound word pairs was also seen in these experiments. Experiment 4A showed that a different pattern of results is seen when repeated noncompound word pairs are compared to compound word pairs. Experiment 4B showed that memory for the individual items of compound word pairs was impaired relative to items in repeated and nonrepeated noncompound word pairs, and Experiment 5 demonstrated that this effect is eliminated when the elements of compound word pairs are not unitized. The concordant pattern seen in yes-no recognition and the discrimination advantage in forced-choice recognition for compound relative to noncompound word pairs is due to greater reliance on familiarity at test when pairs are unitized.

  13. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Space-Efficient Re-Pair Compression

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Prezza, Nicola

    2017-01-01

    Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression rates in practice. Let n, σ, and d be the text length, alphabet size, and dictionary size of the final grammar, respectively. In their original paper, the authors show how to compute the Re-Pair grammar...... in expected linear time and 5n + 4σ2 + 4d + √n words of working space on top of the text. In this work, we propose two algorithms improving on the space of their original solution. Our model assumes a memory word of [log2 n] bits and a re-writable input text composed by n such words. Our first algorithm runs...

  15. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  16. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  17. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  18. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    Science.gov (United States)

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-07

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.

  19. Ponderomotive effects in multiphoton pair production

    Science.gov (United States)

    Kohlfürst, Christian; Alkofer, Reinhard

    2018-02-01

    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.

  20. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...