WorldWideScience

Sample records for close binary progenitors

  1. Binary progenitors of supernovae

    Science.gov (United States)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  2. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  3. Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the latter had previously

  4. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  5. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  6. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M C , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M C are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10 6 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  7. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  8. Compact Binary Progenitors of Short Gamma-Ray Bursts

    Science.gov (United States)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  9. Binaries discovered by the SPY project V. GD 687 - a massive double degenerate binary progenitor that will merge within a Hubble time

    OpenAIRE

    Geier, S.; Heber, U.; Kupfer, T.; Napiwotzki, R.

    2010-01-01

    Aims. The ESO SN Ia Progenitor Survey (SPY) aims at finding merging double degenerate binaries as candidates for supernova type Ia (SN Ia) explosions. A white dwarf merger has also been suggested to explain the formation of rare types of stars like R CrB, extreme helium or He sdO stars. Here we present the hot subdwarf B binary GD 687, which will merge in less than a Hubble time. Methods. The orbital parameters of the close binary have been determined from time resolved spectroscopy. Since GD...

  10. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  11. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    Science.gov (United States)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  12. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  13. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  14. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  15. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  16. Formation of planetary nebulae with close binary nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Livio, M; Salzman, J; Shaviv, G [Tel Aviv Univ. (Israel). Dept. of Physics and Astronomy

    1979-07-01

    A model for the formation of planetary nebulae with a close binary as a nucleus is presented. The model is based on mass loss instability at L/sub 2/. The instability is demonstrated. The conditions on the mass loss are formulated and analysed. The observational consequence of the model is described briefly and its relation to symbiotic stars and cataclysmic binaries discussed.

  17. WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-01-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P orb ) and rotation period ( P rot , calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot , up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  18. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  19. Close-In Substellar Companions and the Formation of sdB-Type Close Binary Stars

    Directory of Open Access Journals (Sweden)

    L. Y. Zhu

    2015-02-01

    Full Text Available The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs. About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.

  20. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  1. The binary progenitors of short and long GRBs and their gravitational-wave emission

    Directory of Open Access Journals (Sweden)

    Rueda J. A.

    2018-01-01

    Full Text Available We have sub-classified short and long-duration gamma-ray bursts (GRBs into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS or neutron star-black hole binaries (NS-BH. Long GRBs are produced via the induced gravitational collapse (IGC scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore and a NS companion. The COcore explodes as type Ic supernova (SN leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1 the role of the NS structure and the nuclear equation of state; 2 the occurrence rates obtained from X and gamma-rays observations; 3 the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  2. The binary progenitors of short and long GRBs and their gravitational-wave emission

    Science.gov (United States)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  3. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  4. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  5. Dynamic Tides and the Evolution of Stars in Close Binaries

    OpenAIRE

    Willems, B.; Claret, A.

    2004-01-01

    In this talk, we review some recent advances in the theory of dynamic tides in close binaries. We particularly focus on the effects of resonances of dynamic tides with free oscillation modes and on the role of dynamic tides in the comparison of theoretically predicted and observationally inferred apsidal-motion rates.

  6. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  7. Observational properties of SNe Ia progenitors close to the explosion

    Science.gov (United States)

    Tornambé, A.; Piersanti, L.; Raimondo, G.; Delgrande, R.

    2018-04-01

    We determine the expected signal in various observational bands of supernovae Ia progenitors just before the explosion by assuming the rotating double-degenerate scenario. Our results are valid also for all the evolutionary scenarios invoking rotation as the driving mechanism of the accretion process as well as the evolution up to the explosion. We find that the observational properties depend mainly on the mass of the exploding object, even if the angular momentum evolution after the end of the mass accretion phase and before the onset of C-burning plays a non-negligible role. Just before the explosion, the magnitude MV ranges between 9 and 11 mag, while the colour (F225W - F555W) is about -1.64 mag. The photometric properties remain constant for a few decades before the explosion. During the last few months, the luminosity decreases very rapidly. The corresponding decline in the optical bands varies from a few hundredths up to one magnitude, the exact value depending on both the white dwarf total mass and the braking efficiency at the end of the mass transfer. This feature is related to the exponentially increasing energy production, which drives the formation of a convective core rapidly extending over a large part of the exploding object. Also, a drop in the angular velocity occurs. We find that observations in the soft X band (0.5-2 keV) may be used to check if the evolution of the SNe Ia progenitors up to the explosion is driven by rotation and, hence, to discriminate among different progenitor scenarios.

  8. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  9. Polarimetry and spectrophotometry of the massive close binary DH Cephei

    International Nuclear Information System (INIS)

    Corcoran, M.F.

    1988-01-01

    DH Cep is a massive and close binary and a member of the young open cluster NGC 7380. Spectroscopically, this system is double-lined, classified as type O6 + O6. Photometrically, the system has been known to show small light variations phase-locked to the radial-velocity variations; these light variations characterize the star as an ellipsoidal variable. Four-color linear polarimetry, archival UV spectra taken by IUE and x-ray measures obtained by the Einstein satellite provide the first detailed analysis of this important system. Polarization measures demonstrate the (largely non-phase locked) variability of the circum-binary scattering environment, identify the scattering medium as electrons and indicate a large-scale change in the intrinsic polarization of the system. UV spectral analysis is used to determine the composite photospheric temperature, the component masses and spectral classifications, the degree of mass loss, and the distribution of interstellar matter along the line of sight to the binary. Measures obtained by the Einstein satellite of the x-ray emission from the system indicate that DH Cep is a strong source of hard x-rays. A model of the binary is developed

  10. Magnetic braking in Solar-type close binaries

    Science.gov (United States)

    Maceroni, C.; Rucinski, S. M.

    In tidally locked binaries the angular momentum loss by magnetic braking affects the orbital period. While this effect is too small to be detected in individual systems, its signature can be seen in shape of the orbital period distribution of suitable samples. As a consequence information on the braking mechanisms can be obtained - at least in principle - from the analysis of the distributions, the main problems being the selection of a large and homogeneous sample of binaries and the appropriate treatment of the observational biases. New large databases of variable stars are becoming available as by-products of microlensing projects, which have the advantage of joining, for the first time, sample richness and homogeneity. We report the main results of the analysis of the eclipsing binaries in OGLE-I catalog, that contains several thousands variables detected in a pencil-beam search volume towards the Baade's Window. By means of an automatic filtering algorithm we extracted a sample of 74 detached, equal-mass, main-sequence binary stars with short orbital periods (i.e., in the range 0.19 braking law. The results suggest an AML braking law very close to the "saturated" one, with a very weak dependence on the period. However we are still far from constraining the precise value of the slope, because of the important role played by the observational bias.

  11. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  12. Supernova explosions in close binary systems. Pt. 2

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1975-01-01

    The effects of a spherically symmetric explosion on the runaway velocity of a close binary system with an initial circular orbit is considered. It is shown that the runaway velocity is completely determined by the final orbital parameters regardless of the initial condition. The galactic z distribution of the known massive X-ray binaries indicates that the runaway velocities of these systems are very probably smaller than approximately 100 km/s with the most likely values of approximately 25-50 km/s. Such runaway velocities can be obtained if the post-explosion eccentricities are less than approximately 0.25. This then has the concequence that the mass of the exploded star which produced the neutron stars in the massive X-ray binaries can in most cases not have been larger than approximately 7-8 M(S) with the most likely values of approximately 3-4 M(S) if the supergiants in these systems have mass (M 2 ) of approximately 20 M(S). For Cyg X-1, the upper mass limit of the exploded star is found to be approximately 16 M(S). For M 2 = 30 M(S) these upper limit becomes approximately 9-10 M(S) and 19 M(S) respectively. (orig.) [de

  13. Tidal interaction and coalescence of close binary white dwarfs

    International Nuclear Information System (INIS)

    Webbink, R.F.; Iben, I. Jr.

    1987-01-01

    The physical processes which govern the interaction and final coalescence of close binary white dwarfs are examined. During the approach to mass transfer, the rate of accumulation of rotational energy by a white dwarf can exceed 10 to the 37th erg/s, raising the possibility that the initial phases of mass transfer are strongly influenced by tidal heating of the donor star. The potential energy released by accretion is incapable of removing more than a minor fraction of this material from the system, and numerical simulations show that the accreted envelope engulfs the donor star, leading to formation of common envelope binary before carbon can be ignited at the base of the accreted envelope. Unless shocks can lift the degeneracy of the donor core, a core mass exceeding the Chandrasekhar limit can be created, leading directly to core collapse and a supernova explosion, regardless of whether or not carbon is ignited in the nondegenerate envelope. It is plausible that most of the mass of the donor white dwarf is assimilated in a degenerate state by the accretor. 32 references

  14. Theoretical Study of Irradiation Effects in Close Binaries

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2009-06-01

    Full Text Available The effect of irradiation is studied in a close binary systemassuming that the secondary component is a point source, moving in a circularorbit. The irradiation effects are calculatedon the atmosphere of the primary component in a 3-dimensional Cartesiancoordinate geometry. In treating the reflection effect theoretically, the totalradiation $(S_mathrm{T}$ is obtained as the sum of the radiation of 1 the effect ofirradiation on the primary component which is calculated by using onedimensional rod model $(S_mathrm{r}$ and 2 the self radiation of the primarycomponent which is calculated by using the solution of radiative transferequation in spherical symmetry $(S_mathrm{s}$. The radiation field is estimated alongthe line of sight of the observer at infinity. It is shown how the radiationfield changes depending on the position of the secondary component.

  15. RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110

    Energy Technology Data Exchange (ETDEWEB)

    Abbuhl, E.; Mutel, R. L.; Lynch, C. [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, Iowa 52242 (United States); Güedel, M. [Department of Astronomy, University of Vienna, Vienna (Austria)

    2015-09-20

    The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.

  16. A BINARY ORBIT FOR THE MASSIVE, EVOLVED STAR HDE 326823, A WR+O SYSTEM PROGENITOR

    International Nuclear Information System (INIS)

    Richardson, N. D.; Gies, D. R.; Williams, S. J.

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 day period. We present new, high- and moderate-resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  17. iPTF13bvn: The first evidence of a binary progenitor for a type Ib supernova

    Energy Technology Data Exchange (ETDEWEB)

    Bersten, Melina C.; Folatelli, Gastón; Nomoto, Ken' ichi; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Benvenuto, Omar G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Kuncarayakti, Hanindyo [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Srivastav, Shubham; Anupama, G. C.; Sahu, Devendra K., E-mail: melina.bersten@ipmu.jp [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2014-10-01

    The recent detection in archival Hubble Space Telescope images of an object at the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ≈11 M {sub ☉}. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ≈3.5 M {sub ☉} and that it could not be larger than ≈8 M {sub ☉}. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust identification of a progenitor system for a Type Ib SN.

  18. Black-hole hair loss: Learning about binary progenitors from ringdown signals

    Science.gov (United States)

    Kamaretsos, Ioannis; Hannam, Mark; Husa, Sascha; Sathyaprakash, B. S.

    2012-01-01

    Perturbed Kerr black holes emit gravitational radiation, which (for the practical purposes of gravitational-wave astronomy) consists of a superposition of damped sinusoids termed quasinormal modes. The frequencies and time constants of the modes depend only on the mass and spin of the black hole—a consequence of the no-hair theorem. It has been proposed that a measurement of two or more quasinormal modes could be used to confirm that the source is a black hole and to test if general relativity continues to hold in ultrastrong gravitational fields. In this paper, we propose a practical approach to testing general relativity with quasinormal modes. We will also argue that the relative amplitudes of the various quasinormal modes encode important information about the origin of the perturbation that caused them. This helps in inferring the nature of the perturbation from an observation of the emitted quasinormal modes. In particular, we will show that the relative amplitudes of the different quasinormal modes emitted in the process of the merger of a pair of nonspinning black holes can be used to measure the component masses of the progenitor binary.

  19. THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE

    International Nuclear Information System (INIS)

    Tovmassian, Gagik; Richer, Michael G.; Yungelson, Lev; Rauch, Thomas; Suleimanov, Valery; Napiwotzki, Ralf; Stasinska, Grazyna; Tomsick, John; Wilms, Joern; Morisset, Christophe; Pena, Miriam

    2010-01-01

    We present a detailed investigation of SBS 1150+599A, a close binary star hosted by the planetary nebula PN G135.9+55.9 (TS 01). The nebula, located in the Galactic halo, is the most oxygen-poor known to date and is the only one known to harbor a double degenerate core. We present XMM-Newton observations of this object, which allowed the detection of the previously invisible component of the binary core, whose existence was inferred so far only from radial velocity (RV) and photometric variations. The parameters of the binary system were deduced from a wealth of information via three independent routes using the spectral energy distribution (from the infrared to X-rays), the light and RV curves, and a detailed model atmosphere fitting of the stellar absorption features of the optical/UV component. We find that the cool component must have a mass of 0.54 ± 0.2 M sun , an average effective temperature, T eff , of 58,000 ± 3000 K, a mean radius of 0.43 ± 0.3 R sun , a gravity, log g = 5.0 ± 0.3, and that it nearly fills its Roche lobe. Its surface elemental abundances are found to be: 12 + log He/H = 10.95 ± 0.04 dex, 12 + log C/H = 7.20 ± 0.3 dex, 12 + log N/H eff = 160-180 kK, a luminosity of about ∼10 4 L sun and a radius slightly larger than that of a white dwarf. It is probably bloated and heated as a result of intense accretion and nuclear burning on its surface in the past. The total mass of the binary system is very close to the Chandrasekhar limit. This makes TS 01 one of the best Type Ia supernova progenitor candidates. We propose two possible scenarios for the evolution of the system up to its present stage.

  20. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  1. Two types of evolution of massive close binary systems

    International Nuclear Information System (INIS)

    De Loore, C.; De Greve, J.P.

    1976-01-01

    It is well known that the outcome of case B evolution of the primaries of massive close binary systems (M 1 >=9M(Sun)) depends on the initial primary mass. The most massive primaries finally ignite carbon, form iron cores and presumably end in a supernova explosion, whereas the lighter ones presumably end as white dwarfs, without carbon ignition. This paper derives an estimate of the mass boundary separating these two kinds of evolution. As an example of the first case, the evolution of a 20M(Sun)+14M(Sun) system was computed; after the mass exchange, the primary star (with M=5.43 M(Sun)) evolves through the helium-burning (Wolf-Rayet) stage towards a supernova explosion; finally the system evolves into an X-ray binary (BWRX-evolution). As a representative for the second case the evolution of a 10M(sun)+8M(Sun) system was examined. After the first stage of mass exchange, the primary (with a mass of 1.66M(Sun)) approaches the helium main sequence; during later phases of helium burning the radius increases again, and a second stage of mass transfer starts; after this the star (with a mass of 1.14M(Sun)) again evolves towards the left in the Hertzsprung-Russell diagram and ends as a white dwarf (BSWD-evolution). A system of 15M(Sun)+8M(Sun) is found to evolve very similar to the 20M(Sun)+14M(Sun) system. The mass Msub(u), separating the two types of evolution, must therefore be situated between 10 and 15 solar masses. An initial chemical composition X=0.70, Z=0.03 was used for all systems. (Auth.)

  2. Observational properties of models of semidetached close binaries. Pt. 2

    International Nuclear Information System (INIS)

    Giannone, P.; Giannuzzi, M.A.; Pucillo, M.

    1975-01-01

    Binaries of Cases A and B with intermediate and small masses have been studied. Synthetic light curves are shown to be affected mainly by the assumption concerning the shape of the components. The comparison between synthetic light curves and observed data can give further information on the reliability of the hypotheses assumed in the computations of binary star evolution. The calculated properties lead to useful indications about the evolutionary stages of observed binaries. The detection of systems evolving according to Case A appears to be favoured in comparison with that of systems of Case B. Systems with undersize subgiants result comparatively difficult to observe. (orig./BJ) [de

  3. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  4. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  5. Close visual binaries. III. Parameters and evolutionary status

    International Nuclear Information System (INIS)

    Corbally, C.J.

    1984-01-01

    New Yale isochrones, which have been tested for accuracy (Paper II), provide the means to investigate interesting visual binaries, especially those whose classifications and photometry do not match well (Paper I). Various parameters are deduced for those binaries which fitted the isochrones (e.g., ages, metal abundances, luminosities of peculiar stars); various solutions are systematically developed for those which did not fit, and a likely status of evolution proposed (e.g., duplicity of the components, pre-main-sequence, blue straggler, horizontal branch, optical pair, data inaccuracies). Evolution around the helium flash and diffusion theory are briefly considered. These parameters and statuses provide a wealth of new stellar data and suggestions for further investigation

  6. Close visual binaries. III. Parameters and evolutionary status

    Energy Technology Data Exchange (ETDEWEB)

    Corbally, C.J.

    1984-12-01

    New Yale isochrones, which have been tested for accuracy (Paper II), provide the means to investigate interesting visual binaries, especially those whose classifications and photometry do not match well (Paper I). Various parameters are deduced for those binaries which fitted the isochrones (e.g., ages, metal abundances, luminosities of peculiar stars); various solutions are systematically developed for those which did not fit, and a likely status of evolution proposed (e.g., duplicity of the components, pre-main-sequence, blue straggler, horizontal branch, optical pair, data inaccuracies). Evolution around the helium flash and diffusion theory are briefly considered. These parameters and statuses provide a wealth of new stellar data and suggestions for further investigation.

  7. Binary population synthesis study of the supersoft X-ray phase of single degenerate type Ia supernova progenitors

    International Nuclear Information System (INIS)

    Meng Xiangcun; Yang Wuming

    2011-01-01

    In the single degenerate (SD) scenario for type Ia supernovae (SNe Ia), a mass-accreting white dwarf is expected to experience a supersoft X-ray source (SSS) phase. However, some recent observations showed that the expected number of mass-accreting WDs is much lower than that predicted from theory, regardless of whether they are in spiral or elliptical galaxies. In this paper, we performed a binary population synthesis study on the relative duration of the SSS phase to their whole mass-increasing phase of WDs leading to SNe Ia. We found that for about 40% of the progenitor systems, the relative duration is shorter than 2% and the evolution of the mean relative duration shows that it is always smaller than 5%, both for young and old SNe Ia. In addition, before the SNe Ia explosions, more than 55% of the progenitor systems were experiencing a dwarf novae phase and no more than 10% were staying in the SSS phase. These results are consistent with the recent observations and imply that both in early- and late-type galaxies, only a small fraction of mass-accreting WDs resulting in SNe Ia contributes to the supersoft X-ray flux. So, although our results are not directly related to the X-ray output of the SN Ia progenitor, the low supersoft X-ray luminosity observed in early type galaxies may not be able to exclude the validity of the SD model. On the contrary, it is evidence to support the SD scenario.

  8. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  9. Spatio-kinematic modelling: Testing the link between planetary nebulae and close binaries

    OpenAIRE

    Jones, David; Tyndall, Amy A.; Huckvale, Leo; Prouse, Barnabas; Lloyd, Myfanwy

    2011-01-01

    It is widely believed that central star binarity plays an important role in the formation and evolution of aspherical planetary nebulae, however observational support for this hypothesis is lacking. Here, we present the most recent results of a continuing programme to model the morphologies of all planetary nebulae known to host a close binary central star. Initially, this programme allows us to compare the inclination of the nebular symmetry axis to that of the binary plane, testing the theo...

  10. A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary System BX Tri

    Science.gov (United States)

    Perdelwitz, V.; Czesla, S.; Robrade, J.; Schmitt, J. H. M. M.

    2015-01-01

    We present the first detailed X-ray study of the close dMe binary system BX Tri, whose optical variation has been continously monitored in the frame of the DWARF project (Pribulla et al.(2012)). We observed BX Tri with XMM-Newton for two full orbital periods and confirm that the system is an ultra-active M-dwarf binary showing frequent flares and an X-ray luminosity close to the saturation limit. The strong magnetic activity could have influenced the angular momentum evolution of the system via magnetic braking.

  11. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  12. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M V ∼> 8.4 on the SN Ia in SNR 0509-67.5 and M V ∼> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  13. USING CLOSE WHITE DWARF + M DWARF STELLAR PAIRS TO CONSTRAIN THE FLARE RATES IN CLOSE STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dylan P.; West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Becker, Andrew C., E-mail: dpmorg@bu.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H α in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz -bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  14. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    Science.gov (United States)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  15. The surface distribution of chemical anomalies of Ap components in detached close binaries

    International Nuclear Information System (INIS)

    Kitamura, M.

    1980-01-01

    By estimating the orbital inclinations of non-eclipsing detached close binaries with Ap spectra, a marked statistical preference is obtained on the frequency distribution of the inclination which suggests that the abundance anomalies of Ap components tend to concentrate towards the stellar polar region. (Auth.)

  16. The WD+He star binaries as the progenitors of type Ia supernovae

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2017-12-01

    Full Text Available Employing the MESA stellar evolution code, we computed He accretion onto carbon-oxygen white dwarfs (CO WDs.We found two possible outcomes for models in which the WD steadily grows in mass towards the Chandrasekhar limit. For relatively low He-accretion rates carbon ignition occurs in the center, leading to a type Ia supernova (SN Ia explosion, whereas for relatively high accretion rates carbon is ignited off-center, probably leading to collapse. Thus the parameter space producing SNe Ia is reduced compared to what was assumed in earlier papers, in which the possibility of off-center ignition was ignored. We then applied these results in binary population synthesis modelling, finding a modest reduction in the expected birthrate of SNe Ia resulting from the WD+He star channel.

  17. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  18. The magnetosphere of the close accreting PMS binary V4046 Sgr

    Directory of Open Access Journals (Sweden)

    Gregory S. G.

    2014-01-01

    Full Text Available V4046 Sagittarii AB is a close short-period classical T Tauri binary. It is a circularised and synchronised system accreting from a circumbinary disk. In 2009 it was observed as part of a coordinated program involving near-simultaneous spectropolarimetric observations with ESPaDOnS at the Canada-France-Hawai’i Telescope and high-resolution X-ray observations with XMM-Newton. Magnetic maps of each star were derived from Zeeman-Doppler imaging. After briefly highlighting the most significant observational findings, we present a preliminary 3D model of the binary magnetosphere constructed from the magnetic maps using a newly developed binary magnetic field extrapolation code. The large-scale fields (the dipole components of both stars are highly tilted with respect to their rotation axes, and their magnetic fields are linked.

  19. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  20. Roto-translation motion of the stars in close binary systems

    International Nuclear Information System (INIS)

    Medvedeva, A A

    2013-01-01

    This article has to show that the model of p-h which is used to determine the change of the semi major axis of the relative orbit stars is incorrect and leads to large errors in the determination of semi-major axis. The new model, suitable for the elliptical orbits of the stars. To determine relative motion of stars in a close binary system in this paper uses a numerical integration of the equations of motion with the reactive forces, including the rotational component of attraction between the stars and the stream flows into the substance. The calculations of elliptical orbits of close binary stars show that the effect of the reactive force on the evolution of the orbits of stars may be different. The results can be refined by introducing other disturbing factors and making new assumptions based on observations

  1. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  2. Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data

    Directory of Open Access Journals (Sweden)

    András Király

    2014-01-01

    Full Text Available During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-dimensional data. The two most prominent application fields in this research, proposed independently, are frequent itemset mining (developed for market basket data and biclustering (applied to gene expression data analysis. The common limitation of both methodologies is the limited applicability for very large binary data sets. In this paper we propose a novel and efficient method to find both frequent closed itemsets and biclusters in high-dimensional binary data. The method is based on simple but very powerful matrix and vector multiplication approaches that ensure that all patterns can be discovered in a fast manner. The proposed algorithm has been implemented in the commonly used MATLAB environment and freely available for researchers.

  3. The possibility of non-synchronism of convective secondaries in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.; Papaloizou, J.

    1983-01-01

    The non-synchronous velocity field is calculated for a low mass convective secondary in a close binary system, taking rotation into account. It is found that, contrary to previous belief, the velocity tends to zero as the L 1 point is approached. It is also found that the use of tidal lobes is inappropriate when the secondary is asynchronous. The action of a turbulent viscosity on the velocity field is considered and it is found that, when convection is inefficient, synchronization times can approach the lifetime of the system. (author)

  4. Intrinsic light variation in very close eclipsing binary systems with distorted components

    International Nuclear Information System (INIS)

    Binnendijk, L.

    1974-01-01

    Using the theory of distorted components in very close binaries, the semiaxes are computed for several possible models. The coefficients of limb darkening and the gravity effect are found as weighted mean values of the results of several theoretical investigations. A simple linear relation is found between the coefficient of limb darkening and the logarithm of the effective temperature in the spectral interval A0 to K0. The Fourier series for the intrinsic light variation of such distorted components is given for any polytropic index. The influence of the tidal bulge is described in detail. (IAA)

  5. Non-conservative mass exchange and origin of X-ray close binaries

    International Nuclear Information System (INIS)

    Sugimoto, D.; Miyaji, S.

    1980-01-01

    There are two distinct types of XCBS. The Type I XCBS consists of an X-ray star and an early type star more massive than about 12 solar masses. On the contrary, the Type II XCBS consists of an X-ray star and a star less massive than about 2 solar masses. The aim of the present paper lies in interpreting the origin of these types of XCBS on the bases of the conditions for the formation of a neutron star and of mass exchange in close binary systems. (Auth.)

  6. Black holes in massive close binaries - observational data and evolutionary status

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Cherepashchuk, A.M.; Moskovskii Gosudarstvennyi Universitet, Moscow, USSR)

    1985-01-01

    The available information on the mass of four candidate black holes in X-ray binary systems is summarized; these systems are compared with neutron star binaries with regard to the mass of their components. In mass, the relativistic objects form two distinct groups, neutron stars with masses equal to about 1-2 solar masses and black hole candidates with masses equal to about 10-60 solar masses (there seem to be no intermediate cases), but there is no correlation with the mass of the optical star. Mass exchange between the optical component of a close binary and its neutron star companion would be unlikely to produce a black hole more massive than 5-7 solar masses. Instead, the black holes having masses greater than about 10 solar masses might result from core collapse in stars of initial mass equating 20-100 solar masses through either a rise in the presupernova core mass or weakness of the magnetic field. The (10-30)-fold disparity in the incidence of black holes coupled with OB stars and with radio pulsars could indicate that black holes tend to form in pairs. 36 references

  7. Properties of noble gases and binary mixtures for closed Brayton Cycle applications

    International Nuclear Information System (INIS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    A review is conducted of the properties of the noble gases, helium, neon, argon, krypton and xenon, and their binary mixtures at pressures from 0.1 to 20 MPa and temperatures up to 1400 K. An extensive database of experimental measurements is compiled and used to develop semi-empirical properties correlations. The correlations accurately account for the effects of pressure and temperature on the thermodynamic and transport properties of these gases for potential uses in space (∼2 MPa and up to 1400 K) and terrestrial (∼7.0 MPa and up to 1200 K) applications of Closed Brayton Cycle (CBC). The developed correlations are based on the Chapman-Enskog kinetic theory for dilute gases, and on the application of the law of corresponding states to account for the dependence of properties on pressure. The correlations use the critical temperature and density of the gases as scaling parameters, and their predictions are compared with the compiled database. At temperatures ≥400 K and pressures ≤2 MPa in CBC space power systems, He and Ne, and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole behave essentially like a perfect gas, and the error of neglecting the effect of pressure on their compressibility factor, specific heats and transport properties is ≤1%. At a typical operating pressure of 7.0 MPa and up to 1200 K in terrestrial CBC power plants, neglecting the effect of pressure can result in ∼4% error in the properties of noble gases and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole, and as much as 20% error for pure argon. Therefore, when operating at pressures >2.0 MPa and/or using noble gases or binary mixtures with molecular weights > 40 g/mole, the present correlations should be used to accurately predict the thermodynamic and transport properties

  8. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The

  9. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    Energy Technology Data Exchange (ETDEWEB)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  10. Gravitational recoil from binary black hole mergers: The close-limit approximation

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo

    2006-01-01

    The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of ∼57 km/s for a symmetric mass ratio η=M 1 M 2 /(M 1 +M 2 ) 2 ∼0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated upper and lower bounds. These

  11. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  12. Entropic stabilisation of topologically close-packed phases in binary transition-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Fries, Suzana G.; Steinbach, Ingo; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Seiser, Bernhard; Pettifor, David G. [Department of Materials, University of Oxford, Oxford (United Kingdom)

    2010-07-01

    The formation of topologically close-packed (tcp) phases in Ni-based superalloys leads to the degradation of the mechanical properties of the alloys. The precipitation of the tcp phases is attributed to refractory elements that are added in low concentration to improve creep resistance. It is well known that the structural stability of the tcp phases A15, {sigma} and {chi} is driven by the average d-band filling. For a direct comparison to experimental phase diagrams, we carried out extensive density-functional theory (DFT) calculations of the tcp phases A15, C14, C15, C36, {mu}, {sigma}, and {chi} in tcp-forming binary transition-metal (TM) systems. We observe several systems such as W-Re with positive values of the heat of formation for all tcp phases although some of the phases are observed experimentally. By combining our DFT total energies with the CALPHAD methodology, we can demonstrate that configurational entropy can stabilise the tcp phases in these systems.

  13. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  14. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    of long-duration GRBs. We thus find plausible evidence that the radiation mechanisms of short-hard bursts could be the same as those of long-duration bursts, albeit with lower energy. Moreover, we argue for a comparable (and high) {gamma}-ray conversion efficiency in long-soft and short-hard GRBs. Based on this analysis, on the location of the GRB (40 {+-} 13 kpc from a bright galaxy), and on the galaxy type (elliptical), we suggest that there is now observational support for the hypothesis that short-hard bursts arise during the merger of a compact binary (two neutron stars, or a neutron star and a black hole). Other progenitor models are still viable, and additional rapidly localized bursts from the Swift mission will undoubtedly help to further clarify the progenitor picture.

  15. Effects of local thermodynamics and of stellar mass ratio on accretion disc stability in close binaries

    Science.gov (United States)

    Lanzafame, G.

    2009-08-01

    Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry of the gravitational potential wells. In this work we pay attention in particular to the role of the SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function of mass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported.

  16. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    Science.gov (United States)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  17. Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope

    Science.gov (United States)

    Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell

    2015-09-01

    Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.

  18. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2015-01-01

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.

  19. Optical observations of close binaries with the Mark III Stellar Interferometer

    International Nuclear Information System (INIS)

    Pan, X.P.; Shao, M.; Colavita, M.M.; Armstrong, T.; Mozurkewich, D.

    1990-01-01

    For the first time, four spectroscopic binaries have been directly resolved with the Mark III Stellar Interferometer. Observations in 1988 and 1989 were analyzed, and visual orbits for four binaries have been determined. The semimajor axes for Beta Tri, Alpha Equ, Alpha And and Beta Ari are approximately 0.008 arcsec, 0.012 arcsec, 0.024 arcsec and 0.037 arcsec, respectively. The magnitude differences between two components are 0.5, 0.7, 1.8 and 2.6 mag, respectively. All of the orbital elements for Alpha And and Beta Ari were determined from interferometric data only, and agree well with spectroscopic observations. Predictions of relative position between the two components for these binaries are consistent with the measurements to less than 0.001 arcsec. Combined with data from spectroscopy, masses and distance for the double-lined spectroscopic binary Beta Ari are derived, and the results indicate that both components of Beta Ari agree well with the empirical mass-luminosity relation. 12 refs

  20. Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions

    Science.gov (United States)

    Geier, S.; Heber, U.; Podsiadlowski, Ph.; Edelmann, H.; Napiwotzki, R.; Kupfer, T.; Müller, S.

    2010-09-01

    The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than 1.2 d. Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds 0.9~M_⊙, four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low

  1. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  2. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    International Nuclear Information System (INIS)

    Manzoori, Davood

    2009-01-01

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ( O - C curve ) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  3. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    International Nuclear Information System (INIS)

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi

    2010-01-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 ± 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 ± 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 ± 0.03 yr, an orbital radius of (3.9 ± 1.0) x 10 -3 pc, an orbital separation of (6.1 +1.0 -0.9 ) x 10 -3 pc, a larger black hole mass of (1.2 +0.5 -0.2 ) x 10 9 M sun , and a smaller black hole mass of (7.0 +4.7 -6.4 ) x 10 8 M sun . The BBH decay time of (5.1 +60.5 -2.5 ) x 10 2 yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  4. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    Science.gov (United States)

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  5. AK SCO, FIRST DETECTION OF A HIGHLY DISTURBED ATMOSPHERE IN A PRE-MAIN-SEQUENCE CLOSE BINARY

    International Nuclear Information System (INIS)

    Gomez de Castro, Ana I.

    2009-01-01

    AK Sco is a unique source: a ∼10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ ≅ 100 km s -1 ) and very dense atmosphere (n e = 1.6 x 10 10 cm -3 ) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  6. AK Sco, First Detection of a Highly Disturbed Atmosphere in a Pre-Main-Sequence Close Binary

    Science.gov (United States)

    Gómez de Castro, Ana I.

    2009-06-01

    AK Sco is a unique source: a ~10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ sime 100 km s-1) and very dense atmosphere (n e = 1.6 × 1010 cm-3) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  7. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  8. A Catalog of Spectroscopically Selected Close Binary Systems from the Sloan Digital Sky Survey Data Release Four

    National Research Council Canada - National Science Library

    Silvestri, Nicole M; Eisenstein, Daniel J; McGehee, Peregrine; Smith, J. A; Harris, Hugh C; Kleinman, Scot J; Krzesinski, Jurek; Neilsen, Jr., Eric H; Schneider, Donald P

    2006-01-01

    .... We have estimated the distances for each of the white dwarf main-sequence star binaries and used white dwarf evolutionary grids to establish the age of each binary system from the white dwarf cooling times...

  9. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    Science.gov (United States)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  10. An Exact Closed-Form Expression for the BER of Binary Modulations with Dual-Branch Selection over Generalized-K Fading

    KAUST Repository

    Ansari, Imran Shafique

    2012-07-31

    Error performance is one of the main performance measures and the derivation of its closed-form expression has proved to be quite involved for certain systems. In this paper, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.

  11. Chemical evolution of high-mass stars in close binaries. II. The evolved component of the eclipsing binary V380 Cygni

    Czech Academy of Sciences Publication Activity Database

    Pavlovski, K.; Tamajo, E.; Koubský, Pavel; Southworth, J.; Yang, S.; Kolbas, V.

    2009-01-01

    Roč. 400, č. 2 (2009), s. 791-804 ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries star s * eclipsing * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.103, year: 2009

  12. A COMPREHENSIVE PROGENITOR MODEL FOR SNe Ia

    International Nuclear Information System (INIS)

    Meng, X.; Yang, W.

    2010-01-01

    Although the nature of the progenitor of Type Ia supernovae (SNe Ia) is still unclear, the single-degenerate (SD) channel for the progenitor is currently accepted, in which a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from its companion, increases its mass to the Chandrasekhar mass limit, and then explodes as an SN Ia. The companion may be a main sequence or a slightly evolved star (WD + MS), or a red giant star (WD + RG). Incorporating the effect of mass stripping and accretion-disk instability on the evolution of the WD binary, we carried out binary stellar evolution calculations for more than 1600 close WD binaries. As a result, the initial parameter spaces for SNe Ia are presented in an orbital period-secondary mass (log P i , M i 2 ) plane. We confirmed that in a WD + MS system, the initial companion leading to SNe Ia may have mass from 1 M sun to 5 M sun . The initial WD mass for SNe Ia from WD + MS channel is as low as 0.565 M sun , while the lowest WD mass from the WD + RG channel is 1.0 M sun . Adopting the above results, we studied the birth rate of SNe Ia via a binary population synthesis approach. We found that the Galactic SNe Ia birth rate from SD model is (2.55-2.9) x 10 -3 yr -1 (including WD + He star channel), which is slightly smaller than that from observation. If a single starburst is assumed, the distribution of the delay time of SNe Ia from the SD model may be a weak bimodality, where WD + He channel contributes to SNe Ia with delay time shorter than 10 8 yr and WD + RG channel to those with age longer than 6 Gyr.

  13. Gravitational Wave Astrophysics in the Mid-band: progenitors and advanced localizations of Advanced LIGO/Virgo binary-merger events

    Science.gov (United States)

    Cheung, Chi C. Teddy; Hogan, Jason; Graham, Peter; Kasevich, Mark; Rajendran, Surjeet; Saif, Babak; Kerr, Matthew T.; Lovellette, Michael; Wood, Kent S.; Michelson, Peter; MAGIS Team

    2018-01-01

    We consider the scientific potential of gravitational wave (GW) observations in the ~30 mHz to 3 Hz frequency range with the Mid-band Atomic Gravitational-wave Interferometric Sensor (MAGIS). MAGIS is a probe-class space-mission concept, using an atom-based gravitational wave detector, that will provide all-sky strain sensitivities of ~10^-21 sqrt(Hz) and better (1-year) in the GW-frequency mid-band between the LISA/L3 detector (planned 2034 launch) and ground-based Advanced LIGO/Virgo interferometers. Primary gravitational wave astrophysics science in the mid-band include GW observations of the binary black hole population discovered by Advanced LIGO/Virgo at higher-frequencies, prior to their merger stage. For such systems, MAGIS will observe the binaries in their inspiral phase, where system parameters such as eccentricities are most easily constrained, and will provide advanced, degree-scale localizations that would enable electromagnetic observations of possible precursor emission 1-week to 1-month prior to their mergers as well as prompt post-merger transient emission. Joint GW-observations with MAGIS and Advanced LIGO/Virgo covering all stages of binary coalescence will further reduce uncertainties in the GW- localizations and distances, and will be powerful paired with galaxy catalogs, to enable unique galaxy counterpart identifications in the case black hole binary mergers are completely absent of detectable electromagnetic precursor or transient signals. These possibilities for MAGIS extend to neutron star binary systems (black hole - neutron star, neutron star - neutron star), and mid-band prospects for such systems will also be considered.The MAGIS team is a collaboration between institutes in the U.S. including Stanford, AOSense, Harvard, NASA/GSFC, NASA/JPL, NIST, NRL, and UC Berkeley, and international partners at Birmingham, Bordeaux, CNRS, Dusseldorf, Ecole Normale Superieure, Florence, Hannover, and Ulm University.

  14. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  15. On the incidence of close binary stars in globular clusters and the nature of the cluster X-ray sources

    International Nuclear Information System (INIS)

    Trimble, V.

    1977-01-01

    Recent calculations suggest that the globular clusters could not have formed with more than 20 per cent of the normal Population I fraction of their stars in binary systems. The fact that the clusters have more than their fair share of novae and U Geminorum stars (three each out of approximately 200 of each known, while the clusters contain only about 10 -4 of the mass and 10 -3 of the luminosity of the galaxy) therefore becomes surprising. The hypothesis of binary capture within cluster cores suggested to account for the clusters' high X-ray luminosity provides a few extra systems, but neither it nor any of the similar encounter or capture mechanisms suggested can account for the novae and U Gen stars, which remain puzzling. The number of Algol-type and W UMa eclipsing binaries predicted by these hypotheses do not conflict with data presently available, but careful searches for them would constitute a critical test of the theories. (author)

  16. Evolution and merging of binaries with compact objects

    International Nuclear Information System (INIS)

    Bethe, Hans A.; Brown, Gerald E.; Lee, Chang-Hwan

    2007-01-01

    as having been preceded by a double He-star binary is collecting observational support in terms of the nearly equal NS masses within a given close binary. We review our work on population synthesis of compact binaries, pointing out that it is in excellent agreement with the much more detailed synthesis carried out by Portegies Zwart. This is currently of interest because the recent discovery of the double pulsar has substantially increased the number of binary NS's that will merge gravitationally, giving signals to LIGO. This discovery brings in the low ZAMS mass main sequence progenitors that can evolve into a NS binary, adding importantly to the 'visible' binaries that can merge. However it does not affect the factor ∼40 increase, mostly from the much greater number of LMBH-NS binaries, which have only a small probability of being observed before they merge. We develop the phenomenology which suggests that NS's evolve from ZAMS mass ∼10-18M sun star, LMBH's from 18-20M sun , and high-mass BH's from 20-30M sun . These brackets follow from Woosley's 12 C(α,γ) 16 O rate of 170MeV barns at 300keV. We discuss the observed violation of our previous maximum NS mass M NS max =1.5M sun , raising our M NS max to 1.7M sun and comment on how our scenario would change if the maximum NS mass is greater than 1.7M sun

  17. Progenitor Epithelium

    Science.gov (United States)

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  18. A spectroscopic search for colliding stellar winds in O-type close binary systems. IV - Iota Orionis

    Science.gov (United States)

    Gies, Douglas R.; Wiggs, Michael S.; Bagnuolo, William G., Jr.

    1993-01-01

    We present H-alpha and He I 6678 A line profiles for the eccentric orbit binary Iota Ori. We have applied a tomography algorithm which uses the established orbital velocity curves and intensity ratio to reconstruct the spectral line profiles for each star. The He I profiles appear as pure photospheric lines, and H-alpha shows variable emission in the line core throughout the orbit (which is typical of O giants) and in the blue wing near periastron passage. We show that the blue wing emission is consistent with an origin between the stars which probably results from a dramatic focusing of the primary's stellar wind at periastron. We also present IUE archival spectra of the UV wind lines N V 1240 A and C IV 1550 A.

  19. Line-depth-ratio temperatures for the close binary ν Octantis: new evidence supporting the conjectured circumstellar retrograde planet

    Science.gov (United States)

    Ramm, D. J.

    2015-06-01

    We explore the possibly that either star-spots or pulsations are the cause of a periodic radial velocity (RV) signal (P ˜ 400 d) from the K-giant binary ν Octantis (P ˜ 1050 d, e ˜ 0.25), alternatively conjectured to have a retrograde planet. Our study is based on temperatures derived from 22 line-depth ratios (LDRs) for ν Oct and 20 calibration stars. Empirical evidence and stability modelling provide unexpected support for the planet since other standard explanations (star-spots, pulsations and additional stellar masses) each have credibility problems. However, the proposed system presents formidable challenges to planet formation and stability theories: it has by far the smallest stellar separation of any claimed planet-harbouring binary (a_{_bin} ˜ 2.6 au) and an equally unbelievable separation ratio (a_{_pl}/a_{_bin} ˜ 0.5), hence the necessity that the circumstellar orbit be retrograde. The LDR analysis of 215 ν Oct spectra acquired between 2001 and 2007, from which the RV perturbation was first revealed, have no significant periodicity at any frequency. The LDRs recover the original 21 stellar temperatures with an average accuracy of 45 ± 25 K. The 215 ν Oct temperatures have a standard deviation of only 4.2 K. Assuming the host primary is not pulsating, the temperatures converted to magnitude differences strikingly mimic the very stable photometric Hipparcos observations 15 years previously, implying the long-term stability of the star and demonstrating a novel use of LDRs as a photometric gauge. Our results provide substantial new evidence that conventional star-spots and pulsations are unlikely causes of the RV perturbation. The controversial system deserves continued attention, including with higher resolving-power spectra for bisector and LDR analyses.

  20. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    OpenAIRE

    Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine

    2016-01-01

    A space-based interferometer such as eLISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black...

  1. Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis

    Science.gov (United States)

    Sravan, Niharika; Marchant, Pablo; Kalogera, Vassiliki; Margutti, Raffaella

    2018-01-01

    Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope SNe because the stellar progenitor of several SNe IIb have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the SN IIb 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 M ⊙ and 2 M ⊙, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light curves, the probability that the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for SNe IIb. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.

  2. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    International Nuclear Information System (INIS)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-01-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit

  3. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    Science.gov (United States)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  4. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  5. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kuncarayakti, Hanindyo; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aldering, Greg [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arimoto, Nobuo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Pereira, Rui [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Usuda, Tomonori, E-mail: hanindyo.kuncarayakti@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  6. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  7. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  8. Is black-hole ringdown a memory of its progenitor?

    Science.gov (United States)

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  9. The white dwarf binary pathways survey - II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4

    Science.gov (United States)

    Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.

    2017-12-01

    We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.

  10. BINARIES DISCOVERED BY THE MUCHFUSS PROJECT: SDSS J08205+0008-AN ECLIPSING SUBDWARF B BINARY WITH A BROWN DWARF COMPANION

    International Nuclear Information System (INIS)

    Geier, S.; Schaffenroth, V.; Drechsel, H.; Heber, U.; Kupfer, T.; Tillich, A.; Oestensen, R. H.; Smolders, K.; Degroote, P.; Maxted, P. F. L.; Barlow, B. N.; Gaensicke, B. T.; Marsh, T. R.; Napiwotzki, R.

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object (≅0.068 M sun ) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.

  11. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  12. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Gomez de Castro, Ana Ines [S. D. Astronomia y Geodesia and Instituto de Matematica Interdisciplinar, Fac. de CC Matematicas, Universidad Complutense, E-28040 Madrid (Spain); Lopez-Santiago, Javier [Departamento de Astrofisica, Fac de CC Fisicas, Universidad Complutense, E-28040 Madrid (Spain); Talavera, Antonio [European Space Astronomy Center, Villanueva de la Canada, E-28691, Madrid (Spain); Sytov, A. Yu.; Bisikalo, D. [Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation)

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  13. Eclipsing binaries observed with the WIRE satellite I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary psi centauri

    DEFF Research Database (Denmark)

    Bruntt, Hans; Southworth, J.; Penny, A. J.

    2006-01-01

    Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep.......Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep....

  14. Cataclysmic Variables as Supernova Ia Progenitors

    Directory of Open Access Journals (Sweden)

    Stella Kafka

    2012-06-01

    Full Text Available Although the identification of the progenitors of type Ia supernovae (SNeIa remains controversial, it is generally accepted that they originate from binary star systems in which at least one component is a carbon-oxygen white dwarf (WD; those systems are grouped under the wide umbrella of cataclysmic variables. Current theories for SNeIa progenitors hold that, either via Roche lobe overflow of the companion or via a wind, the WD accumulates hydrogen or helium rich material which is then burned to C and O onto the WD’s surface. However, the specifics of this scenario are far from being understood or defined, allowing for a wealth of theories fighting for attention and a dearth of observations to support them. I discuss the latest attempts to identify and study those controversial SNeIa progenitors. I also introduce the most promising progenitor in hand and I present observational diagnostics that can reveal more members of the category.

  15. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G. [Instituto de Astrofísica de La Plata (Argentina); Kuncarayakti, Hanindyo [Millennium Institute of Astrophysics (MAS), Casilla 36-D, Santiago (Chile); Maeda, Keiichi; Nomoto, Ken’ichi, E-mail: gaston@fcaglp.unlp.edu.ar [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2015-10-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M{sub ⊙} and the radius was 30–50 R{sub ⊙}, which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion.

  16. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nomoto, Ken’ichi

    2015-01-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M ⊙ and the radius was 30–50 R ⊙ , which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion

  17. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  18. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  19. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  20. The evolution of low-mass close binary systems. IV. 0.80 M/sub sun/+0.40 M/sub sun/: Catastrophic mass loss

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1977-01-01

    The evolution of both components of a 0.80 M/sub sun/+0.40 M/sub sun/ binary with initial separation 1.60 R/sub sun/ is presented. This system reaches mass transfer during core hydrogen burning in the primary. The primary has such a deep convective envelope that mass transfer proceeds on a dynamical time scale. Mass exchange is followed through the first 6.25 x 10 -3 M/sub sun/, by which time the transfer rate has reached 8.33 x 10 -4 M/sub sun/ yr -1 .It is shown that mass transfer on a dynamical time scale leads to supercritical accretion by the secondary component, and hence is presumably accompanied by extensive mass and angular momentum losses. Stability against such rapid mass transfer may impose severe limitations on the masses and mass ratios of cataclysmic variables

  1. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  2. PopCORN: Hunting down the differences between binary population synthesis codes

    Science.gov (United States)

    Toonen, S.; Claeys, J. S. W.; Mennekens, N.; Ruiter, A. J.

    2014-02-01

    Context. Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of various types of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying (sometimes poorly understood) physical processes involved. Several BPS codes exist that have been developed with different philosophies and aims. Although BPS has been very successful for studies of many populations of binary stars, in the particular case of the study of the progenitors of supernovae Type Ia, the predicted rates and ZAMS progenitors vary substantially between different BPS codes. Aims: To understand the predictive power of BPS codes, we study the similarities and differences in the predictions of four different BPS codes for low- and intermediate-mass binaries. We investigate the differences in the characteristics of the predicted populations, and whether they are caused by different assumptions made in the BPS codes or by numerical effects, e.g. a lack of accuracy in BPS codes. Methods: We compare a large number of evolutionary sequences for binary stars, starting with the same initial conditions following the evolution until the first (and when applicable, the second) white dwarf (WD) is formed. To simplify the complex problem of comparing BPS codes that are based on many (often different) assumptions, we equalise the assumptions as much as possible to examine the inherent differences of the four BPS codes. Results: We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough

  3. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  4. Progenitors of type Ia supernovae in elliptical galaxies

    International Nuclear Information System (INIS)

    Gilfanov, M.; Bogdan, A.

    2011-01-01

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than ∼5% of type Ia supernovae observed in old stellar populations.

  5. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  6. Progenitors of white dwarfs

    International Nuclear Information System (INIS)

    Drilling, J.S.; Schoenberner, D.

    1985-01-01

    Direct observational evidence is presented which indicates that the immediate progenitors of white dwarfs are the central stars of planetary nebulae (approximately 70%), other post-AGB objects (approximately 30%), and post-HB objects not massive enough to climb the AGB (approximately 0.3%). The combined birth rate for these objects is in satisfactory agreement with the death rate of main-sequence stars and the birth rate of white dwarfs

  7. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  8. GRAVITATIONAL-WAVE CONSTRAINTS ON THE PROGENITORS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-01-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star–black hole progenitors.

  9. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  10. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  11. UHE particle production in close binary systems

    International Nuclear Information System (INIS)

    Hillas, A.M.

    1985-01-01

    Cygnus X-3 appears to generate so much power in the form of charged particles of up to approx 10 to the 17th power eV that the galaxy may need approx 1 such source on average to maintain its flux of ultra high energy cosmic rays. Accreting gas must supply the energy, and in a surprisingly ordered form, if it is correct to use a Vest-rand-Eichler model for radiation of gammas, modified by the introduction of an accretion wake. Certain relationships between 10 to the 12th power eV and 10 to the 15th power gamma rays are expected

  12. Division V: Commission 42: Close Binaries

    Science.gov (United States)

    Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo

    2015-08-01

    Commission 42 (C42) co-organized, together with Commission 27 (C27) and Division V (Div V) as a whole, a full day of science and business sessions that were held on 24 August 2012. The program included time slots for discussion of business matters related to Div V, C27 and C42, and two sessions of 2 hours each devoted to science talks of interest to both C42 and C27. In addition, we had a joint session between Div IV and Div V motivated by the proposal to reformulate the division structure of the IAU and the possible merger of the two divisions into a new Div G. The current report gives an account of the matters discussed during the business session of C42.

  13. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    Science.gov (United States)

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  14. Single progenitor model for GW150914 and GW170104

    Science.gov (United States)

    D'Orazio, Daniel J.; Loeb, Abraham

    2018-04-01

    The merger of stellar-mass black holes (BHs) is not expected to generate detectable electromagnetic (EM) emission. However, the gravitational wave (GW) events GW150914 and GW170104, detected by the Laser Interferometer Gravitational Wave Observatory to be the result of merging, ˜60 M⊙ binary black holes (BBHs), each have claimed coincident gamma-ray emission. Motivated by the intriguing possibility of an EM counterpart to BBH mergers, we construct a model that can reproduce the observed EM and GW signals for GW150914- and GW170104-like events, from a single-star progenitor. Following Loeb [Astrophys. J. Lett. 819, L21 (2016), 10.3847/2041-8205/819/2/L21], we envision a massive, rapidly rotating star within which a rotating-bar instability fractures the core into two overdensities that fragment into clumps which merge to form BHs in a tight binary with arbitrary spin-orbit alignment. Once formed, the BBH inspirals due to gas and gravitational-wave drag until tidal forces trigger strong feeding of the BHs with the surrounding stellar-density gas about 10 sec before merger. The resulting giga-Eddington accretion peak launches a jet that breaks out of the progenitor star and drives a powerful outflow that clears the gas from the orbit of the binary within 1 sec, preserving the vacuum GW waveform in the Laser Interferometer Gravitational Wave Observatory band. The single-progenitor scenario predicts the existence of variability of the gamma-ray burst, modulated at the ˜0.2 sec chirping period of the BBH due to relativistic Doppler boost. The jet breakout should be accompanied by a low-luminosity supernova. Finally, because the BBHs of the single-progenitor model do not exist at large separations, they will not be detectable in the low-frequency gravitational-wave band of the Laser Interferometer Space Antenna. Hence, the single-progenitor BBHs will be unambiguously discernible from BBHs formed through alternate, double-progenitor evolution scenarios.

  15. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  16. Physical Properties and Evolutionary States of EA-type Eclipsing Binaries Observed by LAMOST

    Science.gov (United States)

    Qian, S.-B.; Zhang, J.; He, J.-J.; Zhu, L.-Y.; Zhao, E.-G.; Shi, X.-D.; Zhou, X.; Han, Z.-T.

    2018-03-01

    About 3196 EA-type binaries (EAs) were observed by LAMOST by 2017 June 16 and their spectral types were derived. Meanwhile, the stellar atmospheric parameters of 2020 EAs were determined. In this paper, those EAs are cataloged and their physical properties and evolutionary states are investigated. The period distribution of EAs suggests that the period limit of tidal locking for the close binaries is about 6 days. It is found that the metallicity of EAs is higher than that of EW-type binaries (EWs), indicating that EAs are generally younger than EWs and they are the progenitors of EWs. The metallicities of long-period EWs (0.4values of Log (g) are usually smaller than those of EAs. These support the evolutionary process that EAs evolve into long-period EWs through the combination of angular momentum loss (AML) via magnetic braking and case A mass transfer. For short-period EWs, their metallicities are lower than those of EAs, while their gravitational accelerations are higher. These reveal that they may be formed from cool short-period EAs through AML via magnetic braking with little mass transfer. For some EWs with high metallicities, they may be contaminated by material from the evolution of unseen neutron stars and black holes or they have third bodies that may help them to form rapidly through a short timescale of pre-contact evolution. The present investigation suggests that the modern EW populations may have formed through a combination of these mechanisms.

  17. Do we really know Mup (i.e. the transition mass between Type Ia and core-collapse supernova progenitors)?

    International Nuclear Information System (INIS)

    Straniero, O; Piersanti, L; Cristallo, S

    2016-01-01

    M up is the minimum stellar mass that, after the core-helium burning, develops temperature and density conditions for the occurrence of a hydrostatic carbon burning. Stars whose mass is lower than this limit are the progenitors of C-O white dwarfs and, when belong to a close binary system, may give rise to explosive phenomena, such as novae or type Ia supernovae. Stars whose mass is only slightly larger than M up ignite C in a degenerate core and, in turn, experience a thermonuclear runaway. Their final fate may be a massive O-Ne WDs or, if the core mass approaches the Chandrasekhar limit, an e-capture SNe. More massive objects ignite C in non-degenerate conditions. These “massive “ stars are the progenitors of various kind of core-collapse supernovae (type IIp. IIL, IIN, Ib, Ic). It goes without saying that M up is a fundamental astrophysical parameter. From its knowledge depends our understanding of the SNe progenitors, of their rates, of the chemical evolution, of the WD luminosity functions and much more. A precise evaluation of M up relies on our knowledge of various input physics used in stellar modeling, such as the plasma neutrino rate, responsible of the cooling of the core, the equation of state of high density plasma, which affects the heating of the contracting core and its compressibility, and some key nuclear reaction rates, such as, in particular, the 12 C+ 12 C and the 12 C+α. In this paper we review the efforts made to determine this important parameter and we provide an up-to-date evaluation of the uncertainties due to the relevant nuclear physics inputs. (paper)

  18. CYG X-3: A GALACTIC DOUBLE BLACK HOLE OR BLACK-HOLE-NEUTRON-STAR PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Belczynski, Krzysztof; Bulik, Tomasz [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Sathyaprakash, B. S. [School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff CF24 3YB (United Kingdom); Zdziarski, Andrzej A.; Mikolajewska, Joanna [Centrum Astronomiczne im. M. Kopernika, Bartycka 18, PL-00-716 Warszawa (Poland)

    2013-02-10

    There are no known stellar-origin double black hole (BH-BH) or black-hole-neutron-star (BH-NS) systems. We argue that Cyg X-3 is a very likely BH-BH or BH-NS progenitor. This Galactic X-ray binary consists of a compact object, wind-fed by a Wolf-Rayet (W-R) type companion. Based on a comprehensive analysis of observational data, it was recently argued that Cyg X-3 harbors a 2-4.5 M {sub Sun} black hole (BH) and a 7.5-14.2 M {sub Sun} W-R companion. We find that the fate of such a binary leads to the prompt ({approx}< 1 Myr) formation of a close BH-BH system for the high end of the allowed W-R mass (M {sub W-R} {approx}> 13 M {sub Sun }). For the low- to mid-mass range of the W-R star (M {sub W-R} {approx} 7-10 M {sub Sun }) Cyg X-3 is most likely (probability 70%) disrupted when W-R ends up as a supernova. However, with smaller probability, it may form a wide (15%) or a close (15%) BH-NS system. The advanced LIGO/VIRGO detection rate for mergers of BH-BH systems from the Cyg X-3 formation channel is {approx}10 yr{sup -1}, while it drops down to {approx}0.1 yr{sup -1} for BH-NS systems. If Cyg X-3 in fact hosts a low-mass black hole and massive W-R star, it lends additional support for the existence of BH-BH/BH-NS systems.

  19. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  20. ON THE PROGENITOR OF THE TYPE II-PLATEAU SN 2008cn in NGC 4603

    International Nuclear Information System (INIS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Filippenko, Alexei V.; Foley, Ryan J.; Smith, Nathan; Morrell, Nidia; Gonzalez, Sergio; Hamuy, Mario; Cuillandre, Jean-Charles

    2009-01-01

    A trend is emerging regarding the progenitor stars that give rise to the most common core-collapse supernovae (SNe), those of Type II-Plateau (II-P): they generally appear to be red supergiants with a limited range of initial masses, ∼8-16 M sun . Here, we consider another example, SN 2008cn, in the nearly face-on spiral galaxy NGC 4603. Even with limited photometric data, it appears that SN 2008cn is not a normal SN II-P, but is of the high-luminosity subclass. Through comparison of pre- and post-explosion images obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope, we have isolated a supergiant star prior to explosion at nearly the same position as the SN. We provide evidence that this supergiant may well be the progenitor of the SN, although this identification is not entirely unambiguous. This is exacerbated by the distance to the host galaxy, 33.3 Mpc, making SN 2008cn the most distant SN II-P yet for which an attempt has been made to identify a progenitor star in pre-SN images. The progenitor candidate has a more yellow color ([V - I] 0 = 0.98 mag and T eff = 5200 ± 300 K) than generally would be expected and, if a single star, would require that it exploded during a 'blue loop' evolutionary phase, which is theoretically not expected to occur. Nonetheless, we estimate an initial mass of M ini = 15 ± 2 M sun for this star, which is within the expected mass range for SN II-P progenitors. The yellower color could also arise from the blend of two or more stars, such as a red supergiant and a brighter, blue supergiant. Such a red supergiant hidden in this blend could instead be the progenitor and would also have an initial mass within the expected progenitor mass range. Furthermore, the yellow supergiant could be in a massive, interacting binary system, analogous to the possible yellow supergiant progenitor of the high-luminosity SN II-P 2004et. Finally, if the yellow supergiant is not the progenitor, or is not a stellar

  1. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  2. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  3. Clues on Type Ia Supernovae Progenitors

    International Nuclear Information System (INIS)

    Piersanti, Luciano; Tornambe, Amedeo

    2005-01-01

    We show that in the framework of canonical stellar evolution it is hard, if not impossible, to determine the growth in mass of a CO White Dwarf, up to the Chandrasekhar limit by means of mass transfer from its companion in a binary system. This is the case either if matter is accreted from a normal companion with an H-rich envelope or if direct CO accretion occurs from a CO WD companion. At variance, we show that if the effects of rotation are taken into account in modeling the accretion process, a CO WD can increase its mass at the expenses of the degenerate CO companion up and beyond 1.4 M· , so that an explosive event of the type Ia class is naturally produced. This theoretical finding revives the Double Degenerate scenario for type Ia SNe progenitors. In such a case the internal spread in the observational properties of type Ia SNe may be interpreted as a consequence of different total masses; hence differences between SNe Ia in nearby elliptical galaxies and the majority of those in spirals should be expected and the current use of type Ia SNe as cosmological distance indicators should be justified

  4. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  5. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  6. Binary Paths to Type Ia Supernovae Explosions: the Highlights

    Science.gov (United States)

    Ferrario, Lilia

    2013-01-01

    This symposium was focused on the hunt for the progenitors of Type Ia supernovae (SNe Ia). Is there a main channel for the production of SNe Ia? If so, are these elusive progenitors single degenerate or double degenerate systems? Although most participants seemed to favor the single degenerate channel, there was no general agreement on the type of binary system at play. An observational puzzle that was highlighted was the apparent paucity of supersoft sources in our Galaxy and also in external galaxies. The single degenerate channel (and as it was pointed out, quite possibly also the double degenerate channel) requires the binary system to pass through a phase of steady nuclear burning. However, the observed number of supersoft sources falls short by a factor of up to 100 in explaining the estimated birth rates of SNe Ia. Thus, are these supersoft sources somehow hidden away and radiating at different wavelengths, or are we missing some important pieces of this puzzle that may lead to the elimination of a certain class of progenitor? Another unanswered question concerns the dependence of SNe Ia luminosities on the age of their host galaxy. Several hypotheses were put forward, but none was singled out as the most likely explanation. It is fair to say that at the end of the symposium the definitive answer to the vexed progenitor question remained well and truly wide open.

  7. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  8. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  9. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  10. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  11. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  12. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    Science.gov (United States)

    Leonard, Douglas C.

    2007-12-01

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 Msolar of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  13. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  14. The poster as modernist progenitor

    Directory of Open Access Journals (Sweden)

    Katherine Hauser

    2015-12-01

    Full Text Available Ruth E. Iskin’s The Poster: Art, Advertising. Design, and Collecting, 1860s-1900s positions the late-nineteenth-century advertising poster as the progenitor of valued modernist practices typically attached solely to photography and film. Modernist biases separating high art from mass culture account for scholars ignoring posters, however the poster ushered in an innovative reductive graphic style as well as pioneered the notion of multiple originals.

  15. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  16. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  17. DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Instituto de Astrofísica de La Plata (IALP), CONICET, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Van Dyk, Schuyler D. [IPAC/Caltech, Mailcode 100-22, Pasadena, CA 91125 (United States); Kuncarayakti, Hanindyo; Pignata, Giuliano; Hamuy, Mario [Millennium Institute of Astrophysics (MAS), Santiago (Chile); Maeda, Keiichi; Nomoto, Ken’ichi; Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Smith, Nathan [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Elias-Rosa, Nancy [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Miller, Adam A., E-mail: gaston.folatelli@ipmu.jp [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2016-07-10

    Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site ∼740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.

  18. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    Science.gov (United States)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; hide

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  19. The type IIb supernova 2013df and its cool supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mail Code 220-6, Pasadena, CA 91125 (United States); Zheng, WeiKang; Fox, Ori D.; Clubb, Kelsey I.; Filippenko, Alexei V.; Kelly, Patrick L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Miller, Adam A. [Jet Propulsion Laboratory, MS 169-506, Pasadena, CA 91109 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tucson, AZ 85720 (United States); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510 (Mexico); Ben-Ami, Sagi; Gal-Yam, Avishay, E-mail: vandyk@ipac.caltech.edu [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  20. Formation, evolution and environment of high-mass X-ray binaries

    International Nuclear Information System (INIS)

    Coleiro, Alexis

    2013-01-01

    High-Mass X-ray Binaries are interacting binary systems composed of a compact object orbiting an O/B massive star. These objects are deeply studied with the aim of understanding accretion and ejection processes around compact objects. Recent studies claim that most of the Galactic massive stars do not live alone and suffer from mass transfer during their life. Therefore, understanding the HMXB evolution and their interaction with the close environment allows to better understand not only the evolution of massive binary stars, possible progenitors of gamma-ray bursts and gravitational waves emitters during their coalescence, but also to correctly characterize the faraway galaxies. How do these sources evolve? Where are they located in the Galaxy? What are their principal properties? What is the influence of their environment? What is their impact on the interstellar medium? This thesis aims at shedding some light on these questions, by adopting two complementary approaches: a statistical study of the Galactic population of HMXB and on another hand a multi-wavelength study of individual sources. The first part of this thesis introduces the main characteristics of massive stars. Their evolution and the observational features are described. We also present the main observational and theoretical properties of HMXB together with the multi-wavelength approach used in this work. With the aim of better understanding the stellar evolution and the connections between compact objects and supernovae or gamma-ray bursts, it is of major interest to understand where these compact objects are born. Thus, the second part details the statistical study carried out on the Galactic HMXB population. Thanks to a uniform approach based on spectral energy distribution fitting, we determine, for the first time, the distance of 46 HMXB into the Milky Way with an accurate uncertainties estimation. Then, we present the distribution of these sources in the Galaxy and we show that a correlation

  1. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  2. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  3. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  4. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  5. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  6. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  7. Contribution of High-Mass Black Holes to Mergers of Compact Binaries

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.

    1999-01-01

    We consider the merging of compact binaries consisting of a high-mass black hole and a neutron star. From stellar evolutionary calculations that include mass loss, we estimate that a zero-age main sequence (ZAMS) mass of approx-gt 80 M circle-dot is necessary before a high-mass black hole can result from a massive O star progenitor. We first consider how Cyg X-1, with its measured orbital radius of ∼17 R circle-dot , might evolve. Although this radius is substantially less than the initial distance of two O stars, it is still so large that the resulting compact objects will merge only if an eccentricity close to unity results from a high kick velocity of the neutron star in the final supernova explosion. We estimate the probability of the necessary eccentricity to be ∼1%; i.e., 99% of the time the explosion of a Cyg X-1 endash type object will end as a binary of compact stars, which will not merge in Hubble time (unless the orbit is tightened in common envelope evolution, which we discuss later). Although we predict ∼7 massive binaries of Cyg X-1 type, we argue that only Cyg X-1 is narrow enough to be observed, and that only Cyg X-1 has an appreciable chance of merging in Hubble time. This gives us a merging rate of ∼3x10 -8 yr -1 in the galaxy, the order of magnitude of the merging rate found by computer-driven population syntheses, if extrapolated to our mass limit of 80 M circle-dot ZAMS mass for high-mass black hole formation. Furthermore, in both our calculation and in those of population syntheses, almost all of the mergings involve an eccentricity close to unity in the final explosion of the O star. From this first part of our development we obtain only a negligible contribution to our final results for mergers, and it turns out to be irrelevant for our final results. In our main development, instead of relying on observed binaries, we consider the general evolution of binaries of massive stars. The critical stage is when the more massive star A has

  8. Progenitor's Signatures in Type Ia Supernova Remnants

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that

  9. Pulpal progenitors and dentin repair.

    Science.gov (United States)

    Harichane, Y; Hirata, A; Dimitrova-Nakov, S; Granja, I; Goldberg, A; Kellermann, O; Poliard, A

    2011-07-01

    Mesenchymal stem cells are present in the dental pulp. They have been shown to contribute to dentin-like tissue formation in vitro and to participate in bone repair after a mandibular lesion. However, their capacity to contribute efficiently to reparative dentin formation after pulp lesion has never been explored. After pulp exposure, we have identified proliferative cells within 3 zones. In the crown, zone I is near the cavity, and zone II corresponds to the isthmus between the mesial and central pulp. In the root, zone III, near the apex, at a distance from the inflammatory site, contains mitotic stromal cells which may represent a source of progenitor cells. Stem-cell-based strategies are promising treatments for tissue injury in dentistry. Our experiments focused on (1) location of stem cells induced to leave their quiescent state early after pulp injury and (2) implantation of pulp progenitors, a substitute for classic endodontic treatments, paving the way for pulp stem-cell-based therapies.

  10. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  11. Transplanting oligodendrocyte progenitors into the adult CNS

    International Nuclear Information System (INIS)

    Franklin, R.J.M.; Blakemore, W.F.; Cambridge Univ.

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author)

  12. THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Pasadena CA 91125 (United States); Li, Weidong; Cenko, S. Bradley; Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kasliwal, Mansi M.; Horesh, Assaf; Ofek, Eran O.; Quimby, Robert M.; Kulkarni, Shrinivas R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Polishook, David, E-mail: vandyk@ipac.caltech.edu [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2011-11-10

    We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius {approx} 10{sup 11} cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M{sup 0}{sub V} Almost-Equal-To -7.7 and effective temperature {approx}6000 K. The star's radius, {approx}10{sup 13} cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitor's companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17-19 M{sub Sun }. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot ({approx}10{sup 5} K), nitrogen-rich Wolf-Rayet star progenitor.

  13. Hepatic progenitors for liver disease: current position

    Directory of Open Access Journals (Sweden)

    Alice Conigliaro

    2010-02-01

    Full Text Available Alice Conigliaro1, David A Brenner2, Tatiana Kisseleva21University “La Sapienza”, Dipartimento di Biotecnologie Cellulari ed Ematologia Policlinico Umberto I, V Clinica Medica, Rome, Italy; 2Department of Medicine, University of California, San Diego, La Jolla, CA, USAAbstract: Liver regeneration restores the original functionality of hepatocytes and cholangiocytes in response to injury. It is regulated on several levels, with different cellular populations contributing to this process, eg, hepatocytes, liver precursor cells, intrahepatic stem cells. In response to injury, mature hepatocytes have the capability to proliferate and give rise to new hepatocytes and cholangiocytes. Meanwhile, liver precursor cells (oval cells have become the most recognized bipotential precursor cells in the damaged liver. They rapidly proliferate, change their cellular composition, and differentiate into hepatocytes and cholangiocytes to compensate for the cellular loss and maintain liver homeostasis. There is a growing body of evidence that oval cells originate from the intrahepatic stem cell(s, which in turn give(s rise to epithelial, including oval cells, and/or other hepatic cells of nonepithelial origin. Since there is a close relationship between the liver and hematopoiesis, bone marrow derived cells can also contribute to liver regeneration by the fusion of myeloid cells with damaged hepatocytes, or differentiation of mesenchymal stem cells into hepatocyte-like cells. The current review discusses the contribution of different cells to liver regeneration and their characteristics.Keywords: hepatic progenitor, liver disease, liver precursor cells, oval cells, hepatocytes, intrahepatic stem cells, cholangiocytes

  14. ON THE PROGENITORS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Chen Wencong; Li Xiangdong

    2009-01-01

    Type Ia supernovae (SNe Ia) can be used as the standard candle to determine the cosmological distances because they are thought to have a uniform fuel amount. Recent observations of several overluminous SNe Ia suggest that the white dwarf masses at supernova explosion may significantly exceed the canonical Chandrasekhar mass limit. These massive white dwarfs may be supported by rapid differential rotation. Based on a single-degenerate model and the assumption that the white dwarf would differentially rotate when the accretion rate M-dot>3 x 10 -7 M-odot yr -1 , we have calculated the evolutions of close binaries consisting of a white dwarf and a normal companion. To include the effect of rotation, we introduce an effective mass M eff for white dwarfs. For the donor stars with two different metallicities Z = 0.02 and 0.001, we present the distribution of the initial donor star masses and the orbital periods of the progenitors of super-Chandrasekhar mass SNe Ia. The calculation results indicate that, for an initial massive white dwarf of 1.2 M sun , a considerable fraction of SNe Ia may result from super-Chandrasekhar mass white dwarfs, but very massive (> 1.7 M sun ) white dwarfs are difficult to form, and none of them could be found in old populations. However, super-Chandrasekhar mass SNe Ia are very rare when the initial mass of white dwarfs is 1.0 M sun . Additionally, SNe Ia in low metallicity environment are more likely to be homogeneous.

  15. Massive binaries in the vicinity of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Pfuhl, O.; Gillessen, S.; Genzel, R.; Eisenhauer, F.; Fritz, T. K.; Ott, T. [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Alexander, T. [Faculty of Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel); Martins, F., E-mail: pfuhl@mpe.mpg.de [LUPM, Université Montpelier 2, CNRS, Place Eugéne Bataillon, F-34095, Montpellier (France)

    2014-02-20

    A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the supermassive black hole Sgr A* revealed two new binaries: a long-period Ofpe/WN9 binary, IRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days, and an eclipsing Wolf-Rayet binary with a period of 2.3 days. Together with the already identified binary IRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2 pc of the Galactic center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic center to F{sub SB}=0.30{sub −0.21}{sup +0.34} at a confidence level of 95%, a massive binary fraction close to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm > 0.4 is F{sub EB}{sup GC}=3%±2%, which is consistent with local OB star clusters (F {sub EB} = 1%). Overall, the Galactic center binary fraction seems to be similar to the binary fraction in comparable young clusters.

  16. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  17. On the Afterglow and Progenitor of FRB 150418

    Science.gov (United States)

    Zhang, Bing

    2016-05-01

    Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 1050 erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ˜0.22 rad, so that the beaming-corrected energy is below 1049 erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS-NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH-BH, NS-NS, or BH-NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.

  18. ON THE AFTERGLOW AND PROGENITOR OF FRB 150418

    International Nuclear Information System (INIS)

    Zhang, Bing

    2016-01-01

    Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 10 50 erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ∼0.22 rad, so that the beaming-corrected energy is below 10 49 erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS–NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH–BH, NS–NS, or BH–NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.

  19. ON THE AFTERGLOW AND PROGENITOR OF FRB 150418

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2016-05-01

    Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 10{sup 50} erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ∼0.22 rad, so that the beaming-corrected energy is below 10{sup 49} erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS–NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH–BH, NS–NS, or BH–NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.

  20. THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51

    International Nuclear Information System (INIS)

    Maund, J. R.; Fraser, M.; Smartt, S. J.; Kotak, R.; Magill, L.; Ergon, M.; Sollerman, J.; Pastorello, A.; Benetti, S.; Botticella, M.-T.; Valenti, S.; Bufano, F.; Danziger, I. J.; Stephens, A. W.

    2011-01-01

    We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L sun = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M sun . The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Hα emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.

  1. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    International Nuclear Information System (INIS)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B.

    2015-01-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center

  2. ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Fraser, M.; Takats, K.; Pastorello, A.; Smartt, S. J.; Botticella, M-T.; Valenti, S.; Mattila, S.; Ergon, M.; Sollerman, J.; Arcavi, I.; Gal-Yam, A.; Benetti, S.; Bufano, F.; Crockett, R. M.; Danziger, I. J.; Maund, J. R.; Taubenberger, S.; Turatto, M.

    2010-01-01

    We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 ± 0.25 and M V = -7.6 ± 0.6. If this is a single star, it would be a yellow supergiant of log L/L sun ∼ 5.1 and a mass of 15 +5 -4 M sun . The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent Hα P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.

  3. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  4. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  5. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Boynton, W.; Enos, H.; Fellows, C.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E.

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot -9 M ☉ yr -1 (3σ c.l.) for wind velocity v w = 100 km s –1 . Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if ∼> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n CSM –3 ) for 2 × 10 15 ∼ 16 cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  6. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche

    Directory of Open Access Journals (Sweden)

    Minuth Will W

    2012-09-01

    Full Text Available Abstract Background Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. Methods To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA or in combination with cupromeronic blue, ruthenium red and tannic acid. Results GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. Conclusions The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.

  7. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  8. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  9. Short gamma-ray bursts and gravitational-wave observations from eccentric compact binaries

    Science.gov (United States)

    Tan, Wei-Wei; Fan, Xi-Long; Wang, F. Y.

    2018-03-01

    Mergers of compact binaries, such as binary neutron stars (BNSs), neutron star-black hole binaries (NSBHs) and binary black holes (BBHs), are expected to be the best candidates for sources of gravitational waves (GWs) and the leading theoretical models for short gamma-ray bursts (SGRBs). Based on observations of SGRBs, we can derive the merger rates of these compact binaries and study stochastic GW backgrounds (SGWBs) or the co-detection rates of GWs associated with SGRBs (GW-SGRBs). Before that, however, the most important thing is to derive the GW spectrum from a single GW source. Usually, a GW spectrum from a circular-orbit binary is assumed. However, observations of the large spatial offsets of SGRBs from their host galaxies imply that SGRB progenitors may be formed by dynamical processes and will merge with residual eccentricities (er). The orbital eccentricity has an important effect on GW spectra and therefore on the SGWB and GW-SGRB co-detection rate. Our results show that the power spectra of SGWBs from eccentric compact binaries are greatly suppressed at low frequencies (e.g. f ≲ 1 Hz). In particular, SGWBs from binaries with high residual eccentricities (e.g. er ≳ 0.1 for BNSs) will be hard to detect (above the detection frequency of ˜ 100 Hz). Regarding the co-detection rates of GW-SGRB events, they could be ˜1.4 times higher than the circular case within some particular ranges of er (e.g. 0.01 ≲ er ≲ 0.1 for BBHs), but greatly reduced for high residual eccentricities (e.g. er > 0.1 for BNSs). In general, BBH progenitors produce 200 and 10 times higher GW-SGRB events than BNS and NSBH progenitors, respectively. Therefore, binaries with low residual eccentricities (e.g. 0.001 ≲ er ≲ 0.1) and high total masses will be easier to detect by Advanced LIGO (aLIGO). However, only a small fraction of BBHs can be SGRB progenitors (if they can produce SGRBs), because the predicted GW-SGRB event rate (60˜100 per year) is too high compared with recent

  10. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    Science.gov (United States)

    Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine

    2017-03-01

    A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA) could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using a Bayesian model selection, we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of an MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios.

  11. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES?

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, M C . Such massive NBWDs are hot (kT ∼ 100 eV), luminous (L ∼ 10 38 erg s -1 ), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-M C models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to M C .

  12. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  13. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    Science.gov (United States)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  14. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  15. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  16. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  17. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  18. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  19. BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Sonnett, S.; Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T., E-mail: Sarah.Sonnett@jpl.nasa.gov [Planetary Science Institute, Tucson, AZ (United States)

    2015-02-01

    Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival data set for close and contact binary Trojans and Hildas via their diagnostically large light curve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large light curve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14%-23% for Trojans larger than ∼12 km and 30%-51% for Hildas larger than ∼4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.

  20. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  1. Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Hotokezaka, Kenta [Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010 (United States); Piran, Tsvi [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2017-06-20

    We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf–Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintains its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ∼2–3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ∼0.5–1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.

  2. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  3. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources - A population synthesis analysis using SeBa

    DEFF Research Database (Denmark)

    Nielsen, Mikkel T. B.; Nelemans, Gijs; Voss, Rasmus

    2013-01-01

    a SSS phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being SSSs, and place stringent upper limits on the maximally possible durations of any SSS phases and expected number of these systems in a galactic population. Method: We employ the binary population synthesis...... code SeBa to examine the mass-transfer characteristics of a possible SSS phase of double-degenerate type Ia SN progenitor systems for 1) the standard SeBa assumptions, and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source...

  4. Astrophysical Implications of the Binary Black Hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  5. Gravitational waves from double white dwarfs and AM CVn binaries

    International Nuclear Information System (INIS)

    Nelemans, Gijs

    2003-01-01

    I give a brief overview of our model for the galactic population of compact binaries that is used to predict the low-frequency gravitational wave signal from the galaxy, and discuss recent observational developments that will enable us to test and improve this model. The SPY project will discover some 150 new close double white dwarfs and, recently, two ROSAT sources turned out to be new AM CVn candidates, one with an orbital period of only 5 min. I give an update on the expected binaries that will be resolved by LISA and discuss what we can learn about the galactic population of compact binaries once LISA gives her first results

  6. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  7. Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    OpenAIRE

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon-oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, ther...

  8. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  9. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  10. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  11. Haemopoietic progenitor cells in human peripheral blood

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1980-01-01

    The purpose of the investigation reported is to purify haemopoietic progenitor cells from human peripheral blood using density gradient centrifugation in order to isolate a progenitor cell fraction without immunocompetent cells. The purification technique of peripheral blood flow colony forming unit culture (CFU-c) by means of density gradient centrifugation and a combined depletion of various rosettes is described. The results of several 'in vitro' characteristics of purified CFU-c suspensions and of the plasma clot diffusion chamber culture technique are presented. Irradiation studies revealed that for both human bone marrow and peripheral blood the CFU-c were less radioresistant than clusters. Elimination of monocytes (and granulocytes) from the test suspensions induced an alteration in radiosensitivity pararmeters. The results obtained with the different techniques are described by analysing peripheral progenitor cell activity in myeloproliferative disorders. (Auth.)

  12. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  13. THE PROGENITOR OF GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S. E., E-mail: woosley@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-06-10

    The spectacular detection of gravitational waves (GWs) from GW150914 and its reported association with a gamma-ray burst (GRB) offer new insights into the evolution of massive stars. Here, it is shown that no single star of any mass and credible metallicity is likely to produce the observed GW signal. Stars with helium cores in the mass range 35–133 M {sub ⊙} encounter the pair instability and either explode or pulse until the core mass is less than 45 M {sub ⊙}, smaller than the combined mass of the observed black holes. The rotation of more massive helium cores is either braked by interaction with a slowly rotating hydrogen envelope, if one is present, or by mass loss, if one is not. The very short interval between the GW signal and the observed onset of the putative GRB in GW150914 is also too short to have come from a single star. A more probable model for making the gravitational radiation is the delayed merger of two black holes made by 70 and 90 M {sub ⊙} stars in a binary system. The more massive component was a pulsational-pair instability supernova before making the first black hole.

  14. Observational constraints from models of close binary evolution

    International Nuclear Information System (INIS)

    Greve, J.P. de; Packet, W.

    1984-01-01

    The evolution of a system of 9 solar masses + 5.4 solar masses is computed from Zero Age Main Sequence through an early case B of mass exchange, up to the second phase of mass transfer after core helium burning. Both components are calculated simultaneously. The evolution is divided into several physically different phases. The characteristics of the models in each of these phases are transformed into corresponding 'observable' quantities. The outlook of the system for photometric observations is discussed, for an idealized case. The influence of the mass of the loser and the initial mass ratio is considered. (Auth.)

  15. Apsidal Motion Study of Close Binary System CW Cephei

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    2015-12-01

    Full Text Available New observations for the times of minimum lights of a well-known apsidal motion star CW Cephei were made using a 0.6 m wide field telescope at Jincheon station of Chungbuk National University Observatory, Korea during the 2015 observational season. We determined new times of minimum lights from these observations and analyzed O-C diagrams together with collected times of minima to study both the apsidal motion and the Light Time Effect (LTE suggested in the system. The new periods of the apsidal motion and the LTE were calculated as 46.6 and 39.3 years, respectively, which were similar but improved accuracy than earlier ones investigated by Han et al. (2002, Erdem et al. (2004 and Wolf et al. (2006.

  16. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  17. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  18. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  19. Shrinking of Binaries in a WIMPY Background at the Galactic Center

    Science.gov (United States)

    Hills, J. G.

    2001-12-01

    The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.

  20. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  1. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  2. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo; Pagliari, Francesca

    2017-01-01

    by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient

  3. V1309 Scorpii: merger of a contact binary

    Science.gov (United States)

    Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-04-01

    Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims: Our aim is to investigate the nature of V1309 Sco. Methods: V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results: We find that the progenitor of V1309 Sco was a contact binary with an orbital period of ~1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions: For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type. Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. The photometric data analysed in the present paper are available from the OGLE Internet archive: ftp://ogle.astrouw.edu.pl/ogle/ogle3/V1309_SCO

  4. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  5. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  6. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    they can also be used to check ("calibrate") other, indirect methods to derive stellar parameters. It is on this background that the first discovery of an eclipsing binary system with two young, solar-like stars is of great interest. The Orion Binary Young stars are not so easy to find. One way is to look for their high-energy emission from a hot corona, created by their enhanced magnetic activity. The object RXJ 0529.4+0041 was first discovered in this way by the X-ray satellite ROSAT. Subsequent optical spectroscopy showed this object to be a young, low-mass spectroscopic binary system. And when a team of astronomers [1] used a 91-cm telescope at the Serra La Nave observing station on the slope of the Etna volcano (Sicily) to monitor the light curve, they also discovered that this system undergoes eclipses. All data confirm that RXJ 0529.4+0041 is located in the Orion Nebula at a distance of about 1500 light-years. This is one of the nearest star-forming regions and almost all stars in this area are quite young. Spectroscopic observations soon confirmed that the binary system was no exception. In particular, fairly strong absorption lines of the fragile element Lithium [4] were detected in both of the binary stars. As Lithium is known to be rapidly destroyed in stars, the finding of a relatively high content of this element implies that the stars must indeed be young. They were probably formed no more than 10 million years ago, i.e., in astronomical terms, they are "infant" stars . High-resolution spectroscopic observations, mostly with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , were used to determine the radial velocities of the stars. From these, a first determination of the orbital and stellar parameters was possible. The orbital period turned out to be short. The two stars swing around each other in just 3 days. This also means they must be very close to each other (but still entirely detached from each

  7. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  8. On the dynamics of binary galaxies

    International Nuclear Information System (INIS)

    Verner, D.A.; Chernin, A.D.

    1987-01-01

    The dynamics of close noncontact binary galaxies is investigated. It is demonsrated that the tidal interaction is ineffective for circularization of galaxy orbits. Nonsphericity of galaxies develops a torque in a binary system. For a pair of elliptical galaxies this torque leads to swinging of the galaxies with respect to the orbital plane (which can be observed as a rotation about the minor axis) and to the excitation of internal degrees of freedom. Besides, this pendulum effect may be effective for elliptical galaxies in clusters due to the presence of the torque produced by a cluster as a whole. In the case of spiral galaxies the torque leads to the precession of their rotational axes. However this effect seems to be too weak to be observable

  9. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Prato, Lisa [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Schaefer, Gail, E-mail: pkelly@astro.berkeley.edu [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States)

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  10. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R V and A V values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  11. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  12. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  13. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  14. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    International Nuclear Information System (INIS)

    Antonini, Fabio; Perets, Hagai B.

    2012-01-01

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that ∼0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e ∼> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  15. Wide Binaries in TGAS: Search Method and First Results

    Science.gov (United States)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-04-01

    Half of all stars reside in binary systems, many of which have orbital separations in excess of 1000 AU. Such binaries are typically identified in astrometric catalogs by matching the proper motions vectors of close stellar pairs. We present a fully Bayesian method that properly takes into account positions, proper motions, parallaxes, and their correlated uncertainties to identify widely separated stellar binaries. After applying our method to the >2 × 106 stars in the Tycho-Gaia astrometric solution from Gaia DR1, we identify over 6000 candidate wide binaries. For those pairs with separations less than 40,000 AU, we determine the contamination rate to be ~5%. This sample has an orbital separation (a) distribution that is roughly flat in log space for separations less than ~5000 AU and follows a power law of a -1.6 at larger separations.

  16. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  17. Origin of hemopoietic stromal progenitor cells in chimeras

    International Nuclear Information System (INIS)

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-01-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice

  18. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  19. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  20. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  1. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  2. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  3. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  4. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Ziolkowski, Janusz

    2009-01-01

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F NStoBH ∼ 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F NStoBH ∼ 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only ∼0-2. This is entirely consistent with the observed Galactic sample.

  5. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  6. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  7. Magnetic binary nanofillers

    International Nuclear Information System (INIS)

    Morales Mendoza, N.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R.

    2012-01-01

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  8. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  9. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    Science.gov (United States)

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Clonal sets of a binary relation

    Science.gov (United States)

    Zedam, Lemnaouar; Pérez-Fernández, Raúl; Bouremel, Hassane; De Baets, Bernard

    2018-05-01

    In a recent paper, we have introduced the notion of clone relation of a given binary relation. Intuitively, two elements are said to be "clones" if they are related in the same way w.r.t. every other element. In this paper, we generalize this notion from pairs of elements to sets of elements of any cardinality, resulting in the introduction of clonal sets. We investigate the most important properties of clonal sets, paying particular attention to the introduction of the clonal closure operator, to the analysis of the (lattice) structure of the set of clonal sets and to a distance metric expressing how close two elements are to being clones.

  11. Observational Investigations of the Progenitors of Supernovae

    Science.gov (United States)

    Lyman, J. D.

    2014-03-01

    Supernovae (SNe) are the spectacular deaths of stars and have shaped the universe we see today. Their far-reaching influence affects the chemical and dynamical evolution of galaxies, star formation, neutron star and black hole formation, and they are largely responsible for most of the heavy elements that make up the universe, including around 90 per cent of the reader. They also provide laboratories of nuclear and particle physics far beyond what we can construct on Earth and act as probes of extreme density and energy. This thesis presents new research into understanding the nature of the progenitor systems of various types of SNe, as well as presenting results that will allow their study to be more productive in the future, through use of automated pipelines and methods to increase the science value of discovered SNe. An environmental study of two peculiar types of transients ('Calcium-rich' and '2002cx-like'), which may not be true SNe, reveals extremely different ages of the exploding systems that will constrain the current theoretical effort into discovering the progenitor systems. The GRB-SN 120422A/2012bz is investigated and found to be an extremely luminous and energetic SN, even amongst the infamously bright GRB-SNe. A method is presented that allows an accurate reconstruction of the bolometric light curve of a core-collapse SN, which relies on only two optical filter observations - this will hugely reduce the observational cost of constructing bolometric light curves, a tool of great importance when hoping to constrain the nature of a SN explosion and hence its progenitor. Finally, this method is utilised to construct the largest bolometric CCSN bolometric light curve sample to date, and these are analytically modelled to reveal population statistics of the explosions, thus informing on the nature of the progenitors.

  12. EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE

    International Nuclear Information System (INIS)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2013-01-01

    We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M ☉ and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

  13. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  14. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    Science.gov (United States)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  15. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  16. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    Science.gov (United States)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  17. Closing remarks

    International Nuclear Information System (INIS)

    Reig, J.

    2007-01-01

    Good afternoon. Before providing the closing remarks on behalf of the NEA, I would like to take this opportunity and make some personal reflections, if you allow me Mr. Chairman. I have had the opportunity to take part in the three workshops on public communication organised by the NEA. In the first one in Paris in 2000, representing my country, Spain, and in the two last ones in Ottawa in 2004 and Tokyo today, on behalf of the NEA. The topics for the three workshops follow a logical order, first the focus was on investing in trust in a time when public communication was becoming a big challenge for the regulators. Second, maintaining and measuring public confidence to assess how credible regulators are in front of the public; and finally here in Tokyo, transparency, which is a basic element to achieve trust and credibility. In my view, a regulatory decision has three main components, it has to be technically sound. legally correct and well communicated. The emphasis in the early years was in the technical matters, till legal issues became a key element to achieve the political acceptance from governments and local authorities. Finally the public communication aspects resulted into a major effort and challenge to achieve social acceptance. (author)

  18. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as Alpha Centauri, the snowball growth mode provides a safe way for the bodies to grow through the problematic range with a size of 1˜50 km. In chapter 6, we investigate the intermediate stages of the planet formation in highly inclined cases. We find that the gas drag plays a crucial role in the evolution of the planetesimals' semi-major axis, and the results can be generally divided into two categories, i.e., the Kozai-on regime and the Kozai-off regime. For both regimes, a robust outcome over a wide range of parameters is that, the planetesimals migrate/jump inwards and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, the collision rates are high but the relative velocities are low, providing conditions which are favorable for the planetesimal growth, and potentially allow for the subsequent formation of planets. Finally, we summarize this thesis in chapter 7. Many open questions still remain in current research field of planet formation in binary systems, and the current Kepler project provides an unprecedented opportunity for such researches. A comprehensive understanding of planets in binaries requires placing them in a bigger context to include the formation and evolution of stars and/or clusters.

  19. On the merging rates of envelope-deprived components of binary systems which can give rise to supernova events

    International Nuclear Information System (INIS)

    Tornambe, Amedo

    1989-01-01

    We derive theoretical rates of mergings of envelope-deprived components of binary systems, which can give rise to supernova events. The effects of the various assumptions one is forced to make on the physical properties of the progenitor system and of its evolutionary behaviour through common envelope phases are discussed. Four cases have been analysed: CO-CO, He-CO, He-He double degenerate mergings and He star-CO dwarf merging. (author)

  20. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  1. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    Science.gov (United States)

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  2. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  3. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  4. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  5. International conference entitled Zdeněk Kopal’s Binary Star Legacy

    CERN Document Server

    Drechsel, Horst; ZDENEK KOPAL’S BINARY STAR LEGACY

    2005-01-01

    An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomyšl/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dyn...

  6. A binary neutron star GRB model

    International Nuclear Information System (INIS)

    Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.

    1998-01-01

    In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics

  7. Type-Ia Supernova Rates and the Progenitor Problem: A Review

    Science.gov (United States)

    Maoz, D.; Mannucci, F.

    2012-01-01

    The identity of the progenitor systems of type-Ia supernovae (SNe Ia) is a major unsolved problem in astrophysics. SN Ia rates are providing some striking clues. We review the basics of SN rate measurement, preach about some sins of SN rate measurement and analysis, and illustrate one of these sins with an analogy about Martian scientists. We review the recent progress in measuring SN Ia rates in various environments and redshifts, and their use to reconstruct the SN Ia delay-time distribution (DTD) - the SN rate versus time that would follow a hypothetical brief burst of star formation. A good number of DTD measurements, using a variety of methods, appear to be converging. At delays 1measurements show a similar, ~t-1, power-law shape. The DTD peaks at the shortest delays probed. This result supports the idea of a double-degenerate progenitor origin for SNe Ia. Single-degenerate progenitors may still play a role in producing short-delay SNe Ia, or perhaps all SNe Ia, if the red-giant donor channel is more efficient than is found by most theoretical models. The DTD normalization enjoys fairly good agreement (though perhaps some tension), among the various measurements, with a Hubble time-integrated DTD value of about 2+/-1 SNe Ia per 1000Msolar (stellar mass formed with a low-mass turnover initial mass function). The local WD binary population suggests that the WD merger rate can explain the Galactic SN Ia rate, but only if sub-Chandra mergers lead to SN Ia events. We point to some future directions that should lead to progress in the field, including measurement of the bivariate (delay and stretch) SN Ia response function.

  8. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  9. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy.

    Science.gov (United States)

    Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut

    2007-01-01

    Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled

  10. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  11. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  12. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  13. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  14. Evolutionary model of the subdwarf binary system LB3459

    International Nuclear Information System (INIS)

    Paczynski, B.; Dearborn, D.S.

    1980-01-01

    An evolutionary model is proposed for the eclipsing binary system LB 3459 (=CPD-60 0 389 = HDE 269696). The two stars are hot subdwarfs with degenerate helium cores, hydrogen burning shell sources and low mass hydrogen rich envelopes. The system probably evolved through two common envelope phases. After the first such phase it might look like the semi-detached binary AS Eri. Soon after the second common envelope phase the system might look like UU Sge, an eclipsing binary nucleus of a planetary nebula. The present mass of the optical (spectroscopic) primary is probably close to 0.24 solar mass, and the predicted radial velocity amplitude of the primary is about 150 km/s. The optical secondary should be hotter and bolometrically brighter, with a mass of 0.32 solar mass. The primary eclipse is an occultation. (author)

  15. Is the Link Between the Observed Velocities of Neutron Stars and their Progenitors a Simple Mass Relationship?

    Science.gov (United States)

    Bray, J. C.

    2017-11-01

    While the imparting of velocity `kicks' to compact remnants from supernovae is widely accepted, the relationship of the `kick' to the progenitor is not. We propose the `kick' is predominantly a result of conservation of momentum between the ejected and compact remnant masses. We propose the `kick' velocity is given by v kick = α(M ejecta/M remnant)+β, where α and β are constants we wish to determine. To test this we use the BPASS v2 (Binary Population and Spectral Synthesis) code to create stellar populations from both single star and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply `kicks' to neutron stars from supernovae in these models using a grid of α and β values, (from 0 to 200 km s-1 in steps of 10 km s-1), in three different `kick' orientations, (isotropic, spin-axis aligned and orthogonal to spin-axis) and weighted by three different Salpeter initial mass functions (IMF's), with slopes of -2.0, -2.35 and -2.70. We compare our synthetic 2D and 3D velocity probability distributions to the distributions provided by Hobbs et al. (1995).

  16. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  17. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  18. A NEW APPLICATION OF THE ASTROMETRIC METHOD TO BREAK SEVERE DEGENERACIES IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Park, Byeong-Gon; Humphrey, Andrew; Ryu, Yoon-Hyun

    2009-01-01

    When a source star is microlensed by one stellar component of widely separated binary stellar components, after finishing the lensing event, the event induced by the other binary star can be additionally detected. In this paper, we investigate whether the close/wide degeneracies in binary lensing events can be resolved by detecting the additional centroid shift of the source images induced by the secondary binary star in wide binary lensing events. From this investigation, we find that if the source star passes close to the Einstein ring of the secondary companion, the degeneracy can be easily resolved by using future astrometric follow-up observations with high astrometric precision. We determine the probability of detecting the additional centroid shift in binary lensing events with high magnification. From this, we find that the degeneracy of binary lensing events with a separation of ∼<20.0 AU can be resolved with a significant efficiency. We also estimate the waiting time for the detection of the additional centroid shift in wide binary lensing events. We find that for typical Galactic lensing events with a separation of ∼<20.0 AU, the additional centroid shift can be detected within 100 days, and thus the degeneracy of those events can be sufficiently broken within a year.

  19. Impairment of circulating endothelial progenitors in Down syndrome

    Directory of Open Access Journals (Sweden)

    Costa Valerio

    2010-09-01

    Full Text Available Abstract Background Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome. Methods Circulating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis. Results We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells. Conclusions Our data provide evidences for a reduced number and altered

  20. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  1. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    Science.gov (United States)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  2. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  3. WD+RG systems as the progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log P i - M i 2 ) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs ( o-dot ).

  4. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    Gelovani, Juri G.

    2008-01-01

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  5. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  6. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  7. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  8. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia

  9. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  10. Cytokinetics and Regulation of Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lajtha, L. G. [Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester (United Kingdom)

    1967-07-15

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  11. Cytokinetics and Regulation of Progenitor Cells

    International Nuclear Information System (INIS)

    Lajtha, L.G.

    1967-01-01

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  12. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  13. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    NARCIS (Netherlands)

    Nelemans, G.A.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the

  14. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  15. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  16. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  17. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  18. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  19. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  20. Binary Systematic Network Coding for Progressive Packet Decoding

    OpenAIRE

    Jones, Andrew L.; Chatzigeorgiou, Ioannis; Tassi, Andrea

    2015-01-01

    We consider binary systematic network codes and investigate their capability of decoding a source message either in full or in part. We carry out a probability analysis, derive closed-form expressions for the decoding probability and show that systematic network coding outperforms conventional net- work coding. We also develop an algorithm based on Gaussian elimination that allows progressive decoding of source packets. Simulation results show that the proposed decoding algorithm can achieve ...

  1. The optical polarization of X-ray binaries

    International Nuclear Information System (INIS)

    Dolan, J.F.

    1977-01-01

    Polarimetric observations of close binaries may reveal the presence of a black-hole secondary. The Einstein photometric effect will introduce a characteristic, time-varying signature upon the interstellar polarization. For several reasons, it is concluded that the short time-scale variability in the polarization in HDE 226868 is caused by Rayleigh scattering from gas streams known to exist in the system. X Persei may have a variable polarization consistent with the predicted effectics and (Auth)

  2. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  3. Erratum: New binaries among UV-selected, hot subdwarf stars and population properties (vol 450, pg 3514, 2015)

    Czech Academy of Sciences Publication Activity Database

    Kawka, Adela; Vennes, Stephane; O' Toole, S.; Nemeth, P.; Burton, D.; Kotze, E.; Buckley, D.A.H.

    2015-01-01

    Roč. 451, č. 4 (2015), s. 3986-3986 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : addenda * close binaries * spectroscopic Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  4. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  5. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  6. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Patricelli, B.; Razzano, M.; Fidecaro, F. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Cella, G. [INFN—Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Pian, E.; Stamerra, A. [Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Branchesi, M., E-mail: barbara.patricelli@pi.infn.it, E-mail: massimiliano.razzano@unipi.it, E-mail: giancarlo.cella@pi.infn.it, E-mail: francesco.fidecaro@unipi.it, E-mail: elena.pian@sns.it, E-mail: marica.branchesi@uniurb.it, E-mail: stamerra@oato.inaf.it [Universit\\a di Urbino, Via Aurelio Saffi, 2, 61029 Urbino (Italy)

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  7. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    Science.gov (United States)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  8. Astrophysical Implications of the Binary Black-hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  9. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  10. Reporter-Based Isolation of Developmental Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Eyemen Kheir

    2018-04-01

    Full Text Available The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS. The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

  11. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  12. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  13. THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

    International Nuclear Information System (INIS)

    Zhao, J. K.; Oswalt, T. D.; Willson, L. A.; Wang, Q.; Zhao, G.

    2012-01-01

    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main-sequence star and a white dwarf. The temperature and gravity of each white dwarf were measured by fitting theoretical model atmospheres to the observed spectrum using a χ 2 fitting algorithm. The cooling time and mass were obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main-sequence component to an uncertainty of about 0.17 dex in log t. The difference between the total age and white dwarf cooling time is taken as the main-sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main-sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 and 2 M ☉ . Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences—at least among progenitors with masses in the range of 1-2 M ☉ . A comparison of our observations to theoretical models suggests that low-mass stars preferentially lose mass on the red giant branch.

  14. The Binary Ties that Bind

    Science.gov (United States)

    Rose, Mike

    2008-01-01

    As any reader of "About Campus" knows, binary oppositions contribute to the definitions of institutional types--the trade school versus the liberal arts college, for example. They help define disciplines and subdisciplines and the status differentials among them: consider the difference in intellectual cachet as one moves from linguistics to…

  15. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  16. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  17. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  18. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  19. Binary logic is rich enough

    International Nuclear Information System (INIS)

    Zapatrin, R.R.

    1992-01-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs

  20. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    Science.gov (United States)

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  1. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  2. Expression and function of PML-RARA in the hematopoietic progenitor cells of Ctsg-PML-RARA mice.

    Directory of Open Access Journals (Sweden)

    Lukas D Wartman

    Full Text Available Because PML-RARA-induced acute promyelocytic leukemia (APL is a morphologically differentiated leukemia, many groups have speculated about whether its leukemic cell of origin is a committed myeloid precursor (e.g. a promyelocyte versus an hematopoietic stem/progenitor cell (HSPC. We originally targeted PML-RARA expression with CTSG regulatory elements, based on the early observation that this gene was maximally expressed in cells with promyelocyte morphology. Here, we show that both Ctsg, and PML-RARA targeted to the Ctsg locus (in Ctsg-PML-RARA mice, are expressed in the purified KLS cells of these mice (KLS = Kit(+Lin(-Sca(+, which are highly enriched for HSPCs, and this expression results in biological effects in multi-lineage competitive repopulation assays. Further, we demonstrate the transcriptional consequences of PML-RARA expression in Ctsg-PML-RARA mice in early myeloid development in other myeloid progenitor compartments [common myeloid progenitors (CMPs and granulocyte/monocyte progenitors (GMPs], which have a distinct gene expression signature compared to wild-type (WT mice. Although PML-RARA is indeed expressed at high levels in the promyelocytes of Ctsg-PML-RARA mice and alters the transcriptional signature of these cells, it does not induce their self-renewal. In sum, these results demonstrate that in the Ctsg-PML-RARA mouse model of APL, PML-RARA is expressed in and affects the function of multipotent progenitor cells. Finally, since PML/Pml is normally expressed in the HSPCs of both humans and mice, and since some human APL samples contain TCR rearrangements and express T lineage genes, we suggest that the very early hematopoietic expression of PML-RARA in this mouse model may closely mimic the physiologic expression pattern of PML-RARA in human APL patients.

  3. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  4. Harmine stimulates proliferation of human neural progenitors

    Directory of Open Access Journals (Sweden)

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  5. Role of liver progenitors in liver regeneration.

    Science.gov (United States)

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  6. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  7. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  8. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  9. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Katsuda, Satoru [RIKEN (The Institute of Physical and Chemical Research) Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Bamba, Aya [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan); Fukazawa, Yasushi, E-mail: keiichi.maeda@kusastro.kyoto-u.ac.jp [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2014-04-20

    Type IIb supernova (SN) 2011dh, with conclusive detection of an unprecedented yellow supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ∼500 days after the explosion on Chandra archival data, providing a solidly derived mass-loss rate of a YSG progenitor for the first time. We find that the circumstellar media should be dense, more than that expected from a Wolf-Rayet (W-R) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a W-R progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact W-R star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass-loss rate is ∼3 × 10{sup –6} M {sub ☉} yr{sup –1} for the mass-loss velocity of ∼20 km s{sup –1} in the final ∼1300 yr before the explosion. The derived mass-loss properties are largely consistent with the standard wind mass-loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at ≳ 1300 yr before the explosion, is a likely scenario to produce the YSG progenitor.

  10. The search for massive black hole binaries with LISA

    International Nuclear Information System (INIS)

    Cornish, Neil J; Porter, Edward K

    2007-01-01

    In this work we focus on the search and detection of massive black hole binary (MBHB) systems, including systems at high redshift. As well as expanding on previous works where we used a variant of Markov chain Monte Carlo (MCMC), called Metropolis-Hastings Monte Carlo, with simulated annealing, we introduce a new search method based on frequency annealing which leads to a more rapid and robust detection. We compare the two search methods on systems where we do and do not see the merger of the black holes. In the non-merger case, we also examine the posterior distribution exploration using a 7D MCMC algorithm. We demonstrate that this method is effective in dealing with the high correlations between parameters, has a higher acceptance rate than previously proposed methods and produces posterior distribution functions that are close to the prediction from the Fisher information matrix. Finally, after carrying out searches where there is only one binary in the data stream, we examine the case where two black hole binaries are present in the same data stream. We demonstrate that our search algorithm can accurately recover both binaries, and more importantly showing that we can safely extract the MBHB sources without contaminating the rest of the data stream

  11. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  12. Robustness Design for CNN Templates with Performance of Extracting Closed Domain

    International Nuclear Information System (INIS)

    Li Weidong; Min Lequan

    2006-01-01

    The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.

  13. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  14. Forming a constant density medium close to long gamma-ray burst

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Achterberg, A; Garia-Segura, G.

    2006-01-01

    Aims. The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to

  15. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  16. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  17. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  18. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes

    Directory of Open Access Journals (Sweden)

    Haiyun Pei

    2017-11-01

    Full Text Available Abstract Background Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. Methods In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. Results In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. Conclusions Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.

  19. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    Science.gov (United States)

    Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Weisz, D. R.; Baruffolo, A.; Bechtold, J.; Burwitz, V.; De Santis, C.; Gallozzi, S.; Garnavich, P. M.; Giallongo, E.; Hill, J. M.; Pogge, R. W.; Ragazzoni, R.; Speziali, R.; Thompson, D. J.; Wagner, R. M.

    2008-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ - 7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days, and the light curve is well fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V - Isimeq 1 mag, Teffsimeq 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however, note a second example. The SMC F0 supergiant R47 is a bright (MV ~ - 7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  20. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  1. Monte Carlo simulations of radio pulsars and their progenitors

    International Nuclear Information System (INIS)

    Dewey, R.J.; Cordes, J.M.

    1987-01-01

    Standard models of binary evolution were applied to a model of the main-sequence population to trace the paths by which a massive star may evolve into a neutron star. Using three different models of binary evolution, the relative number of neutron stars formed by each path was calculated. It was found that none of the models were able to reproduce both the observed velocity distribution of radio pulsars and the observed incidence of binary pulsars. 59 references

  2. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Hillwig, Todd C.; Schaub, S. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Frew, David J. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bodman, Eva H. L., E-mail: todd.hillwig@valpo.edu [Southeastern Association for Research in Astronomy (SARA) (United States)

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  3. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  4. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    Science.gov (United States)

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  5. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    International Nuclear Information System (INIS)

    Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gastón; Maeda, Keiichi; Benvenuto, Omar G.; Ergon, Mattias; Sollerman, Jesper; Benetti, Stefano; Ochner, Paolo; Tomasella, Lina; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star—with R ∼ 200 R ☉ —is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be ≈2 M ☉ , the explosion energy to be E = (6-10) × 10 50 erg, and the 56 Ni mass to be approximately 0.06 M ☉ . The progenitor star was composed of a helium core of 3-4 M ☉ and a thin hydrogen-rich envelope of ≈0.1M ☉ with a main-sequence mass estimated to be in the range of 12-15 M ☉ . Our models rule out progenitors with helium-core masses larger than 8 M ☉ , which correspond to M ZAMS ∼> 25M ☉ . This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  6. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Science.gov (United States)

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  7. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  8. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  9. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  10. Accreting Double White Dwarf Binaries: Implications for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki, E-mail: kremer@u.northwestern.edu, E-mail: katelyn.breivik@northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: s.larson@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University 2145 Sheridan Road, Evanston, IL 60201 (United States)

    2017-09-10

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  11. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  12. Accreting Double White Dwarf Binaries: Implications for LISA

    International Nuclear Information System (INIS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr −2 by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  13. A model for the massive binary V340 Muscae

    Science.gov (United States)

    Hauck, Norbert

    2016-02-01

    A synthetic light curve has been fitted to photometric data from the ASAS-3 database. The parameters of the best solution are well consistent with those derived from stellar models for both components for an initial metallicity Z=0.020 and a common age of 5 Myr. Therefore, we can reliably estimate the absolute dimensions of this close eclipsing binary system. Apparently, the O-type primary star has a mass of about 22.65 Msun and a radius of 10.35 Rsun. For the secondary star, likely a late B-type dwarf, we obtain about 3.1 Msun and 2.1 Rsun. Their mass ratio of about 0.138 might be the lowest found so far in O-type binaries. [English and German online-version of this paper available under www.bav-astro.eu/rb/rb2016-2/1.html].

  14. On the Roche constants for main-sequence binaries

    International Nuclear Information System (INIS)

    Giannuzzi, M.A.

    1979-01-01

    The ratios C 1 /C 2 of the constants defining the equipotential surfaces which describe the external forms of the components of a close binary system have been calculated on the basis of evolutionary models. Theoretical systems have been considered allowing for a wide range of input parameters (masses and separation) and taking into account the evolutionary effects on the radii of the stars during their Main-Sequence lifetime. The systems have not undergone any transfer of matter and are representative of detached binaries with Main-sequence components. The ratios of the constants are confined in limited intervals and, for the highest values of the mass-ratios, they are clustered around the unit. (Auth.)

  15. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    International Nuclear Information System (INIS)

    Lacy, C.H.; Frueh, M.L.; McDonald Observatory, Austin)

    1985-01-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, and apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references

  16. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  17. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    Science.gov (United States)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  18. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kalomeni, B.; Rappaport, S.; Molnar, M. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson, L. [Department of Physics, Bishop’s University, 2600 College St., Sherbrooke, Quebec, QC J1M 1Z7 (Canada); Quintin, J. [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada); Yakut, K., E-mail: kalomeni@mit.edu, E-mail: sar@mit.edu, E-mail: momchil.molnar@gmail.com, E-mail: belinda.kalomeni@ege.edu.tr, E-mail: kadri.yakut@ege.edu.tr, E-mail: lnelson@ubishops.ca, E-mail: jquintin@physics.mcgill.ca [Department of Astronomy and Space Sciences, Ege University, 35100, İzmir (Turkey)

    2016-12-10

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  19. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    International Nuclear Information System (INIS)

    Kalomeni, B.; Rappaport, S.; Molnar, M.; Nelson, L.; Quintin, J.; Yakut, K.

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M ⊙ ), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P orb – M don ) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb ( M wd ) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb – M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  20. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700

    Directory of Open Access Journals (Sweden)

    Bogensberger David

    2017-12-01

    Full Text Available Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40 M⊙, an elliptical orbit with an eccentricity of 0.376(98 and an orbital period of 11.77(67 years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  1. Massive Binary Black Holes in the Cosmic Landscape

    Science.gov (United States)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  2. Development and molecular composition of the hepatic progenitor cell niche.

    Science.gov (United States)

    Vestentoft, Peter Siig

    2013-05-01

    End-stage liver diseases represent major health problems that are currently treated by liver transplantation. However, given the world-wide shortage of donor livers novel strategies are needed for therapeutic treatment. Adult stem cells have the ability to self-renew and differentiate into the more specialized cell types of a given organ and are found in tissues throughout the body. These cells, whose progeny are termed progenitor cells in human liver and oval cells in rodents, have the potential to treat patients through the generation of hepatic parenchymal cells, even from the patient's own tissue. Little is known regarding the nature of the hepatic progenitor cells. Though they are suggested to reside in the most distal part of the biliary tree, the canal of Hering, the lack of unique surface markers for these cells has hindered their isolation and characterization. Upon activation, they proliferate and form ductular structures, termed "ductular reactions", which radiate into the hepatic parenchyma. The ductular reactions contain activated progenitor cells that not only acquire a phenotype resembling that observed in developing liver but also display markers of differentiation shared with the cholangiocytic or hepatocytic lineages, the two parenchymal hepatic cell types. Interactions between the putative progenitor cells, the surrounding support cells and the extracellular matrix scaffold, all constituting the progenitor cell niche, are likely to be important for regulating progenitor cell activity and differentiation. Therefore, identifying novel progenitor cell markers and deciphering their microenvironment could facilitate clinical use. The aims of the present PhD thesis were to expand knowledge of the hepatic progenitor cell niche and characterize it both during development and in disease. Several animal models of hepatic injury are known to induce activation of the progenitor cells. In order to identify possible progenitor cell markers and niche components

  3. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  4. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  5. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  6. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Science.gov (United States)

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  7. COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Mészáros, Peter; Ioka, Kunihito

    2013-01-01

    Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ∼10 4 sky –1 day –1 , the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs

  8. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ~ 0.01-0.1 of rV = 4.26$+1.39 +0.10\\atop{-1.93 -0.10}$h3 x 10-4 SNe Ia/yr/Mpc3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

  9. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ∼ 0.01-0.1 of r V = 4.26 -1.93 -0.10 +1.39 +0.10 h 3 x 10 -4 SNe Ia/yr/Mpc 3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae

  10. Obstructive sleep apnea and endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  11. Stem- and progenitor cell proliferation in the dentate gyrus of the reeler mouse.

    Directory of Open Access Journals (Sweden)

    Mirjam Sibbe

    Full Text Available Adult hippocampal neurogenesis has been implicated in hippocampus-dependent learning and memory. Furthermore, the decline of neurogenesis accompanying aging could be involved in age-related cognitive deficits. It is believed that the neural stem cell niche comprises a specialized microenvironment regulating stem cell activation and maintenance. However, little is known about the significance of the extracellular matrix in controlling adult stem cells. Reelin is a large glycoprotein of the extracelluar matrix known to be of crucial importance for neuronal migration. Here, we examined the local interrelation between Reelin expressing interneurons and putative hippocampal stem cells and investigated the effects of Reelin deficiency on stem cell and progenitor cell proliferation. Reelin-positive cells are found in close vicinity to putative stem cell processes, which would allow for stem cell regulation by Reelin. We investigated the proliferation of stem cells in the Reelin-deficient reeler hippocampus by Ki67 labeling and found a strong reduction of mitotic cells. A detailed analysis of dividing Type 1, type 2 and type 3 cells indicated that once a stem cell is recruited for proliferation, the progression to the next progenitor stage as well as the number of mitotic cycles is not altered in reeler. Our data point to a role for Reelin in either regulating stem cell quiescence or maintenance.

  12. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.

    Directory of Open Access Journals (Sweden)

    Liang Lei

    Full Text Available Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM. Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors.To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival.This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.

  13. ANOTHER LOOK AT THE EASTERN BANDED STRUCTURE: A STELLAR DEBRIS STREAM AND A POSSIBLE PROGENITOR

    International Nuclear Information System (INIS)

    Grillmair, C. J.

    2011-01-01

    Using the Sloan Digital Sky Survey Data Release 7, we re-examine the Eastern Banded Structure (EBS), a stellar debris stream first discovered in Data Release 5 and more recently detected in velocity space by Schlaufman et al. The visible portion of the stream is 18 0 long, lying roughly in the Galactic Anticenter direction and extending from Hydra to Cancer. At an estimated distance of 9.7 kpc, the stream is ∼170 pc across on the sky. The curvature of the stream implies a fairly eccentric box orbit that passes close to both the Galactic center and to the Sun, making it dynamically distinct from the nearby Monoceros, Anticenter, and GD-1 streams. Within the stream is a relatively strong, 2 0 -wide concentration of stars with a very similar color-magnitude distribution that we designate Hydra I. Given its prominence within the stream and its unusual morphology, we suggest that Hydra I is the last vestige of EBS's progenitor, possibly already unbound or in the final throes of tidal dissolution. Though both Hydra I and the EBS have a relatively high-velocity dispersion, given the comparatively narrow width of the stream and the high frequency of encounters with the bulge and massive constituents of the disk that such an eccentric orbit would entail, we suggest that the progenitor was likely a globular cluster and that both it and the stream have undergone significant heating over time.

  14. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2017-06-01

    Full Text Available Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ β-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes.

  15. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  16. File list: ALL.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Multipotent_otic_progenitor mm9 All antigens Others Multipotent otic progeni...ncedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  17. File list: ALL.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Induced_neural_progenitors mm9 All antigens Neural Induced neural progeni....biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  18. File list: ALL.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Induced_neural_progenitors mm9 All antigens Neural Induced neural progeni....biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  19. Regulation of Mammary Progenitor Cells by p53 and Parity

    Science.gov (United States)

    2011-01-01

    quantitative PCR system (Stratagene). To knockdown Notch1 in TM40A cells, siRNA (s70698 and s70700) were purchased from Ambion. s70698 siRNA sense sequence: 5...hours after transfect ion and real-tim e quantitative P CR was used to confirm the knockdown efficiency. Results Label and chase progenitor cells...cells contained 0.8% o f DsRed positiv e (DsR +) progenitor cells (Fig. 1B). The mammosphere-forming capacity of DsR+ cells is 3.8-fold greater

  20. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  1. PLANETESIMAL ACCRETION IN BINARY SYSTEMS: ROLE OF THE COMPANION'S ORBITAL INCLINATION

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin

    2009-01-01

    Recent observations show that planets can reside in close binary systems with stellar separation of only ∼20 AU. However, planet formation in such close binary systems is a challenge to current theory. One of the major theoretical problems occurs in the intermediate stage-planetesimals accretion into planetary embryos-during which the companion's perturbations can stir up the relative velocities (utriV) of planetesimals and thus slow down or even cease their growth. Recent studies have shown that conditions could be even worse for accretion if the gas-disk evolution was included. However, all previous studies assumed a two-dimensional disk and a coplanar binary orbit. Extending previous studies by including a three-dimensional gas disk and an inclined binary orbit with small relative inclination of i B = 0. 0 1-5 0 , we numerically investigate the conditions for planetesimal accretion at 1-2 AU, an extension of the habitable zone (∼1-1.3 AU), around α Centauri A in this paper. Inclusion of the binary inclination leads to the following: (1) differential orbital phasing is realized in the three-dimensional space, and thus different-sized bodies are separated from each other, (2) total impact rate is lower, and impacts mainly occur between similar-sized bodies, (3) accretion is more favored, but the balance between accretion and erosion remains uncertain, and the 'possible accretion region' extends up to 2 AU when assuming an optimistic Q* (critical specific energy that leads to catastrophic fragmentation), and (4) impact velocities (utriV) are significantly reduced but still much larger than their escape velocities, which infers that planetesimals grow by means of type II runaway mode. As a conclusion, the inclusion of a small binary inclination is a promising mechanism that favors accretion, opening a possibility that planet formation in close binary systems can go through the difficult stage of planetesimals accretion into planetary embryos.

  2. TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, Noelia [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, Scotland (United Kingdom); Tissera, Patricia B. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC. 67 Suc. 28, C1428ZAA, Ciudad de Buenos Aires (Argentina); Matteucci, Francesca, E-mail: nj22@st-andrews.ac.uk [Dipartimento di Fisica, Universita’ di Trieste, Via G. B. Tiepolo, 11, I-34100, Trieste (Italy)

    2015-09-10

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  3. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  4. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  5. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  6. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    International Nuclear Information System (INIS)

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-01-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  7. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  8. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  9. Endothelial progenitor cells display clonal restriction in multiple myeloma

    International Nuclear Information System (INIS)

    Braunstein, Marc; Özçelik, Tayfun; Bağişlar, Sevgi; Vakil, Varsha; Smith, Eric LP; Dai, Kezhi; Akyerli, Cemaliye B; Batuman, Olcay A

    2006-01-01

    In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V H ). In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V H primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI

  10. File list: Oth.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  11. File list: His.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural progeni...tors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  12. File list: DNS.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  13. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  18. File list: Unc.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  19. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  1. File list: Oth.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: DNS.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Multipotent_otic_progenitor mm9 DNase-seq Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  3. File list: DNS.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  4. File list: His.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural progeni...tors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  5. File list: His.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  6. File list: His.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  7. File list: His.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  8. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  9. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  10. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  11. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: Pol.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736457,SRX736456 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  14. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  15. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  16. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  18. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: Unc.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  20. File list: Oth.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  1. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  3. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: Unc.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  5. File list: Unc.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  6. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: Pol.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736456,SRX736457 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  8. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: Pol.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  11. File list: Pol.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  12. File list: Pol.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  13. File list: Oth.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323564,SRX323573 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  14. File list: Unc.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  15. File list: Unc.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  16. File list: His.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural proge...nitors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  17. File list: Oth.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323573,SRX323564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  18. File list: Oth.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323564,SRX323573 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  19. File list: Pol.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  20. File list: His.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural proge...nitors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  1. File list: Unc.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  2. File list: DNS.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural pro...genitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  3. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  4. Formation and evolution of tidal binary systems

    International Nuclear Information System (INIS)

    Mcmillan, S.L.W.; Mcdermott, P.N.; Taam, R.E.

    1987-01-01

    Cross sections for the tidal capture binary formation process are calculated for a variety of stellar models. The formalism used in the determination of the energy dissipated by a close encounter between two unbound stars and the associated capture cross sections are reviewed. The case of an n = 3/2 polytropic structure is calculated with the formalism, and the behavior of realistic stellar models is considered, including Population II main-sequence stars with masses of 0.4, 0.8, and 1.5 solar. The calculation is repeated for a slightly evolved 0.8 solar mass star just as it begins to leave the main sequence, and the behavior of more evolved stars is discussed. A quasi-adiabatic analysis is used to estimate the time scale on which the pulsation energy is actually dissipated internally or radiated away. This analysis also indicates where in the star most of the dissipation takes place, allowing the stellar response to be estimated by including the heating in the equations of stellar structure. 41 references

  5. School Closings in Philadelphia

    Science.gov (United States)

    Jack, James; Sludden, John

    2013-01-01

    In 2012, the School District of Philadelphia closed six schools. In 2013, it closed 24. The closure of 30 schools has occurred amid a financial crisis, headlined by the district's $1.35 billion deficit. School closures are one piece of the district's plan to cut expenditures and close its budget gap. The closures are also intended to make…

  6. The double-lined spectroscopic binary Iota Pegasi

    Science.gov (United States)

    Fekel, F. C.; Tomkin, J.

    1983-01-01

    Reticon observations of the spectroscopic binary Iota Peg at 6430 A show the secondary star's weak, but well defined lines. Determinations have accordingly been made of the secondary velocity curve as well as that of the primary, together with the orbits and the minimum masses of the two components. The 1.31 + or - 0.02 and 0.81 + or - 0.01 solar mass minimum masses are sufficiently close to the expected actual masses to suggest eclipses, despite the relatively long, 10.2-day period. The spectral type of the secondary is estimated to be G8 V.

  7. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  8. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  9. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  10. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

    DEFF Research Database (Denmark)

    Paul, Franziska; Arkin, Ya'ara; Giladi, Amir

    2015-01-01

    Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory m...

  11. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  12. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    NARCIS (Netherlands)

    Guadix, Juan Antonio; Orlova, Valeria V.; Giacomelli, Elisa; Bellin, Milena; Ribeiro, Marcelo C.; Mummery, Christine L.; Pérez-Pomares, José M.; Passier, Robert

    2017-01-01

    Human pluripotent stem cells (hPSCs) are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced) to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA)

  13. Mobilization of hematopoietic stem and progenitor cells in mice

    NARCIS (Netherlands)

    Robinson, Simon N; van Os, Ronald P; Bunting, Kevin

    2008-01-01

    Animal models have added significantly to our understanding of the mechanism(s) of hematopoietic stem and progenitor cell (HSPC) mobilization. Such models suggest that changes in the interaction between the HSPC and the hematopoietic microenvironmental 'niche' (cellular and extracellular components)

  14. Endothelial progenitor cell-based neovascularization : implications for therapy

    NARCIS (Netherlands)

    Krenning, Guido; van Luyn, Marja J. A.; Harmsen, Martin C.

    Ischemic cardiovascular events are a major cause of death globally. Endothelial progenitor cell (EPC)-based approaches can result in improvement of vascular perfusion and might offer clinical benefit. However, although functional improvement is observed, the lack of long-term engraftment of EPCs

  15. The progenitor of Nova Cygni 2006 (=V2362 Cyg)

    NARCIS (Netherlands)

    Steeghs, D.; Greimel, R.; Drew, J.; Irwin, M.; Gaensicke, B.; Groot, P.J.; Knigge, C.

    2006-01-01

    We report on the detection of the likely progenitor to Nova Cygni 2006 = V2362 Cyg (IAUC #8697, #8698, ATel #792) using images from the INT Photometric H-Alpha Survey (IPHAS; http://www.iphas.org). The field containing the classical nova was observed as part of our galactic plane survey on Aug. 3rd

  16. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin-eosin...

  17. Mass ejection in failed supernovae: variation with stellar progenitor

    Science.gov (United States)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  18. Hmga2 regulates self-renewal of retinal progenitors.

    Science.gov (United States)

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  19. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  20. Characteristics of meniscus progenitor cells migrated from injured meniscus.

    Science.gov (United States)

    Seol, Dongrim; Zhou, Cheng; Brouillette, Marc J; Song, Ino; Yu, Yin; Choe, Hyeong Hun; Lehman, Abigail D; Jang, Kee W; Fredericks, Douglas C; Laughlin, Barbara J; Martin, James A

    2017-09-01

    Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    International Nuclear Information System (INIS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  2. Cardiac stem/progenitor cells, secreted proteins, and proteomics

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Abraham, M.R.; Van Eyk, J.E.

    2009-01-01

    Roč. 583, č. 11 (2009), s. 1800-1807 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z40310501 Keywords : Cardiac stem/progenitor cell * paracrine factor * secretome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.541, year: 2009

  3. Simulating merging binary black holes with nearly extremal spins

    International Nuclear Information System (INIS)

    Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela

    2011-01-01

    Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

  4. Anomalous relaxation in binary mixtures: a dynamic facilitation picture

    International Nuclear Information System (INIS)

    Moreno, A J; Colmenero, J

    2007-01-01

    Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures

  5. Black Hole Binaries: The Journey from Astrophysics to Physics

    Science.gov (United States)

    McClintock, Jeffrey E.

    This paper is based on a talk presented at the 208th Meeting of the American Astronomical Society in the session on Short-Period Binary Stars. The talk (and this paper in turn) are based on a parent paper, which is a comprehensive review by Remillard and McClintock (2006; hereafter RM06) on the X-ray properties of binary stars that contain a stellar black-hole primary. We refer to these systems as black hole binaries. In this present paper, which follows closely the content of the talk, we give sketches of some of the main topics covered in RM06. For a detailed account of the topics discussed herein and a full list of references (which are provided only sketchily below), see RM06 and also a second review paper by McClintock & Remillard (2006; hereafter MR06). There is one subject that is treated in more detail here than in the two review papers just cited, namely, the measurement of black hole spin; on this topic, see McClintock et al. (2006) for further details and references.

  6. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  7. Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants

    Science.gov (United States)

    Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia

    2018-05-01

    We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.

  8. Period changes of the long-period cataclysmic binary EX Draconis

    Czech Academy of Sciences Publication Activity Database

    Pilarčík, L.; Wolf, M.; Dubovsky, P.A.; Hornoch, Kamil; Kotková, Lenka

    2012-01-01

    Roč. 539, March (2012), A153/1-A153/5 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : close binaries * eclipsing * star s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  9. Long-term activity of two ultra-compact X-ray binaries

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2004-01-01

    Roč. 132, - (2004), s. 656-659 ISSN 0920-5632. [BeppoSAX Conference /2./. Amsterdam, 05.05.2003-08.05.2003] Institutional research plan: CEZ:AV0Z1003909 Keywords : neutron stars * X-rays * close binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.944, year: 2004

  10. A globally accurate theory for a class of binary mixture models

    Science.gov (United States)

    Dickman, Adriana G.; Stell, G.

    The self-consistent Ornstein-Zernike approximation results for the 3D Ising model are used to obtain phase diagrams for binary mixtures described by decorated models, yielding the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.

  11. Mass loss from OB supergiants in x-ray binary systems

    International Nuclear Information System (INIS)

    Alme, M.L.; Wilson, J.R.

    1975-01-01

    A study of the atmospheres of OB supergiants in x-ray binary systems indicates that when the stellar surface is close enough to the saddle in the gravitational potential to provide a mass transfer rate adequate to power a compact x-ray source, large-amplitude variations in the rate of mass flow occur. 9 references

  12. Light curve of the CX Cep eclipsing binary system and characteristics of a Wolf-Rayet star

    International Nuclear Information System (INIS)

    Lipunova, N.A.; Cherepashchuk, A.M.

    1982-01-01

    The photoelectric B, V, R observations of the eclipsing Wolf-Rayet binary CX Cep (WN 5 + 08V, V approximately equal to 12sup(m),1, p approximately equal to 2sup(d),127) have been carried out. The physical characteristics of the WN 5 star, the core radius r 0 =(4.5+-2.5) Rsub(S) (Rsub(S) is the Sun radius) and the brightness temperature of the core Tsub(b)>50 000 K, are determined from the analysis of the light curve lambdasub(eff) approximately equal to 6 000 A. These characteristics are close to those of the WN 5 star in the eclipsing Wolf-Rayet binary V 444 Cyg. The results of the interpretation of the light curves of two eclipsing Wolf-Rayet binaries (V 444 Cyg and CX Cep) confirm the conclusions of the modern theory of evolution of massive close binary systems [ru

  13. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  14. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    Science.gov (United States)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  15. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jing Song

    2018-03-01

    Full Text Available A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG, a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133+ and CD133− cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133+ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet. αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  16. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.

    Science.gov (United States)

    Song, Jing; Ma, Dongshen; Xing, Yun; Tang, Shanshan; Alahdal, Murad; Guo, Jiamin; Pan, Yi; Zhang, Yanfeng; Shen, Yumeng; Wu, Qiong; Lu, Zhou; Jin, Liang

    2018-03-22

    A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133 - cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  17. [Stem and progenitor cells in biostructure of blood vessel walls].

    Science.gov (United States)

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  18. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  19. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  20. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  1. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  2. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  3. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  4. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  5. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  6. More surprises from the violent gamma-ray binary LS 2883 /B1259-63.

    Science.gov (United States)

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.

    2018-01-01

    We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.

  7. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  8. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  9. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  10. Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis

    Directory of Open Access Journals (Sweden)

    Samira Chabab

    2016-01-01

    Full Text Available The heart arises from distinct sources of cardiac progenitors that independently express Mesp1 during gastrulation. The precise number of Mesp1 progenitors that are specified during the early stage of gastrulation, and their clonal behavior during heart morphogenesis, is currently unknown. Here, we used clonal and mosaic tracing of Mesp1-expressing cells combined with quantitative biophysical analysis of the clonal data to define the number of cardiac progenitors and their mode of growth during heart development. Our data indicate that the myocardial layer of the heart derive from ∼250 Mesp1-expressing cardiac progenitors born during gastrulation. Despite arising at different time points and contributing to different heart regions, the temporally distinct cardiac progenitors present very similar clonal dynamics. These results provide insights into the number of cardiac progenitors and their mode of growth and open up avenues to decipher the clonal dynamics of progenitors in other organs and tissues.

  11. Common-envelope ejection in massive binary stars Implications for the progenitors of GW150914 and GW151226

    Czech Academy of Sciences Publication Activity Database

    Kruckow, M.U.; Tauris, T.M.; Langer, N.; Szécsi, Dorottya; Marchant, P.; Podsiadlowski, Ph.

    2016-01-01

    Roč. 596, December (2016), A58/1-A58/13 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Institutional support: RVO:67985815 Keywords : stars * evolution * black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  12. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  13. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Arcones, Almudena [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 2, D-64289 Darmstadt (Germany)

    2012-09-20

    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.

  14. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    International Nuclear Information System (INIS)

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-01-01

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves

  15. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  16. La violencia de hijos adolescentes contra sus progenitores La violencia de hijos adolescentes contra sus progenitores

    Directory of Open Access Journals (Sweden)

    Concepción Aroca Montolío

    2013-10-01

    Full Text Available According to Prosecutor’s Office of the Minor, the accusation interposed by mothers and/or fathers victims by theirs children, along 2007 were 2603, in 2008 amounted 4.211, in 2009 there were 5.209 and in 2010 there were 8.000 accusations. Suede this worrying increase, the principal aim of our article is to check the scientific international and national documentation, from 1957 until the year 2010 that analyses the phenomenon of the adolescent violence against parents, to achieve an approximation to its keys that there allows us the comprehension and analysis of this serious familiar problem. For it we will analyse: (a the importance of this crime by means of criminological mediators: prevalence and incidence; (b the age and sex variables’ aggressors to be able to establish a basic profile about theirs and, (c the violence types that the teenagers wield to damage, prejudice and suffering against their progenitors, with the aim to obtain what they want. The information obtained in this research review and qualitative analysis, change in base to the methodology used and the type of sample under study to obtain conclusions. Even though, we wantto do research into needs to investigate this type of familiar violence, and from there, to do researches with rigorous scientific methodologies, unifying criteria and variables to be investigating, to be able to anticipate in this increasing problem that the parents have. Según la Fiscalía del Menor en el año 2007, las denuncias interpuestas por madres y/o padres, víctimas de malos tratos por sus hijos e hijas menores de edad, fueron 2.683. En 2008 ascendieron a 4.211, en 2009 se presentaron 5.209 y en el año 2010 se registraron 8.000 denuncias. Ante éste preocupante incremento, el objetivo principal de nuestro artículo es revisar la documentación científica que analiza la violencia filio-parental,  desde 1957 hasta el año 2011, para lograr una aproximación a sus claves que nos permita la

  17. Restaurants closed over Christmas

    CERN Multimedia

    2011-01-01

    The restaurants will be closed during the Christmas holiday period : please note that all three CERN Restaurants will be closed from 5 p.m. on Wednesday, 21 December until Wednesday, 4 January inclusive. The Restaurants will reopen on Thursday, 5 January 2012.

  18. Orbital tidal variability in the eccentric early type binary Iota Orionis

    International Nuclear Information System (INIS)

    Stevens, I.R.

    1988-01-01

    Iota Orionis is a bright, highly eccentric, massive early type binary, which has been studied recently in UV wavelengths, for evidence of stellar wind variability caused by tidal interactions between the two stars. No gross variability was found, but small scale perturbations in the UV resonance line profiles were noted. Here, using a radiatively driven stellar wind model for eccentric binaries, the results of numerical modelling of the stellar wind of Iota Orionis are presented. These calculations suggest that increased mass-loss from the primary star will occur close to the periastron passage, but that the enhancements will be short lived, and observed probably as redshifted emission features. (author)

  19. Geometry of convex polygons and locally minimal binary trees spanning these polygons

    International Nuclear Information System (INIS)

    Ivanov, A O; Tuzhilin, A A

    1999-01-01

    In previous works the authors have obtained an effective classification of planar locally minimal binary trees with convex boundaries. The main aim of the present paper is to find more subtle restrictions on the possible structure of such trees in terms of the geometry of the given boundary set. Special attention is given to the case of quasiregular boundaries (that is, boundaries that are sufficiently close to regular ones in a certain sense). In particular, a series of quasiregular boundaries that cannot be spanned by a locally minimal binary tree is constructed

  20. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods