WorldWideScience

Sample records for cloning genomic organization

  1. [A review of the genomic and gene cloning studies in trees].

    Science.gov (United States)

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  2. A set of BAC clones spanning the human genome.

    NARCIS (Netherlands)

    Krzywinski, M.; Bosdet, I.; Smailus, D.; Chiu, R.; Mathewson, C.; Wye, N.; Barber, S.; Brown-John, M.; Chan, S.; Chand, S.; Cloutier, A.; Girn, N.; Lee, D.; Masson, A.; Mayo, M.; Olson, T.; Pandoh, P.; Prabhu, A.L.; Schoenmakers, E.F.P.M.; Tsai, M.Y.; Albertson, D.; Lam, W.W.; Choy, C.O.; Osoegawa, K.; Zhao, S.; Jong, P.J. de; Schein, J.; Jones, S.; Marra, M.A.

    2004-01-01

    Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human

  3. Clone DB: an integrated NCBI resource for clone-associated data

    Science.gov (United States)

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  4. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB

    Science.gov (United States)

    2013-01-01

    Background Adaptation of Pseudomonas aeruginosa to different living conditions is accompanied by microevolution resulting in genomic diversity between strains of the same clonal lineage. In order to detect the impact of colonized habitats on P. aeruginosa microevolution we determined the genomic diversity between the highly virulent cystic fibrosis (CF) isolate CHA and two temporally and geographically unrelated clonal variants. The outcome was compared with the intraclonal genome diversity between three more closely related isolates of another clonal complex. Results The three clone CHA isolates differed in their core genome in several dozen strain specific nucleotide exchanges and small deletions from each other. Loss of function mutations and non-conservative amino acid replacements affected several habitat- and lifestyle-associated traits, for example, the key regulator GacS of the switch between acute and chronic disease phenotypes was disrupted in strain CHA. Intraclonal genome diversity manifested in an individual composition of the respective accessory genome whereby the highest number of accessory DNA elements was observed for isolate PT22 from a polluted aquatic habitat. Little intraclonal diversity was observed between three spatiotemporally related outbreak isolates of clone TB. Although phenotypically different, only a few individual SNPs and deletions were detected in the clone TB isolates. Their accessory genome mainly differed in prophage-like DNA elements taken up by one of the strains. Conclusions The higher geographical and temporal distance of the clone CHA isolates was associated with an increased intraclonal genome diversity compared to the more closely related clone TB isolates derived from a common source demonstrating the impact of habitat adaptation on the microevolution of P. aeruginosa. However, even short-term habitat differentiation can cause major phenotypic diversification driven by single genomic variation events and uptake of phage

  5. Genetic stability of pestivirus genomes cloned into BACs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse

    pestivirus genomes to demonstrate the suitability of the BAC vector for harbouring pestivirus genomes. Two BAC clones, comprising the complete genomes of BDV Gifhorn (pBeloGif3) and CSFV Paderborn (pBeloPader10) were passaged 15 times in E.coli representing at least 360 bacteria generations. From 15th...

  6. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    Visfatin was a newly identified adipocytokine, which was involved in various physiologic and pathologic processes of organisms. The cDNA structure, genomic organization and expression patterns of silver Prussian carp visfatin were described in this report. The silver Prussian carp visfatin cDNA cloned from the liver was ...

  7. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    Directory of Open Access Journals (Sweden)

    Misako Yajima

    2018-04-01

    Full Text Available Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  8. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    Science.gov (United States)

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  9. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    Science.gov (United States)

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  10. ReMixT: clone-specific genomic structure estimation in cancer.

    Science.gov (United States)

    McPherson, Andrew W; Roth, Andrew; Ha, Gavin; Chauve, Cedric; Steif, Adi; de Souza, Camila P E; Eirew, Peter; Bouchard-Côté, Alexandre; Aparicio, Sam; Sahinalp, S Cenk; Shah, Sohrab P

    2017-07-27

    Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal signals and jointly predict mixture proportions, clone-specific segment copy number, and clone specificity of breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt .

  11. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.

    1988-01-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  12. Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice

    International Nuclear Information System (INIS)

    Gotoh, Koshichi; Inoue, Kimiko; Ogura, Atsuo; Oishi, Michio

    2006-01-01

    In-gel competitive reassociation (IGCR) is a method for differential subtraction of polymorphic (RFLP) DNA fragments between two DNA samples of interest without probes or specific sequence information. Here, we applied the IGCR procedure to two cloned mice derived from an F1 hybrid of the C57BL/6Cr and DBA/2 strains, in order to investigate the possibility of genomic alteration in the cloned mouse genomes. Each of the five of the genomic alterations we detected between the two cloned mice corresponded to the 'intra-strain' polymorphisms in the C57BL/6Cr and DBA/2 mouse strains. Our result suggests that no severe aberration of genome sequences occurs due to somatic cell nuclear transfer

  13. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  14. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  15. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  16. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    International Nuclear Information System (INIS)

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor

  17. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    International Nuclear Information System (INIS)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C.

    1988-01-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3')-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3' flip and 3' flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of [ 35 S]methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3'-terminal deletions was prepared from separately subcloned 3'-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3' end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus

  18. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  19. Biological Parameters and Molecular Markers of Clone CL Brener - The Reference Organism of the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    1997-11-01

    Full Text Available Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT medium at 28oC is 58±13 hr; (b differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d blood forms are highly infective to mice; (e blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a isoenzymatic profiles are characteristic of zymodeme ZB; (b PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c schizodeme, randomly amplified polymorphic DNA (RAPD and DNA fingerprinting analyses were performed

  20. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  1. Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277.

    Science.gov (United States)

    Silveira, Melise Chaves; Albano, Rodolpho Mattos; Asensi, Marise Dutra; Carvalho-Assef, Ana Paula D'Alincourt

    2016-08-01

    Multidrug-resistant Pseudomonas aeruginosa clone ST277 is disseminated in Brazil where it is mainly associated with the presence of metallo-β-lactamase SPM-1. Furthermore, it carries the class I integron In163 and a 16S rRNA methylase rmtD that confers aminoglycoside resistance. To analyze the genetic characteristics that might be responsible for the success of this endemic clone, genomes of four P. aeruginosa strains that were isolated in distinct years and in different Brazilian states were sequenced. The strains differed regarding the presence of the genes blaSPM-1 and rmtD. Genomic comparisons that included genomes of other clones that have spread worldwide from this species were also performed. These analyses revealed a 763,863bp region in the P. aeruginosa chromosome that concentrates acquired genetic structures comprising two new genomic islands (PAGI-13 and PAGI-14), a mobile element that could be used for ST277 fingerprinting and a recently reported Integrative and Conjugative Element (ICE) associated to blaSPM-1. The genetic elements rmtD and In163 are inserted in PAGI-13 while PAGI-14 has genes encoding proteins related to type III restriction system and phages. The data reported in this study provide a basis for a clearer understanding of the genetic content of clone ST277 and illustrate the mechanisms that are responsible for the success of these endemic clones. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. cDNA, genomic cloning and sequence analysis of ribosomal protein ...

    African Journals Online (AJOL)

    enoh

    2012-03-13

    Mar 13, 2012 ... cDNA and the genomic sequence of RPS4X were cloned successfully from ... S4 genes plays a role in Turner syndrome; however, this ..... Project of Educational Committee of Sichuan Province ... Molecular biology of the cell.

  3. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    RPS16 of eukaryote is a component of the 40S small ribosomal subunit encoded by RPS16 gene and is also a homolog of prokaryotic RPS9. The cDNA and genomic sequence of RPS16 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription-polymerase chain ...

  4. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis

    International Nuclear Information System (INIS)

    Kato, Nobuyuki; Hijikata, Makoto; Ootsuyama, Yuko; Nakagawa, Masanori; Ohkoshi, Showgo; Sugimura, Takashi; Shimotohno, Kunitada

    1990-01-01

    The nucleotide sequence of the Japanese type of hepatitis C virus (HCV-J) genome, consisting of 9413 nucleotides, was determined by analyses of cDNA clones from plasma specimens from Japanese patients with chronic hepatitis. HCV-J genome contains a long open reading frame that can encode a sequence of 3010 amino acid residues. Comparison of HCV-J with the American isolate of HCV showed 22.6% difference in nucleotide sequence and 15.1% difference in amino acid sequence. Thus HCV-J and the American isolate of HCV are probably different subtypes of HCV. The relationship of HCV-J with other animal RNA virus families and the putative organization of the HCV-J genome are discussed

  5. A BAC clone fingerprinting approach to the detection of human genome rearrangements

    Science.gov (United States)

    Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco

    2007-01-01

    We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769

  6. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories........ Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil...

  7. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stabl...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  8. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  9. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    Science.gov (United States)

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  10. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    Science.gov (United States)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang; Høiby, Niels; Andersen, Leif Percival; Givskov, Michael; Song, Zhijun; Yang, Liang

    2013-01-01

    The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell. PMID:23538992

  11. cDNA, genomic sequence cloning and analysis of the ribosomal ...

    African Journals Online (AJOL)

    Ribosomal protein L37A (RPL37A) is a component of 60S large ribosomal subunit encoded by the RPL37A gene, which belongs to the family of ribosomal L37AE proteins, located in the cytoplasm. The complementary deoxyribonucleic acid (cDNA) and the genomic sequence of RPL37A were cloned successfully from giant ...

  12. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  13. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  14. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  15. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2011-03-01

    Full Text Available Abstract Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo

  16. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Science.gov (United States)

    2011-01-01

    Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female

  17. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  18. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  19. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  20. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses.

    Directory of Open Access Journals (Sweden)

    Inmaculada Garcia-Heredia

    Full Text Available BACKGROUND: Metaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on uncultured and little known cellular lineages, and hence might not be present in databases. METHODOLOGY AND PRINCIPAL FINDINGS: Here we have used a different approach, the cloning of viral DNA into fosmids before sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail phages (Caudovirales. CONCLUSIONS AND SIGNIFICANCE: We found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing. An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection.

  1. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.).

    Science.gov (United States)

    Čížková, Jana; Hřibová, Eva; Humplíková, Lenka; Christelová, Pavla; Suchánková, Pavla; Doležel, Jaroslav

    2013-01-01

    Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.

  2. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  3. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  4. Resurrection of a Bull by Cloning from Organs Frozen without Cryoprotectant in a −80°C Freezer for a Decade

    Science.gov (United States)

    Hoshino, Yoichiro; Hayashi, Noboru; Taniguchi, Shunji; Kobayashi, Naohiko; Sakai, Kenji; Otani, Tsuyoshi; Iritani, Akira; Saeki, Kazuhiro

    2009-01-01

    Frozen animal tissues without cryoprotectant have been thought to be inappropriate for use as a nuclear donor for somatic cell nuclear transfer (SCNT). We report the cloning of a bull using cells retrieved from testicles that had been taken from a dead animal and frozen without cryoprotectant in a −80°C freezer for 10 years. We obtained live cells from defrosted pieces of the spermatic cords of frozen testicles. The cells proliferated actively in culture and were apparently normal. We transferred 16 SCNT embryos from these cells into 16 synchronized recipient animals. We obtained five pregnancies and four cloned calves developed to term. Our results indicate that complete genome sets are maintained in mammalian organs even after long-term frozen-storage without cryoprotectant, and that live clones can be produced from the recovered cells. PMID:19129919

  5. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  6. The first insight into the salvia (lamiaceae) genome via bac library construction and high-throughput sequencing of target bac clones

    International Nuclear Information System (INIS)

    Hao, D.C.; Vautrin, S.; Berges, H.; Chen, S.L.

    2015-01-01

    Salvia is a representative genus of Lamiaceae, a eudicot family with significant species diversity and population adaptibility. One of the key goals of Salvia genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of medicinal plants to increase their health and productivity. Large-insert genomic libraries are a fundamental tool for achieving this purpose. We report herein the construction, characterization and screening of a gridded BAC library for Salvia officinalis (sage). The S. officinalis BAC library consists of 17,764 clones and the average insert size is 107 Kb, corresponding to 3 haploid genome equivalents. Seventeen positive clones (average insert size 115 Kb) containing five terpene synthase (TPS) genes were screened out by PCR and 12 of them were subject to Illumina HiSeq 2000 sequencing, which yielded 28,097,480 90-bp raw reads (2.53 Gb). Scaffolds containing sabinene synthase (Sab), a Sab homolog, TPS3 (kaurene synthase-like 2), copalyl diphosphate synthase 2 and one cytochrome P450 gene were retrieved via de novo assembly and annotation, which also have flanking noncoding sequences, including predicted promoters and repeat sequences. Among 2,638 repeat sequences, there are 330 amplifiable microsatellites. This BAC library provides a new resource for Lamiaceae genomic studies, including microsatellite marker development, physical mapping, comparative genomics and genome sequencing. Characterization of positive clones provided insights into the structure of the Salvia genome. These sequences will be used in the assembly of a future genome sequence for S. officinalis. (author)

  7. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs

    Directory of Open Access Journals (Sweden)

    Timothy P. Sheets

    2016-12-01

    Full Text Available The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR and associated nuclease Cas9 (CRISPR/Cas9, it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100% generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.

  8. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.

    2007-01-01

    We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific pri......We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group......-specific primers in combination with a terminal restriction fragment length polymorphism profile. Intact cells were extracted from the environmental sample, and fluorescent in situ hybridization probing with Cy3-labeled probes designed from the clone library was subsequently used to detect the organisms...... of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene...

  9. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  10. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  11. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Maury, Jerome; Germann, Susanne Manuela; Jacobsen, Simo Abdessamad

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred...... of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci...... and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP...

  12. Gene design, cloning and protein-expression methods for high-value targets at the Seattle Structural Genomics Center for Infectious Disease

    International Nuclear Information System (INIS)

    Raymond, Amy; Haffner, Taryn; Ng, Nathan; Lorimer, Don; Staker, Bart; Stewart, Lance

    2011-01-01

    An overview of one salvage strategy for high-value SSGCID targets is given. Any structural genomics endeavor, particularly ambitious ones such as the NIAID-funded Seattle Structural Genomics Center for Infectious Disease (SSGCID) and Center for Structural Genomics of Infectious Disease (CSGID), face technical challenges at all points of the production pipeline. One salvage strategy employed by SSGCID is combined gene engineering and structure-guided construct design to overcome challenges at the levels of protein expression and protein crystallization. Multiple constructs of each target are cloned in parallel using Polymerase Incomplete Primer Extension cloning and small-scale expressions of these are rapidly analyzed by capillary electrophoresis. Using the methods reported here, which have proven particularly useful for high-value targets, otherwise intractable targets can be resolved

  13. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  14. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.

    Science.gov (United States)

    Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A

    2017-11-14

    The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread

  15. Cloning-free CRISPR

    NARCIS (Netherlands)

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each

  16. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  17. What is Cloning?

    Science.gov (United States)

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  18. DNA cloning: a practical approach. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Glover, D M [ed.

    1985-01-01

    This book is written for the advanced molecular biologist who needs a detailed discussion of cloning technology. Topics of discussion include: genomic library cloning (size of a genomic library, screening methods, chromosome walking, host cell genetics, and general features of bacteriophage Iambda); use of gt10 and gt11 cDNA lambda vectors and general cDNA cloning; RNase H-Pol I cDNA synthesis; method of detecting fusion proteins produced in bacteria; pEMBL family of double-stranded plasmid vectors that can be used to generate single strands; Escherichia coli transformation; production of mutations in cloned sequences; and cloning in gram negative bacteria.

  19. Production of healthy cloned mice from bodies frozen at -20 degrees C for 16 years.

    Science.gov (United States)

    Wakayama, Sayaka; Ohta, Hiroshi; Hikichi, Takafusa; Mizutani, Eiji; Iwaki, Takamasa; Kanagawa, Osami; Wakayama, Teruhiko

    2008-11-11

    Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the "resurrection" of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at -20 degrees C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we used a modified cloning method and examined nuclei from several organs for use in nuclear transfer attempts. Using brain nuclei as nuclear donors, we established embryonic stem cell lines from the cloned embryos. Healthy cloned mice were then produced from these nuclear transferred embryonic stem cells by serial nuclear transfer. Thus, nuclear transfer techniques could be used to "resurrect" animals or maintain valuable genomic stocks from tissues frozen for prolonged periods without any cryopreservation.

  20. Cloning humans? Biological, ethical, and social considerations.

    Science.gov (United States)

    Ayala, Francisco J

    2015-07-21

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits.

  1. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  2. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones

    OpenAIRE

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showe...

  3. Production of healthy cloned mice from bodies frozen at −20°C for 16 years

    Science.gov (United States)

    Wakayama, Sayaka; Ohta, Hiroshi; Hikichi, Takafusa; Mizutani, Eiji; Iwaki, Takamasa; Kanagawa, Osami; Wakayama, Teruhiko

    2008-01-01

    Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the “resurrection” of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at −20 °C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we used a modified cloning method and examined nuclei from several organs for use in nuclear transfer attempts. Using brain nuclei as nuclear donors, we established embryonic stem cell lines from the cloned embryos. Healthy cloned mice were then produced from these nuclear transferred embryonic stem cells by serial nuclear transfer. Thus, nuclear transfer techniques could be used to “resurrect” animals or maintain valuable genomic stocks from tissues frozen for prolonged periods without any cryopreservation. PMID:18981419

  4. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  5. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    Science.gov (United States)

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  6. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    Science.gov (United States)

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  7. An overview on genome organization of marine organisms.

    Science.gov (United States)

    Costantini, Maria

    2015-12-01

    In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights. Copyright © 2015. Published by Elsevier B.V.

  8. Three concepts of cloning in human beings.

    Science.gov (United States)

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  9. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    Science.gov (United States)

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  10. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  11. Genomic stability and physiological assessments of live offspring sired by a bull clone, Starbuck II.

    Science.gov (United States)

    Ortegon, H; Betts, D H; Lin, L; Coppola, G; Perrault, S D; Blondin, P; King, W A

    2007-01-01

    It appears that overt phenotypic abnormalities observed in some domestic animal clones are not transmitted to their progeny. The current study monitored Holstein heifers sired by a bull clone, Starbuck II, from weaning to puberty. Genomic stability was assessed by telomere length status and chromosomal analysis. Growth parameters, blood profiles, physical exams and reproductive parameters were assessed for 12 months (and compared to age-matched control heifers). Progeny sired by the clone bull did not differ (P>0.05) in weight, length and height compared to controls. However, progeny had lower heart rates (HR) (P=0.009), respiratory rates (RR) (P=0.007) and body temperature (P=0.03). Hematological profiles were within normal ranges and did not differ (P>0.05) between both groups. External and internal genitalia were normal and both groups reached puberty at expected ages. Progeny had two or three ovarian follicular waves per estrous cycle and serum progesterone concentrations were similar (P=0.99) to controls. Telomere lengths of sperm and blood cells from Starbuck II were not different (P>0.05) than those of non-cloned cattle; telomere lengths of progeny were not different (P>0.05) from age-matched controls. In addition, progeny had normal karyotypes in peripheral blood leukocytes compared to controls (89.1% versus 86.3% diploid, respectively). In summary, heifers sired by a bull clone had normal chromosomal stability, growth, physical, hematological and reproductive parameters, compared to normal heifers. Furthermore, they had moderate stress responses to routine handling and restraint.

  12. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  13. Draft Genome Sequences of the Probiotic Enterococcus faecalis Symbioflor 1 Clones DSM16430 and DSM16434

    OpenAIRE

    Fritzenwanker, Moritz; Chakraborty, Anindita; Hain, Torsten; Zimmermann, Kurt; Domann, Eugen

    2016-01-01

    The probiotic Symbioflor 1 is a historical concoction of 10 isolates of Enterococcus faecalis. Pulsed-field gel electrophoresis revealed two groups: one comprising eight identical clones (DSM16430, DSM16432, DSM16433, DSM16435 to DSM16439) and a further two isolates (DSM16431, DSM16434) with marginally different profiles. Here, we report a comparative analysis of the draft genome sequences of representative isolates.

  14. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  15. Distant homology between yeast photoreactivating gene fragment and human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1985-01-01

    Hybridization of DNA coding for the yeast DNA photolyase to human genomic DNA appears to allow one to determine whether a conserved enzyme is coded for in human cells. Under stringent conditions (68 0 C), hybridization is not found between the cloned yeast fragment (YEp13-phr1) and human or chick genomic digests. At less stringent conditions (60 0 C), hybridization is observed with chick digests, indicating evolutionary divergence even among organisms capable of photo-reactivation. At 50 0 C, weak hybridization with human digests was observed, indicating further divergence from the cloned gene. Data concerning the precise extent of homology and methods to clone the chick gene for use as another probe are discussed

  16. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  17. EasyClone-MarkerFree

    DEFF Research Database (Denmark)

    Fabre, Mathew Malcolm Jessop; Jakociunas, Tadas; Stovicek, Vratislav

    2016-01-01

    Clone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained...

  18. Genomic validation of PB 260 clone of rubber (Hevea brasiliensis) at Cikumpay Plantation by SSR marker

    Science.gov (United States)

    Royani, J. I.; Safarrida, A.; Rachmawati, I.; Khairiyah, H.; Mustika, I. P.; Suyono, A.; Rudiyana, Y.; Kubil; Nurjaya; Arianto, A.

    2017-05-01

    Rubber from Hevea brasiliensis is the only commercial natural rubber in the world. Propagation of rubber trees usually done by grafting and seed germination. BPPT had been producing rubber tree by in vitro technique with embryo somatic methods. Validation of mother plant for in vitro propagation is important to compare between mother plant and propagated plants. The aim for this research was to validation of PB 260 clone that planted at Cikumpay Plantation by SSR marker. Sampling of 10 rubber leaves were done at Cikumpay Plantation based on GPS position from the area of PB 260 clone. Rubber leaves were isolated with CTAB modification method to obtained DNA. Four of SSR primers from rubber, i.e.: hmac 4, hmac 5, hmct 1, and hmct 5, were used as primers to amplification of rubber DNA. The result showed that no band that different from 10 rubber of PB 260 clone at Cikumpay Plantation. This research will continue to compare genomic validation between mother plant and propagated plants that had been produced from BPPT.

  19. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  20. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    Science.gov (United States)

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  1. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing.

    Science.gov (United States)

    Silar, Philippe; Barreau, Christian; Debuchy, Robert; Kicka, Sébastien; Turcq, Béatrice; Sainsard-Chanet, Annie; Sellem, Carole H; Billault, Alain; Cattolico, Laurence; Duprat, Simone; Weissenbach, Jean

    2003-08-01

    A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.

  2. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC Lineages

    Directory of Open Access Journals (Sweden)

    Sabiha Shaik

    2017-10-01

    Full Text Available Escherichia coli sequence type 131 (ST131, a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12, ST405 (n = 10, and ST648 (n = 18, and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.

  3. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  4. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  5. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide bel...

  6. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    Directory of Open Access Journals (Sweden)

    Ritland Carol

    2009-08-01

    Full Text Available Abstract Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs and full-length (FLcDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR and a cytochrome P450 (CYP720B4 from a non-arrayed genomic BAC library of white spruce (Picea glauca. Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR and 94 kbp (CYP720B4 long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs, high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene

  7. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    Science.gov (United States)

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  8. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity.

    Science.gov (United States)

    Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin

    2018-05-01

    Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  9. Genetics, genomes and cloning the biotechnology revolution

    CERN Document Server

    CERN. Geneva

    1999-01-01

    As this century draws to a close, spectacular advances in the fields of genomics and genetics are opening up dramatic new horizons for medicine. For much of the 20th century, genetic research has focused on rare diseases caused by mutations in a particular gene. However, more recently it has been realised that common genetic variations (polymorphisms), interacting with the environment, can influence an individual's susceptibility to diseases widely represented in our populations (e.g. mental illness and asthma), redefining the term "genetic disease". Officially starting in 1990, the Human Genome Project was a $3-billion, 15-year program to find the estimated 80,000 human genes and determine the sequence of the 3 billion DNA building blocks that underlie all of human biology and its diversity. The resulting boom in genetic information and technologies, not only from humans, but from many other organisms, means that we now have new tools to understand and treat normal and disease states. This information is bei...

  10. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  11. Structure and expression strategy of the genome of Culex pipiens densovirus, a mosquito densovirus with an ambisense organization.

    Science.gov (United States)

    Baquerizo-Audiot, Elizabeth; Abd-Alla, Adly; Jousset, Françoise-Xavière; Cousserans, François; Tijssen, Peter; Bergoin, Max

    2009-07-01

    The genome of all densoviruses (DNVs) so far isolated from mosquitoes or mosquito cell lines consists of a 4-kb single-stranded DNA molecule with a monosense organization (genus Brevidensovirus, subfamily Densovirinae). We previously reported the isolation of a Culex pipiens DNV (CpDNV) that differs significantly from brevidensoviruses by (i) having a approximately 6-kb genome, (ii) lacking sequence homology, and (iii) lacking antigenic cross-reactivity with Brevidensovirus capsid polypeptides. We report here the sequence organization and transcription map of this virus. The cloned genome of CpDNV is 5,759 nucleotides (nt) long, and it possesses an inverted terminal repeat (ITR) of 285 nt and an ambisense organization of its genes. The nonstructural (NS) proteins NS-1, NS-2, and NS-3 are located in the 5' half of one strand and are organized into five open reading frames (ORFs) due to the split of both NS-1 and NS-2 into two ORFs. The ORF encoding capsid polypeptides is located in the 5' half of the complementary strand. The expression of NS proteins is controlled by two promoters, P7 and P17, driving the transcription of a 2.4-kb mRNA encoding NS-3 and of a 1.8-kb mRNA encoding NS-1 and NS-2, respectively. The two NS mRNAs species are spliced off a 53-nt sequence. Capsid proteins are translated from an unspliced 2.3-kb mRNA driven by the P88 promoter. CpDNV thus appears as a new type of mosquito DNV, and based on the overall organization and expression modalities of its genome, it may represent the prototype of a new genus of DNV.

  12. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    DEFF Research Database (Denmark)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang

    2013-01-01

    , comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU...... within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical...... genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39...

  13. Cloning Mice.

    Science.gov (United States)

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  14. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  15. Genomic organization of the rat alpha 2u-globulin gene cluster.

    Science.gov (United States)

    McFadyen, D A; Addison, W; Locke, J

    1999-05-01

    The alpha 2u-globulin are a group of similar proteins, belonging to the lipocalin superfamily of proteins, that are synthesized in a subset of secretory tissues in rats. The many alpha 2u-globulin isoforms are encoded by a multigene family that exhibits extensive homology. Despite a high degree of sequence identity, individual family members show diverse expression patterns involving complex hormonal, tissue-specific, and developmental regulation. Analysis suggests that there are approximately 20 alpha 2u-globulin genes in the rat genome. We have used fluorescence in situ hybridization (FISH) to show that the alpha 2u-globulin genes are clustered at a single site on rat Chromosome (Chr) 5 (5q22-24). Southern blots of rat genomic DNA separated by pulsed field gel electrophoresis indicated that the alpha 2u-globulin genes are contained on two NruI fragments with a total size of 880 kbp. Analysis of three P1 clones containing alpha 2u-globulin genes indicated that the alpha 2u-globulin genes are tandemly arranged in a head-to-tail fashion. The organization of the alpha 2u-globulin genes in the rat as a tandem array of single genes differs from the homologous major urinary protein genes in the mouse, which are organized as tandem arrays of divergently oriented gene pairs. The structure of these gene clusters may have consequences for the proposed function, as a pheromone transporter, for the protein products encoded by these genes.

  16. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals.

    Science.gov (United States)

    Nascimento, Ana P B; Ortiz, Mauro F; Martins, Willames M B S; Morais, Guilherme L; Fehlberg, Lorena C C; Almeida, Luiz G P; Ciapina, Luciane P; Gales, Ana C; Vasconcelos, Ana T R

    2016-01-01

    Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centers. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5899 coding genes relative to the reference strain P. aeruginos a PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the bla SPM-1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.

  17. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes.

    Science.gov (United States)

    Noh, Ju Young; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Seo, Gi Won; Kim, Dong Hyun; Patnaik, Hongray Howrelia; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Han, Yeon Soo

    2014-01-25

    Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (molitor. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  19. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  20. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  1. Genomic analysis of Xenopus organizer function

    Directory of Open Access Journals (Sweden)

    Suhai Sándor

    2006-06-01

    Full Text Available Abstract Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues

  2. Human cloning: Eastern Mediterranean Region perspective.

    Science.gov (United States)

    Abdur Rab, M; Khayat, M H

    2006-01-01

    Recent advances in genomics and biotechnology have ushered in a new era in health development. Therapeutic cloning possesses enormous potential for revolutionizing medical and therapeutic techniques. Cloning technology, however, is perceived as having the potential for reproductive cloning, which raises serious ethical and moral concerns. It is important that the Islamic countries come to a consensus on this vital issue. Developing science and technology for better health is a religious and moral obligation. There is an urgent need for Muslim scholars to discuss the issue of stem cell research and cloning rationally; such dialogue will not only consider the scientific merits but also the moral, ethical and legal implications.

  3. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals

    Directory of Open Access Journals (Sweden)

    Ana Paula Barbosa Nascimento

    2016-12-01

    Full Text Available Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centres. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5 899 coding genes relative to the reference strain P. aeruginosa PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the blaSPM-1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.

  4. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various i...

  5. Human Ro60 (SSA2) genomic organization and sequence alterations, examined in cutaneous lupus erythematosus.

    Science.gov (United States)

    Millard, T P; Ashton, G H S; Kondeatis, E; Vaughan, R W; Hughes, G R V; Khamashta, M A; Hawk, J L M; McGregor, J M; McGrath, J A

    2002-02-01

    The Ro 60 kDa protein (Ro60 or SSA2) is the major component of the Ro ribonucleoprotein (Ro RNP) complex, to which an immune response is a specific feature of several autoimmune diseases. The genomic organization and any sequence variation within the DNA encoding Ro60 are unknown. To characterize the Ro60 gene structure and to assess whether any sequence alterations might be associated with serum anti-Ro antibody in subacute cutaneous lupus erythematosus (SCLE), thus potentially providing new insight into disease pathogenesis. The cDNA sequence for Ro60 was obtained from the NCBI database and used for a BLAST search for a clone containing the entire genomic sequence. The intron-exon borders were confirmed by designing intronic primer pairs to flank each exon, which were then used to amplify genomic DNA for automated sequencing from 36 caucasian patients with SCLE (anti-Ro positive) and 49 with discoid LE (DLE, anti-Ro negative), in addition to 36 healthy caucasian controls. Heteroduplex analysis of polymerase chain reaction (PCR) products from patients and controls spanning all Ro60 exons (1-8) revealed a common bandshift in the PCR products spanning exon 7. Sequencing of the corresponding PCR products demonstrated an A > G substitution at nucleotide position 1318-7, within the consensus acceptor splice site of exon 7 (GenBank XM001901). The allele frequencies were major allele A (0.71) and minor allele G (0.29) in 72 control chromosomes, with no significant differences found between SCLE patients, DLE patients and controls. The genomic organization of the DNA encoding the Ro60 protein is described, including a common polymorphism within the consensus acceptor splice site of exon 7. Our delineation of a strategy for the genomic amplification of Ro60 forms a basis for further examination of the pathological functions of the Ro RNP in autoimmune disease.

  6. Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, "Bengal Bay Clone".

    Science.gov (United States)

    Monecke, Stefan; Baier, Vico; Coombs, Geoffrey W; Slickers, Peter; Ziegler, Albrecht; Ehricht, Ralf

    2013-12-20

    The PVL-positive ST772-MRSA-V is an emerging community-associated (CA-) MRSA clone that has been named Bengal Bay Clone since most patients have epidemiological connections to the Indian subcontinent. It is found increasingly common in other areas of the world. One isolate of ST772-MRSA-V was sequenced using the Illumina Genome Analyzer System. After initial assembling the multiple sequence contigs were analysed using different in-house annotation scripts. Results were compared to microarray hybridisation results of clinical isolates of ST772-MRSA-V, of related strains and to another ST772-MRSA-V genome sequence. According to MLST e-burst analysis, ST772-MRSA-V belongs to Clonal Complex (CC)1, differing from ST1 only in one MLST allele (pta-22). However, there are several additional differences including agr alleles (group II rather than III), capsule type (5 rather than 8), the presence of the egc enterotoxin gene cluster and of the enterotoxin homologue ORF CM14 as well as the absence of the enterotoxin H gene seh. Enterotoxin genes sec and sel are present. ST772-MRSA-V harbours the genes encoding enterotoxin A (sea) and PVL (lukS/F-PV). Both are located on the same prophage. ST772-MRSA-V may have emerged from the same lineage as globally spread CC1 and CC5 strains. It has acquired a variety of virulence factors, and for a CA-MRSA strain it has an unusually high number of genes associated with antibiotic resistance.

  7. Quantitative discrimination of Aggregatibacter actinomycetemcomitans highly leukotoxic JP2 clone from non-JP2 clones in diagnosis of aggressive periodontitis.

    Science.gov (United States)

    Yoshida, Akihiro; Ennibi, Oum-Keltoum; Miyazaki, Hideo; Hoshino, Tomonori; Hayashida, Hideaki; Nishihara, Tatsuji; Awano, Shuji; Ansai, Toshihiro

    2012-10-11

    Aggregatibacter actinomycetemcomitans is the etiological agent of periodontitis, and there is a strong association between clone JP2 and aggressive periodontitis in adolescents of African descent. The JP2 clone has an approximately 530-bp deletion (∆530) in the promoter region of the lkt/ltx gene, which encodes leukotoxin, and this clone has high leukotoxic activity. Therefore, this clone is very important in aggressive periodontitis. To diagnose this disease, culture methods and conventional PCR techniques are used. However, quantitative detection based on qPCR for the JP2 clone has not been developed due to genetic difficulties. In this study, we developed a qPCR-based quantification method specific to the JP2 clone. Based on our analysis of the DNA sequence of the lkt/ltx gene and its flanking region, we designed a reverse primer specific for the ∆530 deletion border sequence and developed a JP2-specific PCR-based quantification method using this primer. We also analyzed the DNA sequence of the ∆530 locus and found it to be highly conserved (97-100%) among 17 non-JP2 strains. Using the ∆530 locus, we designed a qPCR primer-probe set specific to non-JP2 clones. Next, we determined the numbers of JP2 and non-JP2 clone cells in the periodontal pockets of patients with aggressive periodontitis. The JP2-specific primers specifically amplified the genomic DNA of the A. actinomycetemcomitans JP2 clone and did not react with other bacterial DNA, whereas the non-JP2 specific primers reacted only with A. actinomycetemcomitans non-JP2 clones. Samples from the 88 periodontal sites in the 11 patients with aggressive periodontitis were analyzed. The bacterial cell numbers in 88 periodontal sites ranged from 0 to 4.8 × 10(8) (mean 1.28 × 10(7)) for JP2 clones and from 0 to 1.6 × 10(6) for non-JP2 clones (mean 1.84 × 10(5)). There were significant differences in the JP2 cell number between a clinical attachment level (CAL) ≤6 mm and a level ≥7 mm (p clones. This

  8. The modest beginnings of one genome project.

    Science.gov (United States)

    Kaback, David B

    2013-06-01

    One of the top things on a geneticist's wish list has to be a set of mutants for every gene in their particular organism. Such a set was produced for the yeast, Saccharomyces cerevisiae near the end of the 20th century by a consortium of yeast geneticists. However, the functional genomic analysis of one chromosome, its smallest, had already begun more than 25 years earlier as a project that was designed to define most or all of that chromosome's essential genes by temperature-sensitive lethal mutations. When far fewer than expected genes were uncovered, the relatively new field of molecular cloning enabled us and indeed, the entire community of yeast researchers to approach this problem more definitively. These studies ultimately led to cloning, genomic sequencing, and the production and phenotypic analysis of the entire set of knockout mutations for this model organism as well as a better concept of what defines an essential function, a wish fulfilled that enables this model eukaryote to continue at the forefront of research in modern biology.

  9. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti.

    Science.gov (United States)

    Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine; Vergnaud, Gilles

    2014-01-01

    “Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.

  10. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  11. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    Science.gov (United States)

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  12. Shedding genomic light on Aristotle's lantern.

    Science.gov (United States)

    Sodergren, Erica; Shen, Yufeng; Song, Xingzhi; Zhang, Lan; Gibbs, Richard A; Weinstock, George M

    2006-12-01

    Sea urchins have proved fascinating to biologists since the time of Aristotle who compared the appearance of their bony mouth structure to a lantern in The History of Animals. Throughout modern times it has been a model system for research in developmental biology. Now, the genome of the sea urchin Strongylocentrotus purpuratus is the first echinoderm genome to be sequenced. A high quality draft sequence assembly was produced using the Atlas assembler to combine whole genome shotgun sequences with sequences from a collection of BACs selected to form a minimal tiling path along the genome. A formidable challenge was presented by the high degree of heterozygosity between the two haplotypes of the selected male representative of this marine organism. This was overcome by use of the BAC tiling path backbone, in which each BAC represents a single haplotype, as well as by improvements in the Atlas software. Another innovation introduced in this project was the sequencing of pools of tiling path BACs rather than individual BAC sequencing. The Clone-Array Pooled Shotgun Strategy greatly reduced the cost and time devoted to preparing shotgun libraries from BAC clones. The genome sequence was analyzed with several gene prediction methods to produce a comprehensive gene list that was then manually refined and annotated by a volunteer team of sea urchin experts. This latter annotation community edited over 9000 gene models and uncovered many unexpected aspects of the sea urchin genetic content impacting transcriptional regulation, immunology, sensory perception, and an organism's development. Analysis of the basic deuterostome genetic complement supports the sea urchin's role as a model system for deuterostome and, by extension, chordate development.

  13. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    Science.gov (United States)

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  14. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  15. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  16. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  17. Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain.

    Science.gov (United States)

    Yen, T-Y; Li, K-P; Ou, S-C; Shien, J-H; Lu, H-M; Chang, P-C

    2015-01-01

    Muscovy duck parvovirus (MDPV) infection is a highly contagious and fatal disease of Muscovy ducklings. The infectious clone methodology is a valuable tool to study the pathogenic mechanisms of viruses, but no infectious clone of MDPV is yet available. In this study, a plasmid clone containing the full-length genome of MDPV was constructed using the TA cloning methodology. This MDPV clone was found to be infectious after transfection of primary Muscovy duck embryo fibroblast cells and passage in embryonated Muscovy duck eggs. Site-directed mutagenesis showed that the K75N mutation in the VP1 protein of MDPV resulted in the partial attenuation of the virus. The availability of an MDPV infectious clone can facilitate investigation of the pathogenic mechanisms of MDPV and development of vaccines against diseases caused by MDPV.

  18. Cloning, killing, and identity.

    Science.gov (United States)

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  19. Quantitative discrimination of Aggregatibacter actinomycetemcomitans highly leukotoxic JP2 clone from non-JP2 clones in diagnosis of aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Yoshida Akihiro

    2012-10-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is the etiological agent of periodontitis, and there is a strong association between clone JP2 and aggressive periodontitis in adolescents of African descent. The JP2 clone has an approximately 530-bp deletion (∆530 in the promoter region of the lkt/ltx gene, which encodes leukotoxin, and this clone has high leukotoxic activity. Therefore, this clone is very important in aggressive periodontitis. To diagnose this disease, culture methods and conventional PCR techniques are used. However, quantitative detection based on qPCR for the JP2 clone has not been developed due to genetic difficulties. In this study, we developed a qPCR-based quantification method specific to the JP2 clone. Methods Based on our analysis of the DNA sequence of the lkt/ltx gene and its flanking region, we designed a reverse primer specific for the ∆530 deletion border sequence and developed a JP2-specific PCR-based quantification method using this primer. We also analyzed the DNA sequence of the ∆530 locus and found it to be highly conserved (97–100% among 17 non-JP2 strains. Using the ∆530 locus, we designed a qPCR primer–probe set specific to non-JP2 clones. Next, we determined the numbers of JP2 and non-JP2 clone cells in the periodontal pockets of patients with aggressive periodontitis. Results The JP2-specific primers specifically amplified the genomic DNA of the A. actinomycetemcomitans JP2 clone and did not react with other bacterial DNA, whereas the non-JP2 specific primers reacted only with A. actinomycetemcomitans non-JP2 clones. Samples from the 88 periodontal sites in the 11 patients with aggressive periodontitis were analyzed. The bacterial cell numbers in 88 periodontal sites ranged from 0 to 4.8 × 108 (mean 1.28 × 107 for JP2 clones and from 0 to 1.6 × 106 for non-JP2 clones (mean 1.84 × 105. There were significant differences in the JP2 cell number between a clinical attachment level

  20. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    Science.gov (United States)

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  1. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2014-03-01

    Full Text Available Bacterial artificial chromosome (BAC libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12, consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger.

  2. Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer.

    Science.gov (United States)

    Giessler, Klara M; Kleinheinz, Kortine; Huebschmann, Daniel; Balasubramanian, Gnana Prakash; Dubash, Taronish D; Dieter, Sebastian M; Siegl, Christine; Herbst, Friederike; Weber, Sarah; Hoffmann, Christopher M; Fronza, Raffaele; Buchhalter, Ivo; Paramasivam, Nagarajan; Eils, Roland; Schmidt, Manfred; von Kalle, Christof; Schneider, Martin; Ulrich, Alexis; Scholl, Claudia; Fröhling, Stefan; Weichert, Wilko; Brors, Benedikt; Schlesner, Matthias; Ball, Claudia R; Glimm, Hanno

    2017-07-03

    A hierarchically organized cell compartment drives colorectal cancer (CRC) progression. Genetic barcoding allows monitoring of the clonal output of tumorigenic cells without prospective isolation. In this study, we asked whether tumor clone-initiating cells (TcICs) were genetically heterogeneous and whether differences in self-renewal and activation reflected differential kinetics among individual subclones or functional hierarchies within subclones. Monitoring genomic subclone kinetics in three patient tumors and corresponding serial xenografts and spheroids by high-coverage whole-genome sequencing, clustering of genetic aberrations, subclone combinatorics, and mutational signature analysis revealed at least two to four genetic subclones per sample. Long-term growth in serial xenografts and spheroids was driven by multiple genomic subclones with profoundly differing growth dynamics and hence different quantitative contributions over time. Strikingly, genetic barcoding demonstrated stable functional heterogeneity of CRC TcICs during serial xenografting despite near-complete changes in genomic subclone contribution. This demonstrates that functional heterogeneity is, at least frequently, present within genomic subclones and independent of mutational subclone differences. © 2017 Giessler et al.

  3. Mining olive genome through library sequencing and bioinformatics ...

    African Journals Online (AJOL)

    As one of the initial steps of olive (Olea europaea L.) genome analysis, a small insert genomic DNA library was constructed (digesting olive genomic DNA with SmaI and cloning the digestion products into pUC19 vector) and randomly picked 83 colonies were sequenced. Analysis of the insert sequences revealed 12 clones ...

  4. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  5. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.

    Science.gov (United States)

    Arii, Jun; Hushur, Orkash; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2006-04-01

    Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.

  6. Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica.

    Directory of Open Access Journals (Sweden)

    Sophie Arnaud-Haond

    Full Text Available The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15 kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications.

  7. Somatically segregating clone of apomictic maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.

    1988-01-01

    The results of further study on clone AM-5, isolated in the progeny of γ-irradiated plants of the apomictic hybrid of maize with tripsacum (2n = 38) are reported. The variegated-leaf seedlings of the clone segregate somatically and produce variegated, mottled, green (phenotypically normal) plants in different ratios in the apomictic progenies. The variegated, and to a lesser degree, green segregants segregate further. The mottled apomictics as well as mottled branches of variegated seedlings maintain their phenotype on transplantation, however, these is a progressive enhancement of the characters of vegetative lethality. Lethals of two extra maize genomes to the AM-5 nucleus does not affect significantly the scope and nature of segregation. At the same time, the loss of tripsacum genome restores normal phenotype. Clone AM-5 is an example of hybrid apomictic form causing significant morphological variability, which is, nevertheless, not related with apomictic and reversion to the sexual process

  8. Distribution and uses of legume DNA clone resources

    International Nuclear Information System (INIS)

    Young, N.D.

    2001-01-01

    Since 1990, my lab has developed and distributed various DNA clone resources for the legumes. In the first several years, the focus was on members of the tropical genus, Vigna, including the widely cultivated species, mungbean (V. radiata) and cowpea (V. unguiculata). Both of these grain legumes play key roles in agriculture in developing countries of Asia (mungbean) and Africa (cowpea). Moreover, because there is substantial genome conservation among legumes, these genetic resources have also been utilized by a wide range of researchers in other crop species. In 1997, my lab began to focus on the development and distribution of a new generation of DNA clone resources; Bacterial Artificial Chromosomes (BAC). A library of these clones was constructed in soybean (Glycine max) the most important legume species worldwide in terms of economic value. Again, the library has become a valuable resource for the legume research community and has been widely used in studies of legume genomics. (author)

  9. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  10. Functional cDNA expression cloning: Pushing it to the limit

    Science.gov (United States)

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  11. The draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain CCBH4851, a nosocomial isolate belonging to clone SP (ST277 that is prevalent in Brazil

    Directory of Open Access Journals (Sweden)

    Melise Silveira

    2014-12-01

    Full Text Available The high occurrence of nosocomial multidrug-resistant (MDR microorganisms is considered a global health problem. Here, we report the draft genome sequence of a MDR Pseudomonas aeruginosa strain isolated in Brazil that belongs to the endemic clone ST277. The genome encodes important resistance determinant genes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predicted coding regions including 60 RNAs.

  12. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    Science.gov (United States)

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Williamson, M; Lenz, C; Winther, A M

    2001-01-01

    and nonamidated C terminus. We have previously reported the structure of an A-type allatostatin preprohormone from the fruitfly Drosophila melanogaster. Here we describe the molecular cloning of a B-type prepro-allatostatin from Drosophila (DAP-B). DAP-B is 211 amino acid residues long and contains one copy each...

  14. RTA, a candidate G protein-coupled receptor: Cloning, sequencing, and tissue distribution

    International Nuclear Information System (INIS)

    Ross, P.C.; Figler, R.A.; Corjay, M.H.; Barber, C.M.; Adam, N.; Harcus, D.R.; Lynch, K.R.

    1990-01-01

    Genomic and cDNA clones, encoding a protein that is a member of the guanine nucleotide-binding regulatory protein (G protein)-coupled receptor superfamily, were isolated by screening rat genomic and thoracic aorta cDNA libraries with an oligonucleotide encoding a highly conserved region of the M 1 muscarinic acetylcholine receptor. Sequence analyses of these clones showed that they encode a 343-amino acid protein (named RTA). The RTA gene is single copy, as demonstrated by restriction mapping and Southern blotting of genomic clones and rat genomic DNA. RTA RNA sequences are relatively abundant throughout the gut, vas deferens, uterus, and aorta but are only barely detectable (on Northern blots) in liver, kidney, lung, and salivary gland. In the rat brain, RTA sequences are markedly abundant in the cerebellum. TRA is most closely related to the mas oncogene (34% identity), which has been suggested to be a forebrain angiotensin receptor. They conclude that RTA is not an angiotensin receptor; to date, they have been unable to identify its ligand

  15. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    Science.gov (United States)

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  16. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  17. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  18. Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains

    Energy Technology Data Exchange (ETDEWEB)

    Brettin, Thomas S [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Han, Cliff S [Los Alamos National Laboratory; Munik, A C [Los Alamos National Laboratory; Chertkov, Olga [Los Alamos National Laboratory; Meincke, Linda [Los Alamos National Laboratory; Saunders, Elizabeth [Los Alamos National Laboratory; Choi, Seon Y [SEOUL NATL. UNIV.; Haley, Bradd J [U. MARYLAND; Taviani, Elisa [U. MARYLAND; Jeon, Yoon - Seong [INTL. VACCINE INST. SEOUL; Kim, Dong Wook [INTL. VACCINE INST. SEOUL; Lee, Jae - Hak [SEOUL NATL. UNIV.; Walters, Ronald A [PNNL; Hug, Anwar [NATL. INST. CHOLERIC ENTERIC DIS.; Colwell, Rita R [U. MARYLAND

    2009-01-01

    Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to

  19. GenMapDB: a database of mapped human BAC clones

    OpenAIRE

    Morley, Michael; Arcaro, Melissa; Burdick, Joshua; Yonescu, Raluca; Reid, Thomas; Kirsch, Ilan R.; Cheung, Vivian G.

    2001-01-01

    GenMapDB (http://genomics.med.upenn.edu/genmapdb) is a repository of human bacterial artificial chromosome (BAC) clones mapped by our laboratory to sequence-tagged site markers. Currently, GenMapDB contains over 3000 mapped clones that span 19 chromosomes, chromosomes 2, 4, 5, 9–22, X and Y. This database provides positional information about human BAC clones from the RPCI-11 human male BAC library. It also contains restriction fragment analysis data and end sequen...

  20. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  1. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  2. Ancient genomes

    OpenAIRE

    Hoelzel, A Rus

    2005-01-01

    Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.

  3. Generating West Nile Virus from an Infectious Clone.

    Science.gov (United States)

    Vandergaast, Rianna; Fredericksen, Brenda L

    2016-01-01

    WNV infectious clones are valuable tools for elucidating WNV biology. Nevertheless, relatively few infectious WNV clones have been generated because their construction is hampered by the instability of flaviviral genomes. More recently, advances in cloning techniques as well as the development of several two-plasmid WNV infectious clone systems have facilitated the generation of WNV infectious clones. Here we described a protocol for recovering WNV from a two-plasmid system. In this approach, large quantities of these constructs are digested with restriction enzymes to produce complementary restriction sites at the 3' end of the upstream fragment and the 5' end of the downstream fragment. These fragments are then annealed to produce linear template for in vitro transcription to synthesize infectious RNA. The resulting RNA is transfected into cells and after several days WNV is recovered in the culture supernatant. This method can be used to generate virus from infectious clones encoding high- and low-pathogenicity strains of WNV, as well as chimeric virues.

  4. Animal cloning: problems and prospects.

    Science.gov (United States)

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  5. Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'

    Directory of Open Access Journals (Sweden)

    Liu Xiumei

    2008-11-01

    Full Text Available Abstract Background Outbreak of V. parahaemolyticus infections occurred since 1996 was linked to a proposed clonal complex, the pandemic group. The whole genome sequence provides an unprecedented opportunity for dissecting genome plasticity and phylogeny of the populations of V. parahaemolyticus. In the present work, a whole-genome cDNA microarray was constructed to compare the genomic contents of a collection of 174 strains of V. parahaemolyticus. Results Genes that present variably in the genome accounted for about 22% of the whole gene pool on the genome. The phylogenetic analysis of microarray data generated a minimum spanning tree that depicted the phylogenetic structure of the 174 strains. Strains were assigned into five complexes (C1 to C5, and those in each complex were related genetically and phylogenetically. C3 and C4 represented highly virulent clinical clones. C2 and C3 constituted two different clonal complexes 'old-O3:K6 clone' and 'pandemic clone', respectively. C3 included all the 39 pandemic strains tested (trh-, tdh+ and GS-PCR+, while C2 contained 12 pre-1996 'old' O3:K6 strains (trh+, tdh- and GS-PCR- tested herein. The pandemic clone (post-1996 'new' O3:K6 and its derivates O4:K68, O1:K25, O1:KUT and O6:K18 might be emerged from the old-O3:K6 clone, which was promoted by acquisition of toxRS/new sequence and genomic islands. A phylogenetic intermediate O3:K6 clade (trh-, tdh- and GS-PCR+ was identified between the pandemic and old-O3:K6 clones. Conclusion A comprehensive overview of genomic contents in a large collection of global isolates from the microarray-based comparative genomic hybridization data enabled us to construct a phylogenetic structure of V. parahaemolyticus and an evolutionary history of the pandemic group (clone of this pathogen.

  6. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    Evolution has shaped the organisation of vertebrate genomes, including the human genome. To shed further light on genome history, we have cloned and analysed an HMG gene from lamprey, representing one of the earliest vertebrate lineages. Genes of the HMG1/2 family encode chromosomal proteins...

  7. Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051, a prototype of the USA400 clone

    Directory of Open Access Journals (Sweden)

    Marina Farrel Côrtes

    Full Text Available Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone.

  8. Porcine ubiquitin-like 5 (UBL5) gene: genomic organization, polymorphisms, mRNA cloning, splicing variants and association study

    Czech Academy of Sciences Publication Activity Database

    Masopust, Martin; Weisz, Filip; Bartenschlager, H.; Knoll, A.; Vykoukalová, Z.; Geldermann, H.; Čepica, Stanislav

    2014-01-01

    Roč. 41, č. 4 (2014), s. 2353-2362 ISSN 0301-4851 R&D Projects: GA ČR GAP502/10/1216 Institutional support: RVO:67985904 Keywords : pig * UBL5 * PCR cloning Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.024, year: 2014

  9. Local repeat sequence organization of an intergenic spacer

    Indian Academy of Sciences (India)

    The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it ...

  10. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  11. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  12. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

    Science.gov (United States)

    Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen

    2018-01-13

    Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons

  13. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Directory of Open Access Journals (Sweden)

    Feltus Frank A

    2011-07-01

    Full Text Available Abstract Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18 to duodecaploid (12X = 108. Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective. Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of

  14. The genomic organization of plant pathogenicity in Fusarium species

    NARCIS (Netherlands)

    Rep, M.; Kistler, H.C.

    2010-01-01

    Comparative genomics is a powerful tool to infer the molecular basis of fungal pathogenicity and its evolution by identifying differences in gene content and genomic organization between fungi with different hosts or modes of infection. Through comparative analysis, pathogenicity-related chromosomes

  15. Azolla--a model organism for plant genomic studies.

    Science.gov (United States)

    Qiu, Yin-Long; Yu, Jun

    2003-02-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  16. Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt.

    Science.gov (United States)

    Lamelas, Araceli; Hauser, Julia; Dangy, Jean-Pierre; Hamid, Abdul-Wahab M; Röltgen, Katharina; Abdul Sater, Mohamad R; Hodgson, Abraham; Sie, Ali; Junghanss, Thomas; Harris, Simon R; Parkhill, Julian; Bentley, Stephen D; Pluschke, Gerd

    2017-08-01

    Countries of the African 'meningitis belt' are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the 'cell envelope' and the 'transport/binding protein' categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion.

  17. Mycoplasma hyopneumoniae Transcription Unit Organization: Genome Survey and Prediction

    Science.gov (United States)

    Siqueira, Franciele Maboni; Schrank, Augusto; Schrank, Irene Silveira

    2011-01-01

    Mycoplasma hyopneumoniae is associated with swine respiratory diseases. Although gene organization and regulation are well known in many prokaryotic organisms, knowledge on mycoplasma is limited. This study performed a comparative analysis of three strains of M. hyopneumoniae (7448, J and 232), with a focus on genome organization and gene comparison for open read frame (ORF) cluster (OC) identification. An in silico analysis of gene organization demonstrated 117 OCs and 34 single ORFs in M. hyopneumoniae 7448 and J, while 116 OCs and 36 single ORFs were identified in M. hyopneumoniae 232. Genomic comparison revealed high synteny and conservation of gene order between the OCs defined for 7448 and J strains as well as for 7448 and 232 strains. Twenty-one OCs were chosen and experimentally confirmed by reverse transcription–PCR from M. hyopneumoniae 7448 genome, validating our prediction. A subset of the ORFs within an OC could be independently transcribed due to the presence of internal promoters. Our results suggest that transcription occurs in ‘run-on’ from an upstream promoter in M. hyopneumoniae, thus forming large ORF clusters (from 2 to 29 ORFs in the same orientation) and indicating a complex transcriptional organization. PMID:22086999

  18. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  19. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  20. Conversion of BAC Clones into Binary BAC (BIBAC) Vectors and Their Delivery into Basidiomycete Fungal Cells Using Agrobacterium tumefaciens

    KAUST Repository

    Ali, Shawkat

    2014-09-19

    The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.

  1. Genomic rearrangement in radiation-induced murine myeloid leukemia

    International Nuclear Information System (INIS)

    Ishihara, Hiroshi

    1994-01-01

    After whole body irradiation of 3Gy X ray to C3H/He male mice, acute myeloid leukemia is induced at an incidence of 20 to 30% within 2 years. We have studied the mechanism of occurrence of this radiation-induced murine myeloid leukemia. Detection and isolation of genomic structural aberration which may be accumulated accompanied with leukemogenesis are helpful in analyzing the complicated molecular process from radiation damage to leukemogenesis. So, our research work was done in three phases. First, structures of previously characterized oncogenes and cytokine-related genes were analyzed, and abnormal structures of fms(protooncogene encoding M-CSF receptor gene)-related and myc-related genes were found in several leukemia cells. Additionally, genomic structural aberration of IL-3 gene was observed in some leukemia cells, so that construction of genomic libraries and cloning of the abnormal IL-3 genomic DNAs were performed to characterize the structure. Secondly, because the breakage of chromosome 2 that is frequently observed in myeloid leukemia locates in proximal position of IL-1 gene cluster in some cases, the copy number of IL-1 gene was determined and the gene was cloned. Lastly, the abnormal genome of leukemia cell was cloned by in-gel competence reassociation method. We discussed these findings and evaluated the analysis of the molecular process of leukemogenesis using these cloned genomic fragments. (author)

  2. 454 sequencing of pooled BAC clones on chromosome 3H of barley

    Directory of Open Access Journals (Sweden)

    Yamaji Nami

    2011-05-01

    Full Text Available Abstract Background Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp. Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H. Results We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1. Conclusions We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.

  3. Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.

    Science.gov (United States)

    Bujaki, Erika

    2016-01-01

    The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.

  4. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence.

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J; Jima, Dereje D; Parsons, Cameron; Kathariou, Sophia

    2017-11-01

    In the foodborne pathogen Listeria monocytogenes , arsenic resistance is encountered primarily in serotype 4b clones considered to have enhanced virulence and is associated with an arsenic resistance gene cluster within a 35-kb chromosomal region, Listeria genomic island 2 (LGI2). LGI2 was first identified in strain Scott A and includes genes putatively involved in arsenic and cadmium resistance, DNA integration, conjugation, and pathogenicity. However, the genomic localization and sequence content of LGI2 remain poorly characterized. Here we investigated 85 arsenic-resistant L. monocytogenes strains, mostly of serotype 4b. All but one of the 70 serotype 4b strains belonged to clonal complex 1 (CC1), CC2, and CC4, three major clones associated with enhanced virulence. PCR analysis suggested that 53 strains (62.4%) harbored an island highly similar to LGI2 of Scott A, frequently (42/53) in the same location as Scott A ( LMOf2365_2257 homolog). Random-primed PCR and whole-genome sequencing revealed seven novel insertion sites, mostly internal to chromosomal coding sequences, among strains harboring LGI2 outside the LMOf2365_2257 homolog. Interestingly, many CC1 strains harbored a noticeably diversified LGI2 (LGI2-1) in a unique location ( LMOf2365_0902 homolog) and with a novel additional gene. With few exceptions, the tested LGI2 genes were not detected in arsenic-resistant strains of serogroup 1/2, which instead often harbored a Tn 554 -associated arsenic resistance determinant not encountered in serotype 4b. These findings indicate that in L. monocytogenes , LGI2 has a propensity for certain serotype 4b clones, exhibits content diversity, and is highly promiscuous, suggesting an ability to mobilize various accessory genes into diverse chromosomal loci. IMPORTANCE Listeria monocytogenes is widely distributed in the environment and causes listeriosis, a foodborne disease with high mortality and morbidity. Arsenic and other heavy metals can powerfully shape the

  5. [Compartmentalization of the cell nucleus and spatial organization of the genome].

    Science.gov (United States)

    Gavrilov, A A; Razin, S V

    2015-01-01

    The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.

  6. Whitefly (Bemisia tabaci genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous cDNA libraries

    Directory of Open Access Journals (Sweden)

    Czosnek Henryk

    2006-04-01

    Full Text Available Abstract Background The past three decades have witnessed a dramatic increase in interest in the whitefly Bemisia tabaci, owing to its nature as a taxonomically cryptic species, the damage it causes to a large number of herbaceous plants because of its specialized feeding in the phloem, and to its ability to serve as a vector of plant viruses. Among the most important plant viruses to be transmitted by B. tabaci are those in the genus Begomovirus (family, Geminiviridae. Surprisingly, little is known about the genome of this whitefly. The haploid genome size for male B. tabaci has been estimated to be approximately one billion bp by flow cytometry analysis, about five times the size of the fruitfly Drosophila melanogaster. The genes involved in whitefly development, in host range plasticity, and in begomovirus vector specificity and competency, are unknown. Results To address this general shortage of genomic sequence information, we have constructed three cDNA libraries from non-viruliferous whiteflies (eggs, immature instars, and adults and two from adult insects that fed on tomato plants infected by two geminiviruses: Tomato yellow leaf curl virus (TYLCV and Tomato mottle virus (ToMoV. In total, the sequence of 18,976 clones was determined. After quality control, and removal of 5,542 clones of mitochondrial origin 9,110 sequences remained which included 3,843 singletons and 1,017 contigs. Comparisons with public databases indicated that the libraries contained genes involved in cellular and developmental processes. In addition, approximately 1,000 bases aligned with the genome of the B. tabaci endosymbiotic bacterium Candidatus Portiera aleyrodidarum, originating primarily from the egg and instar libraries. Apart from the mitochondrial sequences, the longest and most abundant sequence encodes vitellogenin, which originated from whitefly adult libraries, indicating that much of the gene expression in this insect is directed toward the production

  7. Cloning and sequencing of a cellobiohydrolase gene from Trichoderma harzianum FP108

    Science.gov (United States)

    Patrick Guilfoile; Ron Burns; Zu-Yi Gu; Matt Amundson; Fu-Hsian Chang

    1999-01-01

    A cbbl cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderrna harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbbl gene from Tricboderma reesei. The 3' end of the gene was isolated by inverse...

  8. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    Science.gov (United States)

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  9. Approaching the Sequential and Three-Dimensional Organization of Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2006-01-01

    textabstractGenomes are one of the major foundations of life due to their role in information storage, process regulation and evolution. To achieve a deeper unterstanding of the human genome the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic

  10. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Directory of Open Access Journals (Sweden)

    Xiaohong Cui

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  11. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    Science.gov (United States)

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  12. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ariyoshi, Kentaro [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Miura, Tomisato; Kasai, Kosuke; Fujishima, Yohei [Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Oshimura, Mitsuo [Chromosome Engineering Research Center (CERC), Tottori University, Nishicho 86, Yonago, Tottori 683-8503 (Japan); Yoshida, Mitsuaki A., E-mail: ariyoshi@hirosaki-u.ac.jp [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan)

    2016-08-15

    Highlights: • Clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. • Increased autophagy was observed in the artificially aneuploid clones. • Inhibition of autophagy resulted in increased genomic instability and DNA damage. • Intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones. - Abstract: Chromosome missegregation can lead to a change in chromosome number known as aneuploidy. Although aneuploidy is a known hallmark of cancer cells, the various mechanisms by which altered gene and/or DNA copy number facilitate tumorigenesis remain unclear. To understand the effect of aneuploidy occurring in non-tumorigenic human breast epithelial cells, we generated clones harboring artificial aneuploidy using microcell-mediated chromosome transfer. Our results demonstrate that clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. Also, the increased autophagy was observed in the artificially aneuploidy clones, and inhibition of autophagy resulted in increased genomic instability and DNA damage. In addition, the intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones, and inhibition of autophagy further increased the production of reactive oxygen species. Together, these results suggest that even a single extraneous chromosome can induce genomic instability, and that autophagy triggered by aneuploidy-induced stress is a mechanism to protect cells bearing abnormal chromosome number.

  13. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Miura, Tomisato; Kasai, Kosuke; Fujishima, Yohei; Oshimura, Mitsuo; Yoshida, Mitsuaki A.

    2016-01-01

    Highlights: • Clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. • Increased autophagy was observed in the artificially aneuploid clones. • Inhibition of autophagy resulted in increased genomic instability and DNA damage. • Intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones. - Abstract: Chromosome missegregation can lead to a change in chromosome number known as aneuploidy. Although aneuploidy is a known hallmark of cancer cells, the various mechanisms by which altered gene and/or DNA copy number facilitate tumorigenesis remain unclear. To understand the effect of aneuploidy occurring in non-tumorigenic human breast epithelial cells, we generated clones harboring artificial aneuploidy using microcell-mediated chromosome transfer. Our results demonstrate that clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. Also, the increased autophagy was observed in the artificially aneuploidy clones, and inhibition of autophagy resulted in increased genomic instability and DNA damage. In addition, the intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones, and inhibition of autophagy further increased the production of reactive oxygen species. Together, these results suggest that even a single extraneous chromosome can induce genomic instability, and that autophagy triggered by aneuploidy-induced stress is a mechanism to protect cells bearing abnormal chromosome number.

  14. Radiation-induced genomic instability, and the cloning and functional analysis of its related gene

    International Nuclear Information System (INIS)

    Muto, Masahiro; Kanari, Yasuyoshi; Kubo, Eiko; Yamada, Yutaka

    2000-01-01

    Exposure to ionizing radiation produces a number of biological consequences including gene mutations, chromosome aberrations, cellular transformation and cell death. The classical view has been that mutations occur at the sites of DNA damage, that is, damage produced by radiation is converted into a mutation during subsequent DNA replication or as a consequence of enzymatic repair processes. However, many investigators have presented evidence for an alternative mechanism to explain these biological effects. This evidence suggests that radiation may induce a process of genomic instability that is transmissible over many generations of cell replication and that serves to enhance the probability of the occurrence of such genetic effects among the progeny of the irradiated cell after many generations of cell replication. If such a process exists in vivo, it could have significant implications for mechanisms of carcinogenesis. Exposure of B10 mice to fractionated X-irradiation induces a high incidence of thymic lymphomas, whereas the incidence in STS/A mice is very low. Such strain differences are presumably determined genetically, and various genetic factors have been reported to be involved in radiation-induced lymphomagenesis. The mechanism of radiation-induced lymphomagenesis appears to develop through a complex and multistep process. Using this experimental system, we characterized the prelymphoma cells induced by radiation, and identified the genetic changes preceding the development of thymic lymphomas by comparing the oncogenic alterations with the pattern of T cell receptor (TCR) γ rearrangements. In these studies, the latent expression of some chromosomal aberrations and p53 mutations in irradiated progeny has been interpreted to be a manifestation of genomic instability. In the present report we review the results of in vivo studies conducted in our laboratory that support the hypothesis of genomic instability induced by radiation, and we describe the

  15. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  16. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains.

    Science.gov (United States)

    Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru

    2016-05-01

    The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This

  17. Construction and sequencing of an infectious clone of the human parvovirus B19

    International Nuclear Information System (INIS)

    Zhi Ning; Zadori, Zoltan; Brown, Kevin E.; Tijssen, Peter

    2004-01-01

    Human parvovirus B19 has a nonenveloped, icosahedral capsid packaging a linear single-stranded DNA genome of 5.6 kb with long inverted terminal repeats (ITR) at both the 5' and 3' end. Previous attempts to construct a full-length B19 clone were unsuccessful due to deletions in the ITR sequences. We cloned the complete parvovirus B19 genome with intact ITRs from an aplastic crisis patient. Sequence analysis of the complete viral genome indicated that both 5' and 3' ITRs have two sequence configurations and several base changes within the ITRs compared to previous published sequences. After transfection of the plasmid into permissive cells, spliced and non-spliced viral transcripts and viral capsid proteins could be detected. Southern blot analysis of the DNA purified from the plasmid-transfected cells confirmed parvovirus B19 DNA replication. Production of infectious virus by the B19 plasmid was shown by inoculation of cell lysate derived from transfected cells into fresh cells. Together, these results indicate the first successful production of an infectious clone for parvovirus B19 virus

  18. Discovery of Functional Toxin/Antitoxin Systems in Bacteria by Shotgun Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Sberro, Hila; Leavitt, Azita; Kiro, Ruth; Koh, Eugene; Peleg, Yoav; Qimron, Udi; Sorek, Rotem

    2013-04-01

    Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using over 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an 'anti-defense' protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.

  19. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    Science.gov (United States)

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  20. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  1. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  2. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    Science.gov (United States)

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  3. Variation in biological properties of cauliflower mosaic virus clones.

    Science.gov (United States)

    al-Kaff, N; Covey, S N

    1994-11-01

    Infectious clones were prepared from virion DNA of three cauliflower mosaic virus (CaMV) isolates, 11/3, Xinjiang (XJ), and Aust, to investigate pathogenic variation in virus populations. Of 10 infectious clones obtained for isolate 11/3, four pathotypes were identified, each producing symptoms in turnip that differed from those of the 11/3 wild-type. Virus from two clonal groups of 11/3 was transmissible by aphids whereas that from two others was not. Of the five infectious clones obtained from isolate XJ, two groups were identified, one of which differed symptomatically from the wild-type. Only one infectious clone was obtained from isolate Aust and this had properties similar to the wild-type. Restriction enzyme polymorphisms were found in some clonal groups and these correlated with symptoms. Other groups with different pathogenic properties could not be distinguished apart by restriction site polymorphisms. Further variation was observed in the nucleotide sequences of gene II (coding for aphid transmission factor) from these viruses as compared with other CaMV isolates. In the aphid non-transmissible clones of isolate 11/3, one had a Gly to Arg mutation in gene II similar to that of other non-deleted non-transmissible CaMV isolates. The second had a 322 bp deletion at the site of a small direct repeat similar to that of isolate CM4-184 although occurring in a different position. The gene II deletion of isolate 11/3 produced a frame-shift that separated genes II and III by 60 bp. Most CaMV clones studied remained biologically stable producing similar symptoms during subsequent passages. However, one clone (11/3-7) produced two new biotypes during its first passage suggesting that it was relatively unstable. Our results show that wild-type populations of CaMV contain a range of infectious genome variants with contrasting biological properties and differing stability. We suggest that a variety of significant viral phenotypic changes can occur during each

  4. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones.

    Science.gov (United States)

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B T; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.

  5. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones.

    Directory of Open Access Journals (Sweden)

    Mari Tohya

    Full Text Available Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs, ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.

  6. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones

    Science.gov (United States)

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B. T.; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes. PMID:27433935

  7. cDNA, genomic sequence cloning, and overexpression of EIF1 from the giant panda (Ailuropoda Melanoleuca) and the black bear (Ursus Thibetanus Mupinensis).

    Science.gov (United States)

    Hou, Wan-ru; Tang, Yun; Hou, Yi-ling; Song, Yan; Zhang, Tian; Wu, Guang-fu

    2010-07-01

    Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.

  8. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    Science.gov (United States)

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  9. [Cloning and sequence analysis of the DHBV genome of the brown ducks in Guilin region and establishment of the quantitative method for detecting DHBV].

    Science.gov (United States)

    Su, He-Ling; Huang, Ri-Dong; He, Song-Qing; Xu, Qing; Zhu, Hua; Mo, Zhi-Jing; Liu, Qing-Bo; Liu, Yong-Ming

    2013-03-01

    Brown ducks carrying DHBV were widely used as hepatitis B animal model in the research of the activity and toxicity of anti-HBV dugs. Studies showed that the ratio of DHBV carriers in the brown ducks in Guilin region was relatively high. Nevertheless, the characters of the DHBV genome of Guilin brown duck remain unknown. Here we report the cloning of the genome of Guilin brown duck DHBV and the sequence analysis of the genome. The full length of the DHBV genome of Guilin brown duck was 3 027bp. Analysis using ORF finder found that there was an ORF for an unknown peptide other than S-ORF, PORF and C-ORF in the genome of the DHBV. Vector NTI 8. 0 analysis revealed that the unknown peptide contained a motif which binded to HLA * 0201. Aligning with the DHBV sequences from different countries and regions indicated that there were no obvious differences of regional distribution among the sequences. A fluorescence quantitative PCR for detecting DHBV was establishment based on the recombinant plasmid pGEM-DHBV-S constructed. This study laid the groundwork for using Guilin brown duck as a hepatitis B animal model.

  10. Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features

    Directory of Open Access Journals (Sweden)

    Gillet Laurent

    2011-08-01

    Full Text Available Abstract Background Bovine herpesvirus 4 (BoHV-4 is a useful model for the human pathogenic gammaherpesviruses Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus. Although genome manipulations of this virus have been greatly facilitated by the cloning of the BoHV-4 V.test strain as a Bacterial Artificial Chromosome (BAC, the lack of a complete genome sequence for this strain limits its experimental use. Methods In this study, we have determined the complete sequence of BoHV-4 V.test strain by a pyrosequencing approach. Results The long unique coding region (LUR consists of 108,241 bp encoding at least 79 open reading frames and is flanked by several polyrepetitive DNA units (prDNA. As previously suggested, we showed that the prDNA unit located at the left prDNA-LUR junction (prDNA-G differs from the other prDNA units (prDNA-inner. Namely, the prDNA-G unit lacks the conserved pac-2 cleavage and packaging signal in its right terminal region. Based on the mechanisms of cleavage and packaging of herpesvirus genomes, this feature implies that only genomes bearing left and right end prDNA units are encapsulated into virions. Conclusions In this study, we have determined the complete genome sequence of the BAC-cloned BoHV-4 V.test strain and identified genome organization features that could be important in other herpesviruses.

  11. Novel rod-shaped viruses isolated from garlic, Allium sativum, possessing a unique genome organization.

    Science.gov (United States)

    Sumi, S; Tsuneyoshi, T; Furutani, H

    1993-09-01

    Rod-shaped flexuous viruses were partially purified from garlic plants (Allium sativum) showing typical mosaic symptoms. The genome was shown to be composed of RNA with a poly(A) tail of an estimated size of 10 kb as shown by denaturing agarose gel electrophoresis. We constructed cDNA libraries and screened four independent clones, which were designated GV-A, GV-B, GV-C and GV-D, using Northern and Southern blot hybridization. Nucleotide sequence determination of the cDNAs, two of which correspond to nearly one-third of the virus genomic RNA, shows that all of these viruses possess an identical genomic structure and that also at least four proteins are encoded in the viral cDNA, their M(r)s being estimated to be 15K, 27K, 40K and 11K. The 15K open reading frame (ORF) encodes the core-like sequence of a zinc finger protein preceded by a cluster of basic amino acid residues. The 27K ORF probably encodes the viral coat protein (CP), based on both the existence of some conserved sequences observed in many other rod-shaped or flexuous virus CPs and an overall amino acid sequence similarity to potexvirus and carlavirus CPs. The 11K ORF shows significant amino acid sequence similarities to the corresponding 12K proteins of the potexviruses and carlaviruses. On the other hand, the 40K ORF product does not resemble any other plant virus gene products reported so far. The genomic organization in the 3' region of the garlic viruses resembles, but clearly differs from, that of carlaviruses. Phylogenetic analysis based upon the amino acid sequence of the viral capsid protein also indicates that the garlic viruses have a unique and distinct domain different from those of the potexvirus and carlavirus groups. The results suggest that the garlic viruses described here belong to an unclassified and new virus group closely related to the carlaviruses.

  12. Learning, memory and exploratory similarities in genetically identical cloned dogs.

    Science.gov (United States)

    Shin, Chi Won; Kim, Geon A; Park, Won Jun; Park, Kwan Yong; Jeon, Jeong Min; Oh, Hyun Ju; Kim, Min Jung; Lee, Byeong Chun

    2016-12-30

    Somatic cell nuclear transfer allows generation of genetically identical animals using donor cells derived from animals with particular traits. To date, few studies have investigated whether or not these cloned dogs will show identical behavior patterns. To address this question, learning, memory and exploratory patterns were examined using six cloned dogs with identical nuclear genomes. The variance of total incorrect choice number in the Y-maze test among cloned dogs was significantly lower than that of the control dogs. There was also a significant decrease in variance in the level of exploratory activity in the open fields test compared to age-matched control dogs. These results indicate that cloned dogs show similar cognitive and exploratory patterns, suggesting that these behavioral phenotypes are related to the genotypes of the individuals.

  13. Molecular cloning and expression of the IL-10 gene from guinea pigs.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Bix, Gregory; Yoshimura, Teizo; McMurray, David N

    2012-04-25

    The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project

  14. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  15. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  16. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 ...

  17. Production and verification of heterozygous clones in Japanese ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Microsatellite-centromere mapping in the zebrafish (Danio rerio). Genomics, 30: 337-341. Kobayashi T, Ide A, Hiasa T, Fushiki S, Ueno K (1994). Production of cloned amago salmon Oncorhynchus rhodurus. Fish. Sci. 60: 275-281. Komen H, Thorgaard GH (2007). Androgenesis, gynogenesis and the.

  18. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  19. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  20. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    Science.gov (United States)

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome

  1. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  2. BIOETHICS AND HUMAN CLONING

    Directory of Open Access Journals (Sweden)

    Željko Kaluđerović

    2011-12-01

    Full Text Available In this paper the authors analyze the process of negotiating and beginning of the United Nations Declaration on Human Cloning as well as the paragraphs of the very Declaration. The negotiation was originally conceived as a clear bioethical debate that should have led to a general agreement to ban human cloning. However, more often it had been discussed about human rights, cultural, civil and religious differences between people and about priorities in case of eventual conflicts between different value systems. In the end, a non-binding Declaration on Human Cloning had been adopted, full of numerous compromises and ambiguous formulations, that relativized the original intention of proposer states. According to authors, it would have been better if bioethical discussion and eventual regulations on cloning mentioned in the following text had been left over to certain professional bodies, and only after the public had been fully informed about it should relevant supranational organizations have taken that into consideration.

  3. A new approach for cloning hLIF cDNA from genomic DNA isolated from the oral mucous membrane.

    Science.gov (United States)

    Cui, Y H; Zhu, G Q; Chen, Q J; Wang, Y F; Yang, M M; Song, Y X; Wang, J G; Cao, B Y

    2011-11-25

    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the study of life science, but it is difficult to obtain by traditional reverse transcription. We employed a novel strategy to clone human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA, which was directly isolated from the mucous membrane of mouth. The hLIF sequence, which is 609 bp long and is composed of three exons, can be acquired within a few hours by amplifying each exon and splicing all of them using overlap-PCR. This new approach developed is simple, time- and cost-effective, without RNA preparation or cDNA synthesis, and is not limited to the specific tissues for a particular gene and the expression level of the gene.

  4. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  5. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    International Nuclear Information System (INIS)

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-01-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  6. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  7. Genomic organization of plant aminopropyl transferases.

    Science.gov (United States)

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the

  8. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C0t method.

    Science.gov (United States)

    Gouveia, Juceli Gonzalez; Wolf, Ivan Rodrigo; de Moraes-Manécolo, Vivian Patrícia Oliveira; Bardella, Vanessa Belline; Ferracin, Lara Munique; Giuliano-Caetano, Lucia; da Rosa, Renata; Dias, Ana Lúcia

    2016-12-01

    Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C 0 t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C 0 t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.

  9. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    Science.gov (United States)

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  10. Cloning of the DNA repair gene, uvsF, by transformation of Aspergillus nidulans.

    Science.gov (United States)

    Oza, K; Käfer, E

    1990-06-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr+ uvs+ cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when BglII-digested genomic DNA was probed with the vector. Both types produced uvsF- recombinants without vector sequences in homozygous crosses, but only those with the larger band also produced haploid uvs+ progeny. Using BglII-digested genomic DNA to transform Escherichia coli, plasmids of the corresponding two sizes could be rescued. Their inserts had a short internal region in common, giving evidence of rearrangement(s). In secondary transformation of uvsF mutants, only the plasmids with the larger insert showed complementation and these were used to screen Aspergillus libraries. Three types of genomic and two overlapping cDNA clones were identified. The cDNAs hybridized not only to each other, but also to the common region of the rescued plasmids. Therefore, cDNA subclones were used to map the putative uvsF sequences to a short segment in one genomic clone. In Northerns, the complementing large plasmid hybridized to three mRNAs, while the cDNA subclone identified one of these as the probable uvsF message.

  11. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  12. Molecular cloning and restriction analysis of EcoRI-fragments of Vicia faba rDNA

    International Nuclear Information System (INIS)

    Yakura, Kimitaka; Tanifuji, Shigeyuki.

    1983-01-01

    EcoRI-fragments of Vicia faba rDNA were cloned in plasmid pBR325. Southern blot hybridization of BamHI-digests of these cloned plasmids and Vicia genomic DNA led to the determination of relative positions of BamHI sites in the rDNA and the physical map that had been tentatively made is corrected. (author)

  13. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  14. Cloning and characterization of the rec2 gene of Ustilago maydis

    International Nuclear Information System (INIS)

    Bauchwitz, R.P.; Holloman, W.K.

    1989-01-01

    The authors are exploring the molecular basis for genetic recombination using the corn smut fungus Ustilago maydis, from which the first two eucaryotic DNA repair and recombination mutants, rec1 and rec2, were described. Cells mutant at the rec2 locus are unable to repair lethal damage to their DNA from UV and X irradiation or from chemical alkylating agents such as N-methyl-nitrosoguanidine. Rec2 mutants retain only a residual level of DNA-damage inducible mitotic recombination, and are unable to complete meiosis. Using an autonomously replicating plasmid vector for Ustilago, they established the first nonintegrating plasmid library of the Ustilago genome. The rec2 locus was cloned by complementation of the rec2 mutation in vivo. One clone was found to restore all of the deficient activities. Although this rec2 complementing clone is present on a multicopy plasmid, the authors observed that it fully restored but did not further increase the fifty-fold inducibility of heteroallelic recombination at the nitrate reductase and inositol loci of rec2 or wild type cells. Northern blot analysis using the rec2 complementing clone revealed three UV inducible transcripts, one of which is absent in a rec2 mutant strain. This transcript organization resembles that of the yeast rad10 and the human ERCC-1 genes (MCB 9:1794), but sequence obtained to date from rec2 does not show homology with these genes. They have also observed that the rec2 mutation may alter the level of homologous integration of transformed DNA markers. Integration of a Leu1 complementing plasmid by Scott Fotheringham of the lab has shown that while much of plasmid integration in wild type Ustilago is nonhomologous, integration in at least some rec2 strains is entirely homologous. They are using the cloned rec2 gene to confirm that rec2 is indeed involved in altering the level of homologous integration in Ustilago, and if so, they plan to clone a mammalian analogue of rec2

  15. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    Science.gov (United States)

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  16. Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE.

    Science.gov (United States)

    Huang, Xin; Li, Hao-ming

    2009-08-05

    Lovastatin is an effective drug for treatment of hyperlipidemia. This study aimed to clone lovastatin biosynthesis regulatory gene lovE and analyze the structure and function of its encoding protein. According to the lovastatin synthase gene sequence from genebank, primers were designed to amplify and clone the lovastatin biosynthesis regulatory gene lovE from Aspergillus terrus genomic DNA. Bioinformatic analysis of lovE and its encoding animo acid sequence was performed through internet resources and software like DNAMAN. Target fragment lovE, almost 1500 bp in length, was amplified from Aspergillus terrus genomic DNA and the secondary and three-dimensional structures of LovE protein were predicted. In the lovastatin biosynthesis process lovE is a regulatory gene and LovE protein is a GAL4-like transcriptional factor.

  17. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)

    Science.gov (United States)

    The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (...

  18. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Mizutani, Eiji; Ohta, Hiroshi; Hikichi, Takafusa; Thuan, Nguyen Van; Wakayama, Sayaka; Bui, Hong-Thuy; Wakayama, Teruhiko

    2006-01-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently, we elucidated by using round spermatids that, after nuclear transfer, treatment of zygotes with trichostatin A (TSA), an inhibitor of histone deacetylase, can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami, N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama. E. Mizutani, T. Wakayama, Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids, Dev. Biol. (2005) in press]. Here, we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells, spleen cells, neural stem cells, and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further, we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus, our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques

  19. An accurate clone-based haplotyping method by overlapping pool sequencing.

    Science.gov (United States)

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-08

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. MEANS AND METHODS FOR CLONING NUCLEIC ACID SEQUENCES

    NARCIS (Netherlands)

    Geertsma, Eric Robin; Poolman, Berend

    2008-01-01

    The invention provides means and methods for efficiently cloning nucleic acid sequences of interest in micro-organisms that are less amenable to conventional nucleic acid manipulations, as compared to, for instance, E.coli. The present invention enables high-throughput cloning (and, preferably,

  1. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  2. CAGO: a software tool for dynamic visual comparison and correlation measurement of genome organization.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Chang

    Full Text Available CAGO (Comparative Analysis of Genome Organization is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago.

  3. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  4. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    Science.gov (United States)

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  5. A two-plasmid strategy for engineering a dengue virus type 3 infectious clone from primary Brazilian isolate.

    Science.gov (United States)

    Santos, Jefferson J S; Cordeiro, Marli T; Bertani, Giovani R; Marques, Ernesto T A; Gil, Laura H V G

    2014-12-01

    Dengue infections represent one of the most prevalent arthropod-borne diseases worldwide, causing a wide spectrum of clinical outcomes. Engineered infectious clone is an important tool to study Dengue virus (DENV) biology. Functional full-length cDNA clones have been constructed for many positive-strand RNA viruses and have provided valuable tools for studying the molecular mechanisms involved in viral genome replication, virion assembly, virus pathogenesis and vaccine development. We report herein the successful development of an infectious clone from a primary Brazilian isolate of dengue virus 3 (DENV3) of the genotype III. Using a two-plasmid strategy, DENV3 genome was divided in two parts and cloned separately into a yeast-bacteria shuttle vector. All plasmids were assembled in yeast by homologous recombination technique and a full-length template for transcription was obtained by in vitro ligation of the two parts of the genome. Transcript-derived DENV3 is infectious upon transfection into BHK-21 cells and in vitro characterization confirmed its identity. Growth kinetics of transcript-derived DENV3 was indistinguishable from wild type DENV3. This system is a powerful tool that will help shed light on molecular features of DENV biology, as the relationship of specific mutations and DENV pathogenesis.

  6. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  7. Cloning and characterization of novel fast ω-gliadin genes in ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... In this study, the novel fast u-gliadin genes were cloned from genome A of ... Wheat is one of the most important sources of food in the human diet. In the ..... This work was financially supported by the National Natural Sci-.

  8. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  9. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders

    International Nuclear Information System (INIS)

    Reddy, E.P.; Mettus, R.V.; DeFreitas, E.; Wroblewska, Z.; Cisco, M.; Koprowski, H.

    1988-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, the authors have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. They have clones the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome

  10. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    2018-04-01

    Full Text Available Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9 have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA, humanized Cas9 (hCas9 gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4. Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were

  11. Biotechnology. Perseverance leads to cloned pig in Japan.

    Science.gov (United States)

    Pennisi, E; Normile, D

    2000-08-18

    Low success rates and unpredictable results have plagued cloning researchers, particularly those trying to clone pigs. Now, on page 1188, Japanese researchers offer the first scientific report of a cloned pig, named Xena, raising hopes that pigs could one day provide an unlimited supply of organs for transplantation thanks to their close physiological relationship to humans. But this week those hopes were dealt a blow by more evidence suggesting that pig retroviruses can infect human cells.

  12. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Navas-Castillo, Jesús

    2017-08-01

    Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.

  13. Game of clones: the genomic evolution of severe congenital neutropenia.

    Science.gov (United States)

    Touw, Ivo P

    2015-01-01

    Severe congenital neutropenia (SCN) is a genetically heterogeneous condition of bone marrow failure usually diagnosed in early childhood and characterized by a chronic and severe shortage of neutrophils. It is now well-established that mutations in HAX1 and ELANE (and more rarely in other genes) are the genetic cause of SCN. In contrast, it has remained unclear how these mutations affect neutrophil development. Innovative models based on induced pluripotent stem cell technology are being explored to address this issue. These days, most SCN patients receive life-long treatment with granulocyte colony-stimulating factor (G-CSF, CSF3). CSF3 therapy has greatly improved the life expectancy of SCN patients, but also unveiled a high frequency of progression toward myelodysplastic syndrome (MDS) and therapy refractory acute myeloid leukemia (AML). Expansion of hematopoietic clones with acquired mutations in the gene encoding the G-CSF receptor (CSF3R) is regularly seen in SCN patients and AML usually descends from one of these CSF3R mutant clones. These findings raised the questions how CSF3R mutations affect CSF3 responses of myeloid progenitors, how they contribute to the pre-leukemic state of SCN, and which additional events are responsible for progression to leukemia. The vast (sub)clonal heterogeneity of AML and the presence of AML-associated mutations in normally aged hematopoietic clones make it often difficult to determine which mutations are responsible for the leukemic process. Leukemia predisposition syndromes such as SCN are unique disease models to identify the sequential acquisition of these mutations and to interrogate how they contribute to clonal selection and leukemic evolution. © 2015 by The American Society of Hematology. All rights reserved.

  14. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  15. Should we clone human beings? Cloning as a source of tissue for transplantation.

    Science.gov (United States)

    Savulescu, J

    1999-01-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus. PMID:10226910

  16. The Release 6 reference sequence of the Drosophila melanogaster genome.

    Science.gov (United States)

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. © 2015 Hoskins et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Cloning and sequence analysis of the defective in anther ...

    African Journals Online (AJOL)

    To clone the defective in anther dehiscence1 (DAD1) gene fragment of Chinese kale, about 700 bp product was obtained by PCR amplification using Chinese kale genomic DNA as the template and a pair of specific primers designed according to the conserved sequence of DAD1 genes of Arabidopsis thaliana and ...

  18. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  19. Genomic sequencing of Pleistocene cave bears

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  20. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  1. Radiation-induced genomic instability driven by de novo chromosomal rearrangement hot spots

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Allen, R.N.; Moore, S.R.

    2003-01-01

    Genomic instability has become generally recognized as a critical contributor to tumor progression by generating the necessary number of genetic alterations required for expression of a clinically significant malignancy. Our study of chromosomal instability investigates the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in instability acting predominantly in cis. Here we present an analysis of the karyotypic distribution of instability associated chromosomal rearrangements in TK6 and derivative human lymphoblasts. Karyotypic analysis performed on a total of 455 independent clones included 183 rearrangements distributed among 100 separate unstable clones. The results demonstrate that the breakpoints of chromosomal rearrangements in unstable clones are non-randomly distributed throughout the genome. This pattern is statistically significant, and incompatible with expectations for random breakage associated with loss or alteration of a trans-acting factor. Furthermore, specific chromosomal breakage hot spots associated with instability have been identified; these occur in several independent unstable clones and are often repeatedly broken and rejoined during the outgrowth of an individual clone. In complimentary studies, genomic instability was generated without any exposure to a DNA-damaging agent, but rather by transfection with alpha heterochromatin DNA. In a prospective analysis, human-hamster hybrid AL cells containing a single human chromosome 11 were transfected with heterochromatic alpha DNA repeats and clones were analyzed by chromosome 11 painting. Transfection with alpha DNA was associated with karyotypic heterogeneity in 40% of clones examined; control transfections with plasmid alone did not lead to karyotypic heterogeneity

  2. Cloning and sequence analysis of benzo-a-pyreneinducible ...

    African Journals Online (AJOL)

    The phylogenetic tree based on the amino acid sequences clearly shows tilapia CYP1A and killifish CYP1A to be more closely related to each other than to the other CYP1A subfamilies. Sequence analysis of 3727 bp of genomic DNA showed that the clone obtained was the structural gene of CYP1A which consists of ...

  3. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  4. The DNA-encoded nucleosome organization of a eukaryotic genome.

    Science.gov (United States)

    Kaplan, Noam; Moore, Irene K; Fondufe-Mittendorf, Yvonne; Gossett, Andrea J; Tillo, Desiree; Field, Yair; LeProust, Emily M; Hughes, Timothy R; Lieb, Jason D; Widom, Jonathan; Segal, Eran

    2009-03-19

    Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for approximately 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.

  5. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome.

    Science.gov (United States)

    Ragupathy, Raja; Rathinavelu, Rajkumar; Cloutier, Sylvie

    2011-05-09

    Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be

  6. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  7. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Horn, T.M.; Huebner, K.; Croce, C.; Callahan, R.

    1986-01-01

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  8. Single nucleotide polymorphism (SNP) panels for rapid positional cloning in zebrafish

    NARCIS (Netherlands)

    Clark, M.D.; Guryev, V.; de Bruijn, E.; Nijman, I.J.; Tada, M.; Wilson, C.; Deloukas, P.; Postlethwait, J.H.; Cuppen, E.; Stemple, D.L.

    2011-01-01

    Despite considerable genetic and genomic resources the positional cloning of forward mutations remains a slow and manually intensive task, typically using gel based genotyping and sequential rounds of mapping. We have used the latest genetic resources and genotyping technologies to develop two

  9. Toward a physical map of the genome of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Coulson, A.; Sulston, J.; Brenner, S.; Karn, J.

    1986-01-01

    A technique for digital characterization and comparison of DNA fragments, using restriction enzymes, is described. The technique is being applied to fragments from the nematode Caenorhabditis elegans (i) to facilitate cross-indexing of clones emanating from different laboratories and (ii) to construct a physical map of the genome. Eight hundred sixty clusters of clones, from 35 to 350 kilobases long and totaling about 60% of the genome, have been characterized

  10. Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers

    Institute of Scientific and Technical Information of China (English)

    Wenbo; Shan; Yanqin; Jiang; Jinlei; Han; Kai; Wang

    2016-01-01

    Cotton is the world’s most important natural fiber crop. It is also a model system for studying polyploidization, genomic organization, and genome-size variation. Integrating the cytological characterization of cotton with its genetic map will be essential for understanding its genome structure and evolution, as well as for performing further genetic-map based mapping and cloning. In this study, we isolated a complete set of bacterial artificial chromosome clones anchored to each of the 52 chromosome arms of the tetraploid cotton Gossypium hirsutum. Combining these with telomere and centromere markers, we constructed a standard karyotype for the G. hirsutum inbred line TM-1. We dissected the chromosome arm localizations of the 45 S and 5S r DNA and suggest a centromere repositioning event in the homoeologous chromosomes AT09 and DT09. By integrating a systematic karyotype analysis with the genetic linkage map, we observed different genome sizes and chromosomal structures between the subgenomes of the tetraploid cotton and those of its diploid ancestors. Using evidence of conserved coding sequences, we suggest that the different evolutionary paths of non-coding retrotransposons account for most of the variation in size between the subgenomes of tetraploid cotton and its diploid ancestors. These results provide insights into the cotton genome and will facilitate further genome studies in G. hirsutum.

  11. Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers

    Directory of Open Access Journals (Sweden)

    Wenbo Shan

    2016-08-01

    Full Text Available Cotton is the world's most important natural fiber crop. It is also a model system for studying polyploidization, genomic organization, and genome-size variation. Integrating the cytological characterization of cotton with its genetic map will be essential for understanding its genome structure and evolution, as well as for performing further genetic-map based mapping and cloning. In this study, we isolated a complete set of bacterial artificial chromosome clones anchored to each of the 52 chromosome arms of the tetraploid cotton Gossypium hirsutum. Combining these with telomere and centromere markers, we constructed a standard karyotype for the G. hirsutum inbred line TM-1. We dissected the chromosome arm localizations of the 45S and 5S rDNA and suggest a centromere repositioning event in the homoeologous chromosomes AT09 and DT09. By integrating a systematic karyotype analysis with the genetic linkage map, we observed different genome sizes and chromosomal structures between the subgenomes of the tetraploid cotton and those of its diploid ancestors. Using evidence of conserved coding sequences, we suggest that the different evolutionary paths of non-coding retrotransposons account for most of the variation in size between the subgenomes of tetraploid cotton and its diploid ancestors. These results provide insights into the cotton genome and will facilitate further genome studies in G. hirsutum.

  12. An efficient approach to BAC based assembly of complex genomes.

    Science.gov (United States)

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  13. MOLECULAR CLONING OF OVINE cDNA LEPTIN GENE

    Directory of Open Access Journals (Sweden)

    CLAUDIA TEREZIA SOCOL

    2008-05-01

    Full Text Available An efficient bacterial transformation system suitable for cloning the coding sequence of the ovine leptin gene in E. coli DH5α host cells using the pGEMT easy vector it is described in this paper. The necessity of producing leptin is based on the fact that the role of this molecule in the animal and human organism is still unknown, leptin not existing as commercial product on the Romanian market. The results obtained in the bacterial transformation, cloning, recombinant clones selection, control of the insertion experiments and DNA computational analysis represent the first steps in further genetic engineering experiments such as production of DNA libraries, DNA sequencing, protein expression, etc., for a further contribution in elucidating the role of leptin in the animal and human organism.

  14. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2009-11-01

    Full Text Available Abstract Background De novo sequencing the entire genome of a large complex plant genome like the one of barley (Hordeum vulgare L. is a major challenge both in terms of experimental feasibility and costs. The emergence and breathtaking progress of next generation sequencing technologies has put this goal into focus and a clone based strategy combined with the 454/Roche technology is conceivable. Results To test the feasibility, we sequenced 91 barcoded, pooled, gene containing barley BACs using the GS FLX platform and assembled the sequences under iterative change of parameters. The BAC assemblies were characterized by N50 of ~50 kb (N80 ~31 kb, N90 ~21 kb and a Q40 of 94%. For ~80% of the clones, the best assemblies consisted of less than 10 contigs at 24-fold mean sequence coverage. Moreover we show that gene containing regions seem to assemble completely and uninterrupted thus making the approach suitable for detecting complete and positionally anchored genes. By comparing the assemblies of four clones to their complete reference sequences generated by the Sanger method, we evaluated the distribution, quality and representativeness of the 454 sequences as well as the consistency and reliability of the assemblies. Conclusion The described multiplex 454 sequencing of barcoded BACs leads to sequence consensi highly representative for the clones. Assemblies are correct for the majority of contigs. Though the resolution of complex repetitive structures requires additional experimental efforts, our approach paves the way for a clone based strategy of sequencing the barley genome.

  15. Genomic organization and promoter cloning of the human X11α gene APBA1.

    LENUS (Irish Health Repository)

    Chai, Ka-Ho

    2012-05-01

    X11α is a brain specific multi-modular protein that interacts with the Alzheimer\\'s disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer\\'s disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer\\'s disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer\\'s disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.

  16. The footprint of metabolism in the organization of mammalian genomes

    Directory of Open Access Journals (Sweden)

    Berná Luisa

    2012-05-01

    Full Text Available Abstract Background At present five evolutionary hypotheses have been proposed to explain the great variability of the genomic GC content among and within genomes: the mutational bias, the biased gene conversion, the DNA breakpoints distribution, the thermal stability and the metabolic rate. Several studies carried out on bacteria and teleostean fish pointed towards the critical role played by the environment on the metabolic rate in shaping the base composition of genomes. In mammals the debate is still open, and evidences have been produced in favor of each evolutionary hypothesis. Human genes were assigned to three large functional categories (as well as to the corresponding functional classes according to the KOG database: (i information storage and processing, (ii cellular processes and signaling, and (iii metabolism. The classification was extended to the organisms so far analyzed performing a reciprocal Blastp and selecting the best reciprocal hit. The base composition was calculated for each sequence of the whole CDS dataset. Results The GC3 level of the above functional categories was increasing from (i to (iii. This specific compositional pattern was found, as footprint, in all mammalian genomes, but not in frog and lizard ones. Comparative analysis of human versus both frog and lizard functional categories showed that genes involved in the metabolic processes underwent the highest GC3 increment. Analyzing the KOG functional classes of genes, again a well defined intra-genomic pattern was found in all mammals. Not only genes of metabolic pathways, but also genes involved in chromatin structure and dynamics, transcription, signal transduction mechanisms and cytoskeleton, showed an average GC3 level higher than that of the whole genome. In the case of the human genome, the genes of the aforementioned functional categories showed a high probability to be associated with the chromosomal bands. Conclusions In the light of different

  17. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  18. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification

    KAUST Repository

    Li, Lixin

    2012-01-22

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants. © 2012 Springer Science+Business Media B.V.

  19. [Mystery and problems of cloning].

    Science.gov (United States)

    Nikitin, V A

    2010-01-01

    The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.

  20. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  1. Proteomic analysis of pancreas derived from adult cloned pig

    International Nuclear Information System (INIS)

    Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun; Kim, Jin-Hoi; Han, Yong-Mahn; Koo, Deog-Bon; Lee, Kyung-Kwang

    2008-01-01

    The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreas were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis

  2. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  3. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes

    Directory of Open Access Journals (Sweden)

    Feuillet Catherine

    2010-11-01

    Full Text Available Abstract Background Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC software, which often results in short contig lengths (of 3-5 clones before merging as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs. Results To address these problems, we propose a novel approach that: (i reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize. Conclusions The results show that compared to other methods, LTC enables the construction of highly

  4. Approaching the sequential and three-dimensional organization of Archaea, Bacteria and Eukarya genomes. Dynamic Organization of Nuclear Function

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Göker (Markus); R. Lohner (Rudolf); J. Langowski (Jörg)

    2002-01-01

    textabstractThe largely unresolved sequential organization, i.e. the relations within DNA sequences, and its connection to the three-dimensional organization of genomes was investigated by correlation analyses of completely sequenced chromosomes from Viroids, Archaea, Bacteria, Arabidopsis

  5. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  6. Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years

    Science.gov (United States)

    Reeves, Peter R.; Liu, Bin; Zhou, Zhemin; Li, Dan; Guo, Dan; Ren, Yan; Clabots, Connie; Lan, Ruiting; Johnson, James R.; Wang, Lei

    2011-01-01

    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention. PMID:22046404

  7. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    Science.gov (United States)

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  8. Fungal biology in the post-genomic era.

    Science.gov (United States)

    Scazzocchio, Claudio

    2014-01-01

    In this review I give a personal perspective of how fungal biology has changed since I started my Ph. D. in 1963. At that time we were working in the shadow of the birth of molecular biology as an autonomous and reductionistic discipline, embodied in Crick's central dogma. This first period was methodologically characterised by the fact that we knew what genes were, but we could not access them directly. This radically changed in the 70s-80s when gene cloning, reverse genetics and DNA sequencing become possible. The "next generation" sequencing techniques have produced a further qualitative revolutionary change. The ready access to genomes and transcriptomes of any microbial organism allows old questions to be asked in a radically different way and new questions to be approached. I provide examples chosen somewhat arbitrarily to illustrate some of these changes, from applied aspects to fundamental problems such as the origin of fungal specific genes, the evolutionary history of genes clusters and the realisation of the pervasiveness of horizontal transmission. Finally, I address how the ready availability of genomes and transcriptomes could change the status of model organisms.

  9. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L. genome

    Directory of Open Access Journals (Sweden)

    Cloutier Sylvie

    2011-05-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES from 43,776 clones, providing initial insights into the genome. Results The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb. The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%, followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. Conclusion The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable

  10. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    Science.gov (United States)

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  11. Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets

    DEFF Research Database (Denmark)

    Schmidt, Mette; Winter, K.D.; Dantzer, Vibeke

    2011-01-01

    The perinatal mortality of cloned animals is a well-known problem. In the present retrospective study, we report on mortality of cloned transgenic or non-transgenic piglets produced as part of several investigations. Large White (LW) sows (n = 105) received hand-made cloned LW or minipig...... endometrial oedema in sows pregnant with cloned and transgenic piglets, as well as in empty recipients, at term. The growth of certain organs in some of the cloned piglets was reduced and the rate of stillborn piglets was greater in cloned and transgenic piglets delivered vaginally, possibly because of oedema...

  12. Rhipicephalus (Boophilus) microplus strain Deutsch, 5 BAC clone sequencing, including two encoding Cytochrome P450s and one encoding CzEst9 carboxylesterase

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. BAC clones give insight into the genome struct...

  13. A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).

    Science.gov (United States)

    Miyanari, Yusuke

    2016-01-01

    Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.

  14. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  15. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    Science.gov (United States)

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Cloning and identification of the gene coding for the 140-kd subunit of Drosophila RNA polymerase II

    OpenAIRE

    Faust, Daniela M.; Renkawitz-Pohl, Renate; Falkenburg, Dieter; Gasch, Alexander; Bialojan, Siegfried; Young, Richard A.; Bautz, Ekkehard K. F.

    1986-01-01

    Genomic clones of Drosophila melanogaster were isolated from a λ library by cross-hybridization with the yeast gene coding for the 150-kd subunit of RNA polymerase II. Clones containing a region of ∼2.0 kb with strong homology to the yeast gene were shown to code for a 3.9-kb poly(A)+-RNA. Part of the coding region was cloned into an expression vector. A fusion protein was obtained which reacted with an antibody directed against RNA polymerase II of Drosophila. Peptide mapping of the fusion p...

  17. Characterization and multivariate classification of grapes and wines of two Cabernet Sauvignon clones

    Directory of Open Access Journals (Sweden)

    Vívian Maria Burin

    2011-05-01

    Full Text Available The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.

  18. Unified Approach to Universal Cloning and Phase-Covariant Cloning

    OpenAIRE

    Hu, Jia-Zhong; Yu, Zong-Wen; Wang, Xiang-Bin

    2008-01-01

    We analyze the problem of approximate quantum cloning when the quantum state is between two latitudes on the Bloch's sphere. We present an analytical formula for the optimized 1-to-2 cloning. The formula unifies the universal quantum cloning (UQCM) and the phase covariant quantum cloning.

  19. Cloning of ES cells and mice by nuclear transfer.

    Science.gov (United States)

    Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.

  20. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  1. Survival and growth of eucalypts clones seedlings in response to organic fertilizer application

    Directory of Open Access Journals (Sweden)

    Sula Janaína de Oliveira Fernandes

    2011-12-01

    Full Text Available This work aimed to evaluate the effect of Fert-Bokashi® on survival and seedlings growth of two Eucalyptus urophylla clones propagated by minicutting technique. The experiment was conducted over a period of 28 days using a randomized block design and three replicates in an 6 x 2 factorial arrangement, with six Fert-Bokashi® concentrations (0.0%, 0.1%, 0.3%, 0.5%, 0.7% and 0.9% and two clones. Seedlings survival, height growth and shoot, root and total dry matter were evaluated. Experimental results demonstrated no significant effect of Fert- Bokashi® on survival and seedlings growth of two Eucalyptus urophylla clones.

  2. The DNA-instability test as a specific marker of malignancy and its application to detect cancer clones in borderline malignancy

    Directory of Open Access Journals (Sweden)

    M Fukuda

    2009-06-01

    Full Text Available Recent progress in cytogenetic and biochemical mutator assay technologies has enabled us to detect single gene alterations and gross chromosomal rearrangements, and it became clear that all cancer cells are genetically unstable. In order to detect the genome-wide instability of cancer cells, a new simple method, the DNA-instability test, was developed. The methods to detect genomic instability so far reported have only demonstrated the presence of qualitative and quantitative alterations in certain specific genomic loci. In contrast to these commonly used methods to reveal the genomic instability at certain specific DNA regions, the newly introduced DNA-instability test revealed the presence of physical DNA-instability in the entire DNA molecule of a cancer cell nucleus as revealed by increased liability to denature upon HCl hydrolysis or formamide exposure. When this test was applied to borderline malignancies, cancer clones were detected in all cases at an early-stage of cancer progression. We proposed a new concept of “procancer” clones to define those cancer clones with “functional atypia” showing positivities for various cancer markers, as well as DNA-instability testing, but showing no remarkable ordinary “morphological atypia” which is commonly used as the basis of histopathological diagnosis of malignancy.

  3. Analysis of IgG4-positive clones in affected organs of IgG4-related disease.

    Science.gov (United States)

    Kakuchi, Yasushi; Yamada, Kazunori; Ito, Kiyoaki; Hara, Satoshi; Fujii, Hiroshi; Yamagishi, Masakazu; Kawano, Mitsuhiro

    2016-11-01

    We investigated class switch reaction (CSR) in affected organs and evaluated whether the same or genetically related clones exist in IgG4-RD. We studied three patients with IgG4-RD. Total cellular RNA was extracted from salivary glands and peripheral blood and lung tissue. Activation-induced cytidine deaminase (AID) and immunoglobulin heavy chain third complementarity determining region (IgVH-CDR3) of IgM and IgG4 were detected by reverse transcription polymerase chain reaction (RT-PCR). We analyzed the clonal relationship of infiltrating IgG4-positive cells, as compared with IgM. We determined the existence of common clones among organs and patients. AID was expressed in salivary glands of all patients and lung tissue in one. Closely related IgVH-CDR3 sequences in infiltrating IgG4-positive cells were detected in salivary glands and lung tissue. Identical IgVH-CDR3 sequence between IgM and IgG4 in salivary glands was detected in one patient, indicating CSR in salivary glands. Identical IgVH-CDR3 sequences of IgG4-positive cells were detected between salivary glands and peripheral blood in two patients. Four identical sequences of IgVH-CDR3 existed between patients. Interestingly, one of the four sequences was detected in all patients. Our results demonstrate the existence of common antigen(s) shared by patients with IgG4-RD.

  4. Chapter 7. Cloning and analysis of natural product pathways.

    Science.gov (United States)

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  5. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    Science.gov (United States)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate

  6. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium.

    Science.gov (United States)

    Jiang, Shu-Mei; Hu, Jun; Yin, Wei-Bo; Chen, Yu-Hong; Wang, Richard R-C; Hu, Zan-Min

    2005-09-01

    Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR 3 was amplified from the dissected alien chromosome of TAi-27, TcDR 2 and TcDR 3 were from cDNA of Th. intermedium, AcDR 3 was from cDNA of TAi-27, FcDR 2 was from cDNA of 3B-2, AR 2 was from genomic DNA of TAi-27 and TR 2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR 3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR 3 as the probe showed that there is only one copy of ACR 3 in the genome of Th. intermedium and TAi

  7. Cloning and sequencing of the peroxisomal amine oxidase gene from Hansenula polymorpha

    NARCIS (Netherlands)

    Bruinenberg, P. G.; Evers, M.; Waterham, H. R.; Kuipers, J.; Arnberg, A. C.; AB, G.

    1989-01-01

    We have cloned the AMO gene, encoding the microbody matrix enzyme amine oxidase (EC 1.4.3.6) from the yeast Hansenula polymorpha. The gene was isolated by differential screening of a cDNA library, immunoselection, and subsequent screening of a H. polymorpha genomic library. The nucleotide sequence

  8. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project.

    Science.gov (United States)

    Dunlap, Jay C; Borkovich, Katherine A; Henn, Matthew R; Turner, Gloria E; Sachs, Matthew S; Glass, N Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E; Birren, Bruce W; Weiss, Richard L; Townsend, Jeffrey P; Loros, Jennifer J; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.

  9. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    Science.gov (United States)

    Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C

    2015-08-28

    The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts

  10. TMEPAI genome editing in triple negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Bantari W.K. Wardhani

    2017-05-01

    Full Text Available Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9 is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA. By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining or HDR (homology-directed repair and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI gene in the triple negative breast cancer cell line.Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.

  11. Differentiation and diagnosis of Pseudocercosporella herpotrichoides (Fron) Deighton with genomic DNA probes

    DEFF Research Database (Denmark)

    Frei, U; Wenzel, G.

    1993-01-01

    Repetitive genomic clones were used to differentiate between varieties within the species Pseudocercosporella herpotrichoides. From 21 clones tested 13 revealed restriction fragment length polymorphisms among isolates. Cluster analysis was performed based on these data. Differentiation of isolate...

  12. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    Science.gov (United States)

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  13. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full

  14. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    Science.gov (United States)

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  15. The draft genome of a termite illuminates alternative social organization

    Science.gov (United States)

    Termites have substantial economic and ecological impact worldwide. They are also the oldest organisms living in complex societies, having evolved a caste system independent of that of eusocial Hymenoptera (ants, bees and wasps). Here we provide the first genome sequence for a termite, Zootermopsis ...

  16. Genomic sequence, organization and characteristics of a new nucleopolyhedrovirus isolated from Clanis bilineata larva

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2009-02-01

    Full Text Available Abstract Background Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV has been sequenced and analyzed in order to understand this virus better. Results The genome of ClbiNPV contains 135,454 base pairs (bp with a G+C content of 37%, and 139 putative open reading frames (ORFs of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. Conclusion ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.

  17. A Seminar on Human Cloning: Cloning in Reproductive Medicine

    OpenAIRE

    Illmensee, Karl

    2001-01-01

    This review article summarizes the historical development of mammalian cloning, presents current advances and presumed risk factors in the field of reproductive cloning, discusses possible clinical applications of therapeutic and diagnostic cloning and outlines prospective commercial trends in pharmacytical cloning. Predictable progress in biotechnology and stem cell engineering should prove to be advantageous for patients' health and for novel benefits in reproductive and regenerative medicine.

  18. Cloning and expression of calmodulin gene in Scoparia dulcis.

    Science.gov (United States)

    Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2007-06-01

    A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.

  19. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  20. The dominant Australian community-acquired methicillin-resistant Staphylococcus aureus clone ST93-IV [2B] is highly virulent and genetically distinct.

    Directory of Open Access Journals (Sweden)

    Kyra Y L Chua

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159 to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total. These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300 share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2. This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid

  1. Environmental whole-genome amplification to access microbial populations in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, Carl B [Diversa Corporation; Wyborski, Denise L. [Diversa Corporation; Garcia, Joseph A. [Diversa Corporation; Podar, Mircea [ORNL; Chen, Wenqiong [Diversa Corporation; Chang, Sherman H. [Diversa Corporation; Chang, Hwai W. [Diversa Corporation; Watson, David B [ORNL; Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Keller, Martin [ORNL

    2006-05-01

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using {phi}29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and 'clusters of orthologous groups' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  2. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  3. Molecular Cloning Expression And Purification Studies With An ORF Of Mycobacterium Tuberculosis

    Directory of Open Access Journals (Sweden)

    Chiranjibi Chaudhary

    2017-08-01

    Full Text Available The study was initiated to develop a recombinant strain for expression and production of large scale protein and to develop its purification protocol. The MRAORF-X was amplified from the genomic DNA of M. tuberculosis H37Ra. The amplicon was successfully cloned in a cloning vector pGEM-T Easy and transformed in cloning host DH5amp945. Recombinant clones were identified by blue-white screening and insert presence was confirmed by restriction digestion of plasmid isolated from white colonies. Expression vector pET32a was used for protein expression. The recombinant plasmid was transformed into expression host BL21 and protein expression was checked by SDS-PAGE. The desired protein was approximately 60 kDa in size including tags. The purification protocol was established for purification from inclusion bodies. The purity of purified protein was assessed by SDS-PAGE gel run and presence of a single band at 60 kDa suggested that the inclusion bodies were a good source of purified protein.

  4. Fluctuating fitness shapes the clone-size distribution of immune repertoires.

    Science.gov (United States)

    Desponds, Jonathan; Mora, Thierry; Walczak, Aleksandra M

    2016-01-12

    The adaptive immune system relies on the diversity of receptors expressed on the surface of B- and T cells to protect the organism from a vast amount of pathogenic threats. The proliferation and degradation dynamics of different cell types (B cells, T cells, naive, memory) is governed by a variety of antigenic and environmental signals, yet the observed clone sizes follow a universal power-law distribution. Guided by this reproducibility we propose effective models of somatic evolution where cell fate depends on an effective fitness. This fitness is determined by growth factors acting either on clones of cells with the same receptor responding to specific antigens, or directly on single cells with no regard for clones. We identify fluctuations in the fitness acting specifically on clones as the essential ingredient leading to the observed distributions. Combining our models with experiments, we characterize the scale of fluctuations in antigenic environments and we provide tools to identify the relevant growth signals in different tissues and organisms. Our results generalize to any evolving population in a fluctuating environment.

  5. M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species

    Directory of Open Access Journals (Sweden)

    Messeguer Xavier

    2006-10-01

    Full Text Available Abstract Background Due to recent advances in whole genome shotgun sequencing and assembly technologies, the financial cost of decoding an organism's DNA has been drastically reduced, resulting in a recent explosion of genomic sequencing projects. This increase in related genomic data will allow for in depth studies of evolution in closely related species through multiple whole genome comparisons. Results To facilitate such comparisons, we present an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. M-GCAT is able to compare and identify highly conserved regions in up to 20 closely related bacterial species in minutes on a standard computer, and as many as 90 (containing 75 cloned genomes from a set of 15 published enterobacterial genomes in an hour. M-GCAT also incorporates a novel comparative genomics data visualization interface allowing the user to globally and locally examine and inspect the conserved regions and gene annotations. Conclusion M-GCAT is an interactive comparative genomics tool well suited for quickly generating multiple genome comparisons frameworks and alignments among closely related species. M-GCAT is freely available for download for academic and non-commercial use at: http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html.

  6. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  7. New vectors in fission yeast: application for cloning the his2 gene

    DEFF Research Database (Denmark)

    Weilguny, D; Praetorius, M; Carr, Alan

    1991-01-01

    of transforming Sc. pombe ura4 strains, as well as ura 3 strains of the distantly related budding yeast Saccharomyces cerevisiae. We have used pON163 for the construction of two fission yeast genomic libraries. From these gene banks clones were isolated that were able to complement fission yeast his2 mutants...

  8. The global governance of human cloning: the case of UNESCO.

    Science.gov (United States)

    Langlois, Adèle

    2017-03-21

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting "all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life". It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO's Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance.

  9. Cloning of the genome of a goose parvovirus vaccine strain SYG61v and rescue of infectious virions from recombinant plasmid in embryonated goose eggs.

    Science.gov (United States)

    Wang, Jianye; Duan, Jinkun; Meng, Xia; Gong, Jiansen; Jiang, Zhiwei; Zhu, Guoqiang

    2014-05-01

    The SYG61v is an attenuated goose parvovirus (GPV) that has been used as a vaccine strain in China. The genome of SYG61v was sequenced to attempt to identify the genetic basis for the attenuation of this strain. The entire genome consists of 5102 nucleotides (nts), with four nt deletions compared to that of virulent strain B. The inverted terminal repeats (ITR) are 442 nts in length, of which 360 nts form a stem region, and 43 nts constitute the bubble region. Although mutations were observed throughout the ITR, no mismatch was found in the stem. Alignment with other pathogenic GPV strains (B, 82-0321, 06-0329, and YZ99-5) indicated that there are 10 and 11 amino acid mutations in the Rep1 and VP1 proteins of SYG61v, respectively. The complete genome of SYG61v was cloned into the pBluescript II vector and an infectious plasmid pSYG61v was generated. Infectious progeny virus was successfully rescued through transfection of the plasmid pSYG61v in embryonated goose eggs and yielded viral titers similar to its parental virus, as evaluated by ELD50. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Cloning of observables

    OpenAIRE

    Ferraro, Alessandro; Galbiati, Matteo; Paris, Matteo G. A.

    2005-01-01

    We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analyzed.

  11. Hepatitis A Virus Genome Organization and Replication Strategy.

    Science.gov (United States)

    McKnight, Kevin L; Lemon, Stanley M

    2018-04-02

    Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Cloning of Bovine herpesvirus type 1 and type 5 as infectious bacterial artifical chromosomes

    Directory of Open Access Journals (Sweden)

    Ackermann Mathias

    2009-10-01

    Full Text Available Abstract Background Bovine herpesviruses type 1 (BoHV1 and type 5 (BoHV5 are two closely related pathogens of cattle. The identity of the two viruses on the amino acid level averages 82%. Despite their high antigenetic similarities the two pathogens induce distinctive clinical signs. BoHV1 causes respiratory and genital tract infections while BoHV5 leads to severe encephalitis in calves. Findings The viral genomes of BoHV1 and BoHV5 were cloned as infectious bacterial artificial chromosomes (BACs. First, recombinant viruses carrying the genetic elements for propagation in bacteria were generated. Second, DNA from these recombinant viruses were transferred into prokaryotic cells. Third, DNA from these bacteria were transferred into eukaryotic cells. Progeny viruses from BAC transfections showed similar kinetics as their corresponding wild types. Conclusion The two viral genomes of BoHV1 and BoHV5 cloned as BACs are accessible to the tools of bacterial genetics. The ability to easily manipulate the viral genomes on a molecular level in future experiments will lead to a better understanding of the difference in pathogenesis induced by these two closely related bovine herpesviruses.

  13. Occupancy of chromatin organizers in the Epstein-Barr virus genome.

    Science.gov (United States)

    Holdorf, Meghan M; Cooper, Samantha B; Yamamoto, Keith R; Miranda, J J L

    2011-06-20

    The human CCCTC-binding factor, CTCF, regulates transcription of the double-stranded DNA genomes of herpesviruses. The architectural complex cohesin and RNA Polymerase II also contribute to this organization. We profiled the occupancy of CTCF, cohesin, and RNA Polymerase II on the episomal genome of the Epstein-Barr virus in a cell culture model of latent infection. CTCF colocalizes with cohesin but not RNA Polymerase II. CTCF and cohesin bind specific sequences throughout the genome that are found not just proximal to the regulatory elements of latent genes, but also near lytic genes. In addition to tracking with known transcripts, RNA Polymerase II appears at two unannotated positions, one of which lies within the latent origin of replication. The widespread occupancy profile of each protein reveals binding near or at a myriad of regulatory elements and suggests context-dependent functions. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    Science.gov (United States)

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  15. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane.

    Science.gov (United States)

    Parida, Swarup K; Kalia, Sanjay K; Kaul, Sunita; Dalal, Vivek; Hemaprabha, G; Selvi, Athiappan; Pandit, Awadhesh; Singh, Archana; Gaikwad, Kishor; Sharma, Tilak R; Srivastava, Prem Shankar; Singh, Nagendra K; Mohapatra, Trilochan

    2009-01-01

    Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16 Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16-0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane.

  16. Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones.

    Science.gov (United States)

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (~100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC-fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)-derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources.

  17. The proviral genome of radiation leukemia virus: Molecular cloning, nucleotide sequence of its long terminal repeat and integration in lymphoma cell DNA

    International Nuclear Information System (INIS)

    Janowski, M.; Merregaert, J.; Boniver, J.; Maisin, J.R.

    1985-01-01

    The proviral genome of a thymotropic and leukemogenic C57BL/Ka mouse retrovirus, RadLV/VL/sub 3/(T+L+), was cloned as a biologically active PstI insert in the bacterial plasmid pBR322. Its restriction map was compared to those, already known, of two nonthymotropic and nonleukemogenic viruses of the same mouse strain, the ecotropic BL/Ka(B) and the xenotropic constituent of the radiation leukemia virus complex (RadLV). Differences were observed in the pol gene and in the env gene. Moreover, the nucleotide sequence of the RadLV/VL/sub 3/(T+L+) long terminal repeat revealed the existence of two copies of a 42 bp long sequence, separated by 11 nucleotides and of which BL/Ka(B) possesses only one copy

  18. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    Full Text Available Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice and dicots (Arabidopsis, Medicago and Populus was performed. A total of 797,863 simple sequence repeats (SSRs were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium

  19. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  20. Cloning, sequencing and expression of a xylanase gene from the maize pathogen Helminthosporium turcicum

    DEFF Research Database (Denmark)

    Degefu, Y.; Paulin, L.; Lübeck, Peter Stephensen

    2001-01-01

    A gene encoding an endoxylanase from the phytopathogenic fungus Helminthosporium turcicum Pass. was cloned and sequenced. The entire nucleotide sequence of a 1991 bp genomic fragment containing an endoxylanase gene was determined. The xylanase gene of 795 bp, interrupted by two introns of 52 and ...

  1. Cloning of observables

    International Nuclear Information System (INIS)

    Ferraro, Alessandro; Galbiati, Matteo; Paris, Matteo G A

    2006-01-01

    We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analysed. (letter to the editor)

  2. A Parvovirus B19 synthetic genome: sequence features and functional competence.

    Science.gov (United States)

    Manaresi, Elisabetta; Conti, Ilaria; Bua, Gloria; Bonvicini, Francesca; Gallinella, Giorgio

    2017-08-01

    Central to genetic studies for Parvovirus B19 (B19V) is the availability of genomic clones that may possess functional competence and ability to generate infectious virus. In our study, we established a new model genetic system for Parvovirus B19. A synthetic approach was followed, by design of a reference genome sequence, by generation of a corresponding artificial construct and its molecular cloning in a complete and functional form, and by setup of an efficient strategy to generate infectious virus, via transfection in UT7/EpoS1 cells and amplification in erythroid progenitor cells. The synthetic genome was able to generate virus with biological properties paralleling those of native virus, its infectious activity being dependent on the preservation of self-complementarity and sequence heterogeneity within the terminal regions. A virus of defined genome sequence, obtained from controlled cell culture conditions, can constitute a reference tool for investigation of the structural and functional characteristics of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Climbing Mount Efficiency--small steps, not giant leaps towards higher cloning success in farm animals.

    Science.gov (United States)

    Oback, Björn

    2008-07-01

    Despite more than a decade of research efforts, farm animal cloning by somatic cell nuclear transfer (SCNT) is still frustratingly inefficient. Inefficiency manifests itself at different levels, which are currently not well integrated. At the molecular level, it leads to widespread genetic, epigenetic and transcriptional aberrations in cloned embryos. At the organismal level, these genome-wide abnormalities compromise development of cloned foetuses and offspring. Specific molecular defects need to be causally linked to specific cloned phenotypes, in order to design specific treatments to correct them. Cloning efficiency depends on the ability of the nuclear donor cell to be fully reprogrammed into an embryonic state and the ability of the enucleated recipient cell to carry out the reprogramming reactions. It has been postulated that reprogrammability of the somatic donor cell epigenome is influenced by its differentiation status. However, direct comparisons between cells of divergent differentiation status within several somatic lineages have found no conclusive evidence for this. Choosing somatic stem cells as donors has not improved cloning efficiency, indicating that donor cell type may be less critical for cloning success. Different recipient cells, on the other hand, vary in their reprogramming ability. In bovine, using zygotes instead of oocytes has increased cloning success. Other improvements in livestock cloning efficiency include better coordinating donor cell type with cell cycle stage and aggregating cloned embryos. In the future, it will be important to demonstrate if these small increases at every step are cumulative, adding up to an integrated cloning protocol with greatly improved efficiency.

  4. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  5. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  6. Features of the organization of bread wheat chromosome 5BS based on physical mapping.

    Science.gov (United States)

    Salina, Elena A; Nesterov, Mikhail A; Frenkel, Zeev; Kiseleva, Antonina A; Timonova, Ekaterina M; Magni, Federica; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, Abraham; Sergeeva, Ekaterina M

    2018-02-09

    The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the

  7. Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain.

    Science.gov (United States)

    Romay, Gustavo; Chirinos, Dorys T; Geraud-Pouey, Francis; Gillis, Annika; Mahillon, Jacques; Bragard, Claude

    2018-02-01

    At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.

  8. Draft Genome Sequences of Four Hospital-Associated Pseudomonas putida Isolates.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Ezeonwuka, Chinelo D; Pasculle, Anthony W; Pacey, Marissa P; Querry, Ashley M; Muto, Carlene A; Harrison, Lee H

    2016-09-29

    We present here the draft genome sequences of four Pseudomonas putida isolates belonging to a single clone suspected for nosocomial transmission between patients and a bronchoscope in a tertiary hospital. The four genome sequences belong to a single lineage but contain differences in their mobile genetic elements. Copyright © 2016 Mustapha et al.

  9. Production of healthy cloned mice from bodies frozen at −20°C for 16 years

    OpenAIRE

    Wakayama, Sayaka; Ohta, Hiroshi; Hikichi, Takafusa; Mizutani, Eiji; Iwaki, Takamasa; Kanagawa, Osami; Wakayama, Teruhiko

    2008-01-01

    Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the “resurrection” of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at −20 °C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we...

  10. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

    Directory of Open Access Journals (Sweden)

    You Frank M

    2010-06-01

    Full Text Available Abstract Background Physical maps employing libraries of bacterial artificial chromosome (BAC clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum, Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete

  11. EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Holkenbrink, Carina; Dam, Marie Inger; Kildegaard, Kanchana Rueksomtawin

    2018-01-01

    . Here, we present the EasyCloneYALI genetic toolbox, which allows streamlined strain construction with high genome editing efficiencies in Y. lipolytica via the CRISPR/Cas9 technology. The toolbox allows marker-free integration of gene expression vectors into characterized genome sites as well as marker......-free deletion of genes with the help of CRISPR/Cas9. Genome editing efficiencies above 80% were achieved with transformation protocols using non-replicating DNA repair fragments (such as DNA oligos). Furthermore, the toolbox includes a set of integrative gene expression vectors with prototrophic markers...

  12. The Complete Mitochondrial Genome of the Foodborne Parasitic Pathogen Cyclospora cayetanensis.

    Directory of Open Access Journals (Sweden)

    Hediye Nese Cinar

    Full Text Available Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb, cytochrome C oxidase subunit 1 (cox1, and cytochrome C oxidase subunit 3 (cox3, in addition to 14 large subunit (LSU and nine small subunit (SSU fragmented rRNA genes.

  13. Fiscal 1998 achievement report. Industrial technology research and development project. (Strategic human cDNA genome application technology development); 1998 nendo senryakuteki hito cDNA genome oyo gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A human genome related project named above was started, and studies were conducted for base sequence determination and function analysis for approximately 10,000 kinds of full-length or long-chain human cDNA clones owned by research organizations in this country. The Institute of Medical Science of University of Tokyo and Helix Research Institute dealt with a full-length human cDNA library constructed by oligo-capping, and determined the base sequences of all specimens in the library. The Kazusa DNA Research Institute determined partial sequences for long-chain clones which are not shorter than 4-5kbp, and determined entire sequences for some bases. The obtained base sequence data were subjected to homology analysis, the base sequences were converted into amino acid sequences, and functions of proteins were predicted. In the analysis of gene functions, ATAC-PCR (adaptor tagged competitive-polymerase chain reaction) was applied to the clones covered by this project, and a database was prepared by use of the results of analyses of frequency-related information. For the preparation of a comprehensive gene expression profile, technologies for cDNA microarray construction were established. (NEDO)

  14. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    Science.gov (United States)

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  15. Large inserts for big data: artificial chromosomes in the genomic era.

    Science.gov (United States)

    Tocchetti, Arianna; Donadio, Stefano; Sosio, Margherita

    2018-05-01

    The exponential increase in available microbial genome sequences coupled with predictive bioinformatic tools is underscoring the genetic capacity of bacteria to produce an unexpected large number of specialized bioactive compounds. Since most of the biosynthetic gene clusters (BGCs) present in microbial genomes are cryptic, i.e. not expressed under laboratory conditions, a variety of cloning systems and vectors have been devised to harbor DNA fragments large enough to carry entire BGCs and to allow their transfer in suitable heterologous hosts. This minireview provides an overview of the vectors and approaches that have been developed for cloning large BGCs, and successful examples of heterologous expression.

  16. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    Science.gov (United States)

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  17. The origin and evolution of the term "clone".

    Science.gov (United States)

    Steensma, David P

    2017-06-01

    In biology, the term "clone" is most widely used to designate genetically identical cells or organisms that are asexually descended from a common progenitor. The concept of clonality in hematology-oncology has received much attention in recent years, as the advent of next-generation sequencing platforms has provided new tools for detection of clonal populations in patients, and experiments on primary cells have provided fascinating new insights into the clonal architecture of human malignancies. The term "clone" is used more loosely by the general public to mean any close or identical copy. Cloning of humans has been a staple of science fiction films and dystopian novels since Aldous Huxley's Brave New World was published in 1932. Here I trace the origin and evolution of the word clone, from its first use as an agricultural and botanical term in 1903, to its widespread adoption in biology, adaptation by artists, and contemporary use in hematology-oncology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    Science.gov (United States)

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  19. The Clone Factory

    Science.gov (United States)

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  20. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  1. Construction of a Bacterial Artificial Chromosome Library of TM-1, a Standard Line for Genetics and Genomics in Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    Yan Hu; Wang-Zhen Guo; Tian-Zhen Zhang

    2009-01-01

    A bacterial artificial chromosome (BAC) library was constructed for Gossyplum hirsutum acc. TM-1, a genetic and genomic standard line for Upland cotton. The library consists of 147 456 clones with an average insert size of 122.8 kb ranging from 97 to 240 kb. About 96.0% of the clones have inserts over 100 kb. Therefore, this library represents theoretically 7.4 haploid genome equivalents based on an AD genome size of 2 425 Mb. Clones were stored in 384 384- well plates and arrayed into multiplex pools for rapid and reliable library screening. BAC screening was carded out by four-round polymerase chain reactions using 23 simple sequence repeats (SSR) markers, three sequence-related amplified polymorphism markers and one pair of pdmere for a gene associated with fiber development to test the quality of the library. Correspondingly, in total 92 positive BAC clones were Identified with an average four positive clones per SSR marker, ranging from one to eight hits. Additionally, since these SSR markers have been localized to chromosome 12 (A12) and 26 (D12) according to the genetic map, these BAC clonee are expected to serve as seeds for the physical mapping of these two homologous chromosomes, sequentially map-based cloning of quantitative trait loci or genes associated with Important agronomic traits.

  2. Construction of Agrobacterium tumefaciens-mediated tomato black ring virus infectious cDNA clones.

    Science.gov (United States)

    Zarzyńska-Nowak, Aleksandra; Ferriol, Inmaculada; Falk, Bryce W; Borodynko-Filas, Natasza; Hasiów-Jaroszewska, Beata

    2017-02-15

    Tomato black ring virus (TBRV, genus Nepovirus) infects a wide range of economically important plants such as tomato, potato, tobacco and cucumber. Here, a successful construction of infectious full-length cDNA clones of the TBRV genomic RNAs (RNA1 and RNA2) is reported for the first time. The engineered constructs consisting of PCR-amplified DNAs were cloned into binary vector pJL89 immediately downstream of a double cauliflower mosaic virus (CaMV) 35S promoter, and upstream of the hepatitis delta virus (HDV) ribozyme and nopaline synthase terminator (NOS). The symptoms induced on plants agroinoculated with both constructs were indistinguishable from those caused by the wild-type virus. The infectivity of obtained clones was verified by reinoculation to Nicotiana tabacum cv. Xanthi, Chenopodium quinoa and Cucumis sativus. The presence of viral particles and RNA was confirmed by electron microscopy and reverse transcription polymerase chain reaction, respectively. Constructed full-length infectious cDNA clones will serve as an excellent tool to study virus-host-vector interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells

    Science.gov (United States)

    Zhang, Qing-Hua; Ye, Min; Wu, Xin-Yan; Ren, Shuang-Xi; Zhao, Meng; Zhao, Chun-Jun; Fu, Gang; Shen, Yu; Fan, Hui-Yong; Lu, Gang; Zhong, Ming; Xu, Xiang-Ru; Han, Ze-Guang; Zhang, Ji-Wang; Tao, Jiong; Huang, Qiu-Hua; Zhou, Jun; Hu, Geng-Xi; Gu, Jian; Chen, Sai-Juan; Chen, Zhu

    2000-01-01

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58–752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon–intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3′ UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 1, pp 1548–1552.] PMID:11042152

  4. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.

    Science.gov (United States)

    Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción

    2016-02-27

    In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a

  5. Multimedia Presentations on the Human Genome: Implementation and Assessment of a Teaching Program for the Introduction to Genome Science Using a Poster and Animations

    Science.gov (United States)

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-01-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from…

  6. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  7. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    Science.gov (United States)

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  8. Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.

    Science.gov (United States)

    Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul

    2013-11-01

    Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.

  9. Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13

    Directory of Open Access Journals (Sweden)

    Chen Ming-Shun

    2006-01-01

    Full Text Available Abstract Background To have an insight into the Mayetiola destructor (Hessian fly genome, we performed an in silico comparative genomic analysis utilizing genetic mapping, genomic sequence and EST sequence data along with data available from public databases. Results Chromosome walking and FISH were utilized to identify a contig of 50 BAC clones near the telomere of the short arm of Hessian fly chromosome X2 and near the avirulence gene vH13. These clones enabled us to correlate physical and genetic distance in this region of the Hessian fly genome. Sequence data from these BAC ends encompassing a 760 kb region, and a fully sequenced and assembled 42.6 kb BAC clone, was utilized to perform a comparative genomic study. In silico gene prediction combined with BLAST analyses was used to determine putative orthology to the sequenced dipteran genomes of the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, and to infer evolutionary relationships. Conclusion This initial effort enables us to advance our understanding of the structure, composition and evolution of the genome of this important agricultural pest and is an invaluable tool for a whole genome sequencing effort.

  10. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    Science.gov (United States)

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  11. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    Directory of Open Access Journals (Sweden)

    Joyce Xiuweu-Xu Gu

    2007-01-01

    Full Text Available With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator that matches the BAC clones from array-based comparative genomic hybridization (aCGH to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specifi c BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  12. Transformation of natural genetic variation into Haemophilus influenzae genomes.

    Directory of Open Access Journals (Sweden)

    Joshua Chang Mell

    2011-07-01

    Full Text Available Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus influenzae to transform competent cells of a laboratory strain. To identify which of the ~40,000 polymorphic differences had recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep sequenced to high coverage. Each clone was found to contain ~1000 donor polymorphisms in 3-6 contiguous runs (8.1±4.5 kb in length that collectively comprised ~1-3% of each transformed chromosome. Seven donor-specific insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same species.

  13. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov

    2008-01-01

    Background: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion...... of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Results: Here, we present a USER Friendly cloning based...

  14. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    Science.gov (United States)

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.

  15. Functional genomics for food microbiology: Molecular mechanisms of weak organic acid preservative adaptation in yeast

    NARCIS (Netherlands)

    Brul, S.; Kallemeijn, W.; Smits, G.

    2008-01-01

    The recent era of genomics has offered tremendous possibilities to biology. This concise review describes the possibilities of applying (functional) genomics studies to the field of microbial food stability. In doing so, the studies on weak-organic-acid stress response in yeast are discussed by way

  16. Universality of clone dynamics during tissue development

    Science.gov (United States)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  17. Cloning and expression of the Legionella micdadei "common antigen" in Escherichia coli

    DEFF Research Database (Denmark)

    Bangsborg, Jette Marie; Collins, M T; Høiby, N

    1989-01-01

    To study individual Legionella antigens, a Legionella micdadei genomic library in Escherichia coli SC181 was established. Partially Sau3A digested L. micdadei DNA fragments (15-25 kilobase pairs (kb] were cloned into the tetracycline resistance gene of the cosmid vector pHC79. Four thousand...... ampicillin resistant recombinants were obtained; seven hundred were screened for expression of Legionella antigens in Western blot analysis with a polyspecific E. coli-absorbed anti-L. micdadei rabbit antibody. One of the positive clones expressed a 60 kilodalton (K) antigen, which reacted strongly...... will provide important information with respect to genetic vs. antigenic relatedness among Legionellae and other Gram-negative species, as well as to CA structure and possible function....

  18. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2015-10-01

    Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African 'meningitis belt' and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution.

  19. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228 in a tertiary care hospital.

    Directory of Open Access Journals (Sweden)

    Valérie Vogel

    Full Text Available Staphylococcus aureus is recognized as one of the major human pathogens and is by far one of the most common nosocomial organisms. The genetic basis for the emergence of highly epidemic strains remains mysterious. Studying the microevolution of the different clones of S. aureus is essential for identifying the forces driving pathogen emergence and spread. The aim of the present study was to determine the genetic changes characterizing a lineage belonging to the South German clone (ST228 that spread over ten years in a tertiary care hospital in Switzerland. For this reason, we compared the whole genome of eight isolates recovered between 2001 and 2008 at the Lausanne hospital. The genetic comparison of these isolates revealed that their genomes are extremely closely related. Yet, a few more important genetic changes, such as the replacement of a plasmid, the loss of large fragments of DNA, or the insertion of transposases, were observed. These transfers of mobile genetic elements shaped the evolution of the ST228 lineage that spread within the Lausanne hospital. Nevertheless, although the strains analyzed differed in their dynamics, we have not been able to link a particular genetic element with spreading success. Finally, the present study showed that new sequencing technologies improve considerably the quality and quantity of information obtained for a single strain; but this information is still difficult to interpret and important investments are required for the technology to become accessible for routine investigations.

  20. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  1. Impact of nuclear organization and chromatin structure on DNA repair and genome stability

    International Nuclear Information System (INIS)

    Batte, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end. My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at sub-telomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that hetero-chromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair. (author) [fr

  2. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    Science.gov (United States)

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  3. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  4. Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing.

    Science.gov (United States)

    Cabot, Gabriel; López-Causapé, Carla; Ocampo-Sosa, Alain A; Sommer, Lea M; Domínguez, María Ángeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis; Plesiat, Patrick; Oliver, Antonio

    2016-12-01

    Whole-genome sequencing (WGS) was used for the characterization of the frequently extensively drug resistant (XDR) Pseudomonas aeruginosa sequence type 175 (ST175) high-risk clone. A total of 18 ST175 isolates recovered from 8 different Spanish hospitals were analyzed; 4 isolates from 4 different French hospitals were included for comparison. The typical resistance profile of ST175 included penicillins, cephalosporins, monobactams, carbapenems, aminoglycosides, and fluoroquinolones. In the phylogenetic analysis, the four French isolates clustered together with two isolates from one of the Spanish regions. Sequence variation was analyzed for 146 chromosomal genes related to antimicrobial resistance, and horizontally acquired genes were explored using online databases. The resistome of ST175 was determined mainly by mutational events; resistance traits common to all or nearly all of the strains included specific ampR mutations leading to ampC overexpression, specific mutations in oprD conferring carbapenem resistance, or a mexZ mutation leading to MexXY overexpression. All isolates additionally harbored an aadB gene conferring gentamicin and tobramycin resistance. Several other resistance traits were specific to certain geographic areas, such as a streptomycin resistance gene, aadA13, detected in all four isolates from France and in the two isolates from the Cantabria region and a glpT mutation conferring fosfomycin resistance, detected in all but these six isolates. Finally, several unique resistance mutations were detected in single isolates; particularly interesting were those in genes encoding penicillin-binding proteins (PBP1A, PBP3, and PBP4). Thus, these results provide information valuable for understanding the genetic basis of resistance and the dynamics of the dissemination and evolution of high-risk clones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta).

    Science.gov (United States)

    Paiano, Monica Orlandi; Del Cortona, Andrea; Costa, Joana F; Liu, Shao-Lun; Verbruggen, Heroen; De Clerck, Olivier; Necchi, Orlando

    2018-02-01

    Little is known about genome organization in members of the order Batrachospermales, and the infra-ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra-ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene-dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein-coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling. © 2017 Phycological Society of America.

  6. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  7. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish.

    Science.gov (United States)

    Symonová, Radka; Majtánová, Zuzana; Arias-Rodriguez, Lenin; Mořkovský, Libor; Kořínková, Tereza; Cavin, Lionel; Pokorná, Martina Johnson; Doležálková, Marie; Flajšhans, Martin; Normandeau, Eric; Ráb, Petr; Meyer, Axel; Bernatchez, Louis

    2017-11-01

    Genomic GC content can vary locally, and GC-rich regions are usually associated with increased DNA thermostability in thermophilic prokaryotes and warm-blooded eukaryotes. Among vertebrates, fish and amphibians appeared to possess a distinctly less heterogeneous AT/GC organization in their genomes, whereas cytogenetically detectable GC heterogeneity has so far only been documented in mammals and birds. The subject of our study is the gar, an ancient "living fossil" of a basal ray-finned fish lineage, known from the Cretaceous period. We carried out cytogenomic analysis in two gar genera (Atractosteus and Lepisosteus) uncovering a GC chromosomal pattern uncharacteristic for fish. Bioinformatic analysis of the spotted gar (Lepisosteus oculatus) confirmed a GC compartmentalization on GC profiles of linkage groups. This indicates a rather mammalian mode of compositional organization on gar chromosomes. Gars are thus the only analyzed extant ray-finned fishes with a GC compartmentalized genome. Since gars are cold-blooded anamniotes, our results contradict the generally accepted hypothesis that the phylogenomic onset of GC compartmentalization occurred near the origin of amniotes. Ecophysiological findings of other authors indicate a metabolic similarity of gars with mammals. We hypothesize that gars might have undergone convergent evolution with the tetrapod lineages leading to mammals on both metabolic and genomic levels. Their metabolic adaptations might have left footprints in their compositional genome evolution, as proposed by the metabolic rate hypothesis. The genome organization described here in gars sheds new light on the compositional genome evolution in vertebrates generally and contributes to better understanding of the complexities of the mechanisms involved in this process. © 2016 Wiley Periodicals, Inc.

  8. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  9. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  10. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  11. Generation of a BAC-based physical map of the melon genome

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2010-05-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb, which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. Results A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12% of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. Conclusions Here we report the construction

  12. Human terminal deoxyribonucleotidyltransferase: molecular cloning and structural analysis of the gene and 5' flanking region

    International Nuclear Information System (INIS)

    Riley, L.K.; Morrow, J.K.; Danton, M.J.; Coleman, M.S.

    1988-01-01

    Human terminal deoxyribonucleotidyltransferase cDNA contains an open reading frame of 1530 base pairs (bp) corresponding to a protein containing 510 amino acids. The encoded protein is a template-independent DNA polymerase found only in a restricted population of normal and malignant prelymphocytes. To begin to investigate the genetic elements responsible for the tissue-specific expression of terminal deoxyribonucleotidyltransferase, genomic clones, containing the entire human gene were isolated and characterized. Initially, cDNA clones were isolated from a library generated from the human lymphoblastoid cell line, MOLT-4R. A cDNA clone containing the entire coding region of the protein was used to isolate a series of overlapping clones from two human genomic libraries. The gene comprises 11 exons and 10 introns and spans 49.4 kilobases. The 5' flanking region (709 bp) including exon 1 was sequenced. Several putative transcription initiation sites were mapped. Within 500 nucleotides of the translation start site, a series of promoter elements was detected. TATA and CAAT sequences, respectively, were found to start at nucleotides -185 and -204, -328 and -370, and -465 and -505. Start sites were found for a cyclic AMP-dependent promoter analog at nucleotide -121, an eight-base sequence corresponding to the IgG promoter enhancer (cd) at nucleotide -455, and an analog of the IgG promoter (pd) at nucleotide -159. These findings suggest that transcripts coding for terminal deoxyribonucleotidyltransferase may be variable in length and that transcription may be influenced by a variety of genetic elements

  13. Molecular cloning and characterization of genes required for nucleotide excision repair in yeast

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Nucleotide excision repair in the yeast S. cerevisiae is a complex process which involves a large number of genes. At least five of these genes (RAD1, RAD2, RAD3, RAD4 and RAD10) are absolutely required for this process and mutations in any of these genes result in no detectable excision repair in vivo. In order to understand the function of these genes in DNA repair, the authors isolated a number of them by screening a yeast genomic library for recombinant plasmids which complement the phentoype of sensitivity to ultraviolet (UV) radiation imparted to mutant strains. A plasmid containing the RAD4 gene was isolated by an alternative strategy which will be discussed. The cloned genes have been extensively characterized. It has been determined that the RAD3 gene is essential for the viability of haploid yeast cells in the absence of DNA damage. The RAD2 gene is inducible by treatment of cells with a variety of DNA-damaging agents, including UV radiation and ionizing radiation. The RAD10 gene shares considerable amino acid sequence homology with a cloned gene involved in nucleotide excision repair in human cells. Yeast is a particularly versatile organism for studying gene function by molecular and genetic approaches and emphasis is placed on many of the techniques used in the present studies

  14. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 [sup 32]P- or [sup 33]P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  15. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-12-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 {sup 32}P- or {sup 33}P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  16. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    International Nuclear Information System (INIS)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 32 P- or 33 P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation

  17. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    Full Text Available Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1 viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1 and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs. ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  18. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Science.gov (United States)

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  19. Identification of a novel clone, ST736, among Enterococcus faecium clinical isolates and its association with daptomycin nonsusceptibility.

    Science.gov (United States)

    Wang, Guiqing; Kamalakaran, Sitharthan; Dhand, Abhay; Huang, Weihua; Ojaimi, Caroline; Zhuge, Jian; Yee, Leslie Lee; Mayigowda, Pramod; Surendraiah, Pavan Kumar Makam; Dimitrova, Nevenka; Fallon, John T

    2014-08-01

    Resistance to daptomycin in enterococcal clinical isolates remains rare but is being increasingly reported in the United States and worldwide. There are limited data on the genetic relatedness and microbiological and clinical characteristics of daptomycin-nonsusceptible enterococcal clinical isolates. In this study, we assessed the population genetics of daptomycin-nonsusceptible Enterococcus faecium (DNSE) clinical isolates by multilocus sequence typing (MLST) and whole-genome sequencing analysis. Forty-two nonduplicate DNSE isolates and 43 randomly selected daptomycin-susceptible E. faecium isolates were included in the analysis. All E. faecium isolates were recovered from patients at a tertiary care medical center in suburban New York City from May 2009 through December 2013. The daptomycin MICs of the DNSE isolates ranged from 6 to >256 μg/ml. Three major clones of E. faecium (ST18, ST412, and ST736) were identified among these clinical isolates by MLST and whole-genome sequence-based analysis. A newly recognized clone, ST736, was seen in 32 of 42 (76.2%) DNSE isolates and in only 14 of 43 (32.6%) daptomycin-susceptible E. faecium isolates (P clone ST736 and daptomycin nonsusceptibility. The identification and potential spread of this novel E. faecium clone and its association with daptomycin nonsusceptibility constitute a challenge for patient management and infection control at our medical center. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the

  1. Construction of a nurse shark (Ginglymostoma cirratum bacterial artificial chromosome (BAC library and a preliminary genome survey

    Directory of Open Access Journals (Sweden)

    Inoko Hidetoshi

    2006-05-01

    Full Text Available Abstract Background Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. Aims In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC library for the nurse shark, Ginglymostoma cirratum. Results The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. Conclusion We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  2. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey.

    Science.gov (United States)

    Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko

    2006-05-03

    Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  3. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  4. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland.

    Science.gov (United States)

    Moradigaravand, Danesh; Boinett, Christine J; Martin, Veronique; Peacock, Sharon J; Parkhill, Julian

    2016-08-01

    Serratia marcescens, a member of the Enterobacteriaceae family, is a Gram-negative bacterium responsible for a wide range of nosocomial infections. The emergence of multidrug-resistant strains is an increasing danger to public health. To design effective means to control the dissemination of S. marcescens, an in-depth analysis of the population structure and variation is required. Utilizing whole-genome sequencing, we characterized the population structure and variation, as well as the antimicrobial resistance determinants, of a systematic collection of antimicrobial-resistant S. marcescens associated with bloodstream infections in hospitals across the United Kingdom and Ireland between 2001 and 2011. Our results show that S. marcescens is a diverse species with a high level of genomic variation. However, the collection was largely composed of a limited number of clones that emerged from this diverse background within the past few decades. We identified potential recent transmissions of these clones, within and between hospitals, and showed that they have acquired antimicrobial resistance determinants for different beta-lactams, ciprofloxacin, and tetracyclines on multiple occasions. The expansion of these multidrug-resistant clones suggests that the treatment of S. marcescens infections will become increasingly difficult in the future. © 2016 Moradigaravand et al.; Published by Cold Spring Harbor Laboratory Press.

  5. [Structural organization of 5S ribosomal DNA of Rosa rugosa].

    Science.gov (United States)

    Tynkevych, Iu O; Volkov, R A

    2014-01-01

    In order to clarify molecular organization of the genomic region encoding 5S rRNA in diploid species Rosa rugosa several 5S rDNA repeated units were cloned and sequenced. Analysis of the obtained sequences revealed that only one length variant of 5S rDNA repeated units, which contains intact promoter elements in the intergenic spacer region (IGS) and appears to be transcriptionally active is present in the genome. Additionally, a limited number of 5S rDNA pseudogenes lacking a portion of coding sequence and the complete IGS was detected. A high level of sequence similarity (from 93.7 to 97.5%) between the IGS of major 5S rDNA variants of East Asian R. rugosa and North American R. nitida was found indicating comparatively recent divergence of these species.

  6. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    Science.gov (United States)

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  7. Isolation and characterization of the genomic region from Drosophila kuntzei containing the Adh and Adhr genes

    NARCIS (Netherlands)

    Oppentocht, JE; van Delden, W; van de Zande, L

    The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D.

  8. Cloning the enterotoxin gene from Clostridium perfringens type A

    OpenAIRE

    Iwanejko, Lesley Ann.

    1991-01-01

    A C. perfringens type A genomic library was constructed in E. coli by banking overlapping 6-10 kbp Hind III fragments of chromosomal DNA from the enterotoxin (CPE) positive strain NCTC 8239 into the pUC derived vector pHG165. The library was screened by colony hybridization with a degenerate 26 bp oligonucleotide probe, derived from the amino acid sequence CPE9_17A. complex mixture of plasmid DNA was isolated from the only hybridization positive clone. A second round of screening picked out a...

  9. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides.

    Science.gov (United States)

    Egan, Jan B; Shi, Chang-Xin; Tembe, Waibhav; Christoforides, Alexis; Kurdoglu, Ahmet; Sinari, Shripad; Middha, Sumit; Asmann, Yan; Schmidt, Jessica; Braggio, Esteban; Keats, Jonathan J; Fonseca, Rafael; Bergsagel, P Leif; Craig, David W; Carpten, John D; Stewart, A Keith

    2012-08-02

    The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.

  10. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.

    Directory of Open Access Journals (Sweden)

    Monica K Akre

    Full Text Available Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.

  11. Comparative genomics of chondrichthyan Hoxa clusters

    Directory of Open Access Journals (Sweden)

    Zhong Ying-Fu

    2009-09-01

    Full Text Available Abstract Background The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci and to available data from the Elephant Shark (Callorhinchus milii genome project. Results A BAC clone containing the full Little Skate Hoxa cluster was fully sequenced and assembled. Analyses of coding sequences and conserved non-coding elements reveal a strikingly high level of conservation across the cartilaginous fish, with twenty ultraconserved elements (100%,100 bp found between Skate and Horn Shark, compared to three between human and marsupials. We have also identified novel potential non-coding RNAs in the Skate BAC clone, some of which are conserved to other species. Conclusion We find that the Little Skate Hoxa cluster is remarkably similar to the previously published Horn Shark Hoxa cluster with respect to sequence identity, gene size and intergenic distance despite over 180 million years of separation between the two lineages. We suggest that the genomes of cartilaginous fish are more highly conserved than those of tetrapods or teleost fish and so are more likely to have retained ancestral non-coding elements. While useful for isolating homologous DNA, this complicates bioinformatic approaches to identify chondrichthyan-specific non-coding DNA elements

  12. Cloning and expression in Escherichia coli of cellulases genes from Clostridium IBUN 22A

    Directory of Open Access Journals (Sweden)

    Lucy Carolina Vargas Pabón

    2002-01-01

    Full Text Available Genomic library of the native strain Clostridium IBUN 22A was constructed, using plasmid pBluescriptlI® KS+/ - as cloning vector and its expression in Escherichia coli was evaluated. Eight recombination clones with enzymatic activity were detected by enzymatic screening and using the red-Congo test with three substrates: cellobiose, carboxymethyl cellulose (CMC and cellulose powder (native. Restriction analysis of three recombination plasmids, representative of each enzymatic activity showed the inserted size (1600, 13000 and 11000bp approximately for pBS68, pBS25 and pBS57 respectively. More studies of protein expression and enzymatic characterization will allow theses enzymes and other typical parameters to be defined. In the same way the fragment sequence cloned will lead to a more detailed analysis and definition of the biotechnological potential of this strain regarding solvent production using cellulosic substrates for fermentation.

  13. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  14. Sequencing and generation of an infectious clone of the pathogenic goose parvovirus strain LH.

    Science.gov (United States)

    Wang, Jianye; Duan, Jinkun; Zhu, Liqian; Jiang, Zhiwei; Zhu, Guoqiang

    2015-03-01

    In this study, the complete genome of the virulent strain LH of goose parvovirus (GPV) was sequenced and cloned into the pBluescript II (SK) plasmid vector. Sequence alignments of the inverted terminal repeats (ITR) of GPV strains revealed a common 14-nt-pair deletion in the stem of the palindromic structure in the LH strain and three other strains isolated after 1982 when compared to three GPV strains isolated earlier than that time. Transfection of 11-day-old embryonated goose eggs with the plasmid pLH, which contains the entire genome of strain LH, resulted in successful rescue of the infectious virus. Death of embryos after transfection via the chorioallantoic membrane infiltration route occurred earlier than when transfection was done via the allantoic cavity inoculation route. The rescued virus exhibited virulence similar to that of its parental virus, as evaluated by the mortality rate in goslings. Generation of the pathogenic infectious clone provides us with a powerful tool to elucidate the molecular pathogenesis of GPV in the future.

  15. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11

    International Nuclear Information System (INIS)

    Stone, Daniel; Furthmann, Anne; Sandig, Volker; Lieber, Andre

    2003-01-01

    The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome

  16. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species.

    Directory of Open Access Journals (Sweden)

    Xifeng Wang

    Full Text Available Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλn. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates.

  17. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species

    Science.gov (United States)

    Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  18. Gene Discovery through Genomic Sequencing of Brucella abortus

    OpenAIRE

    Sánchez, Daniel O.; Zandomeni, Ruben O.; Cravero, Silvio; Verdún, Ramiro E.; Pierrou, Ester; Faccio, Paula; Diaz, Gabriela; Lanzavecchia, Silvia; Agüero, Fernán; Frasch, Alberto C. C.; Andersson, Siv G. E.; Rossetti, Osvaldo L.; Grau, Oscar; Ugalde, Rodolfo A.

    2001-01-01

    Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposit...

  19. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy.

    Science.gov (United States)

    Majewski, Tadeusz; Lee, Sangkyou; Jeong, Joon; Yoon, Dong-Sup; Kram, Andrzej; Kim, Mi-Sook; Tuziak, Tomasz; Bondaruk, Jolanta; Lee, Sooyong; Park, Weon-Seo; Tang, Kuang S; Chung, Woonbok; Shen, Lanlan; Ahmed, Saira S; Johnston, Dennis A; Grossman, H Barton; Dinney, Colin P; Zhou, Jain-Hua; Harris, R Alan; Snyder, Carrie; Filipek, Slawomir; Narod, Steven A; Watson, Patrice; Lynch, Henry T; Gazdar, Adi; Bar-Eli, Menashe; Wu, Xifeng F; McConkey, David J; Baggerly, Keith; Issa, Jean-Pierre; Benedict, William F; Scherer, Steven E; Czerniak, Bogdan

    2008-07-01

    The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified

  20. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  1. Construction of an infectious clone of human adenovirus type 41.

    Science.gov (United States)

    Chen, Duo-Ling; Dong, Liu-Xin; Li, Meng; Guo, Xiao-Juan; Wang, Min; Liu, Xin-Feng; Lu, Zhuo-Zhuang; Hung, Tao

    2012-07-01

    Human adenovirus type 41 (HAdV-41) is well known for its fastidiousness in cell culture. To construct an infectious clone of HAdV-41, a DNA fragment containing the left and right ends of HAdV-41 as well as a kanamycin resistance gene and a pBR322 replication origin was excised from the previously constructed plasmid pAd41-GFP. Using homologous recombination, the plasmid pKAd41 was generated by co-transformation of the E. coli BJ5183 strain with this fragment and HAdV-41 genomic DNA. Virus was rescued from pKAd41-transfected 293TE7 cells, a HAdV-41 E1B55K-expressing cell line. The genomic integrity of the rescued virus was verified by restriction analysis and sequencing. Two fibers on the virion were confirmed by western blot. Immunofluorescence showed that more expression of the hexon protein could be found in 293TE7 cells than in 293 cells after HAdV-41 infection. The feature of non-lytic replication was preserved in 293TE7 cells, since very few progeny HAdV-41 viruses were released to the culture medium. These results show that pKAd41 is an effective infectious clone and suggest that the combination of pKAd41 and 293TE7 cells is an ideal system for virological study of HAdV-41.

  2. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    Science.gov (United States)

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  3. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  4. Transposons and integrons in colistin-resistant clones of Klebsiella pneumoniae and Acinetobacter baumannii with epidemic or sporadic behaviour.

    Science.gov (United States)

    Arduino, Sonia M; Quiroga, María Paula; Ramírez, María Soledad; Merkier, Andrea Karina; Errecalde, Laura; Di Martino, Ana; Smayevsky, Jorgelina; Kaufman, Sara; Centrón, Daniela

    2012-10-01

    Multiple transposons, integrons and carbapenemases were found in Klebsiella pneumoniae colistin-resistant isolates as well as a genomic resistance island of the AbaR type in Acinetobacter baumannii colistin-resistant isolates from different hospitals from Buenos Aires City. PFGE analysis showed a polyclonal dissemination of antimicrobial resistance mechanisms among K. pneumoniae isolates, while in A. baumannii isolates the epidemic clone 1 from South America was found. Resistance determinants associated with horizontal gene transfer are contributing to the evolution to pandrug resistance in both epidemic and sporadic clones.

  5. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  6. Short and long-term genome stability analysis of prokaryotic genomes.

    Science.gov (United States)

    Brilli, Matteo; Liò, Pietro; Lacroix, Vincent; Sagot, Marie-France

    2013-05-08

    Gene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes (i.e. the backbone gene order); on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events. We developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation (hereinafter called backbone stability) against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics (insertions and deletions) have a much more dramatic effect on genome organization stability than backbone rearrangements. In this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were

  7. Finding the needles in the meta-genome haystack

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Speksnijder, A.G.C.L.; Zhang, K.; Goodman, R.M.; Veen, van J.A.

    2007-01-01

    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and

  8. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).

    Science.gov (United States)

    Costa, Gideão W W F; Cioffi, Marcelo de B; Bertollo, Luiz A C; Molina, Wagner F

    2015-06-01

    Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes.

  9. Genomic sequence and organization of two members of a human lectin gene family

    International Nuclear Information System (INIS)

    Gitt, M.A.; Barondes, S.H.

    1991-01-01

    The authors have isolated and sequenced the genomic DNA encoding a human dimeric soluble lactose-binding lectin. The gene has four exons, and its upstream region contains sequences that suggest control by glucocorticoids, heat (environmental) shock, metals, and other factors. They have also isolated and sequenced three exons of the gene encoding another human putative lectin, the existence of which was first indicated by isolation of its cDNA. Comparisons suggest a general pattern of genomic organization of members of this lectin gene family

  10. Enzymatic engineering of the porcine genome with transposons and recombinases

    Directory of Open Access Journals (Sweden)

    Carlson Daniel F

    2007-07-01

    Full Text Available Abstract Background Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs. Results Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons. Conclusion We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.

  11. Revival of extinct species using nuclear transfer: hope for the mammoth, true for the Pyrenean ibex, but is it time for "conservation cloning"?

    Science.gov (United States)

    Piña-Aguilar, Raul E; Lopez-Saucedo, Janet; Sheffield, Richard; Ruiz-Galaz, Lilia I; Barroso-Padilla, Jose de J; Gutiérrez-Gutiérrez, Antonio

    2009-09-01

    Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the "revival" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.

  12. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  13. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    International Nuclear Information System (INIS)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier

    2005-01-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution

  14. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    Energy Technology Data Exchange (ETDEWEB)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier, E-mail: poch@igbmc.u-strasbg.fr [Département de Biologie et Génomiques Structurales, UMR 7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP Strasbourg, 1 Rue Laurent Fries, 64404 Illkirch (France)

    2005-10-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution.

  15. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... basic machinery of protein synthesis and regulation, but also in various ... The genomic DNA was isolated from Giant Panda muscle tissue according to the ... for 45 s, 72°C for 2 min in the first cycle and the anneal temperature deceased 0.2°C ..... edition, Cold Spring Harbor aboratory Press. Cold Spring ...

  16. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  17. Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term

    Directory of Open Access Journals (Sweden)

    Brochard Vincent

    2009-02-01

    Full Text Available Abstract Background Genome reprogramming in early mouse embryos is associated with nuclear reorganization and particular features such as the peculiar distribution of centromeric and pericentric heterochromatin during the first developmental stage. This zygote-specific heterochromatin organization could be observed both in maternal and paternal pronuclei after natural fertilization as well as in embryonic stem (ES cell nuclei after nuclear transfer suggesting that this particular type of nuclear organization was essential for embryonic reprogramming and subsequent development. Results Here, we show that remodeling into a zygotic-like organization also occurs after somatic cell nuclear transfer (SCNT, supporting the hypothesis that reorganization of constitutive heterochromatin occurs regardless of the source and differentiation state of the starting material. However, abnormal nuclear remodeling was frequently observed after SCNT, in association with low developmental efficiency. When transient treatment with the histone deacetylase inhibitor trichostatin A (TSA was tested, we observed improved nuclear remodeling in 1-cell SCNT embryos that correlated with improved rates of embryonic development at subsequent stages. Conclusion Together, the results suggest that proper organization of constitutive heterochromatin in early embryos is involved in the initial developmental steps and might have long term consequences, especially in cloning procedures.

  18. Ethical issues in animal cloning.

    Science.gov (United States)

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  19. Development of versatile non-homologous end joining-based knock-in module for genome editing.

    Science.gov (United States)

    Sawatsubashi, Shun; Joko, Yudai; Fukumoto, Seiji; Matsumoto, Toshio; Sugano, Shigeo S

    2018-01-12

    CRISPR/Cas9-based genome editing has dramatically accelerated genome engineering. An important aspect of genome engineering is efficient knock-in technology. For improved knock-in efficiency, the non-homologous end joining (NHEJ) repair pathway has been used over the homology-dependent repair pathway, but there remains a need to reduce the complexity of the preparation of donor vectors. We developed the versatile NHEJ-based knock-in module for genome editing (VIKING). Using the consensus sequence of the time-honored pUC vector to cut donor vectors, any vector with a pUC backbone could be used as the donor vector without customization. Conditions required to minimize random integration rates of the donor vector were also investigated. We attempted to isolate null lines of the VDR gene in human HaCaT keratinocytes using knock-in/knock-out with a selection marker cassette, and found 75% of clones isolated were successfully knocked-in. Although HaCaT cells have hypotetraploid genome composition, the results suggest multiple clones have VDR null phenotypes. VIKING modules enabled highly efficient knock-in of any vectors harboring pUC vectors. Users now can insert various existing vectors into an arbitrary locus in the genome. VIKING will contribute to low-cost genome engineering.

  20. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  1. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  2. Cloning and characterization of stress responsive Glp genes and their promotor regions from rice (abstract)

    International Nuclear Information System (INIS)

    Naqvi, S.M.S.; Mahmood, T.

    2005-01-01

    Plants respond to a number of environmental stimuli by modulating expression of genes. One such family of genes is now known as germin/germin-like protein genes (Glps). In order to detect any Glp gene response in rice, a pair of degenerate primers was designed based on consensus region from Glp sequences in Genbank. Using these primers a DNA fragment of about 550 bp was obtained by PCR amplification from genomic template. This 550 bp DNA was used as probe in Northern analysis. These studies provided evidence pointing to differential response of Glp expression to salt stress. RNA obtained from the roots was used for synthesis of cDNA. This cDNA was amplifiable with sense primer (RGLP1) from above mentioned pair and oligo-(dt) yielding a fragment of approx. 800 bp. Restriction analysis revealed that the PCR product was heterogeneous. After establishing that 800 bp fragment was the desired product, it was cloned in pCRII-TOPO. Five clones were picked up and analyzed by restriction analysis and sequencing. Two different Glp cDNAs were represented by these partial clones. Remaining sequence of the 5' end for clone 4 and 16 was obtained by Rapid Amplification of cDNA ends (RACE). The resultant sequences have been submitted to Genbank as Oryza sativa Rice Germin-like Protein 1 and 2 (osRGLP1 and 2). When full length genes corresponding to these sequences were amplified from genomic templates, resulting fragments were nearly 150 by larger than cDNAs. Cloning of structural genes for osRGLP1 revealed presence of a 162 bp intron in the coding region near 3' end. Preliminary evidence shows that expression of both osRGLP1 and 2 is severely reduced during salt stress. Another approach to establish both osRGLP1 and 2 genes involvement in stress tolerance is to study the ability of their promotor regions to drive expression of some reporter gene during stress. Promotor regions of about 1100 bp has been amplified and cloned and has been confirmed by restriction analysis and nested

  3. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Kapoor, Amit; Nishiuchi, Eiko

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼ 3% viremic. NPHV natural history and molecular virology remain...... circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion...... and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host....

  4. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Science.gov (United States)

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  5. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Directory of Open Access Journals (Sweden)

    Zhao Dingsheng

    2008-02-01

    Full Text Available Abstract Background Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (β-actin, VEGF, oct4, TERT, H19 and Igf2 and a repetitive sequence (art2 in five organs (heart, liver, spleen, lung and kidney from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3, the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3 died after the perinatal period. Normally reproduced cattle served as a control group (n = 3. Results Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p Conclusion Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.

  6. The first complete genome sequences of clinical isolates of human coronavirus 229E

    NARCIS (Netherlands)

    Farsani, Seyed Mohammad Jazaeri; Dijkman, Ronald; Jebbink, Maarten F.; Goossens, Herman; Ieven, Margareta; Deijs, Martin; Molenkamp, Richard; van der Hoek, Lia

    2012-01-01

    Human coronavirus 229E has been identified in the mid-1960s, yet still only one full-genome sequence is available. This full-length sequence has been determined from the cDNA-clone Inf-1 that is based on the lab-adapted strain VR-740. Lab-adaptation might have resulted in genomic changes, due to

  7. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  8. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  9. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Directory of Open Access Journals (Sweden)

    Mária Džunková

    Full Text Available Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  10. The topsy-turvy cloning law.

    Science.gov (United States)

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  11. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  12. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Science.gov (United States)

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  13. [Gene cloning and bioinformatics analysis of SABATH methyltransferase in Lonicera japonica var. chinensis].

    Science.gov (United States)

    Yu, Xiao-Dan; Jiang, Chao; Huang, Lu-Qi; Qin, Shuang-Shuang; Zeng, Xiang-Mei; Chen, Ping; Yuan, Yuan

    2013-08-01

    To clone SABATH methyltransferase (rLjSABATHMT) gene in Lonicera japonica var. chinensis, and compare the gene expression and intron sequence of SABATH methyltransferase orthologous in L. japonica with L. japonica var. chinensis. It provide a basis for gene regulate the formation of L. japonica floral scents. The cDNA and genome sequences of LjSABATHMT from L. japonica var. chinensis were cloned according to the gene fragments in cDNA library. The LjSABATHMT protein was characterized by bioinformatics analysis. SABATH family phylogenetic tree were built by MEGA 5.0. The transcripted level of SABATHMT orthologous were analyzed in different organs and different flower periods of L. japonica and L. japonica var. chinensis using RT-PCR analysis. Intron sequences of SABATHMT orthologous were also analyzied. The cDNA of LjSABATHMT was 1 251 bp, had a complete coding frame with 365 amino acids. The protein had the conservative SABATHMT domain, and phylogenetic tree showed that it may be a salicylic acid/benzoic acid methyltransferase. Higher expression of SABATH methyltransferase orthologous was found in flower. The intron sequence of L. japonica and L. japonica var. chinensis had rich polymorphism, and two SNP are unique genotype of L. japonica var. chinensis. The motif elements in two orthologous genes were significant differences. The intron difference of SABATH methyltransferase orthologous could be inducing to difference of gene expression between L. japonica and L. japonica var. chinensis. These results will provide important base on regulating active compounds of L. japonica.

  14. Academic Cloning.

    Science.gov (United States)

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…

  15. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  16. Expansion of the gateway multisite recombination cloning toolkit.

    Science.gov (United States)

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  17. Genome analysis and phylogenetic relatedness of Gallibacterium anatis strains from poultry.

    Directory of Open Access Journals (Sweden)

    Timothy J Johnson

    Full Text Available Peritonitis is the major disease problem of laying hens in commercial table egg and parent stock operations. Despite its importance, the etiology and pathogenesis of this disease have not been completely clarified. Although avian pathogenic Escherichia coli (APEC isolates have been incriminated as the causative agent of laying hen peritonitis, Gallibacterium anatis are frequently isolated from peritonitis lesions. Despite recent studies suggesting a role for G. anatis in the pathogenesis of peritonitis, little is known about the organism's virulence mechanisms, genomic composition and population dynamics. Here, we compared the genome sequences of three G. anatis isolates in an effort to understand its virulence mechanisms and identify novel antigenic traits. A multilocus sequence typing method was also established for G. anatis and used to characterize the genotypic relatedness of 71 isolates from commercial laying hens in Iowa and 18 international reference isolates. Genomic comparisons suggest that G. anatis is a highly diverse bacterial species, with some strains possessing previously described and potential virulence factors, but with a core genome containing several antigenic candidates. Multilocus sequence typing effectively distinguished 82 sequence types and several clonal complexes of G. anatis, and some clones seemed to predominate among G. anatis populations from commercial layers in Iowa. Biofilm formation and resistance to antimicrobial agents was also observed in several clades. Overall, the genomic diversity of G. anatis suggests that multiple lineages exist with differing pathogenic potential towards birds.

  18. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  19. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick.

    Science.gov (United States)

    García-Moreno, Fernando; Vasistha, Navneet A; Begbie, Jo; Molnár, Zoltán

    2014-04-01

    Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species.

  20. Long-Range Order and Fractality in the Structure and Organization of Eukaryotic Genomes

    Science.gov (United States)

    Polychronopoulos, Dimitris; Tsiagkas, Giannis; Athanasopoulou, Labrini; Sellis, Diamantis; Almirantis, Yannis

    2014-12-01

    The late Professor J.S. Nicolis always emphasized, both in his writings and in presentations and discussions with students and friends, the relevance of a dynamical systems approach to biology. In particular, viewing the genome as a "biological text" captures the dynamical character of both the evolution and function of the organisms in the form of correlations indicating the presence of a long-range order. This genomic structure can be expressed in forms reminiscent of natural languages and several temporal and spatial traces l by the functioning of dynamical systems: Zipf laws, self-similarity and fractality. Here we review several works of our group and recent unpublished results, focusing on the chromosomal distribution of biologically active genomic components: Genes and protein-coding segments, CpG islands, transposable elements belonging to all major classes and several types of conserved non-coding genomic elements. We report the systematic appearance of power-laws in the size distribution of the distances between elements belonging to each of these types of functional genomic elements. Moreover, fractality is also found in several cases, using box-counting and entropic scaling.We present here, for the first time in a unified way, an aggregative model of the genomic dynamics which can explain the observed patterns on the grounds of known phenomena accompanying genome evolution. Our results comply with recent findings about a "fractal globule" geometry of chromatin in the eukaryotic nucleus.

  1. A single-copy galK promoter cloning vector suitable for cloning strong promoters

    DEFF Research Database (Denmark)

    Dandanell, Gert; Court, Donald L.; Hammer, Karin

    1986-01-01

    We report the construction of lambda galK promoter cloning vectors for cloning and characterization of strong promoters. This phage, which contains a unique HindIII cloning site, was applied to the cloning and analysis of transcription initiations of the regulatory region of the deo-operon of...

  2. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel......Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available...

  3. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.

    Science.gov (United States)

    Lanza, R P; Cibelli, J B; Diaz, F; Moraes, C T; Farin, P W; Farin, C E; Hammer, C J; West, M D; Damiani, P

    2000-01-01

    Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.

  4. When proteome meets genome: the alpha helix and the beta strand ...

    Indian Academy of Sciences (India)

    Unknown

    mics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures. ...... Gilbert W 1987 The exon theory of genes; Cold Spring Harb. ... bination between self-splicing introns of bacteriophage T4;.

  5. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  6. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  7. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    Science.gov (United States)

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, Pmicrobiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; Pgut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an increase in the relative abundance of Firmicutes over time. Our results suggest that cloned pigs are not a more suitable animal model for gut microbiota-obesity related studies than non-cloned pigs. This study is the first to evaluate if cloned pigs provide a better animal model than conventional pigs in diet-intervention, obesity and gut microbiota research.

  8. Localization and cloning of the gene(s) of bacteriophage PM2 responsible for membrane morphogenesis

    International Nuclear Information System (INIS)

    Armour, G.A.

    1988-01-01

    Proteins implicated in membrane morphogenesis (sp6.6 and sp13) have been previously identified by analysis of membrane proteins in the membrane of the purified phage. Analysis of a ts viral mutant that produces empty membrane vesicles also indicated the unique presence of viral structural protein sp6.6. In this work the gene for sp6.6 was localized on the PM2 genome by in vitro coupled transcription-translation directed by restriction endonuclease fragments of PM2 DNA. A Hind III fragment containing the sp6.6 gene among others was cloned into pBR322 in E. coli. Examination with the electron microscope revealed the production of new membrane vesicles whose size were similar to that of the natural membrane of PM2. Clones were then constructed in the pUC family of plasmids which uses the Lac promoter and pPL-lambda which uses the promoter left of lambda. pUC clones were unable to produce vesicles or detectable sp6.6. A pPL-lambda clone was produced 3.5 Kbp in size, that produced p6.6 as detected by SDS-PAGE of radiolabeled protein and immunoblotting

  9. Quantum cloning machines and the applications

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Wang, Yi-Nan; Jing, Li [School of Physics, Peking University, Beijing 100871 (China); Yue, Jie-Dong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu [School of Physics, Peking University, Beijing 100871 (China)

    2014-11-20

    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.

  10. Quantum cloning machines and the applications

    International Nuclear Information System (INIS)

    Fan, Heng; Wang, Yi-Nan; Jing, Li; Yue, Jie-Dong; Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu

    2014-01-01

    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results

  11. Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    Directory of Open Access Journals (Sweden)

    Althoff Ryan

    2008-01-01

    Full Text Available Abstract Background Musa species (Zingiberaceae, Zingiberales including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. Results We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. Conclusion These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic

  12. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  13. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  14. Probabilistic cloning of equidistant states

    International Nuclear Information System (INIS)

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  15. Quantum cloning and signaling

    International Nuclear Information System (INIS)

    Simon, C.; Weihs, G.; Zeilinger, A.

    1999-01-01

    We discuss the close connections between cloning of quantum states and superluminal signaling. We present an optimal universal cloning machine based on stimulated emission recently proposed by the authors. As an instructive example, we show how a scheme for superluminal communication based on this cloning machine fails. (Authors)

  16. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  17. Whole-Genome Characterization of Prunus necrotic ringspot virus Infecting Sweet Cherry in China.

    Science.gov (United States)

    Wang, Jiawei; Zhai, Ying; Zhu, Dongzi; Liu, Weizhen; Pappu, Hanu R; Liu, Qingzhong

    2018-03-01

    Prunus necrotic ringspot virus (PNRSV) causes yield loss in most cultivated stone fruits, including sweet cherry. Using a small RNA deep-sequencing approach combined with end-genome sequence cloning, we identified the complete genomes of all three PNRSV strands from PNRSV-infected sweet cherry trees and compared them with those of two previously reported isolates. Copyright © 2018 Wang et al.

  18. Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata.

    Science.gov (United States)

    Minardi, P

    1995-01-01

    A genomic library of Pseudomonas syringae pv. aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kb EcoRI fragment of the cosmid pHIR11, containing the hrp (hypersensitive response and pathogenicity) gene cluster of the closely related bacterium Pseudomonas syringae pv. syringae strain 61, was used as a probe to identify a homologous hrp gene cluster in P. syringae pv. aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium, Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis of EcoRI-digested genomic DNA of P. syringae pv. aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome of P. syringae pv. aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kb Bg/II fragment of pHIR11. These results indicate that P. syringae pv. aptata harbours hrp genes that are similar to, but arranged differently from, homologous hrp genes of P. syringae pv. syringae.

  19. Cloning of the DNA Repair Gene, Uvsf, by Transformation of Aspergillus Nidulans

    OpenAIRE

    Oza, K.; Kafer, E.

    1990-01-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr(+) uvs(+) cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when ...

  20. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  1. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.

    Science.gov (United States)

    Staton, S Evan; Bakken, Bradley H; Blackman, Benjamin K; Chapman, Mark A; Kane, Nolan C; Tang, Shunxue; Ungerer, Mark C; Knapp, Steven J; Rieseberg, Loren H; Burke, John M

    2012-10-01

    Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (∼3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons ('chromoviruses'), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    Science.gov (United States)

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-02

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  4. Recombination-assisted megaprimer (RAM) cloning

    Science.gov (United States)

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  5. [Fingerprints identification of Gynostemma pentaphyllum by RAPD and cloning and analysis of its specific DNA fragment].

    Science.gov (United States)

    Jiang, Jun-fu; Li, Xiong-ying; Wu, Yao-sheng; Luo, Yu; Zhao, Rui-qiang; Lan, Xiu-wan

    2009-02-01

    To identify the resources of Gynostemma pentaphyllum and its spurious breed plant Cayratia japonica at level of DNA. Two random primers ( WGS001, WGS004) screened were applied to do random amplification with genomic DNA extracted from Gynostemma pentaphyllum and Cayratia japonica which were collected from different habitats. After amplificated with WGS004, one characteristic fragment about 500 bp which was common to all Gynostemma pentaphyllum samples studied but not to Cayratia japonica was cloned and sequenced. Then these sequences obtained were analyzed for identity and compared by Blastn program in GenBank. There were obvious different bands amplified by above two primers in their fingerprints of genomic DNA. On the basis of these different bands of DNA fingerprints, they could distinguish Gynostemma pentaphyllum and Cayratia japonica obviously. Sequence alignment of seven cloned bands showed that their identities ranged from 45.7% - 94.5%. There was no similar genome sequences searched in GenBank. This indicated that these seven DNA fragments had not been reported before and they should be new sequences. RAPD technique can be used for the accurate identification of Gynostemma pentaphyllum and its counterfeit goods Cayratia japonica. Besides, these specific DNA sequences for Gynostemmna pentaphyllum in this study are useful for the further research on identification of species and assisted selection breeding in Gynostemma pentaphyllum.

  6. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    Science.gov (United States)

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  7. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model.

    Science.gov (United States)

    Gürsoy, Gamze; Xu, Yun; Liang, Jie

    2017-07-01

    Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles.

  8. Human cloning and child welfare.

    Science.gov (United States)

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  9. Social behavior and kin discrimination in a mixed group of cloned and non cloned heifers (Bos taurus).

    Science.gov (United States)

    Coulon, M; Baudoin, C; Abdi, H; Heyman, Y; Deputte, B L

    2010-12-01

    For more than ten years, reproductive biotechnologies using somatic cell nuclear transfer have made possible the production of cloned animals in various domestic and laboratory species. The influence of the cloning process on offspring characteristics has been studied in various developmental aspects, however, it has not yet been documented in detail for behavioral traits. Behavioral studies of cloned animals have failed to show clear inter-individual differences associated with the cloning process. Preliminary results showed that clones favor each other's company. Preferential social interactions were observed among cloned heifers from the same donor in a mixed herd that also included cloned heifers and control heifers produced by artificial insemination (AI). These results suggest behavioral differences between cloned and non-cloned animals and similarities between clones from the same donor. The aim of the present study was to replicate and to extend these previous results and to study behavioral and cognitive mechanisms of this preferential grouping. We studied a group composed of five cloned heifers derived from the same donor cow, two cloned heifers derived from another donor cow, and AI heifers. Cloned heifers from the same donor were more spatially associated and interacted more between themselves than with heifers derived from another donor or with the AI individuals. This pattern indicates a possible kin discrimination in clones. To study this process, we performed an experiment (using an instrumental conditioning procedure with food reward) of visual discrimination between images of heads of familiar heifers, either related to the subjects or not. The results showed that all subjects (AI and cloned heifers) discriminated between images of familiar cloned heifers produced from the same donor and images of familiar unrelated heifers. Cattle discriminated well between images and used morphological similarities characteristic of cloned related heifers. Our

  10. The elevation of radiation load on ecosystems and genome instability of organisms

    International Nuclear Information System (INIS)

    Gaziyev, A. I.; Bezlepkin, V.Q.

    2002-01-01

    prophylaxis of human disorders. Thus, it was found that the action of low-dose ionizing radiation on living organisms might induce an adaptive repair response in them aimed at decreasing the genetic consequences of the exposure. However, the potentialities of defense and repair systems of an organism are limited, so an increase in genome lesions may cause inheritable mutations, cancer and other pathologies, and death. DNA lesions caused by ionizing radiation in small and sublethal doses can essentially be repaired, whereas unrepaired lesions and errors of repair, replication, and recombination systems lead to formation of mutational changes in DNA sequences. These changes may be transmitted to daughter cells and induce genome instability in the progeny. Induced genome instability in survived somatic cells is characterized by persistence of a high level of acquired variability in many generations of these cells. Genome instability manifests itself as an increased frequency of karyotypic anomalies, chromosome and gene mutations, clonal heterogeneity, and malignant transformation in the progeny of cells exposed to DNA-damaging agents. Besides, cells with genome instability show increased amplification of genes and changes in their expression, as well as disturbances in their differentiation, delays in reproductive death and other phenotypic characters of abnormal development. Whereas some progress has been made towards knowledge of genome instability in the somatic cells of mammals, the radiation-induced genome instability in germ cells transmitted to individuals of the next generation is still not clearly understood. At the same time, evidence has been obtained which suggests that the transmission of genome instability to the somatic cells of the progeny from the germ cells of gamma - radiation-exposed parents is possible. This conclusion is based on the data on mutation frequency in the progeny of parents exposed to DNA-damaging agents. For instance, a significant increase in

  11. Cloning and analysis of the promoter region of the human fibronectin gene

    International Nuclear Information System (INIS)

    Dean, D.C.; Bowlus, C.L.; Bourgeois, S.

    1987-01-01

    Human fibronectin (FN) genomic clones were isolated by screening a human genomic library with a 75-base oligonucleotide. The sequence of the oligonucleotide corresponds to a region near the 5' end of the human FN cDNA clone pFH6 that contains the amino-terminal coding sequences but does not extend to the 5' end of the mRNA. The 5' end of the FN gene is found on a 3.7-kilobase-pair EcoRI fragment that contains about 2.7 kilobase pairs of flanking sequence. The first exon is 414 base pairs long, with a 5' untranslated region of 267 base pairs. As deduced on the basis of the position of the initiation codon, FN is synthesized with a 31-residue amino acid extension on the amion terminus that is not present in the mature polypeptide. This amino-terminal extension appears to contain both a signal peptide and a propeptide. The first 200 base pairs of 5'-flanking sequence is very G+C rich. Upstream of this the sequence becomes relatively A+T rich. The sequence ATATAA is found at -25 and the sequence CAAT is present at -150. The sequence GGGGCGGGGC at -102 exhibits homology to the binding site for the transcription factor SP1, and the sequence TGACGTCA at -173 exhibits homology to 5'-flanking sequences important for induction by cAMP

  12. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    Science.gov (United States)

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014

  13. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  14. CLONING AND SEQUENCING OF THE GENE FOR A LACTOCOCCAL ENDOPEPTIDASE, AN ENZYME WITH SEQUENCE SIMILARITY TO MAMMALIAN ENKEPHALINASE

    NARCIS (Netherlands)

    Mierau, Igor; Tan, Paris S.T.; Haandrikman, Alfred J.; Kok, Jan; Leenhouts, Kees J.; Konings, Wil N.; Venema, Gerard

    The gene specifying an endopeptidase of Lactococcus lactis, named pepO, was cloned from a genomic library of L. lactis subsp. cremoris P8-247 in lambdaEMBL3 and was subsequently sequenced. pepO is probably the last gene of an operon encoding the binding-protein-dependent oligopeptide transport

  15. Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals.

    Science.gov (United States)

    van Dessel, Helke; Dijkshoorn, Lenie; van der Reijden, Tanny; Bakker, Nancy; Paauw, Armand; van den Broek, Peterhans; Verhoef, Jan; Brisse, Sylvain

    2004-03-01

    The aim of the study was to investigate the genetic diversity of Acinetobacter baumannii clinical strains that had previously been allocated to three major groups based on automated ribotyping. Forty-seven isolates from European hospitals and one isolate from a South African hospital, geographically representative of the three ribogroups (ribogroups 1, 2 and 3 with 10, 23 and 15 isolates, respectively), were analysed using the highly discriminatory fingerprinting methods AFLP and pulsed-field gel electrophoresis (PFGE). Based on AFLP data, the isolates clustered into three main groups, each corresponding to one ribogroup. Inclusion of reference strains of the previously described clones I and II, responsible for outbreaks in northwestern European hospitals, showed that ribogroups 1 and 2 correspond to clones I and II, respectively, whereas ribogroup 3 apparently represents a new clone. This clone III was found in France, The Netherlands, Italy and Spain. Clones I and II were not limited to northwestern European countries, as they were also recovered from Spain, South Africa, Poland and Italy (clone I) and from Spain, Portugal, South Africa, France, Greece and Turkey (clone II). Combined AFLP and PFGE data showed intraclonal diversity and led to the distinction of 23 different genotypes. Three genotypes, two of them belonging to clone II and one to clone III, were found in different hospitals and may correspond to subsets of isolates with a more recent clonal relationship, which emphasizes the epidemic potential of these organisms.

  16. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Science.gov (United States)

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  17. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  18. Characterization of the Brazilian endemic clone of methicillin-resistant Staphylococcus aureus (MRSA from hospitals throughout Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo A. Oliveira

    Full Text Available The objective of this study was to characterize patterns of the Brazilian endemic clone of methicillin-resistant Staphylococcus aureus (MRSA from hospitals throughout Brazil. We studied 83 MRSA strains isolated from patients hospitalized in 27 public and private hospitals in 19 cities located in 14 Brazilian states from September, 1995, to June, 1997. The MRSA strains were typed using antibiograms, bacteriophage typing and pulsed field gel electrophoresis (PFGE. The analysis of genomic DNA by PFGE showed that 65 isolates presented the same PFGE pattern. This pattern was present in all of the hospitals studied indicating the presence of an endemic MRSA clone widely disseminated throughout Brazilian hospitals (BEC. All isolates belonging to the BEC proved to be resistant to ciprofloxacin, erythromycin, lincomycin, trimethoprim-sulphamethoxazole, and tetracycline. Variable susceptibility to these drugs was found only in isolates belonging to clones other than the BEC. The results show that, among MRSA, the BEC is common in Brazil. The best method for mapping changes in the frequency of this clone among MRSA is pulsed field gel electrophoresis. Use of molecular mapping is an important tool for monitoring the spread of potentially dangerous microbes.

  19. Local cloning of CAT states

    International Nuclear Information System (INIS)

    Rahaman, Ramij

    2011-01-01

    In this Letter we analyze the (im)possibility of the exact cloning of orthogonal three-qubit CAT states under local operation and classical communication (LOCC) with the help of a restricted entangled state. We also classify the three-qubit CAT states that can (not) be cloned under LOCC restrictions and extend the results to the n-qubit case. -- Highlights: → We analyze the (im)possibility of exact cloning of orthogonal CAT states under LOCC. → We also classify the set of CAT states that can(not) be cloned by LOCC. → No set of orthogonal CAT states can be cloned by LOCC with help of similar CAT state. → Any two orthogonal n-qubit GHZ-states can be cloned by LOCC with help of a GHZ state.

  20. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  1. Architectural protein subclasses shape 3-D organization of genomes during lineage commitment

    Science.gov (United States)

    Phillips-Cremins, Jennifer E.; Sauria, Michael E. G.; Sanyal, Amartya; Gerasimova, Tatiana I.; Lajoie, Bryan R.; Bell, Joshua S. K.; Ong, Chin-Tong; Hookway, Tracy A.; Guo, Changying; Sun, Yuhua; Bland, Michael J.; Wagstaff, William; Dalton, Stephen; McDevitt, Todd C.; Sen, Ranjan; Dekker, Job; Taylor, James; Corces, Victor G.

    2013-01-01

    Summary Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in looping interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge shortrange enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales. PMID:23706625

  2. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    Science.gov (United States)

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  3. The Switchgrass Genome: Tools and Strategies

    Directory of Open Access Journals (Sweden)

    Michael D. Casler

    2011-11-01

    Full Text Available Switchgrass ( L. is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST database, a set of single nucleotide polymorphism (SNP markers that are distributed across the 18 linkage groups, 4x sampling of the AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [ (L. Moench], rice ( L., and (L. P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group ( [verified 28 Oct. 2011].

  4. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Inês B.; Fonseca, Bruno M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Matias, Pedro M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras (Portugal); Louro, Ricardo O.; Moe, Elin, E-mail: elinmoe@itqb.unl.pt [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal)

    2016-08-09

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.

  5. Construction of a mutagenesis cartridge for poliovirus genome-linked viral protein: isolation and characterization of viable and nonviable mutants

    International Nuclear Information System (INIS)

    Kuhn, R.J.; Tada, H.; Ypma-Wong, M.F.; Dunn, J.J.; Semler, B.L.; Wimmer, E.

    1988-01-01

    By following a strategy of genetic analysis of poliovirus, the authors have constructed a synthetic mutagenesis cartridge spanning the genome-linked viral protein coding region and flanking cleavage sites in an infectious cDNA clone of the type I (Mahoney) genome. The insertion of new restriction sites within the infectious clone has allowed them to replace the wild-type sequences with short complementary pairs of synthetic oligonucleotides containing various mutations. A set of mutations have been made that create methionine codons within the genome-linked viral protein region. The resulting viruses have growth characteristics similar to wild type. Experiments that led to an alteration of the tyrosine residue responsible for the linkage to RNA have resulted in nonviable virus. In one mutant, proteolytic processing assayed in vitro appeared unimpaired by the mutation. They suggest that the position of the tyrosine residue is important for genome-linked viral protein function(s)

  6. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    Science.gov (United States)

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.

  7. Draft Genome Sequence of the Model Naphthalene-Utilizing Organism Pseudomonas putida OUS82

    DEFF Research Database (Denmark)

    Tay, Martin; Roizman, Dan; Cohen, Yehuda

    2014-01-01

    Pseudomonas putida OUS82 was isolated from petrol- and oil-contaminated soil in 1992, and ever since, it has been used as a model organism to study the microbial assimilation of naphthalene and phenanthrene. Here, we report the 6.7-Mb draft genome sequence of P. putida OUS82 and analyze its...

  8. Rise and fall of outbreak-specific clone inside endemic pulsotype of Salmonella 4,[5],12:i:-; insights from high-resolution molecular surveillance in Emilia-Romagna, Italy, 2012 to 2015.

    Science.gov (United States)

    Morganti, Marina; Bolzoni, Luca; Scaltriti, Erika; Casadei, Gabriele; Carra, Elena; Rossi, Laura; Gherardi, Paola; Faccini, Fabio; Arrigoni, Norma; Sacchi, Anna Rita; Delledonne, Marco; Pongolini, Stefano

    2018-03-01

    Background and aimEpidemiology of human non-typhoid salmonellosis is characterised by recurrent emergence of new clones of the pathogen over time. Some clonal lines of Salmonella have shaped epidemiology of the disease at global level, as happened for serotype Enteritidis or, more recently, for Salmonella 4,[5],12:i:-, a monophasic variant of serotype Typhimurium. The same clonal behaviour is recognisable at sub-serotype level where single outbreaks or more generalised epidemics are attributable to defined clones. The aim of this study was to understand the dynamics of a clone of Salmonella 4,[5],12:i:- over a 3-year period (2012-15) in a province of Northern Italy where the clone caused a large outbreak in 2013. Furthermore, the role of candidate outbreak sources was investigated and the accuracy of multilocus variable-number tandem repeat analysis (MLVA) was evaluated. Methods: we retrospectively investigated the outbreak through whole genome sequencing (WGS) and further monitored the outbreak clone for 2 years after its conclusion. Results: The study showed the transient nature of the clone in the population, possibly as a consequence of its occasional expansion in a food-processing facility. We demonstrated that important weaknesses characterise conventional typing methods applied to clonal pathogens such as Salmonella 4,[5],12:i:-, namely lack of accuracy for MLVA and inadequate resolution power for PFGE to be reliably used for clone tracking. Conclusions : The study provided evidence for the remarkable prevention potential of whole genome sequencing used as a routine tool in systems that integrate human, food and animal surveillance.

  9. Lessons learned from cloning dogs.

    Science.gov (United States)

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals. © 2012 Blackwell Verlag GmbH.

  10. Insights into the Bamboo Genome: Syntenic Relationships to Rice and Sorghum

    Institute of Scientific and Technical Information of China (English)

    Yi-Jie Gui; Nai-Xun Ma; Tian-Zhen Zhang; Long-Jiang Fan; Yan Zhou; Yu Wang; Sheng Wang; Sheng-Yue Wang; Yan Hu; Shi-Ping Bo; Huan Chen; Chang-Ping Zhou

    2010-01-01

    Bamboo occupies an important phylogenetic node in the grass family and plays a significant role in the forest industry.We produced 1.2 Mb of tetraploid moso bamboo(Phyllostachys pubescens E.Mazel ex H.de Leh.)sequences from 13 bacterial artificial chromosome(BAC)clones,and these are the largest genomic sequences available so far from the subfamily Bambusoideae.The content of repetitive elements(36.2%)in bamboo is similar to that in rice.Both rice and sorghum exhibit high genomic synteny with bamboo,which suggests that rice and sorghum may be useful as models for decoding Bambusoideae genomes.

  11. Consumers' attitudes toward consumption of cloned beef. The impact of exposure to technological information about animal cloning.

    Science.gov (United States)

    Aizaki, Hideo; Sawada, Manabu; Sato, Kazuo

    2011-10-01

    Novel food technologies, such as cloning, have been introduced into the meat production sector; however, their use is not widely supported by many consumers. This study was designed to assess whether Japanese consumers' attitudes toward consumption of cloned beef (specifically, beef derived from bovine embryo and somatic cell-cloned cattle) would change after they were provided with technological information on animal cloning through a web-based survey. The results revealed that most respondents did not discriminate between their attitudes toward the consumption of the two types of cloned beef, and that most respondents did not change their attitudes toward cloned beef after receiving the technological information. The respondents' individual characteristics, including their knowledge about the food safety of cloned beef and their basic knowledge about animal cloning, influenced the likelihood of a change in their attitudes after they received the information. In conclusion, some consumers might become less uncomfortable about the consumption of cloned beef by the straightforward provision of technological information about animal cloning; however, most consumers are likely to maintain their attitudes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Genome analysis methods: Sorghum bicolor [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available Sorghum bicolor Finished 2n=20 760 Mb 2009 Sanger (Clone-based) 10,717,203 reads 7...30 Mb 8.5x Arachne2 v.20060705 3,304 12,873 BLAST, GenomeScan 34,496 (Sbi1.4) JGI; http://www.phytozome.net/sorghum Sbi1 Sbi1.4 10.1038/nature07723 19189423 ...

  13. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition

    International Nuclear Information System (INIS)

    Hajimorad, M.R.; Eggenberger, A.L.; Hill, J.H.

    2003-01-01

    Plant resistance (R) genes direct recognition of pathogens harboring matching avirluent signals leading to activation of defense responses. It has long been hypothesized that under selection pressure the infidelity of RNA virus replication together with large population size and short generation times results in emergence of mutants capable of evading R-mediated recognition. In this study, the Rsv1/Soybean mosaic virus (SMV) pathosystem was used to investigate this hypothesis. In soybean line PI 96983 (Rsv1), the progeny of molecularly cloned SMV strain G7 (pSMV-G7) provokes a lethal systemic hypersensitive response (LSHR) with up regulation of a defense-associated gene transcript (PR-1). Serial passages of a large population of the progeny in PI 96983 resulted in emergence of a mutant population (vSMV-G7d), incapable of provoking either Rsv1-mediated LSHR or PR-1 protein gene transcript up regulation. An infectious clone of the mutant (pSMV-G7d) was synthesized whose sequences were very similar but not identical to the vSMV-G7d population; however, it displayed a similar phenotype. The genome of pSMV-G7d differs from parental pSMV-G7 by 17 substitutions, of which 10 are translationally silent. The seven amino acid substitutions in deduced sequences of pSMV-G7d differ from that of pSMV-G7 by one each in P1 proteinase, helper component-proteinase, and coat protein, respectively, and by four in P3. To the best of our knowledge, this is the first demonstration in which experimental evolution of a molecularly cloned plant RNA virus resulted in emergence of a mutant capable of evading an R-mediated recognition

  14. Microsynteny between the Medicago truncatula SYM2-orthologous genomic region and another region located on the same chromosome arm

    NARCIS (Netherlands)

    Gualtieri, G.; Bisseling, T.

    2002-01-01

    A synteny based positional cloning approach was started to clone the pea SYM2 gene by using locally conserved genome structure with the model plant Medicago truncatula. We reported that a pea marker tightly linked to SYM2 was used to screen a M. truncatula BAC library, and two contigs named C1/C2

  15. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone.

    Directory of Open Access Journals (Sweden)

    N Luisa Hiller

    Full Text Available We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain(23F ST81. Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.

  16. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    Directory of Open Access Journals (Sweden)

    Schnitzler Christine E

    2012-12-01

    Full Text Available Abstract Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria and comb jellies (Phylum Ctenophora. The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light

  17. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  18. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method

    Directory of Open Access Journals (Sweden)

    Lu Jia

    2011-10-01

    Full Text Available Abstract Background Although a variety of methods and expensive kits are available, molecular cloning can be a time-consuming and frustrating process. Results Here we report a highly simplified, reliable, and efficient PCR-based cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16-base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp. Conclusion Our FastCloning technique provides a very simple, effective, reliable, and versatile tool for molecular cloning, chimera construction, insertion of any DNA sequences of interest and also for multiple mutations in a short stretch of a cDNA.

  19. Chronic exposure to sublethal doses of radiation mimetic ZeocinTM selects for clones deficient in homologous recombination

    International Nuclear Information System (INIS)

    Delacote, Fabien; Deriano, Ludovic; Lambert, Sarah; Bertrand, Pascale; Saintigny, Yannick; Lopez, Bernard S.

    2007-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions leading to genome variability/instability. The balance between homologous recombination (HR) and non-homologous end-joining (NHEJ), two alternative DSB repair systems, is essential to ensure genome maintenance in mammalian cells. Here, we transfected CHO hamster cells with the pcDNA TM 3.1/Zeo plasmid, and selected transfectants with Zeocin TM , a bleomycin analog which produces DSBs. Despite the presence of a Zeocin TM resistance gene in pcDNA TM 3.1/Zeo, Zeocin TM induced 8-10 γ-H2AX foci per cell. This shows that the Zeocin TM resistance gene failed to fully detoxify cells treated with Zeocin TM , and that during selection cells were submitted to a chronic sublethal DSB stress. Selected clones show decreases in both spontaneous and induced intrachromosomal HR. In contrast, in an in vitro assay, these clones show an increase in NHEJ products specific to the KU86 pathway. We selected cells, in the absence of pcDNA TM 3.1/Zeo, with low and sublethal doses of Zeocin TM , producing a mean 8-10 γ-H2AX foci per cell. Newly selected clones exhibited similar phenotypes: HR decrease accompanied by an increase in KU86-dependent NHEJ efficiency. Thus chronic exposure to sublethal numbers of DSBs selects cells whose HR versus NHEJ balance is altered. This may well have implications for radio- and chemotherapy, and for management of environmental hazards

  20. Molecular cloning and tissue-specific transcriptional regulation of the first peroxidase family member, Udp1, in stinging nettle (Urtica dioica).

    Science.gov (United States)

    Douroupi, Triantafyllia G; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2005-12-05

    A full-length cDNA clone, designated Udp1, was isolated from Urtica dioica (stinging nettle), using a polymerase chain reaction based strategy. The putative Udp1 protein is characterized by a cleavable N-terminal signal sequence, likely responsible for the rough endoplasmic reticulum entry and a 310 amino acids mature protein, containing all the important residues, which are evolutionary conserved among different members of the plant peroxidase family. A unique structural feature of the Udp1 peroxidase is defined into the short carboxyl-terminal extension, which could be associated with the vacuolar targeting process. Udp1 peroxidase is differentially regulated at the transcriptional level and is specifically expressed in the roots. Interestingly, wounding and ultraviolet radiation stress cause an ectopic induction of the Udp1 gene expression in the aerial parts of the plant. A genomic DNA fragment encoding the Udp1 peroxidase was also cloned and fully sequenced, revealing a structural organization of three exons and two introns. The phylogenetic relationships of the Udp1 protein to the Arabidopsis thaliana peroxidase family members were also examined and, in combination with the homology modelling approach, dictated the presence of distinct structural elements, which could be specifically involved in the determination of substrate recognition and subcellular localization of the Udp1 peroxidase.