WorldWideScience

Sample records for clinical target volume

  1. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    Science.gov (United States)

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  2. Clinical target volume for rectal cancer. Preoperative radiotherapy

    International Nuclear Information System (INIS)

    Lorchel, F.; Bossel, J.F.; Baron, M.H.; Goubard, O.; Bartholomot, B.; Mantion, G.; Pelissier, E.P.; Maingon, P.

    2001-01-01

    The total meso-rectal excision allows the marked increase of the local control rate in rectal cancer. Therefore, the meso-rectal space is the usual field for the spread of rectal cancer cells. It could therefore be considered as the clinical target volume in the preoperative plan by the radiation oncologist. We propose to identify the mesorectum on anatomical structures of a treatment-position CT scan. (authors)

  3. Gross tumor volume and clinical target volume: soft-tissue sarcoma of the extremities

    International Nuclear Information System (INIS)

    Lartigau, E.; Kantor, G.; Lagarde, P.; Taieb, S.; Ceugnart, L.; Vilain, M.O.; Penel, N.; Depadt, G.

    2001-01-01

    Soft tissue sarcomas of the extremities are currently treated with more conservative and functional approaches, combining surgery, radiotherapy and chemotherapy. The role of external beam radiotherapy and brachytherapy has been defined through randomized studies performed in the 80's and 90's. However, the ubiquity of tumour location for these tumours makes difficult a systematic definition of local treatments. Tumour volume definition is based on pre and post surgical imaging (MRI) and on described pathological report. The clinical target volume will take into account quality of the resection and anatomical barriers and will be based on an anatomy and not only on safety margins around the tumour bed. General rules for this irradiation (doses, volumes) and principal results will be presented. (authors)

  4. MR coronary angiography with breath-hold targeted volumes: preliminary clinical results

    NARCIS (Netherlands)

    R.J.M. van Geuns (Robert Jan); P.A. Wielopolski (Piotr); H.G. de Bruin (Hein); B.J.W.M. Rensing (Benno); M. Hulshoff (Maarten); P.M.A. van Ooijen (Peter); P.J. de Feyter (Pim); M. Oudkerk (Matthijs)

    2000-01-01

    textabstractPURPOSE: To assess the clinical value of a magnetic resonance (MR) coronary angiography strategy involving a small targeted volume to image one coronary segment in a single breath hold for the detection of greater than 50% stenosis. MATERIALS AND METHODS:

  5. MR coronary angiography with breath-hold targeted volumes : Preliminary clinical results

    NARCIS (Netherlands)

    van Geuns, R J; Wielopolski, P A; de Bruin, Hein G.; Rensing, B J; Hulshoff, Marc; van Ooijen, P M; de Feyter, P J; Oudkerk, M

    2000-01-01

    PURPOSE: To assess the clinical value of a magnetic resonance (MR) coronary angiography strategy involving a small targeted volume to image one coronary segment in a single breath hold for the detection of greater than 50% stenosis. MATERIALS AND METHODS: Thirty-eight patients referred for elective

  6. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    International Nuclear Information System (INIS)

    Chang, Eric L.; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-01-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r 2 0.0007; p = 0.3). For patients with edema >75 cm 3 , the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm 3 , using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema

  7. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2011-01-01

    The objective of this study was to develop a consensus-based guideline to define clinical target volume for primary disease (clinical target volume primary) in external beam radiotherapy for intact uterine cervical cancer. The working subgroup of the Japan Clinical Oncology Group (JCOG) Radiation Therapy Study Group began developing a guideline for primary clinical target volume in November 2009. The group consisted of 10 radiation oncologists and 2 gynecologic oncologists. The process started with comparing the contouring on computed tomographic images of actual cervical cancer cases among the members. This was followed by a comprehensive literature review that included primary research articles and textbooks as well as information on surgical procedures. Extensive discussion occurred in face-to-face meetings (three occasions) and frequent e-mail communications until a consensus was reached. The working subgroup reached a consensus on the definition for the clinical target volume primary. The clinical target volume primary consists of the gross tumor volume, uterine cervix, uterine corpus, parametrium, vagina and ovaries. Definitions for these component structures were determined. Anatomical boundaries in all directions were defined for the parametrium. Examples delineating these boundaries were prepared for the posterior border of the parametrium for various clinical situations (id est (i.e.) central tumor bulk, degree of parametrial involvement). A consensus-based guideline defining the clinical target volume primary was developed for external beam radiotherapy for intact uterine cervical cancer. This guideline will serve as a template for radiotherapy protocols in future clinical trials. It may also be used in actual clinical practice in the setting of highly precise external beam radiotherapy, including intensity-modulated radiotherapy. (author)

  8. Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy

    International Nuclear Information System (INIS)

    Prabhakar, Ramachandran; Ganesh, Tharmar; Rath, Goura K.; Julka, Pramod K.; Sridhar, Pappiah S.; Joshi, Rakesh C.; Thulkar, Sanjay

    2009-01-01

    The purpose of this study was to present the variation of clinical target volume (CTV) with different computed tomography (CT) slice thicknesses and the impact of CT slice thickness on 3-dimensional (3D) conformal radiotherapy treatment planning. Fifty patients with brain tumors were selected and CT scans with 2.5-, 5-, and 10-mm slice thicknesses were performed with non-ionic contrast enhancement. The patients were selected with tumor volume ranging from 2.54 cc to 222 cc. Three-dimensional treatment planning was performed for all three CT datasets. The target coverage and the isocenter shift between the treatment plans for different slice thickness were correlated with the tumor volume. An important observation from our study revealed that for volume 25 cc, the target underdosage was less than 6.7% for 5-mm slice thickness and 8% for 10-mm slice thickness. For 3D conformal radiotherapy treatment planning (3DCRT), a CT slice thickness of 2.5 mm is optimum for tumor volume 25 cc

  9. Target volume definition for external beam partial breast radiotherapy: Clinical, pathological and technical studies informing current approaches

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Coles, Charlotte E.; Yarnold, John R.

    2010-01-01

    Partial breast irradiation (PBI) is currently under investigation in several phase III trials and, following a recent consensus statement, its use off-study may increase despite ongoing uncertainty regarding optimal target volume definition. We review the clinical, pathological and technical evidence for target volume definition in external beam partial breast irradiation (EB-PBI). The optimal method of tumour bed (TB) delineation requires X-ray CT imaging of implanted excision cavity wall markers. The definition of clinical target volume (CTV) as TB plus concentric 15 mm margins is based on the anatomical distribution of multifocal and multicentric disease around the primary tumour in mastectomy specimens, and the clinical locations of local tumour relapse (LR) after breast conservation surgery. If the majority of LR originate from foci of residual invasive and/or intraduct disease in the vicinity of the TB after complete microscopic resection, CTV margin logically takes account of the position of primary tumour within the surgical resection specimen. The uncertain significance of independent primary tumours as sources of preventable LR, and of wound healing responses in stimulating LR, increases the difficulties in defining optimal CTV. These uncertainties may resolve after long-term follow-up of current PBI trials. By contrast, a commonly used 10 mm clinical to planning target volume (PTV) margin has a stronger evidence base, although departmental set-up errors need to be confirmed locally. A CTV-PTV margin >10 mm may be required in women with larger breasts and/or large seromas, whilst the role of image-guided radiotherapy with or without TB markers in reducing CTV-PTV margins needs to be explored.

  10. Variation of gross tumor volume and clinical target volume definition for lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Li Minghui; Chen Dongdu

    2011-01-01

    Objective: To study the variation of gross tumor volume (GTV) and clinical target volume (CTV) definition for lung cancer between different doctors. Methods: Ten lung cancer patients with PET-CT simulation were selected from January 2008 to December 2009.GTV and CTV of these patients were defined by four professors or associate professors of radiotherapy independently. Results: The mean ratios of largest to smallest GTV and CTV were 1.66 and 1.65, respectively. The mean coefficients of variation for GTV and CTV were 0.20 and 0.17, respectively. System errors of CTV definition in three dimension were less than 5 mm, which was the largest in inferior and superior (0.48 cm, 0.37 cm, 0.32 cm; F=0.40, 0.60, 0.15, P=0.755, 0.618, 0.928). Conclusions: The variation of GTV and CTV definition for lung cancer between different doctors exist. The mean ratios of largest to smallest GTV and CTV were less than 1.7. The variation was in hilar and mediastinum lymphanode regions. System error of CTV definition was the largest (<5 mm) in cranio-caudal direction. (authors)

  11. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2010-01-01

    The objective of this study was to develop a consensus-based guideline as well as an atlas defining pelvic nodal clinical target volumes in external beam radiotherapy for uterine cervical cancer. A working subgroup to establish the consensus-based guideline on clinical target volumes for uterine cervical cancer was formulated by the Radiation Therapy Study Group of the Japan Clinical Oncology Group in July 2008. The working subgroup consisted of seven radiation oncologists. The process resulting in the consensus included a comparison of contouring on CT images among the members, reviewing of published textbooks and the relevant literature and a distribution analysis of metastatic nodes on computed tomography/magnetic resonance imaging of actual patients. The working subgroup defined the pelvic nodal clinical target volumes for cervical cancer and developed an associated atlas. As a basic criterion, the lymph node clinical target volume was defined as the area encompassed by a 7 mm margin around the applicable pelvic vessels. Modifications were made in each nodal area to cover adjacent adipose tissues at risk of microscopic nodal metastases. Although the bones and muscles were excluded, the bowel was not routinely excluded in the definition. Each of the following pelvic node regions was defined: common iliac, external iliac, internal iliac, obturator and presacral. Anatomical structures bordering each lymph node region were defined for six directions; anterior, posterior, lateral, medial, cranial and caudal. Drafts of the definition and the atlas were reviewed by members of the JCOG Gynecologic Cancer Study Group (GCSG). We developed a consensus-based guideline defining the pelvic node clinical target volumes that included an atlas. The guideline will be continuously updated to reflect the ongoing changes in the field. (author)

  12. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  13. The co registration of initial PET on the CT-radiotherapy reduces significantly the variabilities of anatomo-clinical target volume in the child hodgkin disease

    International Nuclear Information System (INIS)

    Metwally, H.; Blouet, A.; David, I.; Rives, M.; Izar, F.; Courbon, F.; Filleron, T.; Laprie, A.; Plat, G.; Vial, J.

    2009-01-01

    It exists a great interobserver variability for the anatomo-clinical target volume (C.T.V.) definition in children suffering of Hodgkin disease. In this study, the co-registration of the PET with F.D.G. on the planning computed tomography has significantly lead to a greater coherence in the clinical target volume definition. (N.C.)

  14. Gross tumor volume (GTV) and clinical target volume (CTV) for radiation therapy of benign skull base tumours

    International Nuclear Information System (INIS)

    Maire, J.P.; Liguoro, D.; San Galli, F.

    2001-01-01

    Skull base tumours represent a out 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate: it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimensional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. (authors)

  15. Radial displacement of clinical target volume in node negative head and neck cancer

    International Nuclear Information System (INIS)

    Jeon, Wan; Wu, Hong Gyun; Song, Sang Hyuk; Kim, Jung In

    2012-01-01

    To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H and N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Three node-negative H and N cancer patients and fi ve healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. The mean radial displacements were 2.26 (±1.03) mm in the control group and 3.05 (±1.97) in the H and N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.

  16. Rectal cancer: The radiation basis of radiotherapy, target volume

    International Nuclear Information System (INIS)

    Bosset, J.F.; Servagi-Vernat, S.; Crehange, G.; Azria, D.; Gerard, J.P.; Hennequin, C.

    2011-01-01

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  17. Customized Computed Tomography-Based Boost Volumes in Breast-Conserving Therapy: Use of Three-Dimensional Histologic Information for Clinical Target Volume Margins

    International Nuclear Information System (INIS)

    Hanbeukers, Bianca; Borger, Jacques; Ende, Piet van den; Ent, Fred van der; Houben, Ruud; Jager, Jos; Keymeulen, Kristien; Murrer, Lars; Sastrowijoto, Suprapto; Vijver, Koen van de; Boersma, Liesbeth

    2009-01-01

    Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes. Patients and Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV sim that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV sim . Results: The irradiated volume (volume receiving ≥95% of the prescribed dose [V 95 ]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV sim : 228 cm 3 vs. 147 cm 3 (p 95 was similar to the V 95 for the PTV sim (190 cm 3 vs. 162 cm 3 ; p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029). Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.

  18. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  19. Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin's disease. A multi-institutional experience

    International Nuclear Information System (INIS)

    Genovesi, Domenico; Cefaro, Giampiero Ausili; Vinciguerra, Annamaria

    2011-01-01

    To determine interobserver variability in clinical target volume (CTV) of supra-diaphragmatic Hodgkin's lymphoma. At the 2008 AIRO (Italian Society of Radiation Oncology) Meeting, the Radiation Oncology Department of Chieti proposed a multi-institutional contouring dummy-run of two cases of early stage supra-diaphragmatic Hodgkin's lymphoma after chemotherapy. Clinical history, diagnostics, and planning CT imaging were available on Chieti's radiotherapy website (www.radioterapia.unich.it). Participating centers were requested to delineate the CTV and submit it to the coordinating center. To quantify interobserver variability of CTV delineations, the total volume, craniocaudal, laterolateral, and anteroposterior diameters were calculated. A total of 18 institutions for case A and 15 institutions for case B submitted the targets. Case A presented significant variability in total volume (range: 74.1-1,157.1 cc), craniocaudal (range: 6.5-22.5 cm; median: 16.25 cm), anteroposterior (range: 5.04-14.82 cm; median: 10.28 cm), and laterolateral diameters (range: 8.23-22.88 cm; median: 15.5 cm). Mean CTV was 464.8 cc (standard deviation: 280.5 cc). Case B presented significant variability in total volume (range: 341.8-1,662 cc), cranio-caudal (range: 8.0-28.5 cm; median: 23 cm), anteroposterior (range: 7.9-1.8 cm; median: 11.1 cm), and laterolateral diameters (range: 12.9-24.0 cm; median: 18.8 cm). Mean CTV was 926.0 cc (standard deviation: 445.7 cc). This significant variability confirms the need to apply specific guidelines to improve contouring uniformity in Hodgkin's lymphoma. (orig.)

  20. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    International Nuclear Information System (INIS)

    Lim, Karen; Small, William; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-01-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  1. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    Directory of Open Access Journals (Sweden)

    Wang X

    2016-10-01

    stations 2, 4, 5, and 7 LNs should be delineated as clinical target volume of postoperative prophylactic irradiation, and upper abdominal LNs should be excluded. While for midthoracic ESCC with three or more positive nodes, upper abdominal LNs should also be included. The length of tumor and histological differentiation should be considered comprehensively to design the clinical target volume for radiotherapy. Keywords: esophagus cancer, radiotherapy, recurrence and metastasis, clinical target volume

  2. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    Science.gov (United States)

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  3. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  4. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.

    Science.gov (United States)

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Gunn, Brandon; Rosenthal, David; Ang, Kian; Frank, Steven; Williamson, Ryan; Balter, Peter; Court, Laurence; Dong, Lei

    2014-01-01

    To investigate atlas-based auto-segmentation methods to improve the quality of the delineation of low-risk clinical target volumes (CTVs) of unilateral tonsil cancers. Sixteen patients received intensity modulated radiation therapy for left tonsil tumors. These patients were treated by a total of 8 oncologists, who delineated all contours manually on the planning CT image. We chose 6 of the patients as atlas cases and used atlas-based auto-segmentation to map each the atlas CTV to the other 10 patients (test patients). For each test patient, the final contour was produced by combining the 6 individual segmentations from the atlases using the simultaneous truth and performance level estimation algorithm. In addition, for each test patient, we identified a single atlas that produced deformed contours best matching the physician's manual contours. The auto-segmented contours were compared with the physician's manual contours using the slice-wise Hausdorff distance (HD), the slice-wise Dice similarity coefficient (DSC), and a total volume overlap index. No single atlas consistently produced good results for all 10 test cases. The multiatlas segmentation achieved a good agreement between auto-segmented contours and manual contours, with a median slice-wise HD of 7.4 ± 1.0 mm, median slice-wise DSC of 80.2% ± 5.9%, and total volume overlap of 77.8% ± 3.3% over the 10 test cases. For radiation oncologists who contoured both the test case and one of the atlas cases, the best atlas for a test case had almost always been contoured by the oncologist who had contoured that test case, indicating that individual physician's practice dominated in target delineation and was an important factor in optimal atlas selection. Multiatlas segmentation may improve the quality of CTV delineation in clinical practice for unilateral tonsil cancers. We also showed that individual physician's practice was an important factor in selecting the optimal atlas for atlas-based auto

  5. CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Jung Keun; Kim, Joo-Young; Park, Sung Yong; Park, Sang-Yoon; Kim, Dae Yong; Chie, Eui Kyu; Pyo, Hong Ryull; Cho, Kwan Ho

    2006-01-01

    Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for 192 Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V ref ), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm 3 ) and CTV (24.9 cm 3 ) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm 3 , respectively) for Group 2 (p = 0.003). The mean V ref for all patients was 129.6 cm 3 for the conventional plan and 97.0 cm 3 for the CTV plan (p = 0.003). The mean V ref in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and

  6. Rectal cancer: The radiation basis of radiotherapy, target volume; Cancers du rectum: volumes cible de la radiotherapie, bases rationnelles

    Energy Technology Data Exchange (ETDEWEB)

    Bosset, J.F.; Servagi-Vernat, S. [Service oncologie-radiotherapie, CHU Jean-Minjoz, 3, boulevard Fleming, 25030 Besancon (France); Crehange, G. [Service oncologie-radiotherapie, centre Georges-Francois-Leclerc, 1, rue du Pr-Marion, 21079 Dijon cedex (France); Azria, D. [Service oncologie-radiotherapie, centre Val-d' Aurelle, rue Croix-Verte, 34298 Montpellier cedex 5 (France); Gerard, J.P. [Service oncologie-radiotherapie, centre Antoine-Lacassagne, 33, avenue Valombrose, 06189 Nice (France); Hennequin, C. [Service oncologie-radiotherapie, hopital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris (France)

    2011-10-15

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  7. Variation in the Definition of Clinical Target Volumes for Pelvic Nodal Conformal Radiation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Lawton, Colleen A.F.; Michalski, Jeff; El-Naqa, Issam; Kuban, Deborah; Lee, W. Robert; Rosenthal, Seth A.; Zietman, Anthony; Sandler, Howard; Shipley, William; Ritter, Mark; Valicenti, Richard; Catton, Charles; Roach, Mack; Pisansky, Thomas M.; Seider, Michael

    2009-01-01

    Purpose: We conducted a comparative study of clinical target volume (CTV) definition of pelvic lymph nodes by multiple genitourinary (GU) radiation oncologists looking at the levels of discrepancies amongst this group. Methods and Materials: Pelvic computed tomography (CT) scans from 2 men were distributed to 14 Radiation Therapy Oncology Group GU radiation oncologists with instructions to define CTVs for the iliac and presacral lymph nodes. The CT data with contours were then returned for analysis. In addition, a questionnaire was completed that described the physicians' method for target volume definition. Results: Significant variation in the definition of the iliac and presacral CTVs was seen among the physicians. The minimum, maximum, mean (SD) iliac volumes (mL) were 81.8, 876.6, 337.6 ± 203 for case 1 and 60.3, 627.7, 251.8 ± 159.3 for case 2. The volume of 100% agreement was 30.6 and 17.4 for case 1 and 2 and the volume of the union of all contours was 1,012.0 and 807.4 for case 1 and 2, respectively. The overall agreement was judged to be moderate in both cases (kappa = 0.53 (p < 0.0001) and kappa = 0.48 (p < 0.0001). There was no volume of 100% agreement for either of the two presacral volumes. These variations were confirmed in the responses to the associated questionnaire. Conclusions: Significant disagreement exists in the definition of the CTV for pelvic nodal radiation therapy among GU radiation oncology specialists. A consensus needs to be developed so as to accurately assess the merit and safety of such treatment.

  8. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes

    International Nuclear Information System (INIS)

    Apisarnthanarax, Smith; Elliott, Danielle D.; El-Naggar, Adel K.; Asper, Joshua A. P.A.; Blanco, Angel; Ang, K. Kian; Garden, Adam S.; Morrison, William H.; Rosenthal, David; Weber, Randal S.; Chao, K.S. Clifford

    2006-01-01

    Purpose: To determine the optimal clinical target volume margins around the gross nodal tumor volume in head-and-neck cancer by assessing microscopic tumor extension beyond cervical lymph node capsules. Methods and Materials: Histologic sections of 96 dissected cervical lymph nodes with extracapsular extension (ECE) from 48 patients with head-and-neck squamous cell carcinoma were examined. The maximum linear distance from the external capsule border to the farthest extent of the tumor or tumoral reaction was measured. The trends of ECE as a function of the distance from the capsule and lymph node size were analyzed. Results: The median diameter of all lymph nodes was 11.0 mm (range: 3.0-30.0 mm). The mean and median ECE extent was 2.2 mm and 1.6 mm, respectively (range: 0.4-9.0 mm). The ECE was <5 mm from the capsule in 96% of the nodes. As the distance from the capsule increased, the probability of tumor extension declined. No significant difference between the extent of ECE and lymph node size was observed. Conclusion: For N1 nodes that are at high risk for ECE but not grossly infiltrating musculature, 1 cm clinical target volume margins around the nodal gross tumor volume are recommended to cover microscopic nodal extension in head-and-neck cancer

  9. Variation of clinical target volume definition in three-dimensional conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Sweet, John W.; Hauck, Walter W.; Hudes, Richard S.; Lee, Tony; Dicker, Adam P.; Waterman, Frank M.; Anne, Pramila R.; Corn, Benjamin W.; Galvin, James M.

    1999-01-01

    Purpose: Currently, three-dimensional conformal radiation therapy (3D-CRT) planning relies on the interpretation of computed tomography (CT) axial images for defining the clinical target volume (CTV). This study investigates the variation among multiple observers to define the CTV used in 3D-CRT for prostate cancer. Methods and Materials: Seven observers independently delineated the CTVs (prostate ± seminal vesicles [SV]) from the CT simulation data of 10 prostate cancer patients undergoing 3D-CRT. Six patients underwent CT simulation without the use of contrast material and serve as a control group. The other 4 had urethral and bladder opacification with contrast medium. To determine interobserver variation, we evaluated the derived volume, the maximum dimensions, and the isocenter for each examination of CTV. We assessed the reliability in the CTVs among the observers by correlating the variation for each class of measurements. This was estimated by intraclass correlation coefficient (ICC), with 1.00 defining absolute correlation. Results: For the prostate volumes, the ICC was 0.80 (95% confidence interval [CI]: 0.56-0.96). This changed to 0.92 (95% CI: 0.75-0.99) with the use of contrast material. Similarly, the maximal prostatic dimensions were reliable and improved. There was poor agreement in defining the SV. For this structure, the ICC never exceeded 0.28. The reliability of the isocenter was excellent, with the ICC exceeding 0.83 and 0.90 for the prostate ± SV, respectively. Conclusions: In 3D-CRT for prostate cancer, there was excellent agreement among multiple observers to define the prostate target volume but poor agreement to define the SV. The use of urethral and bladder contrast improved the reliability of localizing the prostate. For all CTVs, the isocenter was very reliable and should be used to compare the variation in 3D dosimetry among multiple observers

  10. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy

    International Nuclear Information System (INIS)

    Wiltshire, Kirsty L.; Brock, Kristy K.; Haider, Masoom A.; Zwahlen, Daniel; Kong, Vickie; Chan, Elisa; Moseley, Joanne; Bayley, Andrew; Catton, Charles; Chung, Peter W.M.; Gospodarowicz, Mary; Milosevic, Michael; Kneebone, Andrew; Warde, Padraig; Menard, Cynthia

    2007-01-01

    Purpose: We sought to derive and validate an interdisciplinary consensus definition for the anatomic boundaries of the postoperative clinical target volume (CTV, prostate bed). Methods and Materials: Thirty one patients who had planned for radiotherapy after radical prostatectomy were enrolled and underwent computed tomography and magnetic resonance imaging (MRI) simulation prior to radiotherapy. Through an iterative process of consultation and discussion, an interdisciplinary consensus definition was derived based on a review of published data, patterns of local failure, surgical practice, and radiologic anatomy. In validation, we analyzed the distribution of surgical clips in reference to the consensus CTV and measured spatial uncertainties in delineating the CTV and vesicourethral anastomosis. Clinical radiotherapy plans were retrospectively evaluated against the consensus CTV (prostate bed). Results: Anatomic boundaries of the consensus CTV (prostate bed) are described. Surgical clips (n = 339) were well distributed throughout the CTV. The vesicourethral anastomosis was accurately localized using central sagittal computed tomography reconstruction, with a mean ± standard deviation uncertainty of 1.8 ± 2.5 mm. Delineation uncertainties were small for both MRI and computed tomography (mean reproducibility, 0-3.8 mm; standard deviation, 1.0-2.3); they were most pronounced in the anteroposterior and superoinferior dimensions and at the superior/posterior-most aspect of the CTV. Retrospectively, the mean ± standard deviation CTV (prostate bed) percentage of volume receiving 100% of prescribed dose was only 77% ± 26%. Conclusions: We propose anatomic boundaries for the CTV (prostate bed) and present evidence supporting its validity. In the absence of gross recurrence, the role of MRI in delineating the CTV remains to be confirmed. The CTV is larger than historically practiced at our institution and should be encompassed by a microscopic tumoricidal dose

  11. MRI definition of target volumes using fuzzy logic method for three-dimensional conformal radiation therapy

    International Nuclear Information System (INIS)

    Caudrelier, Jean-Michel; Vial, Stephane; Gibon, David; Kulik, Carine; Fournier, Charles; Castelain, Bernard; Coche-Dequeant, Bernard; Rousseau, Jean

    2003-01-01

    Purpose: Three-dimensional (3D) volume determination is one of the most important problems in conformal radiation therapy. Techniques of volume determination from tomographic medical imaging are usually based on two-dimensional (2D) contour definition with the result dependent on the segmentation method used, as well as on the user's manual procedure. The goal of this work is to describe and evaluate a new method that reduces the inaccuracies generally observed in the 2D contour definition and 3D volume reconstruction process. Methods and Materials: This new method has been developed by integrating the fuzziness in the 3D volume definition. It first defines semiautomatically a minimal 2D contour on each slice that definitely contains the volume and a maximal 2D contour that definitely does not contain the volume. The fuzziness region in between is processed using possibility functions in possibility theory. A volume of voxels, including the membership degree to the target volume, is then created on each slice axis, taking into account the slice position and slice profile. A resulting fuzzy volume is obtained after data fusion between multiorientation slices. Different studies have been designed to evaluate and compare this new method of target volume reconstruction and a classical reconstruction method. First, target definition accuracy and robustness were studied on phantom targets. Second, intra- and interobserver variations were studied on radiosurgery clinical cases. Results: The absolute volume errors are less than or equal to 1.5% for phantom volumes calculated by the fuzzy logic method, whereas the values obtained with the classical method are much larger than the actual volumes (absolute volume errors up to 72%). With increasing MRI slice thickness (1 mm to 8 mm), the phantom volumes calculated by the classical method are increasing exponentially with a maximum absolute error up to 300%. In contrast, the absolute volume errors are less than 12% for phantom

  12. Postoperative radiation in esophageal squamous cell carcinoma and target volume delineation

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2016-07-01

    Full Text Available Yingming Zhu,* Minghuan Li,* Li Kong, Jinming Yu Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: Esophageal cancer is the sixth leading cause of cancer death worldwide, and patients who are treated with surgery alone, without neoadjuvant therapies, experience frequent relapses. Whether postoperative therapies could reduce the recurrence or improve overall survival is still controversial for these patients. The purpose of our review is to figure out the value of postoperative adjuvant therapy and address the disputes about target volume delineation according to published data. Based on the evidence of increased morbidity and disadvantages on patient survival caused by postoperative chemotherapy or radiotherapy (RT alone provided by studies in the early 1990s, the use of postoperative adjuvant therapies in cases of esophageal squamous cell carcinoma has diminished substantially and has been replaced gradually by neoadjuvant chemoradiation. With advances in surgery and RT, accumulating evidence has recently rekindled interest in the delivery of postoperative RT or chemoradiotherapy in patients with stage T3/T4 or N1 (lymph node positive carcinomas after radical surgery. However, due to complications with the standard radiation field, a nonconforming modified field has been adopted in most studies. Therefore, we analyze different field applications and provide suggestions on the optimization of the radiation field based on the major sites of relapse and the surgical non-clearance area. For upper and middle thoracic esophageal carcinomas, the bilateral supraclavicular and superior mediastinal areas remain common sites of recurrence and should be encompassed within the clinical target volume. In contrast, a consensus has yet to be reached regarding lower thoracic esophageal carcinomas; the

  13. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Cox, Brett W.; Spratt, Daniel E.; Lovelock, Michael; Bilsky, Mark H.; Lis, Eric; Ryu, Samuel; Sheehan, Jason; Gerszten, Peter C.; Chang, Eric; Gibbs, Iris; Soltys, Scott; Sahgal, Arjun; Deasy, Joe; Flickinger, John; Quader, Mubina; Mindea, Stefan

    2012-01-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive metastatic

  14. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Swanick, Cameron W.; Castle, Katherine O.; Vedam, Sastry; Munsell, Mark F.; Turner, Lehendrick M.; Rauch, Gaiane M.; Jhingran, Anuja; Eifel, Patricia J.; Klopp, Ann H.

    2016-01-01

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm"3) was larger than the mean MRI HR-CTV volume (35.1 cm"3; P 5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  15. A local contrast based approach to threshold segmentation for PET target volume delineation

    International Nuclear Information System (INIS)

    Drever, Laura; Robinson, Don M.; McEwan, Alexander; Roa, Wilson

    2006-01-01

    Current radiation therapy techniques, such as intensity modulated radiation therapy and three-dimensional conformal radiotherapy rely on the precise delivery of high doses of radiation to well-defined volumes. CT, the imaging modality that is most commonly used to determine treatment volumes cannot, however, easily distinguish between cancerous and normal tissue. The ability of positron emission tomography (PET) to more readily differentiate between malignant and healthy tissues has generated great interest in using PET images to delineate target volumes for radiation treatment planning. At present the accurate geometric delineation of tumor volumes is a subject open to considerable interpretation. The possibility of using a local contrast based approach to threshold segmentation to accurately delineate PET target cross sections is investigated using well-defined cylindrical and spherical volumes. Contrast levels which yield correct volumetric quantification are found to be a function of the activity concentration ratio between target and background, target size, and slice location. Possibilities for clinical implementation are explored along with the limits posed by this form of segmentation

  16. Endoscopic clipping for gastrointestinal tumors. A method to define the target volume more precisely

    International Nuclear Information System (INIS)

    Riepl, M.; Klautke, G.; Fehr, R.; Fietkau, R.; Pietsch, A.

    2000-01-01

    Background: In many cases it is not possible to exactly define the extension of carcinoma of the gastrointestinal tract with the help of computertomography scans made for 3-D-radiation treatment planning. Consequently, the planning of external beam radiotherapy is made more difficult for the gross tumor volume as well as, in some cases, also for the clinical target volume. Patients and Methods: Eleven patients with macrosocpic tumors (rectal cancer n = 5, cardiac cancer n = 6) were included. Just before 3-D planning, the oral and aboral border of the tumor was marked endoscopically with hemoclips. Subsequently, CT scans for radiotherapy planning were made and the clinical target volume was defined. Five to 6 weeks thereafter, new CT scans were done to define the gross tumor volume for boost planning. Two investigators independently assessed the influence of the hemoclips on the different planning volumes, and whether the number of clips was sufficient to define the gross tumor volume. Results: In all patients, the implantation of the clips was done without complications. Start of radiotherapy was not delayed. With the help of the clips it was possible to exactly define the position and the extension of the primary tumor. The clinical target volume was modified according to the position of the clips in 5/11 patients; the gross tumor volume was modified in 7/11 patients. The use of the clips made the documentation and verification of the treatment portals by the simulator easier. Moreover, the clips helped the surgeon to define the primary tumor region following marked regression after neoadjuvant therapy in 3 patients. Conclusions: Endoscopic clipping of gastrointestinal tumors helps to define the tumor volumes more precisely in radiation therapy. The clips are easily recognized on the portal films and, thus, contribute to quality control. (orig.) [de

  17. What margins should be added to the clinical target volume in radiotherapy treatment planning of lung cancer?

    International Nuclear Information System (INIS)

    Ekberg, L.; Wittgren, L.; Holmberg, O.

    1995-01-01

    When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV

  18. Optimized Planning Target Volume for Intact Cervical Cancer

    International Nuclear Information System (INIS)

    Khan, Alvin; Jensen, Lindsay G.; Sun Shuai; Song, William Y.; Yashar, Catheryn M.; Mundt, Arno J.; Zhang Fuquan; Jiang, Steve B.; Mell, Loren K.

    2012-01-01

    Purpose: To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. Methods and Materials: We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV 0 ) and the set of CBCTs ({CTV 1 –CTV 25 }). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV 0 with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV 1 –CTV 25 was computed. The resulting expansions were used to generate an optimized PTV. Results: The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1–16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm 3 ) was significantly lower than both the anisotropic PTV (2220 cm 3 ) and the uniformly expanded PTV (2110 cm 3 ) (p 0 , 5–10 mm along the interfaces of CTV 0 with the bladder and rectum, and 10–14 mm along the anterior surface of CTV 0 at the level of the uterus. Conclusion: Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and clinical trials.

  19. Target volume determination in radiotherapy for non-small-cell lung cancer-facts and questions

    International Nuclear Information System (INIS)

    Kepka, L.; Bujko, K.

    2003-01-01

    Although the precise target volume definition in conformal radiotherapy is required by ICRU Report 50 and 62, this task in radiotherapy for non-small-cell lung cancer (NSCLC) is often controversial and strict accordance with ICRU requirements is hard to achieve. The Gross Tumour Volume (GTV) definition depends mainly on the imaging method used. We discuss the use of new imaging modalities, like PET, in GTV definition. The Clinical Target Volume (CTV) definition remains a separate, and still unresolved problem, especially in the part concerning the Elective Nodal Irradiation (ENI). Nowadays, there is no unified attitude among radiation oncologists regarding the necessity and extent of ENI. The common use of combined treatment modalities and the tendency to dose escalation, both increasing the potential toxicity, result in the more frequent use of involved-fields techniques. Problems relating to margins during Planning Target Volume (PTV) of lung cancer irradiation are also discussed. Another issue is the Interclinician variability in target volumes definition, especially when there is data indicating that the GTV, as defined by 3 D-treatment planning in NSCLC radiotherapy, may be highly prognostic for survival. We postulate that special attention should be paid to detailed precision of target volume determination in departmental and trial protocols. Careful analysis of patterns of failures from ongoing protocols will enable us to formulate the guidelines for target volume definition in radiotherapy for lung cancer. (author)

  20. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  1. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation

    International Nuclear Information System (INIS)

    Daisne, Jean-François; Blumhofer, Andreas

    2013-01-01

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for “manual to automatic” and “manual to corrected” volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert

  2. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    Science.gov (United States)

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  3. Defining internal target volume (ITV) for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    X, Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Liu Hui; Li Qiaoqiao; Hu Yonghong; Cai Ling; Cui Nianji

    2007-01-01

    Background and purpose: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional computed tomography (4DCT). Materials and methods: Gross tumor volumes (GTVs) and clinical target volumes (CTVs) were contoured on all 10 respiratory phases of 4DCT scans in 10 patients with hepatocellular carcinoma. The 3D and 4D treatment plans were performed for each patient using two different planning target volumes (PTVs): (1) PTV 3D was derived from a single CTV plus conventional margins; (2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs). The volumes of PTVs and dose distribution were compared between the two plans. Results: The average PTV volume of the 4D plans (328.4 ± 152.2 cm 3 ) was less than 3D plans (407.0 ± 165.6 cm 3 ). The 4D plans spared more surrounding normal tissues than 3D plans, especially normal liver. Compared with 3D plans, the mean dose to normal liver (MDTNL) decreased from 22.7 to 20.3 Gy. Without increasing the normal tissue complication probability (NTCP), the 4D plans allowed for increasing the calculated dose from 50.4 ± 1.3 to 54.2 ± 2.6 Gy, an average increase of 7.5% (range 4.0-16.0%). Conclusions: The conventional 3D plans can result in geometric miss and include excess normal tissues. The 4DCT-based plans can reduce the target volumes to spare more normal tissues and allow dose escalation compared with 3D plans

  4. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    International Nuclear Information System (INIS)

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-01-01

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  5. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Caravatta Luciana

    2012-06-01

    Full Text Available Abstract Background Radiotherapy (RT is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs.

  6. The co registration of initial PET on the CT-radiotherapy reduces significantly the variabilities of anatomo-clinical target volume in the child hodgkin disease; La coregistration de la TEP initiale sur la scanographie de radiotherapie diminue significativement les variabilites de volume cible anatomoclinique dans la maladie de Hodgkin de l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.; Blouet, A.; David, I.; Rives, M.; Izar, F.; Courbon, F.; Filleron, T.; Laprie, A. [Institut Claudius-Regaud, 31 - Toulouse (France); Plat, G.; Vial, J. [CHU-hopital des Enfants, 31 - Toulouse (France)

    2009-10-15

    It exists a great interobserver variability for the anatomo-clinical target volume (C.T.V.) definition in children suffering of Hodgkin disease. In this study, the co-registration of the PET with F.D.G. on the planning computed tomography has significantly lead to a greater coherence in the clinical target volume definition. (N.C.)

  7. 18F-fluorodeoxyglucose PET in definition of target volumes and radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Qiao Wenli; Zhao Jinhua

    2007-01-01

    PET is a functional imaging modality, which can give some biological information of tumor. PET is more and more important in the definition of target volumes and radiotherapy treatment planning. Depending on its sensitivity and specificity, 18 F-fluorideoxyglucose 18 F-FDG PET has been shown to influence the selection of target volumes and radiotherapy treatment planning for non-small cell lung cancers, for head and neck squamous cell carcinomas or for esophageal tumors. On the other hand, for tumors such as rectal carcinomas, convincing data on the value of 18 F-FDG PET for target volume selection are still lacking. However, the application of 18 F-FDG PET in many aspects of radiotherapy is still controversy. Further researches in its clinical application are still needed to investigate whether 18 F-FDG PET for treatment planning should be routine because of the lack of prospective studies. (authors)

  8. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    Science.gov (United States)

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  9. Small volume target for F-18 production

    Science.gov (United States)

    Pellicioli, M.; Schuler, J.; Marchand, P.; Brasse, D.

    2017-05-01

    In order to reduce the volume of O-18 enriched water used for each F-18 production for research a small volume target of 1 ml has been designed at IPHC. The designed is derived from ACSI 3.8ml F-18 target and uses both water and Helium cooling. After one year of use production yield is reported.

  10. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    International Nuclear Information System (INIS)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O.; Chen, Shifeng

    2017-01-01

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [de

  11. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Wong, A [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); School of Medicine, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Mohamed, A; Fuller, C [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Yang, J; Court, L; Aristophanous, M [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Rao, A [Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  12. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    International Nuclear Information System (INIS)

    Cardenas, C; Wong, A; Mohamed, A; Fuller, C; Yang, J; Court, L; Aristophanous, M; Rao, A

    2016-01-01

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  13. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer.

    Science.gov (United States)

    Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun

    2016-01-01

    The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  14. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Swanick, Cameron W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castle, Katherine O. [Southeast Louisiana Radiation Oncology Group, Baton Rouge, Louisiana (United States); Vedam, Sastry [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Turner, Lehendrick M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rauch, Gaiane M. [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jhingran, Anuja; Eifel, Patricia J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Klopp, Ann H., E-mail: aklopp@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-11-15

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm{sup 3}) was larger than the mean MRI HR-CTV volume (35.1 cm{sup 3}; P<.0001, paired t test). On multivariable analysis, a higher body mass index (BMI) and tumor size ≥5 cm with parametrial invasion on the MRI scan at diagnosis were associated with an increased discrepancy in volume between the HR-CTV contours (P<.02 for both). In addition, the spatial agreement (as measured by DC) between the HR-CTV contours decreased with an increasing BMI (P=.013). Conclusions: We recommend MRI-based brachytherapy planning for patients with tumors >5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  15. The target volume concept at the recording of external beam radiotherapy

    International Nuclear Information System (INIS)

    Quast, U.; Glaeser, L.

    1981-01-01

    With the aim of complete, exact and reproducible manual recording and documentation of external beam radiotherapy a concept is proposed providing treatment planning and recording related to space and time for target volumes of different order corresponding to Ist, IInd or IIIrd part of treatment course, regarding all dose limiting organs at risk. The record consists of the dosage plan for medical treatment planning, the treatment plan for physical dose distribution planning and the treatment record of absorbed doses delivered as well as a checklist for patient and machine set-up, and labels for intended actions during treatment development. A clear arrangement of the record form in logical order was found, demanding exact specification of target(s) and beam(s) and their relation in space and time; asking for verbal and graphical description of target volumes, organs at risk, patient positioning, beam portals and dose reference points in terms of patients' anatomy; emphasizing the most important medical data by marked areas and leaving enough empty space for additional data, remarks or comments. During several years of clinical use these record forms proved to be suitable for all cases of external beam therapy, for complex situations of target volumes and treatment-scheduling, for all treatment techniques and radiation qualities and for all ways of physical treatment planning. They can be extended to automatic treatment verification, monitoring and recording as well as to the application of in-vivo-measurements of absorbed doses. (orig.) [de

  16. Clinical investigations on the use of positron emission tomography (PET) for target volume definition in radiation therapy planning; Klinische Untersuchungen zum Einsatz der Positronen-Emissions-Tomographie (PET) in der Zielvolumendefinition bei der Bestrahlungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ingo G.

    2014-12-05

    The aim of the present study was to evaluate the clinical value of positron emission tomography (PET) for target volume definition in different tumor entities using different tracers and taking pretreatment of patients into account. The study collective comprised 109 patients with 112 target volumes. In 48 patients with skull base meningiomas (SBM) and 42 patients with meningiomas of other localizations (SOM) undergoing fractionated stereotactic radiation therapy the gross tumor volumes (SBM, n=48; SOM, n=39) based on magnetic resonance imaging/computed tomography (MRI/CT) and {sup 68}Ga-DOTATOC-PET were compared retrospectively. Additionally, in 19 patients with liver metastasis from colorectal cancer (LM-CRC) treated in 25 CT guided brachytherapy sessions the clinical target volumes (CTV) either based on MRI/CT or {sup 18}F-FDG-PET were compared retrospectively. The spatial agreement of the target volumes was analyzed using the Dice similarity coefficient (DSC). The association of DSC, tumor entity and pretreatment was analyzed using the general linear model (GLM). Metric parameters are given as median (25th/75th-quartile). In the complete patient sample the PET based target volume was 24.1 (10.8/51.2) ml and, thus, significantly (p<0.001) increased by 18.9% (-3.6%/62.7%) compared to the MRI/CT based target volume of 20.8 (8.6/45.0) ml. In the subgroup of LM-CRC, the PET based target volume was significantly increased by 24.4% (0%/ 71.4%; p=0.021), and in patients with SBM it was increased by 23.9%(-1.7%/65.7%; p=0.003) whereas in SOM the difference of 8.0% (-3.6%/51.7%; p=0.199) was not significant. The DSC for PET and MRI/CT based target volumes was 0.66 (0.46/0.76) in the whole study group and varied between 0.65 (0.46/0.71) in patients with SBM and 0.70 (0.40/0.79) in patients with SOM. In pre-treated patients with LM-CRC a significant lower DSC of 0.62 (0.41/0.66) was observed in comparison to 0.84 (0.70/0.96) in untreated patients (significant interaction

  17. Postoperative radiotherapy for glioma: improved delineation of the clinical target volume using the geodesic distance calculation.

    Directory of Open Access Journals (Sweden)

    DanFang Yan

    Full Text Available OBJECTS: To introduce a new method for generating the clinical target volume (CTV from gross tumor volume (GTV using the geodesic distance calculation for glioma. METHODS: One glioblastoma patient was enrolled. The GTV and natural barriers were contoured on each slice of the computer tomography (CT simulation images. Then, a graphic processing unit based on a parallel Euclidean distance transform was used to generate the CTV considering natural barriers. Three-dimensional (3D visualization technique was applied to show the delineation results. Speed of operation and precision were compared between this new delineation method and the traditional method. RESULTS: In considering spatial barriers, the shortest distance from the point sheltered from these barriers equals the sum of the distance along the shortest path between the two points; this consists of several segments and evades the spatial barriers, rather than being the direct Euclidean distance between two points. The CTV was generated irregularly rather than as a spherical shape. The time required to generate the CTV was greatly reduced. Moreover, this new method improved inter- and intra-observer variability in defining the CTV. CONCLUSIONS: Compared with the traditional CTV delineation, this new method using geodesic distance calculation not only greatly shortens the time to modify the CTV, but also has better reproducibility.

  18. Definition of internal target volume and domestric study for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Cai Ling

    2009-01-01

    Objective: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional (4D) CT, and to compare the differences in target volume definition and dose distribution among 3D, 4D and respiratory-gated plans. Methods: 4DCT scanning was obtained for 12 patients with hepatocellular. Gross tumor volume (GTV), clinical target volume (CTV) and normal tissues were contoured on all 10 respiratory phases of 4DCT images. The 3D, 4D and gated treatment plans were prepared for each patient using three different planning target volumes (PTVs): 1) PTV 3D was derived from a single CTV plus conventional margins; 2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs); 3) PT Gating was derived from ITV Gating , which encompassed 3 CTVs within gating-window at end-expiration plus SMs. The PTV volume and dose distribution were compared among different plans. Results: The PTV3D was the largest in all 12 patients, but still missed partial target volume in 5 patients when comparing with PTV4D. Both the 4D plans and the gated plans spared more normal tissues than the 3D plans, especially the liver. Without increasing normal tissue dose, the 4D plans allowed for increasing the calculated dose from (50.8 ± 2.0) Gy (3D plans) to (54.7 ± 3.3) Gy, and the gated plans could further increase the dose to (58.0 ± 3.9) Gy. Conclusions: The 4DCT-based plans can ensure optimal target coverage with less irradiation of normal tissues and allow dose escalation when compared with 3D plans. Respiratory gated radiotherapy can further reduce the target volumes to spare more surrounding tissues, especially for patients with large extent of respiratory mobility. (authors)

  19. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  20. World-volumes and string target spaces

    International Nuclear Information System (INIS)

    Green, M.B.

    1996-01-01

    String duality suggests a fascinating juxtoposition of world-volume and target-space dynamics. This is particularly apparent in the D-brane description of stringy solitons that forms a major focus of this article (which is not intended to be a comprehensive review of this extensive and sophisticated subject). The article is divided into four sections: the oligarchy of string world-sheets; p-branes and world-volumes; world-sheets for world-volumes; boundary states. D-branes and space-time supersymmetry (orig.)

  1. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  2. Microinvasion of liver metastases from colorectal cancer: predictive factors and application for determining clinical target volume

    International Nuclear Information System (INIS)

    Qian, Yang; Zeng, Zhao-Chong; Ji, Yuan; Xiao, Yin-Ping

    2015-01-01

    This study evaluates the microscopic characteristics of liver metastases from colorectal cancer (LMCRC) invasion and provides a reference for expansion from gross tumor volume (GTV) to clinical targeting volume (CTV). Data from 129 LMCRC patients treated by surgical resection at our hospital between January 2008 and September 2009 were collected for study. Tissue sections used for pathology and clinical data were reviewed. Patient information used for the study included gender, age, original tumor site, number of tumors, tumor size, levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199), synchronous or metachronous liver metastases, and whether patients received chemotherapy. The distance of liver microinvasion from the tumor boundary was measured microscopically by two senior pathologists. Of 129 patients evaluated, 81 (62.8 %) presented microinvasion distances from the tumor boundary ranging between 1.0 − 7.0 mm. A GTV-to-CTV expansion of 5, 6.7, or 7.0 mm was required to provide a 95, 99, or 100 % probability, respectively, of obtaining clear resection margins by microscopic observation. The extent of invasion was not related to gender, age, synchronous or metachronous liver metastases, tumor size, CA199 level, or chemotherapy. The extent of invasion was related to original tumor site, CEA level, and number of tumors. A scoring system was established based on the latter three positive predictors. Using this system, an invasion distance less than 3 mm was measured in 93.4 % of patients with a score of ≤1 point, but in only 85.7 % of patients with a score of ≤2 points. The extent of tumor invasion in our LMCRC patient cohort correlated with original tumor site, CEA level, and number of tumors. These positive predictors may potentially be used as a scoring system for determining GTV-to-CTV expansion

  3. Suggestion for the prostatic fossa clinical target volume in adjuvant or salvage radiotherapy after a radical prostatectomy

    International Nuclear Information System (INIS)

    Park, Jun Su; Park, Won; Pyo, Hong Ryull; Park, Byung Kwan; Park, Sung Yoon; Choi, Han Yong; Lee, Hyun Moo; Jeon, Seong Soo; Seo, Seong Il; Jeong, Byong Chang; Jeon, Hwang Gyun

    2014-01-01

    Background and purpose: To assess the location of recurrent tumors and suggest the optimal target volume in adjuvant or salvage radiotherapy (RT) after a radical prostatectomy (RP). Material and methods: From January 2000 to December 2012, 113 patients had been diagnosed with suspected recurrent prostate cancer by MRI scan and received salvage RT in the Samsung Medical Center. This study assessed the location of the suspected tumor recurrences and used the inferior border of the pubic symphysis as a point of reference. Results: There were 118 suspect tumor recurrences. The most common site of recurrence was the anastomotic site (78.8%), followed by the bladder neck (15.3%) and retrovesical area (5.9%). In the cranial direction, 106 (87.3%) lesions were located within 30 mm of the reference point. In the caudal direction, 12 lesions (10.2%) were located below the reference point. In the transverse plane, 112 lesions (94.9%) were located within 10 mm of the midline. Conclusions: A MRI scan acquired before salvage RT is useful for the localization of recurrent tumors and the delineation of the target volume. We suggest the optimal target volume in adjuvant or salvage RT after RP, which includes 97% of suspected tumor recurrences

  4. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    International Nuclear Information System (INIS)

    Wang Zhiheng; Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-01-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors

  5. Definition and delineation of the clinical target volume for rectal cancer

    International Nuclear Information System (INIS)

    Roels, Sarah; Duthoy, Wim; Haustermans, Karin; Penninckx, Freddy; Vandecaveye, Vincent; Boterberg, Tom; Neve, Wilfried de

    2006-01-01

    Purpose: Optimization of radiation techniques to maximize local tumor control and to minimize small bowel toxicity in locally advanced rectal cancer requires proper definition and delineation guidelines for the clinical target volume (CTV). The purpose of this investigation was to analyze reported data on the predominant locations and frequency of local recurrences and lymph node involvement in rectal cancer, to propose a definition of the CTV for rectal cancer and guidelines for its delineation. Methods and Materials: Seven reports were analyzed to assess the incidence and predominant location of local recurrences in rectal cancer. The distribution of lymphatic spread was analyzed in another 10 reports to record the relative frequency and location of metastatic lymph nodes in rectal cancer, according to the stage and level of the primary tumor. Results: The mesorectal, posterior, and inferior pelvic subsites are most at risk for local recurrences, whereas lymphatic tumor spread occurs mainly in three directions: upward into the inferior mesenteric nodes; lateral into the internal iliac lymph nodes; and, in a few cases, downward into the external iliac and inguinal lymph nodes. The risk for recurrence or lymph node involvement is related to the stage and the level of the primary lesion. Conclusion: Based on a review of articles reporting on the incidence and predominant location of local recurrences and the distribution of lymphatic spread in rectal cancer, we defined guidelines for CTV delineation including the pelvic subsites and lymph node groups at risk for microscopic involvement. We propose to include the primary tumor, the mesorectal subsite, and the posterior pelvic subsite in the CTV in all patients. Moreover, the lateral lymph nodes are at high risk for microscopic involvement and should also be added in the CTV

  6. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  7. Biological modelling of fuzzy target volumes in 3D radiotherapy

    International Nuclear Information System (INIS)

    Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.

    1995-01-01

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  8. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    International Nuclear Information System (INIS)

    Myerson, Robert J.; Garofalo, Michael C.; El Naqa, Issam; Abrams, Ross A.; Apte, Aditya; Bosch, Walter R.; Das, Prajnan; Gunderson, Leonard L.; Hong, Theodore S.; Kim, J.J. John; Willett, Christopher G.; Kachnic, Lisa A.

    2009-01-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning and for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.

  9. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer.

    Science.gov (United States)

    Nestle, Ursula; De Ruysscher, Dirk; Ricardi, Umberto; Geets, Xavier; Belderbos, Jose; Pöttgen, Christoph; Dziadiuszko, Rafal; Peeters, Stephanie; Lievens, Yolande; Hurkmans, Coen; Slotman, Ben; Ramella, Sara; Faivre-Finn, Corinne; McDonald, Fiona; Manapov, Farkhad; Putora, Paul Martin; LePéchoux, Cécile; Van Houtte, Paul

    2018-04-01

    Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function.

    Science.gov (United States)

    Cardenas, Carlos E; McCarroll, Rachel E; Court, Laurence E; Elgohari, Baher A; Elhalawani, Hesham; Fuller, Clifton D; Kamal, Mona J; Meheissen, Mohamed A M; Mohamed, Abdallah S R; Rao, Arvind; Williams, Bowman; Wong, Andrew; Yang, Jinzhong; Aristophanous, Michalis

    2018-06-01

    Automating and standardizing the contouring of clinical target volumes (CTVs) can reduce interphysician variability, which is one of the largest sources of uncertainty in head and neck radiation therapy. In addition to using uniform margin expansions to auto-delineate high-risk CTVs, very little work has been performed to provide patient- and disease-specific high-risk CTVs. The aim of the present study was to develop a deep neural network for the auto-delineation of high-risk CTVs. Fifty-two oropharyngeal cancer patients were selected for the present study. All patients were treated at The University of Texas MD Anderson Cancer Center from January 2006 to August 2010 and had previously contoured gross tumor volumes and CTVs. We developed a deep learning algorithm using deep auto-encoders to identify physician contouring patterns at our institution. These models use distance map information from surrounding anatomic structures and the gross tumor volume as input parameters and conduct voxel-based classification to identify voxels that are part of the high-risk CTV. In addition, we developed a novel probability threshold selection function, based on the Dice similarity coefficient (DSC), to improve the generalization of the predicted volumes. The DSC-based function is implemented during an inner cross-validation loop, and probability thresholds are selected a priori during model parameter optimization. We performed a volumetric comparison between the predicted and manually contoured volumes to assess our model. The predicted volumes had a median DSC value of 0.81 (range 0.62-0.90), median mean surface distance of 2.8 mm (range 1.6-5.5), and median 95th Hausdorff distance of 7.5 mm (range 4.7-17.9) when comparing our predicted high-risk CTVs with the physician manual contours. These predicted high-risk CTVs provided close agreement to the ground-truth compared with current interobserver variability. The predicted contours could be implemented clinically, with only

  11. A Prospective Pathologic Study to Define the Clinical Target Volume for Partial Breast Radiation Therapy in Women With Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Brandon T., E-mail: Brandon.Nguyen@act.gov.au [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Canberra Hospital, Radiation Oncology Department, Garran, ACT (Australia); Deb, Siddhartha [Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Victorian Cancer Biobank, Cancer Council of Victoria, Carlton, Victoria (Australia); Fox, Stephen [Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Hill, Prudence [Department of Anatomical Pathology, St. Vincent' s Hospital Melbourne, Fitzroy, Victoria (Australia); Collins, Marnie [Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Chua, Boon H. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); University of Melbourne, Parkville, Victoria (Australia)

    2012-12-01

    Purpose: To determine an appropriate clinical target volume for partial breast radiation therapy (PBRT) based on the spatial distribution of residual invasive and in situ carcinoma after wide local excision (WLE) for early breast cancer or ductal carcinoma in situ (DCIS). Methods and Materials: We performed a prospective pathologic study of women potentially eligible for PBRT who had re-excision and/or completion mastectomy after WLE for early breast cancer or DCIS. A pathologic assessment protocol was used to determine the maximum radial extension (MRE) of residual carcinoma from the margin of the initial surgical cavity. Women were stratified by the closest initial radial margin width: negative (>1 mm), close (>0 mm and {<=}1 mm), or involved. Results: The study population was composed of 133 women with a median age of 59 years (range, 27-82 years) and the following stage groups: 0 (13.5%), I (40.6%), II (38.3%), and III (7.5%). The histologic subtypes of the primary tumor were invasive ductal carcinoma (74.4%), invasive lobular carcinoma (12.0%), and DCIS alone (13.5%). Residual carcinoma was present in the re-excision and completion mastectomy specimens in 55.4%, 14.3%, and 7.2% of women with an involved, close, and negative margin, respectively. In the 77 women with a noninvolved radial margin, the MRE of residual disease, if present, was {<=}10 mm in 97.4% (95% confidence interval 91.6-99.5) of cases. Larger MRE measurements were significantly associated with an involved margin (P<.001), tumor size >30 mm (P=.03), premenopausal status (P=.03), and negative progesterone receptor status (P=.05). Conclusions: A clinical target volume margin of 10 mm would encompass microscopic residual disease in >90% of women potentially eligible for PBRT after WLE with noninvolved resection margins.

  12. A Prospective Pathologic Study to Define the Clinical Target Volume for Partial Breast Radiation Therapy in Women With Early Breast Cancer

    International Nuclear Information System (INIS)

    Nguyen, Brandon T.; Deb, Siddhartha; Fox, Stephen; Hill, Prudence; Collins, Marnie; Chua, Boon H.

    2012-01-01

    Purpose: To determine an appropriate clinical target volume for partial breast radiation therapy (PBRT) based on the spatial distribution of residual invasive and in situ carcinoma after wide local excision (WLE) for early breast cancer or ductal carcinoma in situ (DCIS). Methods and Materials: We performed a prospective pathologic study of women potentially eligible for PBRT who had re-excision and/or completion mastectomy after WLE for early breast cancer or DCIS. A pathologic assessment protocol was used to determine the maximum radial extension (MRE) of residual carcinoma from the margin of the initial surgical cavity. Women were stratified by the closest initial radial margin width: negative (>1 mm), close (>0 mm and ≤1 mm), or involved. Results: The study population was composed of 133 women with a median age of 59 years (range, 27-82 years) and the following stage groups: 0 (13.5%), I (40.6%), II (38.3%), and III (7.5%). The histologic subtypes of the primary tumor were invasive ductal carcinoma (74.4%), invasive lobular carcinoma (12.0%), and DCIS alone (13.5%). Residual carcinoma was present in the re-excision and completion mastectomy specimens in 55.4%, 14.3%, and 7.2% of women with an involved, close, and negative margin, respectively. In the 77 women with a noninvolved radial margin, the MRE of residual disease, if present, was ≤10 mm in 97.4% (95% confidence interval 91.6-99.5) of cases. Larger MRE measurements were significantly associated with an involved margin (P 30 mm (P=.03), premenopausal status (P=.03), and negative progesterone receptor status (P=.05). Conclusions: A clinical target volume margin of 10 mm would encompass microscopic residual disease in >90% of women potentially eligible for PBRT after WLE with noninvolved resection margins.

  13. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

    International Nuclear Information System (INIS)

    Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van

    2005-01-01

    Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities

  14. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  15. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy - Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, Neamat [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Dept. of Clinical Oncology, Medical Univ. of Alexandria, Alexandria (Egypt); Poetter Rickard; Kirisits, Christian [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. Vienna (Austria); Berger, Daniel; Federico, Mario; Sturdza, Alina; Nesvacil, Nicole [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria)], e-mail: nicole.nesvacil@meduniwien.ac.at

    2013-10-15

    Purpose: The aim of the study was to improve computed tomography (CT)-based high-risk clinical target volume (HR CTV) delineation protocols for cervix cancer patients, in settings without any access to magnetic resonance imaging (MRI) at the time of brachytherapy. Therefore the value of a systematic integration of comprehensive three-dimensional (3D) documentation of repetitive gynecological examination for CT-based HR CTV delineation protocols, in addition to information from FIGO staging, was investigated. In addition to a comparison between reference MRI contours and two different CT-based contouring methods (using complementary information from FIGO staging with or without additional 3D clinical drawings), the use of standardized uterine heights was also investigated. Material and methods: Thirty-five cervix cancer patients with CT- and MR-images and 3D clinical drawings at time of diagnosis and brachytherapy were included. HR CTV{sub stage} was based on CT information and FIGO stage. HR CTV{sub stage} {sub +3Dclin} was contoured on CT using FIGO stage and 3D clinical drawing. Standardized HR CTV heights were: 1/1, 2/3 and 1/2 of uterine height. MRI-based HR CTV was delineated independently. Resulting widths, thicknesses, heights, and volumes of HR CTV{sub stage}, HR CTV{sub stage+3Dclin} and MRI-based HR CTV contours were compared. Results: The overall normalized volume ratios (mean{+-}SD of CT/MRI{sub ref} volume) of HR CTV{sub stage} and HR{sub stage+3Dclin} were 2.6 ({+-}0.6) and 2.1 ({+-}0.4) for 1/1 and 2.3 ({+-}0.5) and 1.8 ({+-}0.4), for 2/3, and 1.9 ({+-}0.5) and 1.5 ({+-}0.3), for 1/2 of uterine height. The mean normalized widths were 1.5{+-}0.2 and 1.2{+-}0.2 for HR CTV{sub stage} and HR CTV{sub stage+3Dclin}, respectively (p < 0.05). The mean normalized heights for HR CTV{sub stage} and HR CTV{sub stage+3Dclin} were both 1.7{+-}0.4 for 1/1 (p < 0.05.), 1.3{+-}0.3 for 2/3 (p < 0.05) and 1.1{+-}0.3 for 1/2 of uterine height. Conclusion: CT-based HR

  16. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    International Nuclear Information System (INIS)

    Viswanathan, Akila N.; Erickson, Beth; Gaffney, David K.; Beriwal, Sushil; Bhatia, Sudershan K.; Lee Burnett, Omer; D'Souza, David P.; Patil, Nikhilesh; Haddock, Michael G.; Jhingran, Anuja; Jones, Ellen L.; Kunos, Charles A.; Lee, Larissa J.; Lin, Lilie L.; Mayr, Nina A.; Petersen, Ivy; Petric, Primoz; Portelance, Lorraine; Small, William; Strauss, Jonathan B.

    2014-01-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  17. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Gaffney, David K. [University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States); Beriwal, Sushil [University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Bhatia, Sudershan K. [University of Iowa, Iowa City, Iowa (United States); Lee Burnett, Omer [University of Alabama, Birmingham, Alabama (United States); D' Souza, David P.; Patil, Nikhilesh [London Health Sciences Centre and Western University, London, Ontario (Canada); Haddock, Michael G. [Mayo Medical Center, Rochester, Minnesota (United States); Jhingran, Anuja [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Ellen L. [University of North Carolina, Chapel Hill, North Carolina (United States); Kunos, Charles A. [Case Western Reserve University, Cleveland, Ohio (United States); Lee, Larissa J. [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Lin, Lilie L. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mayr, Nina A. [University of Washington, Seattle, Washington (United States); Petersen, Ivy [Mayo Medical Center, Rochester, Minnesota (United States); Petric, Primoz [Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana (Slovenia); Department of Radiation Oncology, National Center for Cancer Care and Research, Doha (Qatar); Portelance, Lorraine [University of Miami Miller School of Medicine, Miami, Florida (United States); Small, William [Loyola University Strich School of Medicine, Chicago, Illinois (United States); Strauss, Jonathan B. [The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois (United States); and others

    2014-10-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  18. THE ACHIEVABILITY OF TARGET CONVECTION VOLUMES IN ON-LINE HEMODIAFILTRATION

    Directory of Open Access Journals (Sweden)

    A. B. Sabodash

    2015-01-01

    Full Text Available Aim. To evaluate the achievability of recommended convection volumes in hemodiafiltration (HDF and impeding factors. Materials and methods. In short interventional one-center study among 67 stable prevalent dialysis patients we succeeded in achieving convection volume of more than 24 l/session in 60 patients (90%. Results. Substitution volume rose in the whole group from 21.1 ± 1.6 to 23.8 ± 1.2 l/session (p < 0.01. 12 patients, who didn`t achieve target volume had similar age, duration of renal replacement therapy and ultrafiltration rate as those who did. They differed from 55 patients who achieved target volume by substitution volume at first session in evaluation period (22.2 ± 1.7 vs. 23.6 ± 1.5 liters, р = 0.004, by transmembrane pressure (170 ± 40 vs. 146 ± 24 mmHg, р = 0.009 and by session duration (248 ± 15 vs. 262 ± 17 min, р = 0.0017. Blood flow rate also differed at the start of the study between the achievers and non-achievers: 353 ± 21 vs. 339 ± 19 ml/min, р = 0.035. The pressure in venous segment was lower in the achievers (154 ± 25 vs. 176 ± 36, р = 0.02 as well as transmembrane pressure (144 ± 24 vs. 164 ± 36, р = 0.014 which has been rising session by session in nonachievers. In non-achievers the membrane surface area was lower: 1.75 ± 0.2 vs. 1.91 ± 0.2 m2 (p = 0.02. In the multiple binary logistic regression model the session duration and membrane surface area were positive factors while the transmembrane pressure was negative one. Session prolonged by 15 min was associated with increase in relative chance to achieve target volume by 39% (95% CI 5–82%; р = 0.02. The membrane surface area enlarged by 0.1 m2 was linked with increase of chance by 4.2% (95% CI 0.2–8.4%; р = 0.04. The transmembrane pressure increased by 10 mmHg was associated with decreased chance to achieve target volume by 17% (95% CI 0–70%; р = 0.05. Conclusion. To achieve convection volume of 24 l/session one needs to afford

  19. Prospective Randomized Double-Blind Pilot Study of Site-Specific Consensus Atlas Implementation for Rectal Cancer Target Volume Delineation in the Cooperative Group Setting

    International Nuclear Information System (INIS)

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop C.; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G.N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille

    2011-01-01

    Purpose: Variations in target volume delineation represent a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the effect of a consensus guideline-based visual atlas on contouring the target volumes. Methods and Materials: A representative case was contoured (Scan 1) by 14 physician observers and a reference expert with and without target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy. The gross tumor volume (GTV), and two clinical target volumes (CTVA, including the internal iliac, presacral, and perirectal nodes, and CTVB, which included the external iliac nodes) were contoured. The observers were randomly assigned to receipt (Group A) or nonreceipt (Group B) of a consensus guideline and atlas for anorectal cancers and then instructed to recontour the same case/images (Scan 2). Observer variation was analyzed volumetrically using the conformation number (CN, where CN = 1 equals total agreement). Results: Of 14 evaluable contour sets (1 expert and 7 Group A and 6 Group B observers), greater agreement was found for the GTV (mean CN, 0.75) than for the CTVs (mean CN, 0.46-0.65). Atlas exposure for Group A led to significantly increased interobserver agreement for CTVA (mean initial CN, 0.68, after atlas use, 0.76; p = .03) and increased agreement with the expert reference (initial mean CN, 0.58; after atlas use, 0.69; p = .02). For the GTV and CTVB, neither the interobserver nor the expert agreement was altered after atlas exposure. Conclusion: Consensus guideline atlas implementation resulted in a detectable difference in interobserver agreement and a greater approximation of expert volumes for the CTVA but not for the GTV or CTVB in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal RT.

  20. Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting

    Science.gov (United States)

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G. N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille; Harper, Jennifer L.; Chang, Daniel T.; Smalley, Stephen; Marshall, David T.; Goodman, Karyn A.; Papanikolaou, Niko; Kachnic, Lisa A.

    2010-01-01

    Purpose Variation in target volume delineation represents a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the impact of a consensus guideline-based visual atlas on contouring of target volumes. Methods A representative case and target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy were contoured (Scan1) by 14 physician observers and a reference expert. Gross tumor volume (GTV), and 2 clinical target volumes (CTVA, comprising internal iliac, pre-sacral, and peri-rectal nodes, and CTVB, external iliac nodes) were contoured. Observers were randomly assigned to receipt (Group_A) /non-receipt (Group_B) of a consensus guideline and atlas for anorectal cancers, then instructed to re-contour the same case/images (Scan2). Observer variation was analyzed volumetrically using conformation number (CN, where CN=1 equals a total agreement). Results In 14 evaluable contour sets (1 expert, 7 Group_A, 6 Group_B), there was greater agreement for GTV (mean CN 0.75) than CTVs (mean CN 0.46–0.65). Atlas exposure for Group_A led to a significant increased inter-observer agreement for CTVA (mean initial CN 0.68, post-atlas 0.76; p=0.03), as well as increased agreement with the expert reference (initial mean CN 0.58, 0.69 post-atlas; p=0.02). For GTV and CTVB, neither inter-observer nor expert agreement was altered after atlas exposure. Conclusion Consensus guideline atlas implementation resulted in a detectable difference in inter-observer agreement and greater approximation of expert volumes for CTVA, but not GTV or CTVB, in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal radiotherapy. PMID:20400244

  1. Volume Fraction Dependent Thermal Performance of UAlx-Al Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eui Hyun; Tahk, Young Wook; Kim, Hyun Jung; Oh, Jae Yong; Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Unlike U-Al alloys, properties of UAl{sub x}-Al dispersion target can be highly sensitive to volume fraction of UAlx in a target meat due to the interface resistance between target particles and matrix. The interface resistance effects on properties of the target meat including thermal conductivity, thermal expansion coefficient, specific heat, elastic modulus and so on. Thermal performances of a dispersion target meat were theoretically evaluated under normal operation condition of KJRR (Kijang Research Reactor) during short effective full power days (EFPD) of 7 days, based on reported measured thermal conductivities of UAl{sub x}-Al dispersion fuels. Effective thermal conductivity determines maximum temperature of dispersion target plate. And for that volume fraction of UAlx in target meat has to be determined considering manufacturing of target plate without degradation of physical and mechanical characteristics.

  2. Intensity modulated radiation therapy (IMRT: differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma

    Directory of Open Access Journals (Sweden)

    Delclos Marc E

    2011-06-01

    covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. Conclusions For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  3. A two isocenter IMRT technique with a controlled junction dose for long volume targets

    International Nuclear Information System (INIS)

    Zeng, G G; Heaton, R K; Catton, C N; Chung, P W; O'Sullivan, B; Lau, M; Parent, A; Jaffray, D A

    2007-01-01

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of ±5%; for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results

  4. Reduce in Variation and Improve Efficiency of Target Volume Delineation by a Computer-Assisted System Using a Deformable Image Registration Approach

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei

    2007-01-01

    Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time

  5. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  6. Quantitative assessment of inter-clinician variability of target volume delineation for medulloblastoma: quality assurance for the SIOP PNET 4 trial protocol

    International Nuclear Information System (INIS)

    Coles, Charlotte E.; Hoole, Andrew C.F.; Harden, Susan V; Burnet, Neil G.; Twyman, Nicola; Taylor, Roger E.; Kortmann, Rolf D.; Williams, Michael V.

    2003-01-01

    Background and purpose: To assess inter-clinician variability amongst specialist paediatric radiation oncologists in delineating clinical target volumes for treating medulloblastoma as a quality assurance exercise prior to the introduction of the SIOP PNET 4 trial protocol of conformal radiotherapy to the posterior fossa and tumour bed. Patients and methods: Participants from 17 UK centres attended an educational meeting and then completed a clinical planning exercise to outline: (1) the whole posterior fossa and (2) the tumour bed. Quantitative analysis of the volumes, lengths, spatial positioning and axial planes for each individual was carried out and variation between individuals analysed. Results: Outlining of the posterior fossa was reasonably consistent, although most variation was seen in defining the superior border of the tentorium. A major difference was the decision whether or not to include the post-surgical meningocoele in the clinical target volume (CTV). The CTV for the tumour bed was under treated by all participants due to lack of inclusion of pre-operative tumour extent. Conclusions: This exercise demonstrated several ambiguities in the draft protocol and highlighted particular areas of inter-clinician variation. Consequently the protocol was revised and improved to take account of these findings. We recommend that planning exercises, in conjunction with education and training, should be implemented before the start of any new radiotherapy trial. In the future, the use of image transfer will allow prospective peer review of target volumes before treatment commences. These measures are essential to ensure that alterations in clinical practice are achieved in a uniform way

  7. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  8. Planning target volume (PTV) definition and its effects in the radiotherapy

    International Nuclear Information System (INIS)

    Poli, Maria Esmeralda Ramos

    2007-01-01

    Tills work intends to study the margins required to define a planning target volume (PTV) for adequate treatment of the mobile tumors such as prostate or those located in areas with less mobility as the ones in head and neck region, in the absence of daily localization imaging based. It is also intends to evaluate the impact caused by the PTV, in terms of dose, to the critical structures surrounding the PTV and its influence when inverse planning is used in the intensity-modulated radiation therapy (IMRT). Data from 387 prostate patients were analyzed retrospectively. Every patient in the study received daily pre-treatment localization with 2D ultrasound resulting in a total of 10,327 localizations, each comprising of an isocenter displacement in 3 directions: anterior-posterior (AP), right-left lateral (RL), and superior-inferior (SI). The mean displacement and standard deviation (SD) for each direction for each patient was computed from daily treatment records. The uncertainties (SD) in the target position were 4.4 mm (AP), 3.6 mm (RL), and 4.5 mm (SI). A study of the uncertainties in the daily positioning of 78 head and neck patients who used thermoplastic mask to immobilize them, evaluated with electronic portal imaging device (EPID), showed variations (SD) in the isocenter treatment position of 3.1 mm (AP), 1.5 mm (RL), and 4.5 mm (SI). By applying these shifts in an anthropomorphic phantom it was studied the dose-volume histograms resultant of the isocenter displacement in the daily treatment. The result showed the importance of putting margins in the clinical target volume to assure an adequate treatment and also showed that isocenter daily variation can cause an increase to the dose greater than the tolerance level to the critical organs. (author)

  9. Feasibility of omitting clinical target volume for limited-disease small cell lung cancer treated with chemotherapy and intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Cai, Shuhua; Shi, Anhui; Yu, Rong; Zhu, Guangying

    2014-01-01

    To analyze the feasibility of omitting clinical target volume (CTV) for limited small cell lung cancer treated with chemotherapy and intensity modulated radiotherapy. 89 patients were treated from January 1, 2008 to August 31, 2011, 54 cases were irradiated with target volume without CTV, and 35 cases were irradiated with CTV. Both arms were irradiated post chemotherapy tumor extent and omitted elective nodal irradiation; dose prescription was 95% PTV56-63 Gy/28-35 F/5.6-7 weeks. In the arm without CTV and arm with CTV, the local relapse rates were 16.7% and 17.1% (p = 0.586) respectively. In the arm without CTV, of the 9 patients with local relapse, 6 recurred in-field, 2 recurred in margin, 1 recurred out of field. In the arm with CTV, of the 6 patients with local relapse, 4 recurred in-field, 1 recurred in margin, 1 recurred out of field. The distant metastases rates were 42.6% and 51.4% (p = 0.274) respectively. Grade 3-4 hematological toxicity and radiation esophagitis had no statistically significant, but grade 3-4 radiation pneumonia was observed in only 7.4% in the arm without CTV, compared 22.9% in the arm with CTV (p = 0.040). The median survival in the arm without CTV had not reached, compared with 38 months in the with CTV arm. The l- years, 2- years, 3- years survival rates of the arm without CTV and the arm with CTV were 81.0%, 66.2%, 61.5% and 88.6%, 61.7%, 56.6% (p = 0.517). The multivariate analysis indicated that the distant metastases (p = 0.000) and PCI factor (p = 0.004) were significantly related to overall survival. Target delineation omitting CTV for limited-disease small cell lung cancer received IMRT was feasible. The distant metastases and PCI factor were significantly related to overall survival

  10. Motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes

    International Nuclear Information System (INIS)

    Lamb, James M.; Robinson, Clifford G.; Bradley, Jeffrey D.; Low, Daniel A.

    2013-01-01

    Background and purpose: To quantify the benefit of motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes generated using 4D-PET, vs. conventional internal target volumes generated using non-respiratory gated PET and 4D-CT scans. Materials and methods: Five patients with FDG-avid tumors metastatic to 11 hilar or mediastinal lymph nodes were imaged with respiratory-correlated FDG-PET (4D-PET) and 4D-CT. FDG-avid nodes were contoured by a radiation oncologist in two ways. Standard-of-care volumes were contoured using conventional un-gated PET, 4D-CT, and breath-hold CT. A second, motion-specific, set of volumes were contoured using 4D-PET.Contours based on 4D-PET corresponded directly to an internal target volume (ITV 4D ), whereas contours based on un-gated PET were expanded by a series of exploratory isotropic margins (from 5 to 13 mm) based on literature recommendations on lymph node motion to form internal target volumes (ITV 3D ). Results: A 13 mm expansion of the un-gated PET nodal volume was needed to cover the ITV 4D for 10 of 11 nodes studied. The ITV 3D based on a 13 mm expansion included on average 45 cm 3 of tissue that was not included in the ITV 4D . Conclusions: Motion-specific lymph-node internal target volumes generated from 4D-PET imaging could be used to improve accuracy and/or reduce normal-tissue irradiation compared to the standard-of-care un-gated PET based internal target volumes

  11. New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose

    Science.gov (United States)

    Park, J M; Park, S-Y; Ye, S-J; Kim, J H; Carlson, J

    2014-01-01

    Objective: To present conformity indices (CIs) based on the distance differences between the target volume (TV) and the volume of reference isodose (VRI). Methods: The points on the three-dimensional surfaces of the TV and the VRI were generated. Then, the averaged distances between the points on the TV and the VRI were calculated (CIdistance). The performance of the presented CIs were evaluated by analysing six situations, which were a perfect match, an expansion and a reduction of the distance from the centroid to the VRI compared with the distance from the centroid to the TV by 10%, a lateral shift of the VRI by 3 cm, a rotation of the VRI by 45° and a spherical-shaped VRI having the same volume as the TV. The presented CIs were applied to the clinical prostate and head and neck (H&N) plans. Results: For the perfect match, CIdistance was 0 with 0 as the standard deviation (SD). When expanding and reducing, CIdistance was 10 and −10 with SDs 11. The average value of the CIdistance in the prostate and H&N plans was 0.13 ± 7.44 and 6.04 ± 23.27, respectively. Conclusion: The performance of the CIdistance was equal or better than those of the conventional CIs. Advances in knowledge: The evaluation of target conformity by the distances between the surface of the TV and the VRI could be more accurate than evaluation with volume information. PMID:25225915

  12. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Wippold, Franz J.; Ozyigit, Gokhan; Tran, Binh N.; Dempsey, James F.

    2002-01-01

    Purpose: We present the guidelines for target volume determination and delineation of head-and-neck lymph nodes based on the analysis of the patterns of nodal failure in patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Data pertaining to the natural course of nodal metastasis for each head-and-neck cancer subsite were reviewed. A system was established to provide guidance for nodal target volume determination and delineation. Following these guidelines, 126 patients (52 definitive, 74 postoperative) were treated between February 1997 and December 2000 with IMRT for head-and-neck cancer. The median follow-up was 26 months (range 12-55), and the patterns of nodal failure were analyzed. Results: These guidelines define the nodal target volume based on the location of the primary tumor and the probability of microscopic metastasis to the ipsilateral and contralateral (Level I-V) nodal regions. Following these guidelines, persistent or recurrent nodal disease was found in 6 (12%) of 52 patients receiving definitive IMRT, and 7 (9%) of 74 patients receiving postoperative IMRT had failure in the nodal region. Conclusion: On the basis of our clinical experience in implementing inverse-planning IMRT for head-and-neck cancer, we present guidelines using a simplified, but clinically relevant, method for nodal target volume determination and delineation. The intention was to provide a foundation that enables different institutions to exchange clinical experiences in head-and-neck IMRT. These guidelines will be subject to future refinement when the clinical experience in head-and-neck IMRT advances

  13. Automated planning target volume generation: an evaluation pitting a computer-based tool against human experts

    International Nuclear Information System (INIS)

    Ketting, Case H.; Austin-Seymour, Mary; Kalet, Ira; Jacky, Jon; Kromhout-Schiro, Sharon; Hummel, Sharon; Unger, Jonathan; Fagan, Lawrence M.; Griffin, Tom

    1997-01-01

    Purpose: Software tools are seeing increased use in three-dimensional treatment planning. However, the development of these tools frequently omits careful evaluation before placing them in clinical use. This study demonstrates the application of a rigorous evaluation methodology using blinded peer review to an automated software tool that produces ICRU-50 planning target volumes (PTVs). Methods and Materials: Seven physicians from three different institutions involved in three-dimensional treatment planning participated in the evaluation. Four physicians drew partial PTVs on nine test cases, consisting of four nasopharynx and five lung primaries. Using the same information provided to the human experts, the computer tool generated PTVs for comparison. The remaining three physicians, designated evaluators, individually reviewed the PTVs for acceptability. To exclude bias, the evaluators were blinded to the source (human or computer) of the PTVs they reviewed. Their scorings of the PTVs were statistically examined to determine if the computer tool performed as well as the human experts. Results: The computer tool was as successful as the human experts in generating PTVs. Failures were primarily attributable to insufficient margins around the clinical target volume and to encroachment upon critical structures. In a qualitative analysis, the human and computer experts displayed similar types and distributions of errors. Conclusions: Rigorous evaluation of computer-based radiotherapy tools requires comparison to current practice and can reveal areas for improvement before the tool enters clinical practice

  14. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications

    NARCIS (Netherlands)

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2017-01-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV,

  15. Co-clinical quantitative tumor volume imaging in ALK-rearranged NSCLC treated with crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki, E-mail: Mizuki_Nishino@DFCI.HARVARD.EDU [Department of Radiology, Brigham and Women’s Hospital, 450 Brookline Ave., Boston MA, 02215 (United States); Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston MA, 02215 (United States); Sacher, Adrian G.; Gandhi, Leena; Chen, Zhao; Akbay, Esra [Department of Medical Oncology and Department of Medicine Dana-Farber Cancer Institute and Brigham and Women’s Hospital 450 Brookline Ave., Boston MA, 02215 (United States); Fedorov, Andriy; Westin, Carl F.; Hatabu, Hiroto [Department of Radiology, Brigham and Women’s Hospital, 450 Brookline Ave., Boston MA, 02215 (United States); Johnson, Bruce E.; Hammerman, Peter; Wong, Kwok-kin [Department of Medical Oncology and Department of Medicine Dana-Farber Cancer Institute and Brigham and Women’s Hospital 450 Brookline Ave., Boston MA, 02215 (United States)

    2017-03-15

    Highlights: • Role of co-clinical studies in precision cancer medicine is increasingly recognized. • This study compared tumor volume in co-clinical trials of ALK-rearranged NSCLC. • Similarities and differences of tumor volume changes in mice and humans were noted. • The study provides insights to optimize murine co-clinical trial designs. - Abstract: Purpose: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). Methods: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. Results: The median tumor volume decrease (%) at the maximal response was −40.4% (range: −79.5%–+11.7%) in mice, and −72.9% (range: −100%–+72%) in humans (Wilcoxon p = 0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. Conclusion: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.

  16. Co-clinical quantitative tumor volume imaging in ALK-rearranged NSCLC treated with crizotinib

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Sacher, Adrian G.; Gandhi, Leena; Chen, Zhao; Akbay, Esra; Fedorov, Andriy; Westin, Carl F.; Hatabu, Hiroto; Johnson, Bruce E.; Hammerman, Peter; Wong, Kwok-kin

    2017-01-01

    Highlights: • Role of co-clinical studies in precision cancer medicine is increasingly recognized. • This study compared tumor volume in co-clinical trials of ALK-rearranged NSCLC. • Similarities and differences of tumor volume changes in mice and humans were noted. • The study provides insights to optimize murine co-clinical trial designs. - Abstract: Purpose: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). Methods: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. Results: The median tumor volume decrease (%) at the maximal response was −40.4% (range: −79.5%–+11.7%) in mice, and −72.9% (range: −100%–+72%) in humans (Wilcoxon p = 0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. Conclusion: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.

  17. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    Science.gov (United States)

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  18. Heterogeneity in head and neck IMRT target design and clinical practice

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2012-01-01

    Purpose: To assess patterns of H and N IMRT practice with particular emphasis on elective target delineation. Materials and methods: Twenty institutions with established H and N IMRT expertise were solicited to design clinical target volumes for the identical H and N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results: All 20 institutions responded. Remarkable heterogeneity in H and N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm 3 (range 37–676 cm 3 ). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H and N target volume contouring time was 102.5 min (range 60–210 min). Conclusion: This study identifies substantial heterogeneity in H and N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H and N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H and N IMRT process are desirable for the safe and effective global advancement of H and N IMRT practice.

  19. FDG-PET/CT Imaging for Staging and Target Volume Delineation in Preoperative Conformal Radiotherapy of Rectal Cancer

    International Nuclear Information System (INIS)

    Bassi, Maria Chiara; Turri, Lucia; Sacchetti, Gianmauro; Loi, Gianfranco; Cannillo, Barbara; La Mattina, Pierdaniele; Brambilla, Marco; Inglese, Eugenio; Krengli, Marco

    2008-01-01

    Purpose: To investigate the potential impact of using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on staging and target volume delineation for patients affected by rectal cancer and candidates for preoperative conformal radiotherapy. Methods and Materials: Twenty-five patients diagnosed with rectal cancer T3-4 N0-1 M0-1 and candidates for preoperative radiotherapy underwent PET/CT simulation after injection of 5.18 MBq/kg of FDG. Clinical stage was reassessed on the basis of FDG-PET/CT findings. The gross tumor volume (GTV) and the clinical target volume (CTV) were delineated first on CT and then on PET/CT images. The PET/CT-GTV and PET/CT-CTV were analyzed and compared with CT-GTV and CT-CTV, respectively. Results: In 4 of 25 cases (24%), PET/CT affected tumor staging or the treatment purpose. In 3 of 25 cases (12%) staged N0 M0, PET/CT showed FDG uptake in regional lymph nodes and in a case also in the liver. In a patient with a single liver metastasis PET/CT detected multiple lesions, changing the treatment intent from curative to palliative. The PET/CT-GTV and PET/CT-CTV were significantly greater than the CT-GTV (p = 0.00013) and CT-CTV (p = 0.00002), respectively. The mean difference between PET/CT-GTV and CT-GTV was 25.4% and between PET/CT-CTV and CT-CTV was 4.1%. Conclusions: Imaging with PET/CT for preoperative radiotherapy of rectal cancer may lead to a change in staging and target volume delineation. Stage variation was observed in 12% of cases and a change of treatment intent in 4%. The GTV and CTV changed significantly, with a mean increase in size of 25% and 4%, respectively

  20. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example.

    Science.gov (United States)

    Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew

    2017-04-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2  = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.

  1. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG

    DEFF Research Database (Denmark)

    Grégoire, Vincent; Evans, Mererid; Le, Quynh-Thu

    2018-01-01

    PURPOSE: Few studies have reported large inter-observer variations in target volume selection and delineation in patients treated with radiotherapy for head and neck squamous cell carcinoma. Consensus guidelines have been published for the neck nodes (see Grégoire et al., 2003, 2014...... anatomy. METHOD: For each anatomic location within the larynx, hypopharynx, oropharynx and oral cavity, and for each T-stage, the DAHANCA proposal has been comprehensively reviewed and edited to include anatomic knowledge into the geometric Clinical Target Volume (CTV) delineation concept. A first...... treatment variations from clinicians to clinicians, facilitate the conduct of multi-institutional clinical trials, and contribute to improved care of patients with head and neck carcinoma....

  2. P04.02 Analysis of 18F-DOPA PET imaging for target volume definition in patients with recurrent glioblastoma treated with proton therapy

    Science.gov (United States)

    Amelio, D.; Scartoni, D.; Palucci, A.; Vennarini, S.; Giacomelli, I.; Lemoine, S.; Donner, D.; Farace, P.; Chierichetti, F.; Amichetti, M.

    2017-01-01

    Abstract Introduction: Target volume definition is of critical relevance when re-irradiation is delivered and steep dose gradient irradiation techniques, such as proton therapy (PT), are employed. Aim of the study is to investigate the impact of 18F-DOPA on target volume contouring in recurrent glioblastoma (rGBM) patients (pts) undergoing re-irradiation with PT. MATERIAL AND METHODS: We investigated the differences in volume and relationship of magnetic resonance imaging (MRI)- vs. DOPA PET-derived gross tumor volumes (GTVs) of 14 rGBM pts re-irradiated with PT between January and November 2016. All pts had been previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant temozolomide. All the pts received morphological MRI with contrast enhancement medium administration and 18F-DOPA PET-CT study. We used the pathological distribution of 18F-DOPA in brain tissue to identify the so-called Biological Tumor Volume (BTV). Such areas were assessed using a tumor to normal brain ratio > 2. Moreover, any area of contrast enhancement on MRI was used to identify the MRI-based GTV (MRGTV). Definitive GTV included MRGTV plus BTV. Clinical target volume was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create planning target volume. All pts received 36 GyRBE in 18 fractions. Mean values of differently delineated GTVs were compared each other by paired Student’s t-test; p < 0.05 was considered significant. To further compare MRGTV and BTV, the overlapping (MRGTV ^ BTV) and the composite (MRGTV U BTV) volumes were calculated, and a concordance index (CI) was defined as the ratio between the overlap and composite volumes. Results: MRGTV (mean 14.9 ± 14.5 cc) was larger than BTV (mean 10.9 ± 9.8 cc) although this difference was not statistically significant. The composite volume (mean 20.9 ± 14.7 cc) was significantly larger than each single volume (p < 0

  3. Target Centroid Position Estimation of Phase-Path Volume Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Fengjun Hu

    2016-01-01

    Full Text Available For the problem of easily losing track target when obstacles appear in intelligent robot target tracking, this paper proposes a target tracking algorithm integrating reduced dimension optimal Kalman filtering algorithm based on phase-path volume integral with Camshift algorithm. After analyzing the defects of Camshift algorithm, compare the performance with the SIFT algorithm and Mean Shift algorithm, and Kalman filtering algorithm is used for fusion optimization aiming at the defects. Then aiming at the increasing amount of calculation in integrated algorithm, reduce dimension with the phase-path volume integral instead of the Gaussian integral in Kalman algorithm and reduce the number of sampling points in the filtering process without influencing the operational precision of the original algorithm. Finally set the target centroid position from the Camshift algorithm iteration as the observation value of the improved Kalman filtering algorithm to fix predictive value; thus to make optimal estimation of target centroid position and keep the target tracking so that the robot can understand the environmental scene and react in time correctly according to the changes. The experiments show that the improved algorithm proposed in this paper shows good performance in target tracking with obstructions and reduces the computational complexity of the algorithm through the dimension reduction.

  4. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wen-Jia [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Wu, Xiao [Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Xue, Ren-Liang; Lin, Xiang-Ying [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Kidd, Elizabeth A. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Yan, Shu-Mei [Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province (China); Zhang, Yao-Hong [Department of Radiation Oncology, Chaozhou Hospital of Chaozhou City, Guangdong Province (China); Zhai, Tian-Tian; Lu, Jia-Yang; Wu, Li-Li; Zhang, Hao [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Huang, Hai-Hua [Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Chen, Zhi-Jian; Li, De-Rui [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Xie, Liang-Xi, E-mail: xieliangxi1@qq.com [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China)

    2015-01-01

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopic extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.

  5. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O. [University of Nebraska Medical Center, Department of Radiation Oncology, Omaha (United States); Chen, Shifeng [University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, MD (United States)

    2017-01-15

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [German] Zur Evaluation der interfraktionellen Variabilitaet des klinischen Zielvolumens der Prostataloge

  6. Clinical and radiological outcome following pneumothorax after endoscopic lung volume reduction with valves.

    Science.gov (United States)

    Gompelmann, D; Benjamin, N; Kontogianni, K; Herth, Fjf; Heussel, C P; Hoffmann, H; Eberhardt, R

    2016-01-01

    Valve implantation has evolved as a therapy for patients with advanced emphysema. Although it is a minimally invasive treatment, it is associated with complications, the most common being pneumothorax. Pneumothorax occurs due to the rapid target lobe volume reduction and may be a predictor of clinical benefit despite this complication. The objective of this study was to conduct an exploratory data analysis of patients who developed a pneumothorax following endoscopic valve therapy for emphysema. This study performed a retrospective evaluation of pneumothorax management and the impact of pneumothorax on clinical outcomes in 70 patients following valve therapy in 381 consecutive patients. Pneumothorax rate following valve therapy was 18%. Pneumothorax management consisted of chest tube insertion, valve removal, and surgical intervention in 87% (61/70), 44% (31/70), and 19% (13/70) of the patients, respectively. Despite pneumothorax, patients experienced modest but significant improvements in lung function parameters (forced expiratory volume in 1 second: 55±148 mL, residual volume: -390±964 mL, total lung capacity: -348±876; all P pneumothorax, which was associated with relevant clinical improvement, was observed in only 21% (15/70) of the patients. Pneumothorax is a frequent severe complication following valve therapy that requires further intervention. Nevertheless, the pneumothorax does not impair the clinical status in the majority of patients. Patients with lobar atelectasis benefit after recovering from pneumothorax in terms of lung function parameters.

  7. A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the "Low Drug Uptake Volume".

    Science.gov (United States)

    Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe

    2017-09-01

    We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (pvolume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    International Nuclear Information System (INIS)

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron; Teknos, Theodoros N.; Chepeha, Douglas B.; Prince, Mark E.; Moyer, Jeffrey S.; Bradford, Carol R.; Eisbruch, Avraham

    2009-01-01

    Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.

  9. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    International Nuclear Information System (INIS)

    Gibson, Eli; Bauman, Glenn S.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Gaed, Mena; Moussa, Madeleine; Gómez, José A.; Pautler, Stephen E.; Chin, Joseph L.; Crukley, Cathie; Haider, Masoom A.

    2016-01-01

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate margins

  10. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Eli [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Biomedical Engineering, University of Western Ontario, London, Ontario (Canada); Centre for Medical Image Computing, University College London, London (United Kingdom); Department of Radiology, Radboud University Medical Centre, Nijmegen (Netherlands); Bauman, Glenn S., E-mail: glenn.bauman@lhsc.on.ca [Lawson Health Research Institute, London, Ontario (Canada); Department of Oncology, University of Western Ontario, London, Ontario (Canada); Romagnoli, Cesare; Cool, Derek W. [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Bastian-Jordan, Matthew [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Queensland Health, Brisbane, Queensland (Australia); Kassam, Zahra [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Gaed, Mena [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Department of Pathology, University of Western Ontario, London, Ontario (Canada); Moussa, Madeleine; Gómez, José A. [Department of Pathology, University of Western Ontario, London, Ontario (Canada); Pautler, Stephen E.; Chin, Joseph L. [Lawson Health Research Institute, London, Ontario (Canada); Department of Urology, University of Western Ontario, London, Ontario (Canada); Crukley, Cathie [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); and others

    2016-09-01

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate margins

  11. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    Science.gov (United States)

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  12. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT

    International Nuclear Information System (INIS)

    Speight, R; Lindsay, R; Harding, R; Sykes, J; Karakaya, E; Prestwich, R; Sen, M

    2014-01-01

    IMRT for head and neck patients requires clinicians to delineate clinical target volumes (CTV) on a planning-CT (>2hrs/patient). When patients require a replan-CT, CTVs must be re-delineated. This work assesses the performance of atlas-based autosegmentation (ABAS), which uses deformable image registration between planning and replan-CTs to auto-segment CTVs on the replan-CT, based on the planning contours. Fifteen patients with planning-CT and replan-CTs were selected. One clinician delineated CTVs on the planning-CTs and up to three clinicians delineated CTVs on the replan-CTs. Replan-CT volumes were auto-segmented using ABAS using the manual CTVs from the planning-CT as an atlas. ABAS CTVs were edited manually to make them clinically acceptable. Clinicians were timed to estimate savings using ABAS. CTVs were compared using dice similarity coefficient (DSC) and mean distance to agreement (MDA). Mean inter-observer variability (DSC>0.79 and MDA<2.1mm) was found to be greater than intra-observer variability (DSC>0.91 and MDA<1.5mm). Comparing ABAS to manual CTVs gave DSC=0.86 and MDA=2.07mm. Once edited, ABAS volumes agreed more closely with the manual CTVs (DSC=0.87 and MDA=1.87mm). The mean clinician time required to produce CTVs reduced from 169min to 57min when using ABAS. ABAS segments volumes with accuracy close to inter-observer variability however the volumes require some editing before clinical use. Using ABAS reduces contouring time by a factor of three.

  13. Target volume definition in radiation oncology

    CERN Document Server

    Grosu, Anca-Ligia

    2015-01-01

    The main objective of this book is to provide radiation oncologists with a clear, up-to-date guide to tumor delineation and contouring of organs at risk. With this in mind, a detailed overview of recent advances in imaging for radiation treatment planning is presented. Novel concepts for target volume delineation are explained, taking into account the innovations in imaging technology. Special attention is paid to the role of the newer imaging modalities, such as positron emission tomography and diffusion and perfusion magnetic resonance imaging. All of the most important tumor entities treate

  14. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  15. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    Science.gov (United States)

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  16. Clinically significant change in stroke volume in pulmonary hypertension.

    Science.gov (United States)

    van Wolferen, Serge A; van de Veerdonk, Marielle C; Mauritz, Gert-Jan; Jacobs, Wouter; Marcus, J Tim; Marques, Koen M J; Bronzwaer, Jean G F; Heymans, Martijn W; Boonstra, Anco; Postmus, Pieter E; Westerhof, Nico; Vonk Noordegraaf, Anton

    2011-05-01

    Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory increased heart rate as is the case for cardiac output. For this reason, stroke volume, which can be measured noninvasively, is an important hemodynamic parameter to monitor during treatment. However, the extent of change in stroke volume that constitutes a clinically significant change is unknown. The aim of this study was to determine the minimal important difference (MID) in stroke volume in PH. One hundred eleven patients were evaluated at baseline and after 1 year of follow-up with a 6-min walk test (6MWT) and cardiac MRI. Using the anchor-based method with 6MWT as the anchor, and the distribution-based method, the MID of stroke volume change could be determined. After 1 year of treatment, there was, on average, a significant increase in stroke volume and 6MWT. The change in stroke volume was related to the change in 6MWT. Using the anchor-based method, an MID of 10 mL in stroke volume was calculated. The distribution-based method resulted in an MID of 8 to 12 mL. Both methods showed that a 10-mL change in stroke volume during follow-up should be considered as clinically relevant. This value can be used to interpret changes in stroke volume during clinical follow-up in PH.

  17. Breadth versus volume: Neurology outpatient clinic cases in medical education.

    Science.gov (United States)

    Albert, Dara V; Blood, Angela D; Park, Yoon Soo; Brorson, James R; Lukas, Rimas V

    2016-06-01

    This study examined how volume in certain patient case types and breadth across patient case types in the outpatient clinic setting are related to Neurology Clerkship student performance. Case logs from the outpatient clinic experience of 486 students from The University of Chicago Pritzker School of Medicine, USA, participating in the 4week Neurology Clerkship from July 2008 to June 2013 were reviewed. A total of 12,381 patient encounters were logged and then classified into 13 diagnostic categories. How volume of cases within categories and the breadth of cases across categories relate to the National Board of Medical Examiners Clinical Subject Examination for Neurology and a Neurology Clerkship Objective Structured Clinical Examination was analyzed. Volume of cases was significantly correlated with the National Board of Medical Examiners Clinical Subject Examination for Neurology (r=.290, pNeurology (r=.231, p=.017), however was not significantly correlated with any component of the Objective Structured Clinical Examination. Volume of cases correlated with higher performance on measures of specialty knowledge and clinical skill. Fewer relationships emerged correlating breadth of cases and performance on the same measures. This study provides guidance to educators who must decide how much emphasis to place on volume versus breadth of cases in outpatient clinic learning experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Proposal of a post-prostatectomy clinical target volume based on pre-operative MRI: volumetric and dosimetric comparison to the RTOG guidelines

    International Nuclear Information System (INIS)

    Croke, Jennifer; Maclean, Jillian; Nyiri, Balazs; Li, Yan; Malone, Kyle; Avruch, Leonard; Kayser, Cathleen; Malone, Shawn

    2014-01-01

    Recurrence rates following radiotherapy for prostate cancer in the post-operative adjuvant or salvage setting remain substantial. Previous work from our institution demonstrated that published prostate bed CTV guidelines frequently do not cover the pre-operative MRI defined prostate. Inadequate target delineation may contribute to the high recurrence rates, but increasing target volumes may increase dose to organs at risk. We propose guidelines for delineating post-prostatectomy target volumes based upon an individual’s co-registered pre-operative MRI. MRI-based CTVs and PTVs were compared to those created using the RTOG guidelines in 30 patients. Contours were analysed in terms of absolute volume, intersection volume (Jaccard Index) and the ability to meet the RADICALS and QUANTEC rectal and bladder constraints (tomotherapy IMRT plans with PTV coverage of V98% ≥98%). CTV MRI was a mean of 18.6% larger than CTV RTOG: CTV MRI mean 138 cc (range 72.3 - 222.2 cc), CTV RTOG mean 116.3 cc (range 62.1 - 176.6 cc), (p < 0.0001). The difference in mean PTV was only 4.6%: PTV MRI mean 386.9 cc (range 254.4 – 551.2), PTV RTOG mean 370 cc (range 232.3 - 501.6) (p = 0.05). The mean Jaccard Index representing intersection volume between CTVs was 0.72 and 0.84 for PTVs. Both criteria had a similar ability to meet rectal and bladder constraints. Rectal DVH: 77% of CTV RTOG cases passed all RADICALS criteria and 37% all QUANTEC criteria; versus 73% and 40% for CTV MRI (p = 1.0 for both). Bladder DVH; 47% of CTV RTOG cases passed all RADICALS criteria and 67% all QUANTEC criteria, versus 57% and 60% for CTV MRI (p = 0.61for RADICALS, p = 0.79 for QUANTEC). CTV MRI spares more of the lower anterior bladder wall than CTV RTOG but increases coverage of the superior lateral bladder walls. CTV contours based upon the patient’s co-registered pre-operative MRI in the post-prostatectomy setting may improve coverage of the individual’s prostate bed without substantially increasing

  19. Interobserver variations of target volume delineation and its impact on irradiated volume in accelerated partial breast irradiation with intraoperative interstitial breast implant

    Directory of Open Access Journals (Sweden)

    Ritu Raj Upreti

    2017-02-01

    Full Text Available Purpose: To investigate the interobserver variations in delineation of lumpectomy cavity (LC and clinical target volume (CTV, and its impact on irradiated volume in accelerated partial breast irradiation using intraoperative multicatheter brachytherapy. Material and methods : Delineation of LC and CTV was done by five radiation oncologists on planning computed tomography (CT scans of 20 patients with intraoperative interstitial breast implant. Cavity visualization index (CVI, four-point index ranging from (0 = poor to (3 = excellent was created and assigned by observers for each patient. In total, 200 contours for all observers and 100 treatment plans were evaluated. Spatial concordance (conformity index, CI common , and CIgen, average shift in the center of mass (COM, and ratio of maximum and minimum volumes (V max /V min of LC and CTV were quantified among all observers and statistically analyzed. Variation in active dwell positions (0.5 cm step for each catheter, total reference air kerma (TRAK, volume enclosed by prescription isodose (V100% among observers and its spatial concordance were analyzed. Results : The mean ± SD CI common of LC and CTV was 0.54 ± 0.09, and 0.58 ± 0.08, respectively. Conformity index tends to increase, shift in COM and V max /V min decrease significantly (p < 0.05, as CVI increased. Out of total 309 catheters, 29.8% catheters had no change, 29.8% and 17.5% catheters had variations of 1 and 2 dwell positions (0.5 cm and 1 cm, respectively. 9.3% catheters shown variations ≥ 10 dwell positions (5 cm. The mean ± SD CI common of V100% was 0.75 ± 0.11. The mean observed V max /V min of prescription isodose and TRAK was 1.18 (range, 1.03 to 1.56 and 1.11 (range, 1.03 to 1.35, respectively. Conclusions : Interobserver variability in delineation of target volume was found to be significantly related to CVI. Smaller variability was observed with excellent visualization of LC. Interobserver variations showed dosimetric

  20. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  1. Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial

    International Nuclear Information System (INIS)

    Seddon, B.S.; Wilson, J.; Khoo, V.; Dearnaley, D.; Bidmead, M.

    2000-01-01

    Prior to randomization of patients into the UK Medical Research Council multicentre randomized trial (RT-01) of conformal radiotherapy (CFRT) in prostate cancer, clinicians at participating centres were required to complete a quality assurance (QA) clinical planning exercise to enable an investigation of inter-observer variability in gross target volume (GTV) and normal structure outlining. Thirteen participating centres and two investigators completed the clinical planning exercise of three practice planning cases. Clinicians were asked to draw outlines of the GTV, rectum and bladder on hard-copy computerized tomography (CT) films of the pelvis, which were transferred onto the Cadplan computer planning system by a single investigator. Centre, inferior and superior CT levels of GTV, rectum and bladder were noted, and volume calculations performed. Planning target volumes (PTV) were generated using automatic volume expansion of GTVs by a 1 cm margin. Anterior, right and left lateral beam eye views (BEV) of the PTVs were generated. Using a common central point, the BEV PTVs were superimposed for each beam direction of each case. Radial PTV variation was investigated by measurement of a novel parameter, termed the radial line measurement variation (RLMV). GTV central slice and length were defined with reasonable consistency. The RLMV analysis showed that the main part of the prostate gland, bladder and inferior rectum were outlined with good consistency among clinicians. However, the outlining of the prostatic apex, superior aspect of the prostate projecting into the bladder, seminal vesicles, the base of seminal vesicles and superior rectum were more variable. This exercise has demonstrated adequate consistency of GTV definition. The RLMV method of analysis indicates particular regions of clinician uncertainty. Appropriate feedback has been given to all participating clinicians, and the final RT-01 trial protocol has been modified to accommodate these findings

  2. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example

    International Nuclear Information System (INIS)

    Rosewall, Tara; Alasti, Hamideh; Bayley, Andrew; Yan, Jing

    2017-01-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2 = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were −0.4 to 1.8 mm (LR), −1.2 to 5.2 mm (SI) and −1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer.

  3. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  4. Comparison of target volumes in radiotherapy defined on scanner and on PET-T.D.M. with {sup 18}F-F.D.G. in the frame of head and neck cancers; Comparaison des volumes cibles en radiotherapie definis sur scanner et sur TEP-TDM au 18F FDG dans le cadre des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Henriques De Figueiredo, B.; Barret, O.; Allard, M.; Fernandez, P. [Service de medecine nucleaire, CHU de Pellegrin, Bordeaux, (France); Demeaux, H.; Maire, J.P.; Lagarde, P. [service de radiotherapie, hopital Saint-Andre, Bordeaux, (France); Kantor, G.; Richau, P. [departement de radiotherapie, institut Bergonie, Bordeaux, (France); De Mones Del Pujol, E. [service d' ORL, hopital Pellegrin, Bordeaux, (France)

    2009-05-15

    The objective is to study in a prospective way, in the frame of head and neck cancers, the impact of the positron computed tomography with {sup 18}F fluorodeoxyglucose (PET-F.D.G.) on the limitation of target volumes in radiotherapy. In conclusions, the gross tumor volume (G.T.V.) defined on PET is smaller than this one defined on scanner, that could be interesting in radiotherapy, in the perspective of a dose escalation. In addition, areas of discordance exist between the clinical target volumes (C.T.V.70 and C.T.V.50) defined on PET and on scanner. These discordances, synonyms of under or over estimation of target volumes, could have important clinical consequences in term of local control and toxicity. (N.C.)

  5. Lung volumes: measurement, clinical use, and coding.

    Science.gov (United States)

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  6. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis

    DEFF Research Database (Denmark)

    De Stefano, Nicola; Airas, Laura; Grigoriadis, Nikolaos

    2014-01-01

    Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS...... therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy...

  7. A treatment planning comparison of four target volume contouring guidelines for locally advanced pancreatic cancer radiotherapy

    International Nuclear Information System (INIS)

    Fokas, Emmanouil; Eccles, Cynthia; Patel, Neel; Chu, Kwun-Ye; Warren, Samantha; McKenna, W. Gillies; Brunner, Thomas B.

    2013-01-01

    Background and purpose: Contouring of target volumes varies significantly in radiotherapy of pancreatic ductal adenocarcinoma (PDAC). There is a lack of consensus as to whether elective lymph nodes (eLN’s) should be included or not in the planning target volume (PTV). In the present study we analyzed the dosimetric coverage of the eLN’s and organs at risk (OAR) by comparing four different contouring guidelines. Methods and materials: PTVs were delineated with (Oxford and RTOG guidelines) or without (Michigan and SCALOP guidelines) including the eLNs in eleven patients with PDAC. eLNs included the peripancreatic, paraaortic, paracaval, celiac trunk, superior mesenteric and portal vein clinical target volumes (CTVs). A 3D-CRT plan (50.40 Gy in 28 fractions) was performed to analyze and compare the dosimetric coverage of all eLNs and OAR between the 4 contouring guidelines. Results: The size of Oxford and RTOG PTVs was comparable and significantly larger than the SCALOP and Michigan PTVs. Interestingly the eLNs received a significant amount of incidental dose irradiation by PTV-based plans that only aimed to treat the tumor without the eLNs. The dosimetric coverage of eLN presented a large variability according to the respective contouring methods. The difference in the size of the 4 PTVs was reflected to the dose distribution at the OAR. Conclusions: Our study provides important information regarding the impact of different contouring guidelines on the dose distribution to the eLNs and the OAR in patients with locally advanced PDAC treated with radiotherapy

  8. Irradiation of target volumes with concave outlines

    Energy Technology Data Exchange (ETDEWEB)

    De Neve, W; Fortan, L; Derycke, S; Van Duyse, B; DE Wagter, C [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde

    1995-12-01

    A heuristic planning procedure allowing to obtain a 3-dimensional conformal dose distribution for target volumes with concavities has been investigated. The procedure divides the planning problem into a number of sub-problems each solvable by known methods. By patching together the solutions to the sub-problems, a solution with a predictable dosimetric outcome can be obtained. The procedure can be applied to most 3-dimensional systems. The procedure is described and its applications to the irradiation of neoplasms are discussed. (A.S.).

  9. Irradiation of target volumes with concave outlines

    International Nuclear Information System (INIS)

    De Neve, W.; Fortan, L.; Derycke, S.; Van Duyse, B.; DE Wagter, C.

    1995-01-01

    A heuristic planning procedure allowing to obtain a 3-dimensional conformal dose distribution for target volumes with concavities has been investigated. The procedure divides the planning problem into a number of sub-problems each solvable by known methods. By patching together the solutions to the sub-problems, a solution with a predictable dosimetric outcome can be obtained. The procedure can be applied to most 3-dimensional systems. The procedure is described and its applications to the irradiation of neoplasms are discussed. (A.S.)

  10. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    International Nuclear Information System (INIS)

    Riou, Olivier; Thariat, Juliette; Serrano, Benjamin; Azria, David; Paulmier, Benoit; Villeneuve, Remy; Fenoglietto, Pascal; Artenie, Antonella; Ortholan, Cécile; Faraggi, Marc

    2014-01-01

    To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes

  11. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins

    International Nuclear Information System (INIS)

    Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus

    2009-01-01

    Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.

  12. Extension of Local Disease in Nasopharyngeal Carcinoma Detected by Magnetic Resonance Imaging: Improvement of Clinical Target Volume Delineation

    International Nuclear Information System (INIS)

    Liang Shaobo; Sun Ying; Liu Lizhi; Chen Yong; Chen Lei; Mao Yanping; Tang Linglong; Tian Li; Lin Aihua; Liu Mengzhong; Li Li; Ma Jun

    2009-01-01

    Purpose: To define by MRI the local extension patterns in patients presenting with nasopharyngeal carcinoma (NPC) and to improve clinical target volume delineation. Methods and Materials: Consecutive patients (N = 943) with newly diagnosed and untreated NPC were included in this study. All patients underwent MRI of the nasopharynx and neck, which was reviewed by two radiologists. Results: According to the incidence rates of tumor invasion, the anatomic sites surrounding the nasopharynx were initially classified into three risk grades: high risk (≥ 35%), medium risk (≥ 5-35%), and low risk (< 5%). Incidence rates of tumor invasion into anatomic sites at medium risk were increased, reaching 55.2%, when adjacent high-risk anatomic sites were involved. However, the rates were substantially lower, mostly < 10%, when adjacent high-risk sites were not involved. The incidence rates of concurrent tumor invasion into bilateral sites were < 10%, except in the case of prevertebral muscle involvement (13.1%). Among the 178 incidences of cavernous sinus invasion, there were often two or more simultaneous infiltration routes (60.6%); when only one route was involved, the foramen ovale was the most common (26.4%). Conclusions: In patients presenting with NPC, local disease spreads stepwise from proximal sites to more distal sites. Tumors extend quickly through privileged pathways such as neural foramina. The anatomic sites surrounding the nasopharynx are at low risk of concurrent bilateral tumor invasion. Selective radiotherapy of the local disease in NPC may be feasible.

  13. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  14. Planning target volumes for radiotherapy: how much margin is needed?

    International Nuclear Information System (INIS)

    Antolak, John A.; Rosen, Isaac I.

    1999-01-01

    Purpose: The radiotherapy planning target volume (PTV) encloses the clinical target volume (CTV) with anisotropic margins to account for possible uncertainties in beam alignment, patient positioning, organ motion, and organ deformation. Ideally, the CTV-PTV margin should be determined solely by the magnitudes of the uncertainties involved. In practice, the clinician usually also considers doses to abutting healthy tissues when deciding on the size of the CTV-PTV margin. This study calculates the ideal size of the CTV-PTV margin when only physical position uncertainties are considered. Methods and Materials: The position of the CTV for any treatment is assumed to be described by independent Gaussian distributions in each of the three Cartesian directions. Three strategies for choosing a CTV-PTV margin are analyzed. The CTV-PTV margin can be based on: 1. the probability that the CTV is completely enclosed by the PTV; 2. the probability that the projection of the CTV in the beam's eye view (BEV) is completely enclosed by the projection of the PTV in the BEV; and 3. the probability that a point on the edge of the CTV is within the PTV. Cumulative probability distributions are derived for each of the above strategies. Results: Expansion of the CTV by 1 standard deviation (SD) in each direction results in the CTV being entirely enclosed within the PTV 24% of the time; the BEV projection of the CTV is enclosed within the BEV projection of the PTV 39% of the time; and a point on the edge of the CTV is within the PTV 84% of the time. To have the CTV enclosed entirely within the PTV 95% of the time requires a margin of 2.8 SD. For the BEV projection of the CTV to be within the BEV projection of the PTV 95% of the time requires a margin of 2.45 SD. To have any point on the surface of the CTV be within the PTV 95% of the time requires a margin of 1.65 SD. Conclusion: In the first two strategies for selecting a margin, the probability of finding the CTV within the PTV is

  15. A general methodology for three-dimensional analysis of variation in target volume delineation

    NARCIS (Netherlands)

    Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

    1999-01-01

    A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

  16. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume

    International Nuclear Information System (INIS)

    Piroth, Marc D.; Galldiks, Norbert; Pinkawa, Michael; Holy, Richard; Stoffels, Gabriele; Ermert, Johannes; Mottaghy, Felix M.; Shah, N. Jon; Langen, Karl-Josef; Eble, Michael J.

    2016-01-01

    O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0

  17. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jethwa, Krishan R.; Kahila, Mohamed M. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Hunt, Katie N. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Brown, Lindsay C.; Corbin, Kimberly S.; Park, Sean S.; Yan, Elizabeth S. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Boughey, Judy C. [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert W., E-mail: mutter.robert@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2017-03-15

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: The IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.

  18. The target landscape of clinical kinase drugs.

    Science.gov (United States)

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  20. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    International Nuclear Information System (INIS)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-01-01

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities

  1. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  2. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  3. Proton therapy of iris melanoma with 50 CGE. Influence of target volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Riechardt, Aline I.; Joussen, Antonia M. [Charite University of Medicine, Department of Ophthalmology, Berlin (Germany); Karle, Bettina [Helios Klinikum Emil-von-Behring, Department of Radiation Oncology, Berlin (Germany); Cordini, Dino; Heufelder, Jens [Charite University of Medicine, Department of Ophthalmology, Berlin (Germany); Helmholtz-Zentrum Berlin, Lise-Meitner-Campus, Berlin-Protonen, Berlin (Germany); Budach, Volker [Charite University of Medicine, Department of Radiation Oncology, Berlin (Germany); Gollrad, Johannes [Helmholtz-Zentrum Berlin, Lise-Meitner-Campus, Berlin-Protonen, Berlin (Germany); Charite University of Medicine, Department of Radiation Oncology, Berlin (Germany)

    2017-11-15

    The aim of this study was to evaluate local tumour control, incidence of radiation-induced glaucoma and associated interventions of sector-based and whole anterior segment proton beam therapy (PBT) for the treatment of iris melanoma. We retrospectively analysed the data of 77 patients with iris melanoma who underwent PBT applied as 50 CGE in four daily fractions. Of the patients, 47 received PBT with a circular-shaped collimator and 30 with a conformal sector-shaped target volume. Local control, eye preservation and secondary glaucoma were evaluated. Median follow-up time was 54.9 months. Local tumour control was 100% in patients receiving whole anterior segment irradiation. Two patients developed pigment dispersion in the non-irradiated area after sector-based PBT and received whole anterior segment salvage PBT. The mean volume of ciliary body irradiated was 89.0% and 34.9% for whole anterior segment and lesion-based irradiation, respectively. At the end of follow-up, secondary glaucoma was found in 74.3% of the patients with whole anterior segment irradiation and in 19.2% with sector-based irradiation. Patients with sector-based PBT had a stable visual acuity of logMAR 0.1, while it declined from logMAR 0.1 to 0.4 after whole anterior segment irradiation. We found a significant reduction in radiation-induced secondary glaucoma and glaucoma-associated surgical interventions and stable visual acuity after sector-based irradiation compared with whole anterior segment irradiation. Sector-based irradiation revealed a higher risk for local recurrence, but selected patients with well-circumscribed iris melanoma benefit from applying a lesion-based target volume when treated with sector-based PBT. (orig.) [German] Ziel der Arbeit war es, nach Irismelanomtherapie durch sektorielle oder Ganzfeldbestrahlung mittels Protonentherapie mit 50 CGE (Cobalt-Gray-Aequivalent) Tumorkontrolle, Inzidenz des strahleninduzierten Glaukoms und damit assoziierte Interventionen auszuwerten

  4. Target volume delineation variation in radiotherapy for early stage rectal cancer in the Netherlands

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Haas-Kock, Danielle F.M. de; Beukema, Jannet C.; Neelis, Karen J.; Woutersen, Dankert; Ceha, Heleen; Rozema, Tom; Slot, Annerie; Vos-Westerman, Hanneke; Intven, Martijn; Spruit, Patty H.; Linden, Yvette van der; Geijsen, Debby; Verschueren, Karijn; Herk, Marcel B. van; Marijnen, Corrie A.M.

    2012-01-01

    Purpose: The aim of this study was to measure and improve the quality of target volume delineation by means of national consensus on target volume definition in early-stage rectal cancer. Methods and materials: The CTV’s for eight patients were delineated by 11 radiation oncologists in 10 institutes according to local guidelines (phase 1). After observer variation analysis a workshop was organized to establish delineation guidelines and a digital atlas, with which the same observers re-delineated the dataset (phase 2). Variation in volume, most caudal and cranial slice and local surface distance variation were analyzed. Results: The average delineated CTV volume decreased from 620 to 460 cc (p < 0.001) in phase 2. Variation in the caudal CTV border was reduced significantly from 1.8 to 1.2 cm SD (p = 0.01), while it remained 0.7 cm SD for the cranial border. The local surface distance variation (cm SD) reduced from 1.02 to 0.74 for anterior, 0.63 to 0.54 for lateral, 0.33 to 0.25 for posterior and 1.22 to 0.46 for the sphincter region, respectively. Conclusions: The large variation in target volume delineation could significantly be reduced by use of consensus guidelines and a digital delineation atlas. Despite the significant reduction there is still a need for further improvement.

  5. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    International Nuclear Information System (INIS)

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-01-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes

  6. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    Energy Technology Data Exchange (ETDEWEB)

    Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne (Australia); Te Marvelde, Luc [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Mengersen, Kerrie [School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane (Australia); Foroudi, Farshad [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Eade, Thomas [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Northern Clinical School, University of Sydney (Australia); Pham, Daniel [Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne (Australia); Caine, Hannah [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Kron, Tomas [The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  7. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  8. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Abrams, Ross A. [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States); Bosch, Walter [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Roberge, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Haas, Rick L.M. [Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Catton, Charles N. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida Medical Center, Jacksonville, Florida (United States); Olsen, Jeffrey R. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chen, Yen-Lin [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Finkelstein, Steven E. [Translational Research Consortium, 21st Century Oncology, Scottsdale, Arizona (United States); DeLaney, Thomas F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Dian [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States)

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  9. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    International Nuclear Information System (INIS)

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed

  10. SPORT AND EXERCISE PHYSIOLOGY TESTING Volume one: Sport Testing Volume two: Exercise and Clinical Testing

    Directory of Open Access Journals (Sweden)

    Edward M. Winter

    2007-03-01

    Full Text Available DESCRIPTION The objective of the book is to discuss the theoretical and practical aspects of physiological testing in exercise and sports which is essential to evaluate and monitor developing exercise performance for athletes and public health, and improving quality of life for patients.A board of leading sport and exercise physiologists and scientists are gathered to discuss physiological assessments that have proven validity and reliability, both in sport and health relevant issues. Incidentally, it updates the reader about the current subjects of physiological exertion testing in both research and clinical procedures. Both volumes individually cover the increasing number of available research and review publications, and theoretical explanations are supported by practical examples. A step-by-step and/or checklist method is used in appropriate sections which make the guides more user-friendly than most. PURPOSE The first volume is designed to help readers develop an understanding of the essential concepts of sport specific testing whereas the second volume aims at making the exercise and clinical specific testing comprehensible, dealing with both technical terms and the theories underlying the importance of these tests. AUDIENCE As Guidelines books of the British Association of Sport and Exercise Sciences, it will be of interest to a wide range of students, researchers and practitioners in the sport and exercise disciplines whether they work in the laboratory or in the field. FEATURES The first volume features immediate practical requirements particularly in sport testing. It is composed of five parts with detailed sub-sections in all of them. The topics of the parts are: i general principles, ii methodological issues, iii general procedures, iv sport specific procedures, v special populations.The second volume is also presented in five parts, again with sub-sections in all of them, but considering the requirements in clinical and exercise

  11. Clinical and radiological outcome following pneumothorax after endoscopic lung volume reduction with valves

    Directory of Open Access Journals (Sweden)

    Gompelmann D

    2016-12-01

    Full Text Available D Gompelmann,1,2 N Benjamin,1 K Kontogianni,1 FJF Herth,1,2 CP Heussel,2–4 H Hoffmann,2,5 R Eberhardt1,2 1Pneumology and Critical Care Medicine, Thoraxklinik at University of Heidelberg, 2German Center for Lung Research, 3Diagnostic and Interventional Radiology, Thoraxklinik at University of Heidelberg, 4Diagnostic and Interventional Radiology, University Hospital Heidelberg, 5Thoracic Surgery, Thoraxklinik at University of Heidelberg, Heidelberg, Germany Introduction: Valve implantation has evolved as a therapy for patients with advanced emphysema. Although it is a minimally invasive treatment, it is associated with complications, the most common being pneumothorax. Pneumothorax occurs due to the rapid target lobe volume reduction and may be a predictor of clinical benefit despite this complication. Objective: The objective of this study was to conduct an exploratory data analysis of patients who developed a pneumothorax following endoscopic valve therapy for emphysema. Materials and methods: This study performed a retrospective evaluation of pneumothorax management and the impact of pneumothorax on clinical outcomes in 70 patients following valve therapy in 381 consecutive patients. Results: Pneumothorax rate following valve therapy was 18%. Pneumothorax management consisted of chest tube insertion, valve removal, and surgical intervention in 87% (61/70, 44% (31/70, and 19% (13/70 of the patients, respectively. Despite pneumothorax, patients experienced modest but significant improvements in lung function parameters (forced expiratory volume in 1 second: 55±148 mL, residual volume: -390±964 mL, total lung capacity: -348±876; all P<0.05. Persistent lobar atelectasis 3 months after recovering from pneumothorax, which was associated with relevant clinical improvement, was observed in only 21% (15/70 of the patients. Conclusion: Pneumothorax is a frequent severe complication following valve therapy that requires further intervention

  12. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas

    International Nuclear Information System (INIS)

    Li Fangming; Nie Qing; Wang Ruimin; Chang, Susan M.; Zhao Wenrui; Zhu Qi; Liang Yingkui; Yang Ping; Zhang Jun; Jia Haiwei; Fang Henghu

    2012-01-01

    Objective: We explored the clinical values of 11 C-choline ( 11 C-CHO) PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Methods: Sixteen patients with the pathological confirmation of the diagnosis of gliomas prior to receiving radiotherapy (postoperative) were included, and on whom both MRI and CHO PET scans were performed at the same position for comparison of residual tumors with the two techniques. 11 C-CHO was used as the tracer in the PET scan. A plain T1-weighted, T2-weighted and contrast-enhanced T1-weighted imaging scans were performed in the MRI scan sequence. The gliomas' residual tumor volume was defined as the area with CHO-PET high-affinity uptake and metabolism (V CHO ) and one with MRI T1-weighted imaging high signal intensity (V Gd ), and was determined by a group of experienced professionals and clinicians. Results: (1) In CHO-PET images, the tumor target volume, i.e., the highly metabolic area with a high concentration of isotopes (SUV 1.016–4.21) and the corresponding contralateral normal brain tissues (SUV0.1–0.62), was well contrasted, and the boundary between lesions and surrounding normal brain tissues was better defined compared with MRI and 18 F-FDG PET images. (2) For patients with brain gliomas of WHO Grade II, the SUV was 1.016–2.5; for those with WHO Grades III and IV, SUVs were >26–4.2. (3) Both CHO PET and MRI were positive for 10 patients and negative for 2 patients. The residual tumor consistency between these two studies was 75%. Four of the 10 CHO-PET-positive patients were negative on MRI scans. The maximum distance between V Gd and V CHO margins was 1.8 cm. (4) The gross tumor volumes (GTVs) and the ensuing treatment regimens were changed for 31.3% (5/16) of patients based on the CHO-PET high-affinity uptake and metabolism, in which the change rate was 80% (4/5), 14.3 % (1/7) and 0% (0/4) for patients with WHO Grade II III, and IV gliomas

  13. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-01-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested

  14. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group

    International Nuclear Information System (INIS)

    Poortmans, Philip; Bossi, Alberto; Vandeputte, Katia; Bosset, Mathieu; Miralbell, Raymond; Maingon, Philippe; Boehmer, Dirk; Budiharto, Tom; Symon, Zvi; Bergh, Alfons C.M. van den; Scrase, Christopher; Poppel, Hendrik van; Bolla, Michel

    2007-01-01

    The appropriate application of 3-D conformal radiotherapy, intensity modulated radiotherapy or image guided radiotherapy for patients undergoing post-operative radiotherapy for prostate cancer requires a standardisation of the target volume definition and delineation as well as standardisation of the clinical quality assurance procedures. Recommendations for this are presented on behalf of the European Organisation for Research and Treatment of Cancer (EORTC) Radiation Oncology Group and in addition to the already published guidelines for radiotherapy as the primary treatment

  15. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    Science.gov (United States)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  16. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    International Nuclear Information System (INIS)

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Valvo, F; Fossati, P; Ciocca, M; Ferrari, A

    2015-01-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5–30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo ® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus ® chamber. An EBT3 ® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. (paper)

  17. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk

    International Nuclear Information System (INIS)

    Fenoglietto, Pascal; Laliberte, Benoit; Allaw, Ali; Ailleres, Norbert; Idri, Katia; Hay, Meng Huor; Moscardo, Carmen Llacer; Gourgou, Sophie; Dubois, Jean-Bernard; Azria, David

    2008-01-01

    Purpose: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. Methods and materials: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ('CT planning'). The plans were then also applied to a verification CT scan ('CT verify') obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving ≥95 or 90% of the dose) and D50 (dose to 50% of the volume). Results: Mean V95 of the PTV for 'CT planning' was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p = 0.005), respectively. Mean V95 of the CTV for 'CT verify' was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for 'CT planning' was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p = 0.0002), respectively. For 'CT verify', this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p = 0.006), respectively. V95 of the rectum was 0% for both plans for 'CT planning', and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for 'CT verify' (p = non-sig.). Conclusion: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes

  18. How many sets of 4DCT images are sufficient to determine internal target volume for liver radiotherapy?

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Zhang Li; Li Qiaoqiao; Huang Xiaoyan; Liu Hui; Hu Yonghong

    2009-01-01

    Background and purpose: To determine the feasibility of using limited four-dimensional computed tomography (4DCT) images for treatment planning. Materials and methods: The 4DCT scans of 16 patients with hepatocellular carcinoma (HCC) were analyzed. Gross tumor volumes (GTVs) were manually contoured on all 10 respiratory phases, and different internal clinical target volumes (ICTVs) were derived by encompassing volumes of the respective CTVs. Volume, position, and shape of ICTVs were calculated and compared. Results: The ICTV 2phases , ICTV 3phases , ICTV 4phases , and ICTV 6phases all showed excellent agreement with ICTV 10phases , and the ICTV 2phases encompassed ICTV 10phases by 94.1 ± 1.8% on average. The 3D shift between the centers of mass of the ICTVs was only 0.6 mm. The surface distance between ICTV 10phases and ICTV 2phases was 1.7 ± 0.8 mm in the left-right (LR) and anteroposterior (AP) directions. Conclusions: Contouring two extreme phases at end-inhalation and end-exhalation is a reasonably safe and labor-saving method of deriving ITV for liver radiotherapy with low and medium tumor motion amplitude (≤1.6 cm). Whether the larger tumor movement affects the results is the subject of ongoing research.

  19. Transcranial sonography: integration into target volume definition for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Becker, Georg; Flentje, Michael; Richter, Susanne; Goerttler-Krauspe, Irene; Koelbl, Oliver

    2000-01-01

    Purpose: Recent studies indicate that transcranial sonography (TCS) reliably displays the extension of malignant brain tumors. The effect of integrating TCS into radiotherapy planning for glioblastoma multiforme (GBM) was investigated herein. Methods and Materials: Thirteen patients subtotally resected for GBM underwent TCS during radiotherapy planning and were conventionally treated (54 to 60 Gy). Gross tumor volumes (GTVs) and stereotactic boost planning target volumes (PTVs, 3-mm margin) were created, based on contrast enhancement on computed tomography (CT) only (PTV CT ) or the combined CT and TCS information (PTV CT+TCS ). Noncoplonar conformal treatment plans for both PTVs were compared. Tumor progression patterns and preoperative magnetic resonance imaging (MRI) were related to both PTVs. Results: A sufficient temporal bone window for TCS was present in 11 of 13 patients. GTVs as defined by TCS were considerably larger than the respective CT volumes: Of the composite GTV CT+TCS (median volume 42 ml), 23%, 13%, and 66% (medians) were covered by the overlap of both methods, CT only and TCS only, respectively. Median sizes of PTV CT and PTV CT+TCS were 34 and 74 ml, respectively. Addition of TCS to CT information led to a median increase of the volume irradiated within the 80% isodose by 32 ml (median factor 1.51). PTV CT+TCS volume was at median 24% of a 'conventional' MRI(T2)-based PTV. Of eight progressions analyzed, three and six occurred inside the 80% isodose of the plans for PTV CT and for PTV CT+TCS , respectively. Conclusion: Addition of TCS tumor volume to the contrast-enhancing CT volume in postoperative radiotherapy planning for GBM increases the treated volume by a median factor of 1.5. Since a high frequency of marginal recurrences is reported from dose-escalation trials of this disease, TCS may complement established methods in PTV definition

  20. Phantom study on three-dimensional target volume delineation by PET/CT-based auto-contouring

    International Nuclear Information System (INIS)

    Zhang, Tiejiao; Sakaguchi, Yuichi; Mitsumoto, Katsuhiko; Mitsumoto, Tatsuya; Sasaki, Masayuki; Tachiya, Yosuke; Ohya, Nobuyoshi

    2010-01-01

    The aim of this study was to determine an appropriate threshold value for delineation of the target volume in positron emission tomography (PET)/CT and to investigate whether we could delineate a target volume by phantom studies. A phantom consisted of six spheres (φ10-37 mm) filled with 18 F solution. Data acquisition was performed PET/CT in non-motion and motion status with high 18 F solution and in non-motion status with low 18 F solution. In non-motion phantom experiments, we determined two types of threshold value, an absolute SUV (T SUV ) and a percentage of the maximum SUV (T % ). Delineation using threshold values was applied for all spheres and for selected large spheres (a diameter of 22 mm or larger). In motion phantom experiments, data acquisition was performed in a static mode (sPET) and a gated mode (gPET). CT scanning was performed with helical CT (HCT) and 4-dimentional CT (4DCT). The appropriate threshold values were aT % =27% and aT SUV =2.4 for all spheres, and sT % =30% and sT SUV =4.3 for selected spheres. For all spheres in sPET/HCT in motion, the delineated volumes were 84%-129% by the aT % and 34%-127% by the aT SUV . In gPET/4DCT in motion, the delineated volumes were 94-103% by the aT % and 51-131% by the aT SUV . For low radioactivity spheres, the delineated volumes were all underestimated. A threshold value of T % =27% was proposed for auto-contouring of lung tumors. Our results also suggested that the respiratory gated data acquisition should be performed in both PET and CT for target volume delineation. (author)

  1. A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio

    International Nuclear Information System (INIS)

    Hille, A.; Toews, N.; Schmidberger, H.; Hess, C.F.

    2005-01-01

    Background and purpose: rectal toxicity following external-beam irradiation of prostate cancer correlates with the exposed percentage of rectal volume. Recently, it has been recommended to reduce the volume of the seminal vesicles that should be included in the clinical target volume (CTV). The purpose of this study was to quantitatively assess the impact of this CTV reduction on the expected rectal and bladder dose sparing. Patients and methods: 14 patients with localized prostate cancer undergoing external-beam radiotherapy were investigated. The prostate, the prostate + entire seminal vesicles, or the prostate + proximal seminal vesicles were delineated as CTV. Treatment plans were generated and compared concerning rectum and bladder dose-volume histograms (DVHs). Results: the exposure of rectum and bladder volume was significantly lower in case of irradiation of the prostate only compared to inclusion of the proximal or entire seminal vesicles into the CTV. The reduction of the CTV from prostate + entire seminal vesicles to prostate + proximal seminal vesicles led to a significant reduction of the rectal and bladder dose exposure. Conclusion: reduction of the CTV to the prostate only, or to the prostate + proximal seminal vesicles led to significant rectal and bladder dose sparing compared to irradiation of the prostate + entire seminal vesicles. In patients with a higher risk for seminal vesicles involvement, irradiation of the prostate + proximal seminal vesicles should be preferred. In case of a need for irradiation of the entire seminal vesicles, patients should be informed about a higher risk for chronic rectal toxicity and, possibly, for bladder complications. (orig.)

  2. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer

    International Nuclear Information System (INIS)

    Messa, C.; IBFM-CNR, Milan; Scientific Institute H.S. Raffaele, Milan; Ceresoli, G.L.; Gregorc, V.; Rizzo, G.; Scientific Institute H.S. Raffaele, Milan; Artioli, D.; Cattaneo, M.; Castellone, P.; Picchio, M.; Landoni, C.; Scientific Institute H.S. Raffaele, Milan; Fazio, F.; IBFM-CNR, Milan; Scientific Institute H.S. Raffaele, Milan; Scientific Institute H.S. Raffaele, Milan

    2005-01-01

    Aim. To prospectively evaluate the impact of co registered positron emission tomography (PET) and computed tomography (CT) in 3D conformal radiotherapy (3D-CRT) planning in patients with non-small lung cancer (NSCLC). Methods. Twenty-one patients (median age: 57 years; range: 42-80 years) referred to 3D-CRT for NSCLC were recruited. Positron emission tomography with 18 F-fluorodeoxyglucose ([ 18 F]FDG-PET) and conventional CT images were coregistered (PET/CT images) using a commerciaI software package based on surface matching technique. Neoplastic areas were contoured on [ 18 F]FDGPET images with the aid of the correspondent CT image by a nuclear medicine physician. CT images and their relative PET contours were then transferred to treatment planning system. A radiation oncologist firstly contoured clinical target volumes (CTV) on CT scan alone (CTV-CT), and then on co registered PET/CT images (CTV-PET/CT). CTV-CT and CTV-PET/CT were compared for each patient; a difference higher than 25% was considered of clinical relevance. Results. Three patients were shifted to palliative radiotherapy for metastatic disease or very large tumor size, showed by [ 18 F]FDG-PET. Of the remaining 18 patients a CTV change, after inclusion of PET/CT data, was observed in 10/18 cases (55%): larger in 7/18 (range 33-279%) and smaller in 3/18 patients (range 26-34%), mainly due to inclusion or exclusion of Iymph-nodal disease and to better definition of tumor extent. CTV changes smaller than 25% occurred in the remaining 8/18 patients. Conclusion. [ 18 F]FDG-PET and CT images co-registration in radiotherapy treatment planning Ied to a change in CTV definition in the majority of our patients, which may signillcantly modify management and radiation treatment modality in these patients

  3. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  4. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  5. Volume arc therapy of gynaecological tumours: target volume coverage improvement without dose increase for critical organs; Arctherapie volumique des tumeurs gynecologiques: amelioration de la couverture du volume cible sans augmentation de la dose aux organes critiques

    Energy Technology Data Exchange (ETDEWEB)

    Ducteil, A.; Kerr, C.; Idri, K.; Fenoglietto, P.; Vieillot, S.; Ailleres, N.; Dubois, J.B.; Azria, D. [CRLC Val-d' Aurelle, Montpellier (France)

    2011-10-15

    The authors report the assessment of the application of conventional intensity-modulated conformational radiotherapy (IMRT) and volume arc-therapy (RapidArc) for the treatment of cervical cancers, with respect to conventional radiotherapy. Dosimetric plans associated with each of these techniques have been compared. Dose-volume histograms of these three plans have also been compared for the previsional target volume (PTV), organs at risk, and sane tissue. IMCT techniques are equivalent in terms of sparing of organs at risk, and improve target volume coverage with respect to conventional radiotherapy. Arc-therapy reduces significantly treatment duration. Short communication

  6. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation

    NARCIS (Netherlands)

    Leij, F. van der; Elkhuizen, P.H.M.; Janssen, T.M.; Poortmans, P.M.P.; Sangen, M. van der; Scholten, A.N.; Vliet-Vroegindeweij, C. van; Boersma, L.J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of

  7. External Validation and Optimization of International Consensus Clinical Target Volumes for Adjuvant Radiation Therapy in Bladder Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Abhinav V. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Christodouleas, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wu, Tianming [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Smith, Norman D.; Steinberg, Gary D. [Section of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States)

    2017-03-15

    Purpose: International consensus (IC) clinical target volumes (CTVs) have been proposed to standardize radiation field design in the treatment of patients at high risk of locoregional failure (LRF) after radical cystectomy. The purpose of this study was to externally validate the IC CTVs in a cohort of postsurgical patients followed up for LRF and identify revisions that might improve the IC CTVs' performance. Methods and Materials: Among 334 patients with pT3 to pT4 bladder cancer treated with radical cystectomy, LRF developed in 58 (17%), of whom 52 had computed tomography scans available for review. Images with LRF were exported into a treatment planning system, and IC CTVs were contoured and evaluated for adequacy of coverage of each LRF with respect to both the patient and each of 6 pelvic subsites: common iliac (CI) region, obturator region (OR), external and internal iliac region, presacral region, cystectomy bed, or other pelvic site. Revisions to the IC contours were proposed based on the findings. Results: Of the 52 patients with documented LRF, 13 (25%) had LRFs that were outside of the IC CTV involving 17 pelvic subsites: 5 near the CI CTV, 5 near the OR CTV, 1 near the external and internal iliac region, and 6 near the cystectomy bed. The 5 CI failures were located superior to the CTV, and the 5 OR failures were located medial to the CTV. Increasing the superior boundary of the CI to a vessel-based definition of the aortic bifurcation, as well as increasing the medial extension of the OR by an additional 9 mm, decreased the number of patients with LRF outside of the IC CTV to 7 (13%). Conclusions: Modified IC CTVs inclusive of a slight adjustment superiorly for the CI region and medially for the OR may reduce the risk of pelvic failure in patients treated with adjuvant radiation therapy.

  8. The influence of target and patient characteristics on the volume obtained from cone beam CT in lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Liu, Hong-Wei; Khan, Rao; D’Ambrosi, Rafael; Krobutschek, Krista; Nugent, Zoann; Lau, Harold

    2013-01-01

    Purpose: To investigate the influence of tumor and patient characteristics on the target volume obtained from cone beam CT (CBCT) in lung stereotactic body radiation therapy (SBRT). Materials and methods: For a given cohort of 71 patients, the internal target volume (ITV) in CBCT obtained from four different datasets was compared with a reference ITV drawn on a four-dimensional CT (4DCT). The significance of the tumor size, location, relative target motion (RM) and patient’s body mass index (BMI) and gender on the adequacy of ITV obtained from CBCT was determined. Results: The median ITV-CBCT was found to be smaller than the ITV-4DCT by 11.8% (range: −49.8 to +24.3%, P < 0.001). Small tumors located in the lower lung were found to have a larger RM than large tumors in the upper lung. Tumors located near the central lung had high CT background which reduced the target contrast near the edges. Tumor location close to center vs. periphery was the only significant factor (P = 0.046) causing underestimation of ITV in CBCT, rather than RM (P = 0.323) and other factors. Conclusions: The current clinical study has identified that the location of tumor is a major source of discrepancy between ITV-CBCT and ITV-4DCT for lung SBRT

  9. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  10. Fluid Volume Expansion and Depletion in Hemodialysis Patients Lack Association with Clinical Parameters

    Directory of Open Access Journals (Sweden)

    Sylvia Kalainy

    2015-12-01

    Full Text Available Background: Achievement of normal volume status is crucial in hemodialysis (HD, since both volume expansion and volume contraction have been associated with adverse outcome and events. Objectives: The objectives of this study are to assess the prevalence of fluid volume expansion and depletion and to identify the best clinical parameter or set of parameters that can predict fluid volume expansion in HD patients. Design: This study is cross-sectional. Setting: This study was conducted in three hemodialysis units. Patients: In this study, there are 194 HD patients. Methods: Volume status was assessed by multifrequency bio-impedance spectroscopy (The Body Composition Monitor, Fresenius prior to the mid-week HD session. Results: Of all patients, 48 % ( n = 94 were volume-expanded and 9 % of patients were volume-depleted ( n = 17. Interdialytic weight gain was not different between hypovolemic, normovolemic, and hypervolemic patients. Fifty percent of the volume-expanded patients were hypertensive. Paradoxical hypertension was very common (31 % of all patients; its incidence was not different between patient groups. Intradialytic hypotension was relatively common and was more frequent among hypovolemic patients. Multivariate regression analysis identified only four predictors for volume expansion (edema, lower BMI, higher SBP, and smoking. None of these parameters displayed both a good sensitivity and specificity. Limitations: The volume assessment was performed once. Conclusions: The study indicates that volume expansion is highly prevalent in HD population and could not be identified using clinical parameters alone. No clinical parameters were identified that could reliably predict volume status. This study shows that bio-impedance can assist to determine volume status. Volume status, in turn, is not related to intradialytic weight gain and is unable to explain the high incidence of paradoxical hypertension.

  11. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  12. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  13. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  14. Target volume delineation in external beam partial breast irradiation: Less inter-observer variation with preoperative- compared to postoperative delineation

    International Nuclear Information System (INIS)

    Leij, Femke van der; Elkhuizen, Paula H.M.; Janssen, Tomas M.; Poortmans, Philip; Sangen, Maurice van der; Scholten, Astrid N.; Vliet-Vroegindeweij, Corine van; Boersma, Liesbeth J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of twenty-four breast cancer patients

  15. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Lorraine [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Cox, Jennifer [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Morgia, Marita [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Atyeo, John [Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Lamoury, Gillian [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia)

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.

  16. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    International Nuclear Information System (INIS)

    Lewis, Lorraine; Cox, Jennifer; Morgia, Marita; Atyeo, John; Lamoury, Gillian

    2015-01-01

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm 3 (4–118) and CT2ch: median 16 cm 3 , (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence

  17. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

    Science.gov (United States)

    Lammers, Twan; Kiessling, Fabian; Hennink, Wim E; Storm, Gert

    2012-07-20

    Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  19. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    Science.gov (United States)

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  20. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    Science.gov (United States)

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Impact of target volume coverage with Radiation Therapy Oncology Group (RTOG) 98-05 guidelines for transrectal ultrasound guided permanent Iodine-125 prostate implants

    International Nuclear Information System (INIS)

    Horwitz, Eric M.; Mitra, Raj K.; Uzzo, Robert G.; Das, Indra J.; Pinover, Wayne H.; Hanlon, Alexandra L.; McNeeley, Shawn W.; Hanks, Gerald E.

    2003-01-01

    Purpose: Despite the wide use of permanent prostate implants for the treatment of early stage prostate cancer, there is no consensus for optimal pre-implant planning guidelines that results in maximal post-implant target coverage. The purpose of this study was to compare post-implant target volume coverage and dosimetry between patients treated before and after Radiation Therapy Oncology Group (RTOG) 98-05 guidelines were adopted using several dosimetric endpoints. Materials and methods: Ten consecutively treated patients before the adoption of the RTOG 98-05 planning guidelines were compared with ten consecutively treated patients after implementation of the guidelines. Pre-implant planning for patients treated pre-RTOG was based on the clinical target volume (CTV) defined by the pre-implant TRUS definition of the prostate. The CTV was expanded in each dimension according to RTOG 98-05 and defined as the planning target volume. The evaluation target volume was defined as the post-implant computed tomography definition of the prostate based on RTOG 98-05 protocol recommendations. Implant quality indicators included V 100 , V 90 , V 100 , and Coverage Index (CI). Results: The pre-RTOG median V 100 , V 90 , D 90 , and CI values were 82.8, 88.9%, 126.5 Gy, and 17.1, respectively. The median post-RTOG V 100 , V 90 , D 90 , and CI values were 96.0, 97.8%, 169.2 Gy, and 4.0, respectively. These differences were all statistically significant. Conclusions: Implementation of the RTOG 98-05 implant planning guidelines has increased coverage of the prostate by the prescription isodose lines compared with our previous technique, as indicated by post-implant dosimetry indices such as V 100 , V 90 , D 90 . The CI was also improved significantly with the protocol guidelines. Our data confirms the validity of the RTOG 98-05 implant guidelines for pre-implant planning as it relates to enlargement of the CTV to ensure adequate margin between the CTV and the prescription isodose

  2. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    Science.gov (United States)

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural

  3. Low versus high volume of culture medium during embryo transfer: a randomized clinical trial.

    Science.gov (United States)

    Sigalos, George Α; Michalopoulos, Yannis; Kastoras, Athanasios G; Triantafyllidou, Olga; Vlahos, Nikos F

    2018-04-01

    The aim of this prospective randomized control trial was to evaluate if the use of two different volumes (20-25 vs 40-45 μl) of media used for embryo transfer affects the clinical outcomes in fresh in vitro fertilization (IVF) cycles. In total, 236 patients were randomized in two groups, i.e., "low volume" group (n = 118) transferring the embryos with 20-25 μl of medium and "high volume" group (n = 118) transferring the embryos with 40-45 μl of medium. The clinical pregnancy, implantation, and ongoing pregnancy rates were compared between the two groups. No statistically significant differences were observed in clinical pregnancy (46.8 vs 54.3%, p = 0.27), implantation (23.7 vs 27.8%, p = 0.30), and ongoing pregnancy (33.3 vs 40.0%, p = 0.31) rates between low and high volume group, respectively. Higher volume of culture medium to load the embryo into the catheter during embryo transfer does not influence the clinical outcome in fresh IVF cycles. NCT03350646.

  4. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    International Nuclear Information System (INIS)

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-01-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  6. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Energy Technology Data Exchange (ETDEWEB)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  7. How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy?

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Nerurkar, Ashutosh Y.; Desai, Saral S.; Krupa, Jaroslaw; Devalia, Haresh; Rovere, Guidubaldo Querci della; Harris, Emma J.; Kyriakidou, Julia; Yarnold, John R.

    2010-01-01

    Background and purpose: To compare partial-breast clinical target volumes generated using a standard 15 mm margin (CTV standard ) with those generated using three-dimensional surgical excision margins (CTV tailored30 ) in women who have undergone wide local excision (WLE) for breast cancer. Material and methods: Thirty-five women underwent WLE with placement of clips in the anterior, deep and coronal excision cavity walls. Distances from tumour to each of six margins were measured microscopically. Tumour bed was defined on kV-CT images using clips. CTV standard was generated by adding a uniform three-dimensional 15 mm margin, and CTV tailored30 was generated by adding 30 mm minus the excision margin in three-dimensions. Concordance between CTV standard and CTV tailored30 was quantified using conformity (CoI), geographical-miss (GMI) and normal-tissue (NTI) indices. An external-beam partial-breast irradiation (PBI) plan was generated to cover 95% of CTV standard with the 95% isodose. Percentage-volume coverage of CTV tailored30 by the 95% isodose was measured. Results: Median (range) coronal, superficial and deep excision margins were 15.0 (0.5-76.0) mm, 4.0 (0.0-60.0) mm and 4.0 (0.5-35.0) mm, respectively. Median CoI, GMI and NTI were 0.62, 0.16 and 0.20, respectively. Median coverage of CTV tailored30 by the PBI-plan was 97.7% (range 84.9-100.0%). CTV tailored30 was inadequately covered by the 95% isodose in 4/29 cases. In three cases, the excision margin in the direction of inadequate coverage was ≤2 mm. Conclusions: CTVs based on 3D excision margin data are discordant with those defined using a standard uniform 15 mm TB-CTV margin. In women with narrow excision margins, the standard TB-CTV margin could result in a geographical miss. Therefore, wider TB-CTV margins should be considered where re-excision does not occur.

  8. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  9. Target volumes in radiation therapy of childhood brain tumours

    International Nuclear Information System (INIS)

    Habrand, J.L.; Abdulkarim, B.; Beaudre, A.; El Khouri, M.; Kalifa, C.

    2001-01-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  10. Dose and volume specification for reporting NCT. An ICRU-IAEA initiative

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.; Whitmore, G.; Levin, C.V.

    2000-01-01

    The present recommendations result from of an ICRU-IAEA initiative for harmonization of reporting NCT (Neutron Capture Therapy). As stated by the ISNCT, harmonization of reporting is required to understand what has actually been done and interpret the clinical results on the basis of reliable information. Prescription of a treatment remains the responsibility of the radiation oncologist in charge of the patient. Complete oncological data should be reported, including Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) as well as Planning Target Volume (PTV), Treated Volume and Organs/Structures at Risk. A reference point for reporting dose should be selected in the central part of the PTV/CTV. At each point of interest, the four components contributing to the absorbed dose and the weighting factors applied to take account of the RBE (Relative Biological Effectiveness) differences should be specified. (author)

  11. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer

    International Nuclear Information System (INIS)

    Muijs, Christina T.; Schreurs, Liesbeth M.; Busz, Dianne M.; Beukema, Jannet C.; Borden, Arnout J. van der; Pruim, Jan; Van der Jagt, Eric J.; Plukker, John Th.; Langendijk, Johannes A.

    2009-01-01

    Background and purpose: To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. Materials and methods: For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. Results: The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p < 0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. Conclusions: This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  12. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: Clinical significance of portable bladder scanner

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huanli; Jin, Fu; Yang, Dingyi; Wang, Ying; Li, Chao; Guo, Mingfang; Ran, Xueqi; Liu, Xianfeng; Zhou, Qi; Wu, Yongzhong, E-mail: jfazj@126.com [Department of Radiation Oncology, Chongqing Cancer Institute, No. 181, Han Yu Road, Chongqing 400030 (China)

    2016-07-15

    Purpose: A constant bladder volume (BV) is essential to direct the radiotherapy (RT) of pelvic tumors with precision. The purpose of this study was to investigate changes in BV and their impact on cervical cancer RT and to assess the clinical significance of a portable bladder scanner (BS) in achieving a constant BV. Methods: A standard bladder phantom (133 ml) and measurements of actual urine volume were both used as benchmarks to evaluate the accuracy of the BS. Comparisons of BS with computed tomography (CT), cone-beam CT (CBCT), and an ultrasound diagnostic device (iU22) were made. Twenty-two consecutive patients with cervical cancer treated with external beam radical RT were divided into an experimental group (13 patients) and a control group (9 patients). In the experimental group, the BV was measured multiple times by BS pre-RT until it was consistent with that found by planning CT. Then a CBCT was performed. The BV was measured again immediately post-RT, after which the patient’s urine was collected and recorded. In the control group, CBCT only was performed pre-RT. Interfractional changes in BV and their impact on cervical cancer RT were investigated in both groups. The time of bladder filling was also recorded and analyzed. Results: In measuring the volume of the standard bladder phantom, the BS deviated by 1.4% in accuracy. The difference between the measurements of the BS and the iU22 had no statistical significance (linear correlation coefficient 0.96, P < 0.05). The BV measured by the BS was strongly correlated with the actual urine volume (R = 0.95, P < 0.05), planning CT (R = 0.95, P < 0.05), or CBCT (R = 0.91, P < 0.05). Compared with the BV at the time of CT, its value changed by −36.1% [1 SD (standard deviation) 42.3%; range, −79.1%–29.4%] in the control group, and 5.2% (1 SD 21.5%; range, −13.3%–22.1%) in the experimental group during treatment. The change in BV affected the target position in the superior–inferior (SI) direction

  13. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  14. Comparison of internal target volumes defined on 3-dimensional, 4-dimensonal, and cone-beam CT images of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Li F

    2016-11-01

    Full Text Available Fengxiang Li,1 Jianbin Li,1 Zhifang Ma,1 Yingjie Zhang,1 Jun Xing,1 Huanpeng Qi,1 Dongping Shang21Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of ChinaPurpose: The purpose of this study was to compare the positional and volumetric differences of internal target volumes defined on three-dimensional computed tomography (3DCT, four-dimensional CT (4DCT, and cone-beam CT (CBCT images of non-small-cell lung cancer (NSCLC. Materials and methods: Thirty-one patients with NSCLC sequentially underwent 3DCT and 4DCT simulation scans of the thorax during free breathing. The first CBCT was performed and registered to the planning CT using the bony anatomy registration during radiotherapy. The gross tumor volumes were contoured on the basis of 3DCT, maximum intensity projection (MIP of 4DCT, and CBCT. CTV3D (clinical target volume, internal target volumes, ITVMIP and ITVCBCT, were defined with a 7 mm margin accounting for microscopic disease. ITV10 mm and ITV5 mm were defined on the basis of CTV3D: ITV10 mm with a 5 mm margin in left–right (LR, anterior–posterior (AP directions and 10 mm in cranial–caudal (CC direction; ITV5 mm with an isotropic internal margin (IM of 5 mm. The differences in the position, size, Dice’s similarity coefficient (DSC and inclusion relation of different volumes were evaluated.Results: The median size ratios of ITV10 mm, ITV5 mm, and ITVMIP to ITVCBCT were 2.33, 1.88, and 1.03, respectively, for tumors in the upper lobe and 2.13, 1.76, and 1.1, respectively, for tumors in the middle-lower lobe. The median DSCs of ITV10 mm, ITV5 mm, ITVMIP, and ITVCBCT were 0.6, 0.66, and 0.83 for all patients. The median percentages of ITVCBCT not included in ITV10 mm, ITV5 mm, and ITVMIP were 0.1%, 1.63%, and 15.21%, respectively, while the median percentages of ITV10 mm, ITV5 mm

  15. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  16. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-01-01

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  17. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clements, N. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia and Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Kron, T.; Roxby, P. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Franich, R.; Dunn, L. [Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Aarons, Y.; Chesson, B. [Department of Radiation Therapy, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Siva, S.; Duplan, D.; Ball, D. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when

  18. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  19. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  20. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  1. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ±1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  2. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver

    International Nuclear Information System (INIS)

    Wulf, Joern; Haedinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-01-01

    Background and purpose: Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5 mm in axial and 5-10 mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Materials and methods: Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10 mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). Results: A decrease of TC to 3 . Conclusions: Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV ≥95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm 3 are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins

  3. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenboeck, S.M.; Kurth, J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Gocke, C.; Kuhnt, T.; Hildebrandt, G. [University Medical Centre Rostock, Department of Radiotherapy, Rostock (Germany); Krause, B.J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Universitaet Rostock, Department of Nuclear Medicine, Universitaetsmedizin Rostock, Rostock (Germany)

    2013-07-15

    Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning. (orig.)

  4. Target volume definition with 18F-FDG PET-CT in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Carson, K. J.; Hanna, G. G.; Hounsell, A. R.

    2011-01-01

    There is considerable interest in using 18F -Fluorodeoxyglucose (FDG) positron emission tomography (PET) images for radiotherapy treatment planning (RTF) purposes, and in particular for defining target volumes. This is a rapidly evolving subject and this review describes the background to this application of PET imaging and discusses the issues involved. (authors)

  5. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-01-01

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V 20 values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  6. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression.

    Science.gov (United States)

    Nordanskog, P; Larsson, M R; Larsson, E-M; Johanson, A

    2014-04-01

    In a previous magnetic resonance imaging (MRI) study, we found a significant increase in hippocampal volume immediately after electroconvulsive therapy (ECT) in patients with depression. The aim of this study was to evaluate hippocampal volume up to 1 year after ECT and investigate its possible relation to clinical and cognitive outcome. Clinical and cognitive outcome in 12 in-patients with depression receiving antidepressive pharmacological treatment referred for ECT were investigated with the Montgomery-Asberg Depression Rating Scale (MADRS) and a broad neuropsychological test battery within 1 week before and after ECT. The assessments were repeated 6 and 12 months after baseline in 10 and seven of these patients, respectively. Hippocampal volumes were measured on all four occasions with 3 Tesla MRI. Hippocampal volume returned to baseline during the follow-up period of 6 months. Neither the significant antidepressant effect nor the significant transient decrease in executive and verbal episodic memory tests after ECT could be related to changes in hippocampal volume. No persistent cognitive side effects were observed 1 year after ECT. The immediate increase in hippocampal volume after ECT is reversible and is not related to clinical or cognitive outcome. © 2013 The Authors. Acta Psychiatrica Scandinavica published by John Wiley & Sons Ltd.

  7. Probe into rational target volume of nasopharyngeal carcinoma having been treated with conventional radiotherapy

    International Nuclear Information System (INIS)

    Zheng Yingjie; Zhao Chong; Lu Lixia; Wu Shaoxiong; Cui Nianji; Chen Fujin

    2006-01-01

    Objective: To analyze the local control rate and the dosimetric patterns of local recurrence in nasopharyngeal carcinoma (NPC) patients having been treated with standardized conventional radiotherapy and to evaluate the delineation of rational target volume. Methods: From Jan. 2000 to Dec. 2000, 476 patients with untreated NPC were treated by standardized conventional radiotherapy alone at the Sun Yat-sen University Cancer Center. The radiation ports were designed on a X-ray simulator. The nasopharyngeal lesion demonstrated by CT scan and the subclinical spread regions adjacent to the nasopharynx were defined as the target volume. Kaplan- Meier method was used to calculate the cumulative local recurrence rate. For patients with local recurrence, the primary and recurrent local tumor volumes(V nx , V recur ) were delineated with three-dimensional treatment planning system(3DTPS), and the dataset of radiation ports and delivered prescription dose to the 3DTPS were transferred according to the first treatment. The dose of radiation received by V recur was calculated and analyzed with dose- volume histogram(DVH). Local recurrence was classified as: 1. 'in-port' with 95% or more of the recurrence volume ( recur V 95 ) was within the 95% isodose; 2. 'marginal' with 20% to 95% of recur V 95 within the 95% isodose; 3. o utside w ith only less than 20% of recur V 95 within the 95% isodose curve. Results: With the median follow- up of 42.5 months (range 8-54 months), 52 patients developed local recurrence. The 1-, 2-, 3 and 4-year cumulative local failure rate was 0.6%, 3.9%, 8.7% and 11.5%, respectively. Among the 42 local recurrent patients who could be analyzed by 3DTPS, 52% were in-port, 40% were marginal and 7% were outside. For most of the marginal recurrence and all the outside recurrence patients, the main reason of recurrence were related to the unreasonable design of the radiation port and inaccuracy in the interpretation image findings. Conclusions: The outcome of

  8. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Weber, Wolfgang A.; Astner, Sabrina T.; Adam, Markus; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Nieder, Carsten

    2006-01-01

    Purpose: To evaluate the role of 11 C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and r = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion

  9. Anatomy, gross tumor volume and clinical target volume: tumors of the lower third of the esophagus and the gastro esophageal junction

    International Nuclear Information System (INIS)

    Calais, G.; Asquier, E.; Louisot, P.

    2001-01-01

    The esophagus is divided into four regions: cervical esophagus, intrathoracic esophagus with upper, mid and lower thoracic portion. Cancer may occur on each of these regions. Computed tomography of the thorax and superior abdomen and endoscopic ultrasound are necessary for reliable staging. CT simulation allows accurate definition of tumor volume. GTV includes tumor volume and regional lymph nodes. CTV encompasses GTV plus safety margin and lymph nodes areas considered to harbor potential microscopic disease. The extent of prophylactic lymph node irradiation depends on the anatomic location of the primary tumor. (author)

  10. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma.

    Science.gov (United States)

    Moghaddasi, L; Bezak, E; Harriss-Phillips, W

    2016-05-07

    Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0-2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6  ±  3.3%, 78.5  ±  3.3%, and 77.7  ±  3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically

  11. Automatic definition of targeted biological volumes for the radiotherapy applications

    International Nuclear Information System (INIS)

    Hatt, M.; Visvikis, D.; Cheze-Le-Rest, C.; Pradier, O.

    2009-01-01

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ( 18 F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  12. A New Suggestion for the Radiation Target Volume After a Subtotal Gastrectomy in Patients With Stomach Cancer

    International Nuclear Information System (INIS)

    Nam, Heerim; Lim, Do Hoon; Kim, Sung; Kang, Won Ki; Sohn, Tae Sung; Noh, Jae Hyung; Kim, Yong Il; Park, Chan Hyung; Park, Chul Keun; Ahn, Yong Chan; Huh, Seung Jae

    2008-01-01

    Purpose: To compare treatment results between the use of two different radiation fields including and excluding remnant stomach and suggest new target volumes excluding remnant stomach after subtotal gastrectomy (STG) in patients with stomach cancer. Methods and Materials: We retrospectively analyzed 291 patients treated with adjuvant chemoradiotherapy after STG and D2 dissection at the Samsung Medical Center, Seoul, South Korea. Eighty-three patients registered from 1995 to 1997 underwent irradiation according to the INT 0116 protocol that recommended the inclusion of remnant stomach within the target volume (Group A). After this period, we excluded remnant stomach from the target volume for 208 patients (Group B). Median follow-up was 67 months. Results: Treatment failure developed in 93 patients (32.0%). Local and regional recurrence rates for Group A vs. Group B were 10.8% vs. 5.3% (p = not significant) and 9.6% vs. 6.3% (p = not significant), and recurrence rates for remnant stomach were 7.2% vs. 1.4% (p = 0.018), respectively. Overall and disease-free survival rates were not different between the two groups. Grade 3 or 4 vomiting and diarrhea developed more frequently in Group A than Group B (4.8% vs. 1.4% and 6.0% vs. 1.9%, respectively; p = 0.012; p < 0.001). Conclusion: Exclusion of remnant stomach from the radiation field had no effect on failure rates or survival, and a low complication rate occurred in patients treated excluding remnant stomach. We suggest that remnant stomach be excluded from the radiation target volume for patients with stomach cancer who undergo STG and D2 dissection

  13. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    Science.gov (United States)

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  14. Impact of systematic errors on DVH parameters of different OAR and target volumes in Intracavitary Brachytherapy (ICBT)

    International Nuclear Information System (INIS)

    Mourya, Ankur; Singh, Gaganpreet; Kumar, Vivek; Oinam, Arun S.

    2016-01-01

    Aim of this study is to analyze the impact of systematic errors on DVH parameters of different OAR and Target volumes in intracavitary brachytherapy (ICBT). To quantify the changes in dose-volume histogram parameters due to systematic errors in applicator reconstruction of brachytherapy planning, known errors in catheter reconstructions have to be introduced in applicator coordinate system

  15. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.

    LENUS (Irish Health Repository)

    Gasch, Claudia

    2017-01-01

    It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.

  16. Imbalanced target prediction with pattern discovery on clinical data repositories.

    Science.gov (United States)

    Chan, Tak-Ming; Li, Yuxi; Chiau, Choo-Chiap; Zhu, Jane; Jiang, Jie; Huo, Yong

    2017-04-20

    Clinical data repositories (CDR) have great potential to improve outcome prediction and risk modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge this gap, so that clinical domain users can perform first-hand prediction on existing repository data without complicated handling, and obtain insightful patterns of imbalanced targets for a formal study before it is conducted. We specifically target for interpretability for domain users where the model can be conveniently explained and applied in clinical practice. We propose an interpretable pattern model which is noise (missing) tolerant for practice data. To address the challenge of imbalanced targets of interest in clinical research, e.g., deaths less than a few percent, the geometric mean of sensitivity and specificity (G-mean) optimization criterion is employed, with which a simple but effective heuristic algorithm is developed. We compared pattern discovery to clinically interpretable methods on two retrospective clinical datasets. They contain 14.9% deaths in 1 year in the thoracic dataset and 9.1% deaths in the cardiac dataset, respectively. In spite of the imbalance challenge shown on other methods, pattern discovery consistently shows competitive cross-validated prediction performance. Compared to logistic regression, Naïve Bayes, and decision tree, pattern discovery achieves statistically significant (p-values repositories with imbalance and noise. The prediction results and interpretable patterns can provide insights in an agile and inexpensive way for the potential formal studies.

  17. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-08-01

    Full Text Available Wei Wang, Jianbin Li, Yingjie Zhang, Qian Shao, Min Xu, Tingyong Fan, Jinzhi Wang Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, People’s Republic of China Background and purpose: To investigate the definition of planning target volumes (PTVs based on four-dimensional computed tomography (4DCT compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods: Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A, middle (group B, and distal (group C thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results: The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue

  18. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, G; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  19. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, Maarten C.C.M. [Department of Radiation Oncology, University of Amsterdam (Netherlands)]. E-mail: m.c.hulshof@amc.uva.nl; Andel, George van [Department of Urology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands); Bel, Arjen [Department of Radiation Oncology, University of Amsterdam (Netherlands); Gangel, Pieter [Department of Radiation Oncology, University of Amsterdam (Netherlands); Kamer, Jeroen B. van de [Department of Radiation Oncology, University of Amsterdam (Netherlands)

    2007-07-15

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  20. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas

    International Nuclear Information System (INIS)

    Hulshof, Maarten C.C.M.; Andel, George van; Bel, Arjen; Gangel, Pieter; Kamer, Jeroen B. van de

    2007-01-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer

  1. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas.

    Science.gov (United States)

    Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B

    2007-07-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  2. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y; Yu, J; Xiao, Y [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  3. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    International Nuclear Information System (INIS)

    Gong, Y; Yu, J; Xiao, Y

    2015-01-01

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant

  4. BED-Volume histograms calculation for routine clinical dosimetry in brachytherapy

    International Nuclear Information System (INIS)

    Galelli, M.; Feroldi, P.

    1995-01-01

    The consideration of volumes is essential in Brachytherapy clinical dosimetry (I.C.R.U). Indeed, several indices, all based on dose-volume histograms (DVHs), have been designed in order to evaluate: before the therapy the volumetric quality of different possible implant geometries; during the therapy the consistency of the real and the previsional implants. Radiobiological evaluations, considering the dose deposition temporal pattern of treatment, can be usefully added to dosimetric calculations, to compare different treatment schedules. The Linear-Quadratic model is the most used: radiobiological modelisation and Biologically Effective Dose (BED) is principal related dosimetric quantity. Therefore, the consideration of BED-volume histogram (BED-VHs) is a straightforward extension of DVHs. In practice, BED-VHs can help relative comparisons and optimisations in treatment planning when combined to dose-volume histograms. Since 1994 the dosimetric calculations for all the gynecological brachytherapy treatments are performed considering also DVHs and BED-VHs. In this presentation we show the methods of BEDVHs calculation, together with some typical results

  5. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    Energy Technology Data Exchange (ETDEWEB)

    Pogson, Elise M. [Centre for Medical Radiation Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong (Australia); Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); Delaney, Geoff P. [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); School of Medicine, University of Western Sydney, Sydney (Australia); Ahern, Verity [Crown Princess Mary Cancer Care Centre, Westmead Hospital, Westmead (Australia); Boxer, Miriam M. [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Chan, Christine [Department of Radiology, Liverpool Hospital, Liverpool (Australia); David, Steven [Peter MacCallum Cancer Centre, Melbourne (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, Liverpool (Australia); Harvey, Jennifer A. [School of Medicine, University of Queensland, Herston (Australia); Princess Alexandra Hospital, Woolloongabba (Australia); Koh, Eng-Siew [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Lim, Karen [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Papadatos, George [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); and others

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modality did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.

  6. Identification of clinical target areas in the brainstem of prion‐infected mice

    Science.gov (United States)

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  7. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines.

    Science.gov (United States)

    Grégoire, Vincent; Evans, Mererid; Le, Quynh-Thu; Bourhis, Jean; Budach, Volker; Chen, Amy; Eisbruch, Abraham; Feng, Mei; Giralt, Jordi; Gupta, Tejpal; Hamoir, Marc; Helito, Juliana K; Hu, Chaosu; Hunter, Keith; Johansen, Jorgen; Kaanders, Johannes; Laskar, Sarbani Ghosh; Lee, Anne; Maingon, Philippe; Mäkitie, Antti; Micciche', Francesco; Nicolai, Piero; O'Sullivan, Brian; Poitevin, Adela; Porceddu, Sandro; Składowski, Krzysztof; Tribius, Silke; Waldron, John; Wee, Joseph; Yao, Min; Yom, Sue S; Zimmermann, Frank; Grau, Cai

    2018-01-01

    Few studies have reported large inter-observer variations in target volume selection and delineation in patients treated with radiotherapy for head and neck squamous cell carcinoma. Consensus guidelines have been published for the neck nodes (see Grégoire et al., 2003, 2014), but such recommendations are lacking for primary tumour delineation. For the latter, two main schools of thoughts are prevailing, one based on geometric expansion of the Gross Tumour Volume (GTV) as promoted by DAHANCA, and the other one based on anatomical expansion of the GTV using compartmentalization of head and neck anatomy. For each anatomic location within the larynx, hypopharynx, oropharynx and oral cavity, and for each T-stage, the DAHANCA proposal has been comprehensively reviewed and edited to include anatomic knowledge into the geometric Clinical Target Volume (CTV) delineation concept. A first proposal was put forward by the leading authors of this publication (VG and CG) and discussed with opinion leaders in head and neck radiation oncology from Europe, Asia, Australia/New Zealand, North America and South America to reach a worldwide consensus. This consensus proposes two CTVs for the primary tumour, the so called CTV-P1 and CVT-P2, corresponding to a high and lower tumour burden, and which should be associated with a high and a lower dose prescription, respectively. Implementation of these guidelines in the daily practice of radiation oncology should contribute to reduce treatment variations from clinicians to clinicians, facilitate the conduct of multi-institutional clinical trials, and contribute to improved care of patients with head and neck carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An analytic solution for calculating the beam intensity profiles useful to irradiate target volumes with bi-concave outlines

    Energy Technology Data Exchange (ETDEWEB)

    De Neve, W; Derycke, S; De Wagter, C [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde

    1995-12-01

    A heuristic planing procedure allowing to obtain a 3-dimensional conformal dose distribution in radiotherapy for target volumes with a bi-concave or multi-concave shape has been developed. The described method is tested on a phantom simulating a pelvic target, described by Brahme.

  9. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    International Nuclear Information System (INIS)

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-01-01

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs

  10. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  11. Multiphasic perfusion CT in acute middle cerebral artery ischemic stroke: prediction of final infarct volume and correlation with clinical outcome

    International Nuclear Information System (INIS)

    Yi, Chin A; Na, Dong Gyu; Ryoo, Jae Wook; Moon, Chan Hong; Byun, Hong Sik; Roh, Hong Gee; Moon, Won Jin; Lee, Kwang Ho; Lee, Soo Joo

    2002-01-01

    To assess the utility of multiphasic perfusion CT in the prediction of final infarct volume, and the relationship between lesion volume revealed by CT imaging and clinical outcome in acute ischemic stroke patients who have not undergone thrombolytic therapy. Thirty-five patients underwent multiphasic perfusion CT within six hours of stroke onset. After baseline unenhanced helical CT scanning, contrast-enhanced CT scans were obtained 20, 34, 48, and 62 secs after the injection of 90 mL contrast medium at a rate of 3 mL/sec. CT peak and total perfusion maps were obtained from serial CT images, and the initial lesion volumes revealed by CT were compared with final infarct volumes and clinical scores. Overall, the lesion volumes seen on CT peak perfusion maps correlated most strongly with final infarct volumes (R2=0.819, p<0.001, slope of regression line=1.016), but individual data showed that they were less than final infarct volume in 31.4% of patients. In those who showed early clinical improvement (n=6), final infarct volume tended to be overestimated by CT peak perfusion mapping and only on total perfusion maps was there significant correlation between lesion volume and final infarct volume (R2=0.854, p=0.008). The lesion volumes depicted by CT maps showed moderate correlation with baseline clinical scores and clinical outcomes (R=0.445-0.706, p≤0.007). CT peak perfusion maps demonstrate strong correlation between lesion volume and final infarct volume, and accurately predict final infarct volume in about two-thirds of the 35 patients. The lesion volume seen on CT maps shows moderate correlation with clinical outcome

  12. ANALISIS SEGMENTASI, TARGETING, POSITIONING (STP TERHADAP PENINGKATAN VOLUME PENJUALAN PADA RUMAH GRIYA MULYA ASRI DI KOTA MAKASSAR

    Directory of Open Access Journals (Sweden)

    Fitri _

    2017-08-01

    Full Text Available Volume at Griya Mulya Asri House In Makassar City. Guided by DR.Hj.Herminawati Abubakar., S.E., M.M and DR.Haeruddin Saleh., S.E., M.SiHome is a basic human need other than clothing and food. The increasing housing demand for Makassar residents encourages housing developers to provide more viable alternative housing solutions. Griya Mulya Asri Housing Estate is one of the best alternative choice for people who want a relaxed atmosphere amidst the urban bustle. Griya Mulya Asri Housing is very good for the habitable area in terms of price, facilities, comfort and location.This study aims to analyze the strategy of segmentation, targeting, positioning (STP applied by PT Hinda Assalam Brother to increase the sales volume of the house at Griya Mulya Asri. Analyzer used is multiple linear regression. Respondents of this research are Griya Mulya Asri resident. The result of analysis shows that segmentation, targeting, positioning strategy influence to the increase of sales volume.

  13. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?

    International Nuclear Information System (INIS)

    Giraud, Philippe; De Rycke, Yann; Lavole, Armelle; Milleron, Bernard; Cosset, Jean-Marc; Rosenzweig, Kenneth E.

    2006-01-01

    Purpose: Conformal irradiation (3D-CRT) of non-small-cell lung carcinoma (NSCLC) is largely based on precise definition of the nodal clinical target volume (CTVn). A reduction of the number of nodal stations to be irradiated would facilitate tumor dose escalation. The aim of this study was to design a mathematical tool based on documented data to predict the risk of metastatic involvement for each nodal station. Methods and Materials: We reviewed the large surgical series published in the literature to identify the main pretreatment parameters that modify the risk of nodal invasion. The probability of involvement for the 17 nodal stations described by the American Thoracic Society (ATS) was computed from all these publications. Starting with the primary site of the tumor as the main characteristic, we built a probabilistic tree for each nodal station representing the risk distribution as a function of each tumor feature. Statistical analysis used the inversion of probability trees method described by Weinstein and Feinberg. Validation of the software based on 134 patients from two different populations was performed by receiver operator characteristic (ROC) curves and multivariate logistic regression. Results: Analysis of all of the various parameters of pretreatment staging relative to each level of the ATS map results in 20,000 different combinations. The first parameters included in the tree, depending on tumor site, were histologic classification, metastatic stage, nodal stage weighted as a function of the sensitivity and specificity of the diagnostic examination used (positron emission tomography scan, computed tomography scan), and tumor stage. Software is proposed to compute a predicted probability of involvement of each nodal station for any given clinical presentation. Double cross validation confirmed the methodology. A 10% cutoff point was calculated from ROC and logistic model giving the best prediction of mediastinal lymph node involvement. Conclusion

  14. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  15. Perioperative mortality in cats and dogs undergoing spay or castration at a high-volume clinic.

    Science.gov (United States)

    Levy, J K; Bard, K M; Tucker, S J; Diskant, P D; Dingman, P A

    2017-06-01

    High volume spay-neuter (spay-castration) clinics have been established to improve population control of cats and dogs to reduce the number of animals admitted to and euthanazed in animal shelters. The rise in the number of spay-neuter clinics in the USA has been accompanied by concern about the quality of animal care provided in high volume facilities, which focus on minimally invasive, time saving techniques, high throughput and simultaneous management of multiple animals under various stages of anesthesia. The aim of this study was to determine perioperative mortality for cats and dogs in a high volume spay-neuter clinic in the USA. Electronic medical records and a written mortality log were used to collect data for 71,557 cats and 42,349 dogs undergoing spay-neuter surgery from 2010 to 2016 at a single high volume clinic in Florida. Perioperative mortality was defined as deaths occurring in the 24h period starting with the administration of the first sedation or anesthetic drugs. Perioperative mortality was reported for 34 cats and four dogs for an overall mortality of 3.3 animals/10,000 surgeries (0.03%). The risk of mortality was more than twice as high for females (0.05%) as for males (0.02%) (P=0.008) and five times as high for cats (0.05%) as for dogs (0.009%) (P=0.0007). High volume spay-neuter surgery was associated with a lower mortality rate than that previously reported in low volume clinics, approaching that achieved in human surgery. This is likely to be due to the young, healthy population of dogs and cats, and the continuous refinement of techniques based on experience and the skills and proficiency of teams that specialize in a limited spectrum of procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    International Nuclear Information System (INIS)

    Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Dunn, Leon; Thompson, Mick; Siva, Shankar; Aarons, Yolanda; Binns, David; Hicks, Rodney J.

    2013-01-01

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) 18 F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of 18 F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV

  17. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason, E-mail: jason.callahan@petermac.org [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne (Australia); Schneider-Kolsky, Michal [Department of Medical Imaging and Radiation Science, Monash University, Clayton, Victoria (Australia); Dunn, Leon [Department of Applied Physics, RMIT University, Melbourne (Australia); Thompson, Mick [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Aarons, Yolanda [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne (Australia); Binns, David [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Hicks, Rodney J. [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne (Australia)

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom while moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  18. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  19. Rectal compliance as a routine measurement: extreme volumes have direct clinical impact and normal volumes exclude rectum as a problem.

    Science.gov (United States)

    Felt-Bersma, R J; Sloots, C E; Poen, A C; Cuesta, M A; Meuwissen, S G

    2000-12-01

    The clinical impact of rectal compliance and sensitivity measurement is not clear. The aim of this study was to measure the rectal compliance in different patient groups compared with controls and to establish the clinical effect of rectal compliance. Anorectal function tests were performed in 974 consecutive patients (284 men). Normal values were obtained from 24 controls. Rectal compliance measurement was performed by filling a latex rectal balloon with water at a rate of 60 ml per minute. Volume and intraballoon pressure were measured. Volume and pressure at three sensitivity thresholds were recorded for analysis: first sensation, urge, and maximal toleration. At maximal toleration, the rectal compliance (volume/pressure) was calculated. Proctoscopy, anal manometry, anal mucosal sensitivity, and anal endosonography were also performed as part of our anorectal function tests. No effect of age or gender was observed in either controls or patients. Patients with fecal incontinence had a higher volume at first sensation and a higher pressure at maximal toleration (P = 0.03), the presence of a sphincter defect or low or normal anal pressures made no difference. Patients with constipation had a larger volume at first sensation and urge (P 500 ml had complaints of constipation. No correlation between rectal and anal mucosal sensitivity was found. Rectal compliance measurement with a latex balloon is easily feasible. In this series of 974 patients, some patient groups showed an abnormal rectal visceral sensitivity and compliance, but there was an overlap with controls. Rectal compliance measurement gave a good clinical impression about the contribution of the rectum to the anorectal problem. Patients with proctitis and pouchitis had the smallest rectal compliance. A maximal toleration volume 500 ml was only seen in constipated patients, and therapy should be given to prevent further damage to the pelvic floor. Values close to or within the normal range rule out the

  20. A spreadsheet to determine the volume ratio for target and breast in partial breast irradiation

    International Nuclear Information System (INIS)

    Kron, T.; Willis, D.; Miller, J.; Hubbard, P.; Oliver, M.; Chua, B.

    2009-01-01

    Full text: The technical feasibility of Partial Breast Irradiation (PBI) using external beam radiotherapy depends on the ratio between the evaluation planning target volume (PTV e val) and the whole breast volume (PBI volume ratio = PVR). We aimed to develop a simple method to determine PVR using measurements performed at the time of the planning CT scan. A PVR calculation tool was developed using a Microsoft Excel spreadsheet to determine the PTV from three orthogonal dimensions of the seroma cavity and a given margin on the CT scans. The breast volume is estimated from the separation and breast height in five equally spaced CT slices. The PTV e val and whole breast volume were determined for 29 patients from two centres using the spreadsheet calculation tool and compared to volumes delineated on computerised treatment planning systems. Both the PTV e val and whole breast volumes were underestimated by approximately 25% using the spreadsheet. The resulting PVRs were 1.05 +/- 0.35 (mean +/- 1 S D) times larger than the ones determined from planning. Estimations of the PVR using the calculation tool were achievable in around 5 minutes at the time of CT scanning and allow a prompt decision on the suitability of the patients for PBI.

  1. A combination of process of care and clinical target among type 2 diabetes mellitus patients in general medical clinics and specialist diabetes clinics at hospital levels.

    Science.gov (United States)

    Sieng, Sokha; Hurst, Cameron

    2017-08-07

    This study compares a combination of processes of care and clinical targets among patients with type 2 diabetes mellitus (T2DM) between specialist diabetes clinics (SDCs) and general medical clinics (GMCs), and how differences between these two types of clinics differ with hospital type (community, provincial and regional). Type 2 diabetes mellitus patient medical records were collected from 595 hospitals (499 community, 70 provincial, 26 regional) in Thailand between April 1 to June 30, 2012 resulting in a cross-sectional sample of 26,860 patients. Generalized linear mixed modeling was conducted to examine associations between clinic type and quality of care. The outcome variables of interest were split into clinical targets and process of care. A subsequent subgroup analysis was conducted to examine if the nature of clinical target and process of care differences between GMCs and SDCs varied with hospital type (regional, provincial, community). Regardless of the types of hospitals (regional, provincial, or community) patients attending SDCs were considerably more likely to have eye and foot exam. In terms of larger hospitals (regional and provincial) patients attending SDCs were more likely to achieve HbA1c exam, All FACE exam, BP target, and the Num7Q. Interestingly, SDCs performed better than GMCs at only provincial hospitals for LDL-C target and the All7Q. Finally, patients with T2DM who attended community hospital-GMCs had a better chance of achieving the blood pressure target than patients who attended community hospital-SDCs. Specialized diabetes clinics outperform general medical clinics for both regional and provincial hospitals for all quality of care indicators and the number of quality of care indicators achieved was never lower. However, this better performance of SDC was not observed in community hospital. Indeed, GMCs outperformed SDCs for some quality of care indicators in the community level setting.

  2. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor

    2017-01-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal...... and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft...... enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat...

  3. Significance of breast boost volume changes during radiotherapy in relation to current clinical interobserver variations

    International Nuclear Information System (INIS)

    Hurkmans, Coen; Admiraal, Marjan; Sangen, Maurice van der; Dijkmans, Ingrid

    2009-01-01

    Background and purpose: Nowadays, many departments introduce CT images for breast irradiation techniques, aiming to obtain a better accuracy in the definition of the relevant target volumes. However, the definition of the breast boost volume based on CT images requires further investigation, because it may not only vary between observers, but it may also change during the course of treatment. This study aims to quantify the variability of the CT based visible boost volume (VBV) during the course of treatment in relation to the variability between observers. Materials and methods: Ten patients with stage T1-2 invasive breast cancer treated with breast conservative surgery and post surgical radiotherapy were included in this study. In addition to the regular planning CT which is obtained several days prior to radiotherapy, three additional CT scans were acquired 3, 5 and 7 weeks after the planning CT scan. Four radiation oncologists delineated the VBV in all scans. Conformity of the delineations was analysed both between observers, and between scans taken at different periods of the radiotherapy treatment. Results: The VBV averaged over all patients decreased during the course of the treatment from an initial 40 cm 3 to 28 cm 3 , 27 cm 3 and 25 cm 3 after 3, 5 and 7 weeks, respectively. Assuming the VBV to be spherical, this corresponds to a reduction in diameter of 5-6 mm. More detailed analysis revealed that this reduction was more pronounced when radiotherapy started within 30 days after surgery. These boost volume changes over time were found to be significant (p = 0.02) even in the presence of interobserver variations. Moreover, the conformity index (CI) for the volume changes was of the same magnitude as the conformity index for the interobserver variation (0.25 and 0.31, respectively). Conclusions: Breast boost volume variations during a course of radiotherapy are significant in relation to current clinical interobserver variations. This is an important

  4. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The planning target volume margins detected by cone-beam CT in head and neck cancer patients treated by image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li

    2011-01-01

    Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)

  6. Quantitative assessment of inter-observer variability in target volume delineation on stereotactic radiotherapy treatment for pituitary adenoma and meningioma near optic tract

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Ogita, Mikio; Yamashita, Koichi; Kotsuma, Tadayuki; Shiomi, Hiroya; Tsubokura, Takuji; Kodani, Naohiro; Nishimura, Takuya; Aibe, Norihiro; Udono, Hiroki; Nishikata, Manabu; Baba, Yoshimi

    2011-01-01

    To assess inter-observer variability in delineating target volume and organs at risk in benign tumor adjacent to optic tract as a quality assurance exercise. We quantitatively analyzed 21 plans made by 11 clinicians in seven CyberKnife centers. The clinicians were provided with a raw data set (pituitary adenoma and meningioma) including clinical information, and were asked to delineate the lesions and create a treatment plan. Their contouring and plans (10 adenoma and 11 meningioma plans), were then compared. In addition, we estimated the influence of differences in contouring by superimposing the respective contours onto a default plan. The median planning target volume (PTV) and the ratio of the largest to the smallest contoured volume were 9.22 cm 3 (range, 7.17 - 14.3 cm 3 ) and 1.99 for pituitary adenoma, and 6.86 cm 3 (range 6.05 - 14.6 cm 3 ) and 2.41 for meningioma. PTV volume was 10.1 ± 1.74 cm 3 for group 1 with a margin of 1 -2 mm around the CTV (n = 3) and 9.28 ± 1.8 cm 3 (p = 0.51) for group 2 with no margin (n = 7) in pituitary adenoma. In meningioma, group 1 showed larger PTV volume (10.1 ± 3.26 cm 3 ) than group 2 (6.91 ± 0.7 cm 3 , p = 0.03). All submitted plan keep the irradiated dose to optic tract within the range of 50 Gy (equivalent total doses in 2 Gy fractionation). However, contours superimposed onto the dose distribution of the default plan indicated that an excessive dose 23.64 Gy (up to 268% of the default plan) in pituitary adenoma and 24.84 Gy (131% of the default plan) in meningioma to the optic nerve in the contours from different contouring. Quality assurance revealed inter-observer variability in contour delineation and their influences on planning for pituitary adenoma and meningioma near optic tract

  7. Volume of the human hippocampus and clinical response following electroconvulsive therapy

    DEFF Research Database (Denmark)

    Oltedal, Leif; Narr, Katherine L.; Abbott, Christopher

    2018-01-01

    Background: Hippocampal enlargements are commonly reported following electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. Methods...

  8. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  9. Quality of clinical trials: A moving target

    Science.gov (United States)

    Bhatt, Arun

    2011-01-01

    Quality of clinical trials depends on data integrity and subject protection. Globalization, outsourcing and increasing complexicity of clinical trials have made the target of achieving global quality challenging. The quality, as judged by regulatory inspections of the investigator sites, sponsors/contract research organizations and Institutional Review Board, has been of concern to the US Food and Drug Administration, as there has been hardly any change in frequency and nature of common deficiencies. To meet the regulatory expectations, the sponsors need to improve quality by developing systems with specific standards for each clinical trial process. The quality systems include: personnel roles and responsibilities, training, policies and procedures, quality assurance and auditing, document management, record retention, and reporting and corrective and preventive action. With an objective to improve quality, the FDA has planned new inspection approaches such as risk-based inspections, surveillance inspections, real-time oversight, and audit of sponsor quality systems. The FDA has partnered with Duke University for Clinical Trials Transformation Initiative, which will conduct research projects on design principles, data quality and quantity including monitoring, study start-up, and adverse event reporting. These recent initiatives will go a long way in improving quality of clinical trials. PMID:22145122

  10. Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement.

    Science.gov (United States)

    Boda-Heggemann, Judit; Haneder, Stefan; Ehmann, Michael; Sihono, Dwi Seno Kuncoro; Wertz, Hansjörg; Mai, Sabine; Kegel, Stefan; Heitmann, Sigrun; von Swietochowski, Sandra; Lohr, Frank; Wenz, Frederik

    2015-01-01

    Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to

  11. Daily online localization using implanted fiducial markers and its impact on planning target volume for carcinoma prostate.

    Science.gov (United States)

    Khosa, Robin; Nangia, Sapna; Chufal, Kundan S; Ghosh, D; Kaul, Rakesh; Sharma, Lalit

    2010-01-01

    Aim of the study was to assess prostate motion on daily basis with respect to setup and to compare the shifts based on bony anatomy and gold fiducial markers. Gold fiducial markers were inserted in prostate under U/S guidance and daily portal images were taken and compared with digitally reconstructed images, both using bony landmarks and fiducial markers as reference. A dose of 2 MU was given for two orthogonal images daily. The mean and standard deviation of displacement using gold seeds and bone were calculated. Systematic and random errors were generated. The planning target volume (PTV) was calculated using the Van Herk formula. A total of 180 portal images from 10 patients were studied. The mean displacement along x, y and z axes was 1.67 mm, 3.58 mm, and 1.76 mm using fiducial markers and 2.12 mm, 3.47 mm, and 2.09 mm using bony landmarks, respectively. The mean internal organ motion was 1.23 mm (+1.45), 3.11 mm (+2.69 mm); and 1.87 mm (+1.67 mm) along x, y and z axes, respectively. The PTV to account for prostate motion if daily matching was not done was 4.64 mm, 10.41 mm and 4.40 mm along lateral, superoinferior, and anteroposterior directions, respectively. If bony landmarks were used for daily matching, margins of 3.61 mm, 7.31 mm, and 4.72 mm in lateral, superoinferior, and anteroposterior directions should be added to the clinical target volume. Daily alignment using gold fiducial markers is an effective method of localizing prostate displacement. It provides the option of reducing margins, thus limiting normal tissue toxicity and allowing the possibility of dose escalation for better long-term control.

  12. Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Yeo, Seung Gu; Kim, Eun Seog

    2013-01-01

    This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases (ITV 10Phases ); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) (ITV 4Phases ); and combining CTV from two extreme phases (ITV 2Phases ). The matching index (MI) of ITV 4Phases and ITV 2Phases was defined as the ratio of ITV 4Phases and ITV 2Phases , respectively, to the ITV 10Phases . The tumor motion index (TMI) was defined as the ratio of ITV 10Phases to CTV mean , which was the mean of 10 CTVs delineated on 10 respiratory phases. The ITVs were significantly different in the order of ITV 10Phases , ITV 4Phases , and ITV 2Phases (all p 4Phases was significantly higher than that of ITV 2Phases (p 4Phases was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), ITV 4Phases was not statistically different from ITV 10Phases (p = 0.192) and its MI was significantly higher than that of ITV 2Phases (p = 0.016). The ITV 4Phases may be an efficient approach alternative to optimal ITV 10Phases in SBRT for early-stage NSCLC with less tumor motion.

  13. Significance and clinical value of the transitional zone volume (TZV ...

    African Journals Online (AJOL)

    M. El Ghoneimy

    2017-01-12

    Jan 12, 2017 ... Objective: The aim of this work was to evaluate the significance and clinical value of the TZI, which has been a point of ... Conclusion: Estimating the transition zone volume during TRUS is a reasonable way to obtain the required ... Besides the IPSS score, a complete medical and surgical history was also.

  14. Clinical application of Lin's biopsy grasper for intrauterine targeted biopsy and polypectomy during office hysteroscopy.

    Science.gov (United States)

    Cheng, Hsin-Yi; Lin, Bao-Liang; Tseng, Jen-Yu; Ueno, Kazunori; Nakada, Sakura

    2018-06-01

    Hysteroscopy has widely been used for diagnosis of the uterine cavity; however, target biopsy has often been difficult in part to the inherent limitations of ancillary instruments. Lin's biopsy grasper was specifically designed to work in conjunction with a flexible hysteroscope to obtain intrauterine biopsy under transabdominal sonography. Herein, we share our clinical experience in the management of endometrial abnormalities with the use of Lin's biopsy grasper during office-based hysteroscopy. From February 2006 to November 2016, the use of Lin's biopsy grasper for tissue biopsy was attempted on 126 cases. We retrospectively recorded and analyzed the patients' preoperative characteristics and biopsy outcomes to demonstrate the feasibility and efficacy of Lin's biopsy grasper. Out of the one hundred and twenty-six enrolled patients, satisfactory targeted biopsies were achieved; including high diagnostic rate (92.1%, with 116 cases confirmed histologically) and adequate tissue retrieval (77.8%, with 98 cases obtaining optimal specimen volume). All patients tolerated the procedure without analgesics or anesthesia. Diagnostic flexible hysteroscopy combined with the use of Lin's biopsy grasper has proven to be an effective tool for intrauterine evaluation and obtaining tissue sample. Copyright © 2018. Published by Elsevier B.V.

  15. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: Reducing the interobserver variability in multicentre clinical studies.

    Science.gov (United States)

    Schimek-Jasch, Tanja; Troost, Esther G C; Rücker, Gerta; Prokic, Vesna; Avlar, Melanie; Duncker-Rohr, Viola; Mix, Michael; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula

    2015-06-01

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  16. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer. Reducing the interobserver variability in multicentre clinical studies

    International Nuclear Information System (INIS)

    Schimek-Jasch, Tanja; Prokic, Vesna; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula; Troost, Esther G.C.; Ruecker, Gerta; Avlar, Melanie; Duncker-Rohr, Viola; Mix, Michael

    2015-01-01

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  17. Clinical target volume localization using conventional methods (anatomy and palpation) and ultrasonography in early breast cancer post-operative external irradiation

    International Nuclear Information System (INIS)

    Valdagni, Riccardo; Italia, Corrado; Montanaro, Paolo; Ciocca, Mario; Morandi, Giovanni; Salvadori, Bruno

    1997-01-01

    Purpose: To evaluate the accuracy of three methods, anatomy (A), palpation (P) and ultrasounds (US) in localizing the clinical target volume (CTV) in patients (pts) with early breast cancer (EBC) undergoing breast external irradiation as part of conservation therapy. Material and methods: One hundred consecutive pts with EBC (T is 1%, T 1 78%, T 2 21%, N- 68%, N+ 32%), treated with conservation surgery and breast irradiation with opposed tangential portals, were prospectively analyzed. Anatomically, palpatory or ultrasound defined field borders for CTV localizations were determined in the same position thanks to the utilization of a vacuum-formed cellulose acetate immobilization cast, removed during CTV definitions. Results: P and US CTV localizations have been found to coincide on the four margins (superior, inferior, medial, lateral) in only(1(100)) pts, while no pt showed identical A and US CTV localizations. Only (31(397)) (8%) field measurements with A, and(98(395)) (25%) with P corresponded to US border definition. If mean and median values of each field border were considered, the CTV was generally over-estimated with P appearing more accurate than A in a gross definition of the target (P < 0.01). However, a geographical miss of at least one field border of CTV occurred in 55% of pts with A and in 36% of pts with P. The most critical margin to be defined with conventional methods was the superior one: an underestimation of the cranial border of CTV with A was observed in 51% and with P in 22% of pts (22% and 8%, respectively, when an underestimation by more than 1.5 cm was considered). When pre-menopausal and peri/post-menopausal groups of pts were separately analyzed, conventional methods were highly inaccurate to define the superior border in younger pts, in which a geographical miss was noted with A in 62% and with P in 35% of cases (P < 0.05). When an underestimation of more than 1.5 cm was evaluated, these values were reduced to 33% and 12

  18. Quality of clinical trials: A moving target

    Directory of Open Access Journals (Sweden)

    Arun Bhatt

    2011-01-01

    Full Text Available Quality of clinical trials depends on data integrity and subject protection. Globalization, outsourcing and increasing complexicity of clinical trials have made the target of achieving global quality challenging. The quality, as judged by regulatory inspections of the investigator sites, sponsors/contract research organizations and Institutional Review Board, has been of concern to the US Food and Drug Administration, as there has been hardly any change in frequency and nature of common deficiencies. To meet the regulatory expectations, the sponsors need to improve quality by developing systems with specific standards for each clinical trial process. The quality systems include: personnel roles and responsibilities, training, policies and procedures, quality assurance and auditing, document management, record retention, and reporting and corrective and preventive action. With an objective to improve quality, the FDA has planned new inspection approaches such as risk-based inspections, surveillance inspections, real-time oversight, and audit of sponsor quality systems. The FDA has partnered with Duke University for Clinical Trials Transformation Initiative, which will conduct research projects on design principles, data quality and quantity including monitoring, study start-up, and adverse event reporting. These recent initiatives will go a long way in improving quality of clinical trials.

  19. Statistical inference on censored data for targeted clinical trials under enrichment design.

    Science.gov (United States)

    Chen, Chen-Fang; Lin, Jr-Rung; Liu, Jen-Pei

    2013-01-01

    For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target. To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design, we propose using the expectation-maximization algorithm in conjunction with the bootstrap technique to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision, and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated, additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing function of the positive predictive value. A numerical example illustrates the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd.

  20. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    Science.gov (United States)

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    Science.gov (United States)

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  2. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    International Nuclear Information System (INIS)

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-01-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean ± standard deviation of 32 ± 9 vs. 23 ± 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 ± 3 vs. 21 ± 5 min (p = .003), 39 ± 12 vs. 30 ± 5 min (p = .055), and 29 ± 5 vs. 20 ± 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.

  3. Re-irradiation after gross total resection of recurrent glioblastoma. Spatial pattern of recurrence and a review of the literature as a basis for target volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Straube, Christoph; Elpula, Greeshma [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Gempt, Jens; Gerhardt, Julia; Meyer, Bernhard [Technische Universitaet Muenchen (TUM), Department of Neurosurgery, Klinikum rechts der Isar, Muenchen (Germany); Bette, Stefanie; Zimmer, Claus [Technische Universitaet Muenchen (TUM), Department of Neuroradiology, Klinikum rechts der Isar, Muenchen (Germany); Schmidt-Graf, Friederike [Technische Universitaet Muenchen (TUM), Department of Neurology, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie E. [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute for Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Oberschleissheim (Germany)

    2017-11-15

    Currently, patients with gross total resection (GTR) of recurrent glioblastoma (rGBM) undergo adjuvant chemotherapy or are followed up until progression. Re-irradiation, as one of the most effective treatments in macroscopic rGBM, is withheld in this situation, as uncertainties about the pattern of re-recurrence, the target volume, and also the efficacy of early re-irradiation after GTR exist. Imaging and clinical data from 26 consecutive patients with GTR of rGBM were analyzed. The spatial pattern of recurrences was analyzed according to the RANO-HGG criteria (''response assessment in neuro-oncology criteria for high-grade gliomas''). Progression-free (PFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. Furthermore, a systematic review was performed in PubMed. All but 4 patients underwent adjuvant chemotherapy after GTR. Progression was diagnosed in 20 of 26 patients and 70% of recurrent tumors occurred adjacent to the resection cavity. The median extension beyond the edge of the resection cavity was 20 mm. Median PFS was 6 months; OS was 12.8 months. We propose a target volume containing the resection cavity and every contrast enhancing lesion as the gross tumor volume (GTV), a spherical margin of 5-10 mm to generate the clinical target volume (CTV), and a margin of 1-3 mm to generate the planning target volume (PTV). Re-irradiation of this volume is deemed to be safe and likely to prolong PFS. Re-irradiation is worth considering also after GTR, as the volumes that need to be treated are limited and re-irradiation has already proven to be a safe treatment option in general. The strategy of early re-irradiation is currently being tested within the GlioCave/NOA 17/Aro 2016/03 trial. (orig.) [German] Patienten mit einem rezidivierten Glioblastom (rGBM) werden, wenn eine komplette Resektion (GTR) des makroskopischen Rezidivs durchgefuehrt wurde, aktuell meist systemisch adjuvant behandelt oder einer engmaschigen Nachsorge

  4. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    International Nuclear Information System (INIS)

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T

    2015-01-01

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  5. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  6. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  7. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  8. Bayesian Nonparametric Estimation of Targeted Agent Effects on Biomarker Change to Predict Clinical Outcome

    Science.gov (United States)

    Graziani, Rebecca; Guindani, Michele; Thall, Peter F.

    2015-01-01

    Summary The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212

  9. Limitations of the planning organ at risk volume (PRV) concept.

    Science.gov (United States)

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  10. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    Science.gov (United States)

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  11. Target volumes in gastric cancer radiation therapy

    International Nuclear Information System (INIS)

    Caudry, M.; Maire, J.P.; Ratoanina, J.L.; Escarmant, P.

    2001-01-01

    The spread of gastric adenocarcinoma may follow three main patterns: hemato-genic, lymphatic and intraperitoneal. A GTV should be considered in preoperative or exclusive radiation therapy. After non-radical surgery, a 'residual GTV' will be defined with the help of the surgeon. The CTV encompasses three intricated volumes. a) A 'tumor bed' volume. After radical surgery, local recurrences appear as frequent as distant metastases. The risk depends upon the depth of parietal invasion and the nodal status. Parietal infiltration may extend beyond macroscopic limits of the tumor, especially in dinitis plastica. Therefore this volume will include: the tumor and the remaining stomach or their 'bed of resection', a part of the transverse colon, the duodenum, the pancreas and the troncus of the portal vein. In postoperative RT, this CTV also includes the jejuno-gastric or jejuno-esophageal anastomosis. b) A peritoneal volume. For practical purposes, two degrees of spread must be considered: (1) contiguous microscopic extension from deeply invasive T3 and T4 tumors, that remain amenable to local sterilization with doses of 45-50 Gy, delivered in a CTV including the peritoneal cavity at the level of the gastric bed, and under the parietal incision; (2) true 'peritoneal carcinomatosis', with widespread seeds, where chemotherapy (systemic or intraperitoneal) is more appropriate. c) A lymphatic volume including the lymph node groups 1 to 16 of the Japanese classification. This volume must encompass the hepatic pedicle and the splenic hilum. In proximal tumors, it is possible to restrict the lover part of the CTV to the lymphatic volume, and therefore to avoid irradiation of large intestinal and renal volumes. In distal and proximal tumors, involvement of resection margins is of poor prognosis -a radiation boost must be delivered at this level. The CTV in tumors of the cardia should encompass the lover part of the thoracic esophagus and the corresponding posterior mediastinum. In

  12. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    CERN Document Server

    Magro, G; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-01-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5–30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size r...

  13. High-Target vs Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients - A Randomized Controlled Trial

    DEFF Research Database (Denmark)

    Vedel, Anne G; Holmgaard, Frederik; Rasmussen, Lars S

    2018-01-01

    .71). No significant difference was observed in frequency of severe adverse events. Conclusions -Among patients undergoing on-pump cardiac surgery, targeting a higher versus a lower MAP during cardiopulmonary bypass did not seem to affect the volume or numbers of new cerebral infarcts. Clinical Trial Registration -URL...

  14. Clinical Outcomes of Volume-Modulated Arc Therapy in 205 Patients with Nasopharyngeal Carcinoma: An Analysis of Survival and Treatment Toxicities.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    Full Text Available To investigate the clinical efficacy and treatment toxicity of volume-modulated arc therapy (VMAT for nasopharyngeal carcinoma (NPC.205 VMAT-treated NPC patients from our cancer center were prospectively entrolled. All patients received 68-70 Gy irradiation based on the planning target volume of the primary gross tumor volume. Acute and late toxicities were graded according to the Common Terminology Criteria for Adverse Events v3.0 and Radiation Therapy Oncology Group Late Radiation Morbidity Scoring Criteria.The median follow-up period was 37.3 months (range, 6.3-45.1 months. The 3-year estimated local failure-free survival, regional failure-free survival, locoregional failure-free survival, distant metastasis-free survival, disease-free survival and overall survival were 95.5%, 97.0%, 94.0%, 92.1%, 86.8% and 97.0%, respectively. Cox regression analysis showed primary gross tumor volume, N stage and EBV-DNA to be independent predictors of VMAT outcomes (P < 0.05. The most common acute and late side effects were grade 2-3 mucositis (78% and xerostomia (83%, 61%, 34%, and 9% at 3, 6, 12 and 24 months after VMAT, respectively.VMAT for the primary treatment of NPC achieved very high locoregional control with a favorable toxicity profile. The time-saving benefit of VMAT will enable more patients to receive precision radiotherapy.

  15. SU-F-J-160: Clinical Evaluation of Targeting Accuracy in Radiosurgery Using Tractography

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R; Han, J; Kim, C; Oh, C [Seoul National University Bundang Hospital, Seongnamsi, GyeonggiDo (Korea, Republic of); Suh, T [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 males, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodose line underwent 1.5Tesla MR trigeminal nerve. Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement. Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment

  16. Phantom investigation of 3D motion-dependent volume aliasing during CT simulation for radiation therapy planning

    International Nuclear Information System (INIS)

    Tanyi, James A; Fuss, Martin; Varchena, Vladimir; Lancaster, Jack L; Salter, Bill J

    2007-01-01

    To quantify volumetric and positional aliasing during non-gated fast- and slow-scan acquisition CT in the presence of 3D target motion. Single-slice fast, single-slice slow, and multi-slice fast scan helical CTs were acquired of dynamic spherical targets (1 and 3.15 cm in diameter), embedded in an anthropomorphic phantom. 3D target motions typical of clinically observed tumor motion parameters were investigated. Motion excursions included ± 5, ± 10, and ± 15 mm displacements in the S-I direction synchronized with constant displacements of ± 5 and ± 2 mm in the A-P and lateral directions, respectively. For each target, scan technique, and motion excursion, eight different initial motion-to-scan phase relationships were investigated. An anticipated general trend of target volume overestimation was observed. The mean percentage overestimation of the true physical target volume typically increased with target motion amplitude and decreasing target diameter. Slow-scan percentage overestimations were larger, and better approximated the time-averaged motion envelope, as opposed to fast-scans. Motion induced centroid misrepresentation was greater in the S-I direction for fast-scan techniques, and transaxial direction for the slow-scan technique. Overestimation is fairly uniform for slice widths < 5 mm, beyond which there is gross overestimation. Non-gated CT imaging of targets describing clinically relevant, 3D motion results in aliased overestimation of the target volume and misrepresentation of centroid location, with little or no correlation between the physical target geometry and the CT-generated target geometry. Slow-scan techniques are a practical method for characterizing time-averaged target position. Fast-scan techniques provide a more reliable, albeit still distorted, target margin

  17. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  18. Improving visit cycle time using patient flow analysis in a high-volume inner-city hospital-based ambulatory clinic serving minority New Yorkers.

    Science.gov (United States)

    Dhar, Sanjay; Michel, Raquel; Kanna, Balavenkatesh

    2011-01-01

    Patient waiting time and waiting room congestion are quality indicators that are related to efficiency of ambulatory care systems and patient satisfaction. Our main purpose was to test a program to decrease patient visit cycle time, while maintaining high-quality healthcare in a high-volume inner-city hospital-based clinic in New York City. Use of patient flow analysis and the creation of patient care teams proved useful in identifying areas for improvement, target, and measure effectiveness of interventions. The end result is reduced visit cycle time, improved provider team performance, and sustained patient care outcomes. © 2010 National Association for Healthcare Quality.

  19. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    International Nuclear Information System (INIS)

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-01-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of ≥20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  20. Volume comparison of radiofrequency ablation at 3- and 5-cm target volumes for four different radiofrequency generators: MR volumetry in an open 1-T MRI system versus macroscopic measurement.

    Science.gov (United States)

    Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian

    2015-12-01

    In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation

  1. Is uniform target dose possible in IMRT plans in the head and neck?

    International Nuclear Information System (INIS)

    Vineberg, K.A.; Eisbruch, A.; Coselmon, M.M.; McShan, D.L.; Kessler, M.L.; Fraass, B.A.

    2002-01-01

    Purpose: Various published reports involving intensity-modulated radiotherapy (IMRT) plans developed using automated optimization (inverse planning) have demonstrated highly conformal plans. These reported conformal IMRT plans involve significant target dose inhomogeneity, including both overdosage and underdosage within the target volume. In this study, we demonstrate the development of optimized beamlet IMRT plans that satisfy rigorous dose homogeneity requirements for all target volumes (e.g., ±5%), while also sparing the parotids and other normal structures. Methods and Materials: The treatment plans of 15 patients with oropharyngeal cancer who were previously treated with forward-planned multisegmental IMRT were planned again using an automated optimization system developed in-house. The optimization system allows for variable sized beamlets computed using a three-dimensional convolution/superposition dose calculation and flexible cost functions derived from combinations of clinically relevant factors (costlets) that can include dose, dose-volume, and biologic model-based costlets. The current study compared optimized IMRT plans designed to treat the various planning target volumes to doses of 66, 60, and 54 Gy with varying target dose homogeneity while using a flexible optimization cost function to minimize the dose to the parotids, spinal cord, oral cavity, brainstem, submandibular nodes, and other structures. Results: In all cases, target dose uniformity was achieved through steeply varying dose-based costs. Differences in clinical plan evaluation metrics were evaluated for individual cases (eight different target homogeneity costlets), and for the entire cohort of plans. Highly conformal plans were achieved, with significant sparing of both the contralateral and ipsilateral parotid glands. As the homogeneity of the target dose distributions was allowed to decrease, increased sparing of the parotids (and other normal tissues) may be achieved. However, it

  2. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim:  Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions:  Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  3. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions: Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  4. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features.

    Science.gov (United States)

    Coppola, Gianluca; Petolicchio, Barbara; Di Renzo, Antonio; Tinelli, Emanuele; Di Lorenzo, Cherubino; Parisi, Vincenzo; Serrao, Mariano; Calistri, Valentina; Tardioli, Stefano; Cartocci, Gaia; Ambrosini, Anna; Caramia, Francesca; Di Piero, Vittorio; Pierelli, Francesco

    2017-12-08

    To date, few MRI studies have been performed in patients affected by chronic migraine (CM), especially in those without medication overuse. Here, we performed magnetic resonance imaging (MRI) voxel-based morphometry (VBM) analyses to investigate the gray matter (GM) volume of the whole brain in patients affected by CM. Our aim was to investigate whether fluctuations in the GM volumes were related to the clinical features of CM. Twenty untreated patients with CM without a past medical history of medication overuse underwent 3-Tesla MRI scans and were compared to a group of 20 healthy controls (HCs). We used SPM12 and the CAT12 toolbox to process the MRI data and to perform VBM analyses of the structural T1-weighted MRI scans. The GM volume of patients was compared to that of HCs with various corrected and uncorrected thresholds. To check for possible correlations, patients' clinical features and GM maps were regressed. Initially, we did not find significant differences in the GM volume between patients with CM and HCs (p tablets taken per month. No gross morphometric changes were observed in patients with CM when compared with HCs. However, using more-liberal uncorrected statistical thresholds, we observed that CM is associated with subtle GM volume changes in several brain areas known to be involved in nociception/antinociception, multisensory integration, and analgesic dependence. We speculate that these slight morphometric impairments could lead, at least in a subgroup of patients, to the development and continuation of maladaptive acute medication usage.

  5. Prognostic significance of clinical seizures after cardiac arrest and target temperature management

    DEFF Research Database (Denmark)

    Lybeck, Anna; Friberg, Hans; Aneman, Anders

    2017-01-01

    AIM: Clinical seizures are common after cardiac arrest and predictive of a poor neurological outcome. Seizures may be myoclonic, tonic-clonic or a combination of seizure types. This study reports the incidence and prognostic significance of clinical seizures in the target temperature management (...

  6. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer. Reducing the interobserver variability in multicentre clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schimek-Jasch, Tanja; Prokic, Vesna; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK) partner site: Freiburg, Heidelberg (Germany); Troost, Esther G.C. [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Ruecker, Gerta [University Medical Center Freiburg, Institute for Medical Biometry and Statistics, Centre for Medical Biometry and Medical Informatics, Freiburg (Germany); Avlar, Melanie [German Cancer Research Center (DKFZ), Heidelberg (Germany); Duncker-Rohr, Viola [Ortenau-Klinikum Offenburg-Gengenbach, Department of Radiation Oncology, Gengenbach (Germany); Mix, Michael [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK) partner site: Freiburg, Heidelberg (Germany)

    2015-02-10

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  7. Irradiation of blood, blood compounds and cell culture in equipment of radiotherapy of clinical usage. Study about volume and ideal dose

    International Nuclear Information System (INIS)

    Fernandes, Marco Antonio Rodrigues; Pereira, Adelino Jose; Novaes, Paulo Eduardo Ribeiro dos Santos

    1996-01-01

    The irradiation of blood bags with the objective of minimizing the graft-versus-host disease in the proceedings of blood transfusion has been consolidated as an indispensable step in the advances of hematopoietic system diseases therapeutics. This practice performed in the great oncological treatment centers requires appropriate equipment (cell irradiators), that due to the high coast, is inaccessible to the majority of the services. The main objective of this work is the show the technique developed by the Radiological Physics Service of the Hospital A. C. Camargo Radiation Department, using the teletherapy equipment of clinical usage available at the Institution. The literature shows that a total dose of 2000 to 3500 c Gy must be administered to all target volume to get an ideal dose/volume relation that proportionates better therapeutic results, neutralizing the cells which are causative of post transfusion reactions of rejection, without prejudicing the other cells that are necessary to the maintenance and preservation of the transplanted person's hematopoietic system functions. With the technic developed for optimization of the irradiation. it is possible to conclude that the utilization of radiotherapy equipment of clinical usage for blood irradiation, substituting cells irradiators, is a good option, permitting safe transfusion of products irradiated with adequate dose. (author)

  8. Targeting dormant micrometastases: rationale, evidence to date and clinical implications.

    Science.gov (United States)

    Hurst, Robert E; Bastian, Anja; Bailey-Downs, Lora; Ihnat, Michael A

    2016-03-01

    In spite of decades of research, cancer survival has increased only modestly. This is because most research is based on models of primary tumors. Slow recognition has begun that disseminated, dormant cancer cells (micrometastatic cells) that are generally resistant to chemotherapy are the culprits in recurrence, and until these are targeted effectively we can expect only slow progress in increasing overall survival from cancer. This paper reviews efforts to understand the mechanisms by which cancer cells can become dormant, and thereby identify potential targets and drugs either on the market or in clinical trials that purport to prevent metastasis. This review targets the most recent literature because several excellent reviews have covered the literature from more than two years ago. The paper also describes recent work in the authors' laboratories to develop a screening-based approach that does not require understanding of mechanisms of action or the molecular target. Success of this approach shows that targeting micrometastatic cells is definitely feasible.

  9. Reliability of dose volume constraint inference from clinical data

    DEFF Research Database (Denmark)

    Lutz, C M; Møller, D S; Hoffmann, L

    2017-01-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background...... was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap...

  10. A comparison of perfusion computed tomography and contrast enhanced computed tomography on radiation target volume delineation using rabbit VX2 brain tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Luo Yunxiu; Yu Jinming; Lu Haibo; Li Chao; Zhang Dekang; Huang Jianming; Wang Jie; Lang Jinyi

    2010-01-01

    Objective: To compare the accuracy of blood volume perfusion imaging (perfusion CT)with contrast enhanced 64-slice spiral computed tomography (CECT) in the evaluation of gross tumor volume (GTV) and clinical target volume (CTV) using rabbits with VX2 brain tumor. Methods: Perfusion CT and CECT were performed in 20 rabbits with VX2 brain tumor. The GTV and CTV calculated with the maximal and minimal diameter of each tumor in the blood volume (BV) maps and CECT were measured and compared to those in pathological specimens. Results: The mean value of the maximal and minimal diameter of GTV was (8.19 ± 2.29) mm and (4.83 ± 1.31) mm in pathological specimens, (11.98 ±3.29) mm and (7.03±1.82) mm in BV maps, while (6.36±3.85) mm and (3.17±1.93) mm in CECT images, which were significantly different (pathological specimen vs. BV map, t = 7.17, P =0.000;pathological specimen vs. CECT, t = 8.37, P = 0.000, respectively). The mean value of the maximal and minimal diameter of CTV in pathologic specimens was (12.87 ± 3.74) mm and (7.71 ± 2.15) mm, which was significantly different from that of GTV and CTV in CECT (t = - 3. 18, P = 0. 005 and t = - 4.24, P =0.000; t= -11.59,P=0.000 and t= -9.39, P=0.000), while similar with that of GTV in BV maps (t = - 1.95,P = 0. 067; t = - 2. 06, P = 0. 054). For CECT, the margin from GTV to CTV was 81.83% ±40.33% for the maximal diameter and 276.73% ± 131.46% for the minimal. While for BV maps, the margin was 7.93% ± 17. 84% and 12.52% ± 27. 83%, which was significant different from that for CECT images (t=7.36, P=0. 000 and t= -8.78, P=0.000). Conclusions: Compared with CECT, the BV map from 64-slice spiral CT perfusion imaging might have higher accuracy in target volume delineation for brain tumor. (authors)

  11. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.

    Science.gov (United States)

    Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T

    2017-01-01

    To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.

  12. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    Science.gov (United States)

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  13. Study of liver volume measurement and its clinical application for liver transplantation using multiple-slice spiral CT

    International Nuclear Information System (INIS)

    Peng Zhiyi; Yu Zhefeng; Kuang Pingding; Xiao Shengxiang; Huang Dongsheng; Zheng Shusen; Wu Jian

    2004-01-01

    Objective: To study the accuracy of liver volume measurement using MSCT and its application in liver transplantation. Methods: (1) Experimental study. Ten pig livers were scanned using MSCT with two collimations (3.2 mm and 6.5 mm) and pitch 1.25. Semi-automatic method was used to reconstruct 3D liver models to measure the liver volume. (2) Clinical study. Twenty-three patients received MSCT scan with collimation of 6.5 mm before liver transplantation. Same method was used to calculate the liver volume and the measurement was repeated by the same observer after 1 month. Results: (1) Experimental study. Actual liver volumes were (1134.1 ± 288.0) ml. Liver volumes by MSCT with two collimations were (1125.0 ± 282.5) ml (3.2 mm) and (1101.6 ± 277.6) ml (6.5 mm). The accuracy was (99.5 ± 0.8)% and (97.4 ± 0.8)%, respectively. Both showed same good agreement with actual liver volume: r=0.999, P<0.01 (2) Clinical study. Actual liver volumes were (1455.7±730.0) ml. Liver volume by MSCT was (1462.7 ± 774.1) ml. The accuracy was (99.5±9.6)%, r=0.986, P<0.01. Liver volume measured again was (1449.4 ± 768.9) ml, r=0.991 (P<0.01). Conclusion: MSCT can assess the liver volume correctly, and could be used as a routine step for evaluations before liver transplantation

  14. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru

    2013-01-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n=21) and/or N2/3 (n=24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤ Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer. (author)

  15. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lens, Eelco, E-mail: e.lens@amc.uva.nl; Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.

  16. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Lens, Eelco; Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-01-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V 95% >98%. In addition, the change in PTV size and the changes in V 10Gy , V 20Gy , V 30Gy , V 40Gy , D mean and D 2cc for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D 2cc of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors

  17. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani

    2013-01-01

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum overlap ) or PTV and bladder (Bladder overlap ) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum overlap and Bladder overlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V 45 and bladder V 50 with R 2 = 0.78 and R 2 = 0.83, respectively, and predicted the boost plan rectum V 30 and bladder V 30 with R 2 = 0.53 and R 2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p overlap to predict bladder V 80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  18. Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis

    International Nuclear Information System (INIS)

    Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark; Gentili, Fred; Heydarian, Mostafa; Tsao, May; Schwartz, Michael; Prooijen, Monique van; Millar, Barbara-Ann; Ménard, Cynthia; Kulkarni, Abhaya V.; Laperriere, Norm; Zadeh, Gelareh

    2012-01-01

    Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; and trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.

  19. Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark; Gentili, Fred [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada); Heydarian, Mostafa; Tsao, May [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Schwartz, Michael [Radiation Oncology Program and Division of Neurosurgery, Sunnybrook Hospital, Toronto (Canada); Prooijen, Monique van [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Millar, Barbara-Ann; Menard, Cynthia [Radiation Oncology Program, Princess Margaret Hospital, Toronto (Canada); Kulkarni, Abhaya V. [Division of Neurosurgery, Hospital for Sick Children, University of Toronto (Canada); Laperriere, Norm [Radiation Oncology Program, Princess Margaret Hospital, Toronto (Canada); Zadeh, Gelareh, E-mail: Gelareh.Zadeh@uhn.on.ca [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada)

    2012-04-01

    Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; and trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.

  20. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B. [Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois 60611 (United States); Qi, Yujin [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2016-01-15

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13

  1. A meta-analysis of lymph node metastasis rate for patients with thoracic oesophageal cancer and its implication in delineation of clinical target volume for radiation therapy

    Science.gov (United States)

    Ding, X; Zhang, J; Li, B; Wang, Z; Huang, W; Zhou, T; Wei, Y; Li, H

    2012-01-01

    Objectives The objective of this study was to pool the lymph node metastasis rate (LNMR) in patients with thoracic oesophageal cancer (TOC) and to determine which node level should be included when undergoing radiation therapy. Methods Qualified studies were identified on Medline, Embase, CBM and the Cochrane Library through to the end of April 2011. Pooled estimates of LNMR were obtained through a random-effect model. Possible effect modifiers which might lead to the statistical heterogeneity were identified through meta-regression, and further subgroup analyses of factors influencing LNMR were performed. Results 45 observational studies with a total of 18 415 patients were included in the meta-analysis. The pooled estimates of LNMR in upper, middle and lower TOC were 30.7%, 16.8% and 11.0% cervical, 42.0%, 21.1% and 10.5% upper mediastinal, 12.9%, 28.1% and 19.6% middle mediastinal, 2.6%, 7.8% and 23.0% lower mediastinal, and 9%, 21.4% and 39.9% abdominal, respectively. Lymph node metastasis most frequently happened to paratracheal, paraoesophageal, perigastric 106recR and station 7. The most obvious difference (≥15%) of LNMR between two-field and three-field lymphatic dissection occurred in cervical, paratracheal, 106recR and 108. Conclusions Through the meta-analysis, more useful information was obtained about clinical target volume (CTV) delineation of TOC patients treated with radiotherapy. However, our study is predominantly a description of squamous carcinoma and the results may not be valid for adenocarcinoma. PMID:22700258

  2. Value of 18F-FDG PET-CT in nasopharyngeal carcinoma target delineation and radiotherapy boost

    International Nuclear Information System (INIS)

    Wang Ying; Feng Yanlin

    2011-01-01

    18 F-FDG PET-CT has widely used in nasopharyngeal carcinoma diagnosis and staging in recent years, it's effecten target volume delineation has received great attention. The article lays stress on the clinical research progress of 18 F-FDG PET-CT in the radiotherapy of nasopharyngeal carcinoma improve the accuracy of target delineation, reduce the difference of target delineation, guide the dose painting and boost. (authors)

  3. Review on clinical trials of targeted treatments in malignant mesothelioma

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Sørensen, Jens Benn

    2011-01-01

    Malignant mesothelioma (MM) is an aggressive tumor of the serosal surfaces with a poor prognosis. Advances in the understanding of tumor biology have led to the development of several targeted treatments, which have been evaluated in clinical trials. This article is a comprehensive review of all...

  4. SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R; Suh, T; Kim, Y; Han, J; Kim, C; Oh, C; Kim, D [Seoul National University Bundang Hospital (Korea, Republic of)

    2014-06-01

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodose line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.

  5. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  6. Does IGRT ensure target dose coverage of head and neck IMRT patients?

    International Nuclear Information System (INIS)

    Graff, Pierre; Hu Weigang; Yom, Sue S.; Pouliot, Jean

    2012-01-01

    Purpose: To determine if image-guided radiotherapy (IGRT) ensures dose coverage to the target, and to assess the dosimetric impact of anatomic changes using megavoltage cone-beam CT (MVCBCT) for patient positioning during head and neck IMRT. Methods and materials: Forty-eight MVCBCT from 10 head and neck IMRT/IGRT patients were analyzed off-line. Target volumes and organs at risk (OARs) contours delineated on CT were transferred and adjusted on MVCBCT images. Each MVCBCT was processed to allow dose recalculation, resulting in 469 dose–volume histograms (DVHs). The concept of dosimetric latitude was introduced to provide a clinical perspective. Results: MVCBCT target DVHs showed a moderate level of difference in D95 (dose to ⩾95% of volume), generally less than a 5% difference from the planned dose. Delivered-dose increases to the spinal cord and brainstem showed no apparent time trend. The 4 mm margin around OARs was a useful precaution to prevent exceeding critical dose thresholds. The parotid glands showed progressive increases in mean dose related to shrinkage of the external contours. Conclusion: IGRT repositioning ensured target volume coverage, but significant dose variations were observed for OARs. The dosimetric impact of anatomic changes during radiotherapy was of lesser importance than the effects of IGRT repositioning.

  7. Clinical associations of total kidney volume: the Framingham Heart Study.

    Science.gov (United States)

    Roseman, Daniel A; Hwang, Shih-Jen; Oyama-Manabe, Noriko; Chuang, Michael L; O'Donnell, Christopher J; Manning, Warren J; Fox, Caroline S

    2017-08-01

    Total kidney volume (TKV) is an imaging biomarker that may have diagnostic and prognostic utility. The relationships between kidney volume, renal function and cardiovascular disease (CVD) have not been characterized in a large community-dwelling population. This information is needed to advance the clinical application of TKV. We measured TKV in 1852 Framingham Heart Study participants (mean age 64.1 ± 9.2 years, 53% women) using magnetic resonance imaging. A healthy sample was used to define reference values. The associations between TKV, renal function and CVD risk factors were determined using multivariable logistic regression analysis. Overall, mean TKV was 278 ± 54 cm3 for women and 365 ± 66 cm3 for men. Risk factors for high TKV (>90% healthy referent size) were body surface area (BSA), diabetes, smoking and albuminuria, while age, female and estimated glomerular filtration rate (eGFR) kidney damage including albuminuria and eGFR <60 mL/min/1.73 m2, while high TKV is associated with diabetes and decreased odds of eGFR <60 mL/min/1.73 m2. Prospective studies are needed to characterize the natural progression and clinical consequences of TKV. Published by Oxford University Press on behalf of ERA-EDTA 2016. This work is written by US Government employees and is in the public domain in the US.

  8. Comparative evaluation of respiratory-gated and ungated FDG-PET for target volume definition in radiotherapy treatment planning for pancreatic cancer.

    Science.gov (United States)

    Kishi, Takahiro; Matsuo, Yukinori; Nakamura, Akira; Nakamoto, Yuji; Itasaka, Satoshi; Mizowaki, Takashi; Togashi, Kaori; Hiraoka, Masahiro

    2016-08-01

    The purpose of this study was to evaluate the usefulness of respiratory-gated positron emission tomography (4D-PET) in pancreatic cancer radiotherapy treatment planning (RTTP). Fourteen patients with 18F-fluorodeoxyglucose (FDG)-avid pancreatic tumours were evaluated between December 2013 and March 2015. Two sets of volumes were contoured for the pancreatic tumour of each patient. The biological target volume in three-dimensional RTTP (BTV3D) was contoured using conventional respiratory un-gated PET. The BTV3D was then expanded using population-based margins to generate a series of internal target volume 3D (ITV3D) values. The ITV 4D (ITV4D) was contoured using 4D-PET. Each of the five phases of 4D-PET was used for 4D contouring, and the ITV4D was constructed by summing the volumes defined on the five individual 4D-PET images. The relative volumes and normalized volumetric overlap were computed between ITV3D and ITV4D. On average, the FDG-avid tumour volumes were 1.6 (range: 0.8-2.3) fold greater in the ITV4D than in the BTV3D. On average, the ITV3D values were 2.0 (range: 1.1-3.4) fold larger than the corresponding ITV4D values. The ITV generated from 4D-PET can be used to improve the accuracy or reduce normal tissue irradiation compared with conventional un-gated PET-based ITV. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Li, Jiancheng; Pan, Jianji; Wang, Linhua; Zhao, Yunhui; Liu, Di; Chen, Cheng; Zhang, He Ping; Wang, Xiaoliang

    2012-01-01

    expansion of the planning target volume during clinical radiation treatment needs to include the displacement of the tumor target volume caused by respiratory and organ movements during each radiotherapy session. (authors)

  10. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    Science.gov (United States)

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  11. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Hoffmann, A.L.; Vogel, W.V.; Dalen, J.A. van; Verstappen, S.M.M.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. MATERIALS AND METHODS: Seventy-eight

  12. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    Science.gov (United States)

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Tracheal tube airleak in clinical practice and impact on tidal volume measurement in ventilated neonates.

    Science.gov (United States)

    Mahmoud, Ramadan A; Proquitté, Hans; Fawzy, Naglaa; Bührer, Christoph; Schmalisch, Gerd

    2011-03-01

    To determine the prevalence, size, and factors affecting tracheal tube (TT) leak in clinical practice and their influence on the displayed tidal volume (Vt) in ventilated newborn infants using uncuffed TTs. Monitoring of Vt is important for implementation of lung-protective ventilation strategies but becomes meaningless in the presence of large TT airleaks. Retrospective clinical study. Neonatal intensive care unit. Patient records of 163 neonates ventilated with Babylog 8000 for ≥ 5 hrs with a median (range) gestation age of 31.1 wks (23.3-41.9 wks) and a median birth weight of 1470 g (410-4475 g) were evaluated. : Ventilatory settings, TT leak, and Vt were recorded every 3 hrs. The lowest, median, and highest TT leaks were noted on the day the first TT leak (>5%) occurred, the day on which TT leak peaked, and the day of extubation. A TT leak of >5% was seen in 122 (75%) infants. Neonates with TT leak, compared with those without TT leak, had a longer duration of mechanical ventilation (p 40% commonly seen on the third day of mechanical ventilation. Regression analysis showed that a TT leak of 40% indicated that the displayed Vt was underestimated by 1.2 mL/kg (about 24% of target Vt). TT leak is highly variable, and TT leak of >40% with clinically relevant Vt errors occurred in nearly half of all ventilated neonates. Preterm infants of low birth weight and with small-diameter TTs ventilated for a long period were at greater risk of TT leak.

  14. A novel correction factor based on extended volume to complement the conformity index.

    Science.gov (United States)

    Jin, F; Wang, Y; Wu, Y-Z

    2012-08-01

    We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.

  15. Automatic definition of targeted biological volumes for the radiotherapy applications; Definition automatique des volumes biologiques cibles pour les applications de radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, M.; Visvikis, D. [LaTIM, U650 Inserm, 29 - Brest (France); Cheze-Le-Rest, C. [Service de medecine nucleaire, 29 - Brest (France); Pradier, O. [Service de radiotherapie, 29 - Brest (France)

    2009-10-15

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ({sup 18}F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  16. Evaluation of the role of 18FDG-PET/CT in radiotherapy target definition in patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, Katie L; Partridge, Mike; Cook, Gary; Sharma, Bhupinder; Rhys-Evans, Peter; Harrington, Kevin J; Nutting, Christopher M [The Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom)

    2008-08-15

    Background and purpose. As techniques for radiotherapy delivery have developed, increasingly accurate localisation of disease is demanded. Functional imaging, particularly PET and its fusion with anatomical modalities, such as PET/CT, promises to improve detection and characterisation of disease. This study evaluated the impact of 18FDG-PET/CT on radiotherapy target volume definition in head and neck cancer (HNC). Materials and methods. The PET/CT scans of patients with HNC were used in a radiotherapy planning (RTP) study. The gross tumour volume (GTV), clinical target volume (CTV) and planning target volume (PTV) were defined conventionally and compared to those defined using the PET/CT. Data were reported as the median value with 95% confidence intervals. Results. Eighteen patients were consented, 9 had known primary tumour site, 9 presented as unknown primary. In nine cases where the primary site was known, the combined primary and nodal GTV (GTVp+n) increased by a median of 6.1cm3 (2.6, 12.2) or 78% (18, 313), p=0.008 with CTV increasing by a median of 10.1cm3 (1.3, 30.6) or 4% (0, 13) p=0.012. In 9 cases of unknown primary the GTVp+n increased by a median 6.3cm3 (0.2, 15.7) or 61% (4, 210), p=0.012, with CTV increasing by a median 155.4cm3 (2.7, 281.7) or 95% (1, 137), p=0.008. Conclusion. 18FDG-PET revealed disease lying outside the conventional target volume, either extending a known area or highlighting a previously unknown area of disease, including the primary tumour in 5 cases. We recommend PET/CT in the RTP of all cases of unknown primary. In patients with a known primary, although the change in volume was statistically significant the clinical impact is less clear. 18FDG-PET can also show areas within the conventional target volume that are hypermetabolic which may be possible biological target volumes for dose escalation studies in the future

  17. Impact of 4D image quality on the accuracy of target definition

    International Nuclear Information System (INIS)

    Nielson, Tim B.; Hansen, Christian R.; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV–CTV expansions (0.5–1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  18. Impact of 4D image quality on the accuracy of target definition.

    Science.gov (United States)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  19. Therapeutic analysis of high-dose-rate "1"9"2Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    International Nuclear Information System (INIS)

    Zhang, Hualin; Donnelly, Eric D.; Strauss, Jonathan B.; Qi, Yujin

    2016-01-01

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0)"4 to (13.4)"4 for

  20. Shop for quality or quantity? Volumes and costs in clinical laboratories.

    Science.gov (United States)

    Barletta, Giovanni; Zaninotto, Martina; Faggian, Diego; Plebani, Mario

    2013-02-01

    The increasing need to reduce the costs of providing diagnostic laboratory services has prompted initiatives based on the centralization and consolidation of laboratory facilities. However, the majority of papers and experiences reported in literature focus on "cost per test" thus overlooking the real value of a laboratory service, which requires more complex economic evaluations, such as cost-benefit, cost-effectiveness, and cost-utility analysis. It is important to perform cost analysis, which is no mean feat, by taking into consideration all variables affecting the final and true cost per test. The present study was conducted in order to evaluate the costs of delivering laboratory services in 20 Italian clinical laboratories using a widely accepted methodology, the so-called "activity-based costing analysis". The finding of a trend towards a decrease in total costs - due to an increase in test volumes - attained statistical significance only for quantities of up to about 1,100,00 tests per year. For 1,800,00 tests and more, the cost per test appeared to range from 1.5 to 2.0 € irrespective of the different volumes. Regarding the relationship between volumes and number of staff, there is an evident linear relationship between the number of senior staff and volumes, whereas this trend is not observed in the case of medical technologists, the degree and type of automation strongly affecting this variable. The findings made in the present study confirm that the relationship between volumes and costs is not linear; since it is complex, numerous variables should be taken into account.

  1. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani [Dept. of Radiation Oncology, New York Methodist Hospital, Brooklyn (United States)

    2013-12-15

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum{sub overlap}) or PTV and bladder (Bladder{sub overlap}) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum{sub overlap} and Bladder{sub overlap} correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V{sub 45} and bladder V{sub 50} with R{sup 2} = 0.78 and R{sup 2} = 0.83, respectively, and predicted the boost plan rectum V{sub 30} and bladder V{sub 30} with R{sup 2} = 0.53 and R{sup 2} = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladder{sub overlap} to predict bladder V{sub 80} >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  2. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  3. Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets.

    Science.gov (United States)

    Yakoumakis, Nikolaos; Winey, Brian; Killoran, Joseph; Mayo, Charles; Niedermayr, Thomas; Panayiotakis, George; Lingos, Tania; Court, Laurence

    2012-11-08

    In this work we used 4D dose calculations, which include the effects of shape deformations, to investigate an alternative approach to creating the ITV. We hypothesized that instead of needing images from all the breathing phases in the 4D CT dataset to create the outer envelope used for treatment planning, it is possible to exclude images from the phases closest to the inhale phase. We used 4D CT images from 10 patients with lung cancer. For each patient, we drew a gross tumor volume on the exhale-phase image and propagated this to the images from other phases in the 4D CT dataset using commercial image registration software. We created four different ITVs using the N phases closest to the exhale phase (where N = 10, 8, 7, 6). For each ITV contour, we created a volume-modulated arc therapy plan on the exhale-phase CT and normalized it so that the prescribed dose covered at least 95% of the ITV. Each plan was applied to CT images from each CT phase (phases 1-10), and the calculated doses were then mapped to the exhale phase using deformable registration. The effect of the motion was quantified using the dose to 95% of the target on the exhale phase (D95) and tumor control probability. For the three-dimensional and 4D dose calculations of the plan where N = 10, differences in the D95 value varied from 3% to 14%, with an average difference of 7%. For 9 of the 10 patients, the reduction in D95 was less than 5% if eight phases were used to create the ITV. For three of the 10 patients, the reduction in the D95 was less than 5% if seven phases were used to create the ITV. We were unsuccessful in creating a general rule that could be used to create the ITV. Some reduction (8/10 phases) was possible for most, but not all, of the patients, and the ITV reduction was small.

  4. Split-Volume Treatment Planning of Multiple Consecutive Vertebral Body Metastases for Cyberknife Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Sahgal, Arjun; Chuang, Cynthia; Larson, David; Huang, Kim; Petti, Paula; Weinstein, Phil; Ma Lijun

    2008-01-01

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required

  5. Methods for Reducing Normal Tissue Complication Probabilities in Oropharyngeal Cancer: Dose Reduction or Planning Target Volume Elimination

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, Stuart E.; Eisbruch, Avraham; Vineberg, Karen; Lee, Jae; Lee, Choonik; Matuszak, Martha M.; Ten Haken, Randall K.; Brock, Kristy K., E-mail: kbrock@med.umich.edu

    2016-11-01

    Purpose: Strategies to reduce the toxicities of head and neck radiation (ie, dysphagia [difficulty swallowing] and xerostomia [dry mouth]) are currently underway. However, the predicted benefit of dose and planning target volume (PTV) reduction strategies is unknown. The purpose of the present study was to compare the normal tissue complication probabilities (NTCP) for swallowing and salivary structures in standard plans (70 Gy [P70]), dose-reduced plans (60 Gy [P60]), and plans eliminating the PTV margin. Methods and Materials: A total of 38 oropharyngeal cancer (OPC) plans were analyzed. Standard organ-sparing volumetric modulated arc therapy plans (P70) were created and then modified by eliminating the PTVs and treating the clinical tumor volumes (CTVs) only (C70) or maintaining the PTV but reducing the dose to 60 Gy (P60). NTCP dose models for the pharyngeal constrictors, glottis/supraglottic larynx, parotid glands (PGs), and submandibular glands (SMGs) were analyzed. The minimal clinically important benefit was defined as a mean change in NTCP of >5%. The P70 NTCP thresholds and overlap percentages of the organs at risk with the PTVs (56-59 Gy, vPTV{sub 56}) were evaluated to identify the predictors for NTCP improvement. Results: With the P60 plans, only the ipsilateral PG (iPG) benefited (23.9% vs 16.2%; P<.01). With the C70 plans, only the iPG (23.9% vs 17.5%; P<.01) and contralateral SMG (cSMG) (NTCP 32.1% vs 22.9%; P<.01) benefited. An iPG NTCP threshold of 20% and 30% predicted NTCP benefits for the P60 and C70 plans, respectively (P<.001). A cSMG NTCP threshold of 30% predicted for an NTCP benefit with the C70 plans (P<.001). Furthermore, for the iPG, a vPTV{sub 56} >13% predicted benefit with P60 (P<.001) and C70 (P=.002). For the cSMG, a vPTV{sub 56} >22% predicted benefit with C70 (P<.01). Conclusions: PTV elimination and dose-reduction lowered the NTCP of the iPG, and PTV elimination lowered the NTCP of the cSMG. NTCP thresholds and the

  6. A strategy to objectively evaluate the necessity of correcting detected target deviations in image guided radiotherapy

    International Nuclear Information System (INIS)

    Yue, Ning J.; Kim, Sung; Jabbour, Salma; Narra, Venkat; Haffty, Bruce G.

    2007-01-01

    Image guided radiotherapy technologies are being increasingly utilized in the treatment of various cancers. These technologies have enhanced the ability to detect temporal and spatial deviations of the target volume relative to planned radiation beams. Correcting these detected deviations may, in principle, improve the accuracy of dose delivery to the target. However, in many situations, a clinical decision has to be made as to whether it is necessary to correct some of the deviations since the relevant dosimetric impact may or may not be significant, and the corresponding corrective action may be either impractical or time consuming. Ideally this decision should be based on objective and reproducible criteria rather than subjective judgment. In this study, a strategy is proposed for the objective evaluation of the necessity of deviation correction during the treatment verification process. At the treatment stage, without any alteration from the planned beams, the treatment beams should provide the desired dose coverage to the geometric volume identical to the planning target volume (PTV). Given this fact, the planned dose distribution and PTV geometry were used to compute the dose coverage and PTV enclosure of the clinical target volume (CTV) that was detected from imaging during the treatment setup verification. The spatial differences between the detected CTV and the planning CTV are essentially the target deviations. The extent of the PTV enclosure of the detected CTV as well as its dose coverage were used as criteria to evaluate the necessity of correcting any of the target deviations. This strategy, in principle, should be applicable to any type of target deviations, including both target deformable and positional changes and should be independent of how the deviations are detected. The proposed strategy was used on two clinical prostate cancer cases. In both cases, gold markers were implanted inside the prostate for the purpose of treatment setup

  7. Inflammatory therapeutic targets in coronary atherosclerosis – from molecular biology to clinical application

    Directory of Open Access Journals (Sweden)

    Fabian eLinden

    2014-11-01

    Full Text Available Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over three years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecu-lar inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis.

  8. Clinical decisions for anterior restorations: the concept of restorative volume.

    Science.gov (United States)

    Cardoso, Jorge André; Almeida, Paulo Júlio; Fischer, Alex; Phaxay, Somano Luang

    2012-12-01

    The choice of the most appropriate restoration for anterior teeth is often a difficult decision. Numerous clinical and technical factors play an important role in selecting the treatment option that best suits the patient and the restorative team. Experienced clinicians have developed decision processes that are often more complex than may seem. Less experienced professionals may find difficulties making treatment decisions because of the widely varied restorative materials available and often numerous similar products offered by different manufacturers. The authors reviewed available evidence and integrated their clinical experience to select relevant factors that could provide a logical and practical guideline for restorative decisions in anterior teeth. The presented concept of restorative volume is based on structural, optical, and periodontal factors. Each of these factors will influence the short- and long-term behavior of restorations in terms of esthetics, biology, and function. Despite the marked evolution of esthetic restorative techniques and materials, significant limitations still exist, which should be addressed by researchers. The presented guidelines must be regarded as a mere orientation for risk analysis. A comprehensive individual approach should always be the core of restorative esthetic treatments. The complex decision process for anterior esthetic restorations can be clarified by a systematized examination of structural, optical, and periodontal factors. The basis for the proposed thought process is the concept of restorative volume that is a contemporary interpretation of restoration categories and their application. © 2012 Wiley Periodicals, Inc.

  9. TU-H-CAMPUS-TeP1-03: Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Wroe, AJ [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate the use of magnetic focusing for small volume proton radiosurgery targets using a triplet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Fourteen quadrupole magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into k=3 Halbach cylinders with various field gradients (100 to 250 T/m) were designed and manufactured. Triplet combinations of the magnets were placed on a positioning track on our Gantry 1 treatment table. Unmodulated 127 MeV proton beams with initial diameters of 3 to 20 mm were delivered to a water tank using single-stage scattering. Depth and transverse dose distributions were measured using a PTW PR60020 diode detector and EBT3 film, respectively. This data was compared with unfocused passively collimated beams. Monte Carlo simulations were also performed - both for comparison with experimental data and to further investigate the potential of triplet magnetic focusing. Results: Experimental results using 150 T/m gradient magnets and 15 to 20 mm initial diameter beams show peak to entrance dose ratios that are ∼ 43 to 48 % larger compared with spot size matched 8 mm collimated beams (ie, transverse profile full-widths at 90% maximum dose match within 0.5 mm of focused beams). In addition, the focusing beams were ∼ 3 to 4.4 times more efficient per MU in dose to target delivery. Additional results using different magnet combinations will also be presented. Conclusion: Our results suggest that triplet magnetic focusing could reduce entrance dose and beam number while delivering dose to small (∼≤ 10 mm diameter) radiosurgery targets in less time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however other treatment sites can be also envisioned. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  10. Generalizing Evidence From Randomized Clinical Trials to Target Populations

    Science.gov (United States)

    Cole, Stephen R.; Stuart, Elizabeth A.

    2010-01-01

    Properly planned and conducted randomized clinical trials remain susceptible to a lack of external validity. The authors illustrate a model-based method to standardize observed trial results to a specified target population using a seminal human immunodeficiency virus (HIV) treatment trial, and they provide Monte Carlo simulation evidence supporting the method. The example trial enrolled 1,156 HIV-infected adult men and women in the United States in 1996, randomly assigned 577 to a highly active antiretroviral therapy and 579 to a largely ineffective combination therapy, and followed participants for 52 weeks. The target population was US people infected with HIV in 2006, as estimated by the Centers for Disease Control and Prevention. Results from the trial apply, albeit muted by 12%, to the target population, under the assumption that the authors have measured and correctly modeled the determinants of selection that reflect heterogeneity in the treatment effect. In simulations with a heterogeneous treatment effect, a conventional intent-to-treat estimate was biased with poor confidence limit coverage, but the proposed estimate was largely unbiased with appropriate confidence limit coverage. The proposed method standardizes observed trial results to a specified target population and thereby provides information regarding the generalizability of trial results. PMID:20547574

  11. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    International Nuclear Information System (INIS)

    Jani, Shyam S.; Robinson, Clifford G.; Dahlbom, Magnus; White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M.

    2013-01-01

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated

  12. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Directory of Open Access Journals (Sweden)

    Peleg Rider

    2016-01-01

    Full Text Available Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.

  13. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Bonora, M [University of Milan, Milan (Italy); Evans, P [University of Surrey, Guildford (United Kingdom)

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  14. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy

    International Nuclear Information System (INIS)

    Chang, Joe H.; Joon, Daryl Lim; Lee, Sze Ting; Gong, Sylvia J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2011-01-01

    Background and purpose: To evaluate the accuracy of 11 C-choline PET scans in defining dominant intraprostatic lesions (DILs) for radiotherapy target volume definition. Material and methods: Eight men with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy were studied. Several methods were used to contour the DIL on the PET scans: visual, PET Edge, Region Grow, absolute standardised uptake value (SUV) thresholds and percentage of maximum SUV thresholds. Prostatectomy specimens were sliced in the transverse plane and DILs were delineated on these by a pathologist. These were then compared with the PET scans. The accuracy of correlation was assessed by the Dice similarity coefficient (DSC) and the Youden index. Results: The contouring method resulting in both the highest DSC and the highest Youden index was 60% of the maximum SUV (SUV 60% ), with values of 0.64 and 0.51, respectively. However SUV 60% was not statistically significantly better than all of the other methods by either measure. Conclusions: Although not statistically significant, SUV 60% resulted in the best correlation between 11 C-choline PET and pathology amongst all the methods studied. The degree of correlation shown here is consistent with previous studies that have justified using imaging for DIL radiotherapy target volume definition.

  15. Implementation of Targeted Next Generation Sequencing in Clinical Diagnostics

    DEFF Research Database (Denmark)

    Larsen, Martin Jakob; Burton, Mark; Thomassen, Mads

    Accurate mutation detection is essential in clinical genetic diagnostics of monogenic hereditary diseases. Targeted next generation sequencing (NGS) provides a promising and cost-effective alternative to Sanger sequencing and MLPA analysis currently used in most diagnostic laboratories. One...... of mutation positive controls previously characterized by Sanger/MLPA analysis. Agilent SureSelect Target-Enrichment kits were used for capturing a set of genes associated with hereditary breast and ovarian cancer syndrome and a compilation of genes involved in multiple rare single gene disorders......, respectively. For diagnostics, the sequencing coverage is essential, wherefore a minimum coverage of 30x per nucleotide in the coding regions was used as our primary quality criterion. For the majority of the included genes, we obtained adequate gene coverage, in which we were able to detect 100% of the known...

  16. Quantification and Minimization of Uncertainties of Internal Target Volume for Stereotactic Body Radiation Therapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ge Hong [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Cai Jing; Kelsey, Chris R. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin Fangfang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-02-01

    Purpose: To quantify uncertainties in delineating an internal target volume (ITV) and to understand how these uncertainties may be individually minimized for stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC). Methods and Materials: Twenty patients with NSCLC who were undergoing SBRT were imaged with free-breathing 3-dimensional computed tomography (3DCT) and 10-phase 4-dimensional CT (4DCT) for delineating gross tumor volume (GTV){sub 3D} and ITV{sub 10Phase} (ITV3). The maximum intensity projection (MIP) CT was also calculated from 10-phase 4DCT for contouring ITV{sub MIP} (ITV1). Then, ITV{sub COMB} (ITV2), ITV{sub 10Phase+GTV3D} (ITV4), and ITV{sub 10Phase+ITVCOMB} (ITV5) were generated by combining ITV{sub MIP} and GTV{sub 3D}, ITV{sub 10phase} and GTV{sub 3D}, and ITV{sub 10phase} and ITV{sub COMB}, respectively. All 6 volumes (GTV{sub 3D} and ITV1 to ITV5) were delineated in the same lung window by the same radiation oncologist. The percentage of volume difference (PVD) between any 2 different volumes was determined and was correlated to effective tumor diameter (ETD), tumor motion ranges, R{sub 3D}, and the amplitude variability of the recorded breathing signal (v) to assess their volume variations. Results: The mean (range) tumor motion (R{sub SI}, R{sub AP}, R{sub ML}, and R{sub 3D}) and breathing variability (v) were 7.6 mm (2-18 mm), 4.0 mm (2-8 mm), 3.3 mm (0-7.5 mm), 9.9 mm (4.1-18.7 mm), and 0.17 (0.07-0.37), respectively. The trend of volume variation was GTV{sub 3D} volumes were 11.1 {+-} 9.3 cc, 13.2 {+-} 10.5 cc, 14.9 {+-} 11.0 cc, 14.7 {+-} 11.4 cc, 15.9 {+-} 11.7 cc, and 16.4 {+-} 11.8 cc, respectively. All comparisons between the target volumes showed statistical significance (P{<=}.001), except for ITV2 and ITV3 (P=.594). The PVDs for all volume pairs correlated negatively with ETD (r{<=}-0.658, P{<=}.006) and positively with

  17. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    Directory of Open Access Journals (Sweden)

    Korevaar Erik W

    2008-01-01

    Full Text Available Abstract Background The shift from conventional two-dimensional (2D to three-dimensional (3D-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT-based breast and boost planning target volumes (PTV, absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Methods Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. Results With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. Conclusion The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on

  18. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Langendijk, Johannes A

    2008-01-01

    The shift from conventional two-dimensional (2D) to three-dimensional (3D)-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT)-based breast and boost planning target volumes (PTV), absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on clinical data confirming tumour control probability and normal

  19. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer

    International Nuclear Information System (INIS)

    Offersen, Birgitte V.; Boersma, Liesbeth J.; Kirkove, Carine; Hol, Sandra; Aznar, Marianne C.; Biete Sola, Albert; Kirova, Youlia M.; Pignol, Jean-Philippe; Remouchamps, Vincent; Verhoeven, Karolien; Weltens, Caroline; Arenas, Meritxell; Gabrys, Dorota; Kopek, Neil; Krause, Mechthild; Lundstedt, Dan; Marinko, Tanja

    2015-01-01

    Background and purpose: Delineation of clinical target volumes (CTVs) is a weak link in radiation therapy (RT), and large inter-observer variation is seen in breast cancer patients. Several guidelines have been proposed, but most result in larger CTVs than based on conventional simulator-based RT. The aim was to develop a delineation guideline obtained by consensus between a broad European group of radiation oncologists. Material and methods: During ESTRO teaching courses on breast cancer, teachers sought consensus on delineation of CTV through dialogue based on cases. One teacher delineated CTV on CT scans of 2 patients, followed by discussion and adaptation of the delineation. The consensus established between teachers was sent to other teams working in the same field, both locally and on a national level, for their input. This was followed by developing a broad consensus based on discussions. Results: Borders of the CTV encompassing a 5 mm margin around the large veins, running through the regional lymph node levels were agreed, and for the breast/thoracic wall other vessels were pointed out to guide delineation, with comments on margins for patients with advanced breast cancer. Conclusion: The ESTRO consensus on CTV for elective RT of breast cancer, endorsed by a broad base of the radiation oncology community, is presented to improve consistency

  20. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Pötter, Richard

    2012-01-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm 3 , and the mean GTV at brachytherapy was 10 (±14) cm 3 . The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable

  1. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  2. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de; Villeirs, G.M.; Delrue, L.J.

    2004-01-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  3. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de [Dept. of Radiation Oncology, Gent Univ. Hospital, Gent (Belgium); Villeirs, G.M.; Delrue, L.J. [Dept. of Radiology, Gent Univ. Hospital, Gent (Belgium)

    2004-09-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  4. Open-source Software for Demand Forecasting of Clinical Laboratory Test Volumes Using Time-series Analysis.

    Science.gov (United States)

    Mohammed, Emad A; Naugler, Christopher

    2017-01-01

    Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. This tool will allow anyone with historic test volume data to model future demand.

  5. Open-source software for demand forecasting of clinical laboratory test volumes using time-series analysis

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2017-01-01

    Full Text Available Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand.

  6. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  7. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    Science.gov (United States)

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  8. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    International Nuclear Information System (INIS)

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R

    2014-01-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm 3 ) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment

  9. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  10. Volume rendering in treatment planning for moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Alexander [GSI-Biophysics, Darmstadt (Germany); Massachusetts General Hospital, Boston (United States); Wolfgang, John A.; Chen, George T.Y. [Massachusetts General Hospital, Boston (United States)

    2009-07-01

    Advances in computer technologies have facilitated the development of tools for 3-dimensional visualization of CT-data sets with volume rendering. The company Fovia has introduced a high definition volume rendering engine (HDVR trademark by Fovia Inc., Palo Alto, USA) that is capable of representing large CT data sets with high user interactivity even on standard PCs. Fovia provides a software development kit (SDK) that offers control of all the features of the rendering engine. We extended the SDK by functionalities specific to the task of treatment planning for moving tumors. This included navigation of the patient's anatomy in beam's eye view, fast point-and-click measurement of lung tumor trajectories as well as estimation of range perturbations due to motion by calculation of (differential) water equivalent path lengths for protons and carbon ions on 4D-CT data sets. We present patient examples to demonstrate the advantages and disadvantages of volume rendered images as compared to standard 2-dimensional axial plane images. Furthermore, we show an example of a range perturbation analysis. We conclude that volume rendering is a powerful technique for the representation and analysis of large time resolved data sets in treatment planning.

  11. Improving the clinical correlation of multiple sclerosis black hole volume change by paired-scan analysis.

    Science.gov (United States)

    Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B

    2012-01-01

    The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.

  12. Clinical and psychosocial predictors of exceeding target length of stay during inpatient stroke rehabilitation.

    Science.gov (United States)

    Lai, Wesley; Buttineau, Mackenzie; Harvey, Jennifer K; Pucci, Rebecca A; Wong, Anna P M; Dell'Erario, Linda; Bosnyak, Stephanie; Reid, Shannon; Salbach, Nancy M

    2017-10-01

    In Ontario, Canada, patients admitted to inpatient rehabilitation hospitals post-stroke are classified into rehabilitation patient groups based on age and functional level. Clinical practice guidelines, called quality-based procedures, recommend a target length of stay (LOS) for each group. The study objective was to evaluate the extent to which patients post-stroke at an inpatient rehabilitation hospital are meeting LOS targets and to identify patient characteristics that predict exceeding target LOS. A quantitative, longitudinal study from an inpatient rehabilitation hospital was conducted. Participants included adult patients (≥18 years) with stroke, admitted to an inpatient rehabilitation hospital between 2014 and 2015. The percentage of patients exceeding the recommended target LOS was determined. Logistic regression was performed to identify clinical and psychosocial patient characteristics associated with exceeding target LOS after adjusting for stroke severity. Of 165 patients, 38.8% exceeded their target LOS. Presence of ataxia, recurrent stroke, living alone, absence of a caregiver at admission, and acquiring a caregiver during hospital LOS was each associated with significantly higher odds of exceeding target LOS in comparison to patients without these characteristics after adjusting for stroke severity (p stroke-specific factors may be helpful to adjust LOS expectations and promote efficient resource allocation. This exploratory study was limited to findings from one inpatient rehabilitation hospital. Cross-validation of results using data-sets from multiple rehabilitation hospitals across Ontario is recommended.

  13. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    BACKGROUND: Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such p......-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice....... of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  14. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting: A Systematic Review.

    Science.gov (United States)

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor; Herly, Mikkel; Trojahn Kølle, Stig-Frederik; Fischer-Nielsen, Anne; Drzewiecki, Krzysztof Tadeusz

    2017-07-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  15. Defining the target volume for post-operative radiotherapy after D2 dissection in gastric cancer by CT-based vessel-guided delineation

    International Nuclear Information System (INIS)

    Yoon, Hong In; Chang, Jee Suk; Lim, Joon Seok; Noh, Sung Hoon; Hyung, Woo Jin; An, Ji Yeong; Lee, Yong Chan; Rha, Sun Young; Kim, Kyung Hwan; Koom, Woong Sub

    2013-01-01

    Purpose: To determine the recurrent nodal gross tumor volume (rnGTV) based on CT-guided vascular structure to refine the clinical target volume (CTV) delineation in postoperative radiotherapy for advanced gastric cancer following radical gastrectomy with D2 dissection. Materials and methods: We retrospectively reviewed follow-up images from 91 patients with their first regional recurrence after D2 dissection in stage III gastric cancer with N3 disease. We defined rnGTV as recurrent nodes shown in follow-up CT images, in which one diagnostic radiologist with specialty of gastrointestinal tract investigated. We drew rnGTVs at the equivalent location based on the same vessels of reference comparing CT images to recurrence CT images. Results: We propose vessel-based locations of rnGTVs on CT images with axial and coronal views. We show different patterns of regional recurrence according to the location of primary gastric cancer using CT and digitally reconstructed radiograph (DRR) images. Frequently recurred sites, overlapped by more than five rnGTVs, are depicted in a DRR image. Conclusions: This study suggests vessel-based delineations of rnGTVs on CT images depending on nodal recurrence sites from follow-up images after D2 lymphadenectomy. Our results could help reduce the inter-observer variation of CTV delineation after D2 dissection in gastric cancer

  16. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    Science.gov (United States)

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.

  17. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J; Joe, Alexius Y; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses. (orig.)

  18. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    International Nuclear Information System (INIS)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger; Brink, Ingo; Krause, Thomas M.

    2002-01-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15±9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256±80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses. (orig.)

  19. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism.

    Science.gov (United States)

    Jacob, Minnie; Malkawi, Abeer; Albast, Nour; Al Bougha, Salam; Lopata, Andreas; Dasouki, Majed; Abdel Rahman, Anas M

    2018-09-26

    Metabolome, the ultimate functional product of the genome, can be studied through identification and quantification of small molecules. The global metabolome influences the individual phenotype through clinical and environmental interventions. Metabolomics has become an integral part of clinical research and allowed for another dimension of better understanding of disease pathophysiology and mechanism. More than 95% of the clinical biochemistry laboratory routine workload is based on small molecular identification, which can potentially be analyzed through metabolomics. However, multiple challenges in clinical metabolomics impact the entire workflow and data quality, thus the biological interpretation needs to be standardized for a reproducible outcome. Herein, we introduce the establishment of a comprehensive targeted metabolomics method for a panel of 220 clinically relevant metabolites using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) standardized for clinical research. The sensitivity, reproducibility and molecular stability of each targeted metabolite (amino acids, organic acids, acylcarnitines, sugars, bile acids, neurotransmitters, polyamines, and hormones) were assessed under multiple experimental conditions. The metabolic tissue distribution was determined in various rat organs. Furthermore, the method was validated in dry blood spot (DBS) samples collected from patients known to have various inborn errors of metabolism (IEMs). Using this approach, our panel appears to be sensitive and robust as it demonstrated differential and unique metabolic profiles in various rat tissues. Also, as a prospective screening method, this panel of diverse metabolites has the ability to identify patients with a wide range of IEMs who otherwise may need multiple, time-consuming and expensive biochemical assays causing a delay in clinical management. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. [Targeting high-risk drugs to optimize clinical pharmacists' intervention].

    Science.gov (United States)

    Mouterde, Anne-Laure; Bourdelin, Magali; Maison, Ophélie; Coursier, Sandra; Bontemps, Hervé

    2016-12-01

    By the Order of 6 April 2011, the pharmacist must validate all the prescriptions containing "high-risk drugs" or those of "patients at risk". To optimize this clinical pharmacy activity, we identified high-risk drugs. A list of high-risk drugs has been established using literature, pharmacists' interventions (PI) performed in our hospital and a survey sent to hospital pharmacists. In a prospective study (analysis of 100 prescriptions for each high-risk drug selected), we have identified the most relevant to target. We obtained a statistically significant PI rate (P<0.05) for digoxin, oral anticoagulants direct, oral methotrexate and colchicine. This method of targeted pharmaceutical validation based on high-risk drugs is relevant to detect patients with high risk of medicine-related illness. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  1. Virtual simulation. First clinical results in patients with prostate cancer

    International Nuclear Information System (INIS)

    Buchali, A.; Dinges, S.; Koswig, S.; Rosenthal, P.; Salk, S.; Harder, C.; Schlenger, L.; Budach, V.

    1998-01-01

    Investigation of options of virtual simulation in patients with localized prostate cancer. Twenty-four patients suffering from prostate cancer were virtual simulated. The clinical target volume was contoured and the planning target volume was defined after CT scan. The isocenter of the planning target volume was determined and marked at patient's skin. The precision of patients marking was controlled with conventional simulation after physical radiation treatment planning. Mean differences of the patient's mark revealed between the 2 simulations in all room axes around 1 mm. The organs at risk were visualized in the digital reconstructed radiographs. The precise patient's mark of the isocentre by virtual simulation allows to skip the conventional simulation. The visualisation of organs at risk leeds to an unnecessarity of an application of contrast medium and to a further relieve of the patient. The personal requirement is not higher in virtual simulation than in conventional CT based radiation treatment planning. (orig./MG) [de

  2. Optimization of the testing volumes with respect to neutron flux levels in the two-target high flux D-Li neutron source for the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Varsamis, G.L.

    1989-01-01

    An economic and fusion-relevant source of high-energy neutrons is an essential element in the fusion nuclear technology and development program. This source can be generated by directing a high energy deuteron beam onto a flowing liquid lithium target, producing neutrons via the D-Lithium stripping reaction. Previous work on this type of source concentrated on a design employing one deuteron beam of modest amperage. This design was shown to have a relatively small testing volume with high flux gradients and was therefor considered somewhat unattractive from a materials testing standpoint. A design using two lithium targets and two high-amperage beams has recently been proposed. This two beam design has been examined in an effort to maximize the test volume while minimizing the flux gradients and minimizing the effect of radiation damage on one target due to the other. A spatial, energy and angle dependent neutron source modeling the D-Lithium source was developed. Using this source, a 3-dimensional map of uncollided flux within the test volume was calculated. The results showed that the target separation has little effect on the available experimental volume and that a testing volume of ∼35 liters is available with a volume averaged flux above 10 14 n/cm 2 /s. The collided flux within the test volume was then determined by coupling the source model with a Monte Carlo code. The spectral effects of the high-energy tail in the flux were examined and evaluated as to possible effects on materials response. Calculations comparing the radiation damage to materials from the D-Lithium source to that cause by a standard DT fusion first-wall neutron flux spectrum showed that the number of appm and dpa, as well as the ratio appm/dpa and dpa/MW/m 2 are within 30% for the two sources. 8 refs., 8 figs

  3. Effect of operator and institutional volume on clinical outcomes after percutaneous coronary interventions performed in Canada and the United States: a brief report from the Enhanced Suppression of the Platelet glycoprotein IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) study.

    Science.gov (United States)

    Madan, Mina; Nikhil, Janarthan; Hellkamp, Anne S; Pieper, Karen S; Labinaz, Marino; Cohen, E A; Buller, Christopher E; Cantor, Warren J; Seidelin, Peter; Ducas, John; Carere, Ronald G; Natarajan, Madhu K; O'Shea, J Conor; Tcheng, James E

    2009-08-01

    The Enhanced Suppression of the Platelet glycoprotein IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) trial compared the use of eptifibatide with placebo in 2064 coronary intervention patients. It was previously reported that Canadian patients had reduced rates of 30-day and one-year death, myocardial infarction (MI) or target vessel revascularization (TVR) compared with patients in the United States (US). To examine whether operator or institutional volume differences explain the regional variation in clinical outcome. Each site received an operator and institutional volume survey. Fifty-seven sites (62%) returned complete data on 1338 patients. In this smaller cohort, Canadian patients had reduced rates of 30-day and one-year death, MI or TVR compared with US patients (6.3% versus 10.3% and 14.9% versus 20.1%, respectively; PESPRIT study, institutional volume was associated with a modest reduction in risk of death, MI or TVR over short- and long-term follow-up periods. The Canadian and US investigators and institutions selected in ESPRIT had similar annual procedural volumes. Therefore, volume variables did not explain the differential risk of clinical events observed for patients enrolled in the two countries.

  4. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics.

    Science.gov (United States)

    Magliacane, Gilda; Grassini, Greta; Bartocci, Paola; Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-10-13

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.

  5. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  6. Decomposition analysis of differential dose volume histograms

    International Nuclear Information System (INIS)

    Heuvel, Frank van den

    2006-01-01

    Dose volume histograms are a common tool to assess the value of a treatment plan for various forms of radiation therapy treatment. The purpose of this work is to introduce, validate, and apply a set of tools to analyze differential dose volume histograms by decomposing them into physically and clinically meaningful normal distributions. A weighted sum of the decomposed normal distributions (e.g., weighted dose) is proposed as a new measure of target dose, rather than the more unstable point dose. The method and its theory are presented and validated using simulated distributions. Additional validation is performed by analyzing simple four field box techniques encompassing a predefined target, using different treatment energies inside a water phantom. Furthermore, two clinical situations are analyzed using this methodology to illustrate practical usefulness. A comparison of a treatment plan for a breast patient using a tangential field setup with wedges is compared to a comparable geometry using dose compensators. Finally, a normal tissue complication probability (NTCP) calculation is refined using this decomposition. The NTCP calculation is performed on a liver as organ at risk in a treatment of a mesothelioma patient with involvement of the right lung. The comparison of the wedged breast treatment versus the compensator technique yields comparable classical dose parameters (e.g., conformity index ≅1 and equal dose at the ICRU dose point). The methodology proposed here shows a 4% difference in weighted dose outlining the difference in treatment using a single parameter instead of at least two in a classical analysis (e.g., mean dose, and maximal dose, or total dose variance). NTCP-calculations for the mesothelioma case are generated automatically and show a 3% decrease with respect to the classical calculation. The decrease is slightly dependant on the fractionation and on the α/β-value utilized. In conclusion, this method is able to distinguish clinically

  7. kV cone-beam CT-based IGRT. A clinical review

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggermann, Judit; Lohr, Frank; Wenz, Frederik [Heidelberg Univ., Univ. Medical Center Mannheim (Germany). Dept. of Radiation Oncology; Flentje, Michael; Guckenberger, Matthias [Univ. Hospital Wuerzburg (Germany). Dept. of Radiation Oncology

    2011-05-15

    Aims and Methods: Delivery of high radiation doses while simultaneously sparing organs at risk requires advanced imaging for target volume definition, highly conformal dose distributions of intensity modulated radiotherapy (IMRT), and narrow planning target volume (PTV) margins. Three-dimensional image-guided radiotherapy (IGRT) with cone-beam computer tomography (CBCT), which results in more precise target localization, is quickly replacing two-dimensional (2D) IGRT. An overview on the clinical applications of kilovoltage gantry-mounted CBCT systems with emphasis on the most frequently targeted body sites (prostate, lung, head and neck) is provided based on a review of the relevant literature. Alternative imaging methods and their advantages/disadvantages are discussed. Results: IGRT with soft tissue detection improves set-up accuracy and is currently replacing 2D verification and frame-based stereotactic treatments; safety margins are significantly reduced by this IGRT technology. In addition, systematic changes of tumor volume and shape and of the normal tissue can be monitored allowing for adaptation of radiotherapy. IGRT in combination with conformal treatment planning allows for hypofractionated dose escalation, which results in improved rates of local tumor control with low rates of toxicity. Conclusion: CBCT allows for daily pretreatment position verification and online correction of set-up errors which improves the precision of patient repositioning with the possibility of shrinking safety margins, sparing organs at risk, and escalating radiation doses. A trend for better clinical outcome can be observed. (orig.)

  8. Alpha-1 Antitrypsin Deficiency Targeted Testing and Augmentation Therapy: A Canadian Thoracic Society Clinical Practice Guideline

    Directory of Open Access Journals (Sweden)

    DD Marciniuk

    2012-01-01

    Full Text Available Alpha-1 antitrypsin (A1AT functions primarily to inhibit neutrophil elastase, and deficiency predisposes individuals to the development of chronic obstructive pulmonary disease (COPD. Severe A1AT deficiency occurs in one in 5000 to one in 5500 of the North American population. While the exact prevalence of A1AT deficiency in patients with diagnosed COPD is not known, results from small studies provide estimates of 1% to 5%. The present document updates a previous Canadian Thoracic Society position statement from 2001, and was initiated because of lack of consensus and understanding of appropriate patients suitable for targeted testing for A1AT deficiency, and for the use of A1AT augmentation therapy. Using revised guideline development methodology, the present clinical practice guideline document systematically reviews the published literature and provides an evidence-based update. The evidence supports the practice that targeted testing for A1AT deficiency be considered in individuals with COPD diagnosed before 65 years of age or with a smoking history of <20 pack years. The evidence also supports consideration of A1AT augmentation therapy in nonsmoking or exsmoking patients with COPD (forced expiratory volume in 1 s of 25% to 80% predicted attributable to emphysema and documented A1AT deficiency (level ≤11 μmol/L who are receiving optimal pharmacological and nonpharmacological therapies (including comprehensive case management and pulmonary rehabilitation because of benefits in computed tomography scan lung density and mortality.

  9. A comparative study on the volume and localization of the internal gross target volume defined using the seroma and surgical clips based on 4DCT scan for external-beam partial breast irradiation after breast conserving surgery

    International Nuclear Information System (INIS)

    Ding, Yun; Li, Jianbin; Wang, Wei; Wang, Suzhen; Wang, Jinzhi; Ma, Zhifang; Shao, Qian; Xu, Min

    2014-01-01

    To explore the volume and localization of the internal gross target volume defined using the seroma and/or surgical clips based on the four-dimensional computed tomography (4DCT) during free-breathing. Fifteen breast cancer patients after breast-conserving surgery (BCS) were recruited for EB-PBI. On the ten sets CT images, the gross target volume formed by the clips, the seroma, both the clips and seroma delineated by one radiation oncologist and defined as GTVc, GTVs and GTVc + s, respectively. The ten GTVc, GTVs and GTVc + s on the ten sets CT images produced the IGTVc, IGTVs, IGTVc + s, respectively. The IGTV volume and the distance between the center of IGTVc, IGTVs, IGTVc + s were all recorded. Conformity index (CI), degree of inclusion (DI) were calculated for IGTV/IGTV, respectively. The volume of IGTVc + s were significantly larger than the IGTVc and IGTVs (p < 0.05). There was significant difference between the DIs of IGTVc vs IGTVc + s, the DIs of IGTVs vs IGTVc + s. There was significant difference among the CIs of IGTV/IGTV. The DIs and CIs of IGTV/IGTV were negatively correlated with their centroid distance (r < 0, p < 0.05). There were volume difference and spatial mismatch between the IGTVs delineated based on the surgical clips and seroma. The IGTV defined as the seroma and surgical clips provided the best overall representation of the ‘true’ moving GTV

  10. Target volume for postoperative radiotherapy in non-small cell lung cancer: Results from a prospective trial

    International Nuclear Information System (INIS)

    Kępka, Lucyna; Bujko, Krzysztof; Bujko, Magdalena; Matecka-Nowak, Mirosława; Salata, Andrzej; Janowski, Henryk; Rogowska, Danuta; Cieślak-Żerańska, Ewa; Komosińska, Katarzyna; Zawadzka, Anna

    2013-01-01

    Background and purpose: A previous prospective trial reported that three-dimensional conformal postoperative radiotherapy (PORT) for pN2 NSCLC patients using a limited clinical target volume (CTV) had a late morbidity rate and pulmonary function that did not differ from those observed in pN1 patients treated with surgery without PORT. The aim of this study was to assess locoregional control and localization of failure in patients treated with PORT. Materials and methods: The pattern of locoregional failure was evaluated retrospectively in 151 of 171 patients included in the PORT arm. The CTV included the involved lymph node stations and those with a risk of invasion >10%. Competing risk analysis was used to assess the incidence of locoregional failure and its location outside the CTV. Results: Overall survival at 5 years was 27.1% with a median follow-up of 67 months for 40 living patients. The 5-year cumulative incidence of locoregional failure was 19.4% (95% CI: 18.2–20.5%) including a failure rate of 2% (95% CI: 0–17%) in locations outside or at the border of the CTV. Conclusions: The use of limited CTV was associated with acceptable risk of geographic miss. Overall locoregional control was similar to that reported by other studies using PORT for pN2 patients

  11. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    Science.gov (United States)

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  12. Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose-Positron Emission Tomography-Based Target Volume Definition in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Vogel, Wouter V.; Hoffmann, Aswin L.; Dalen, Jorn A. van; Oyen, Wim J.; Kaanders, Johannes H.A.M.

    2007-01-01

    Purpose: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with 18 F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Methods and Materials: Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. Results: The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). Conclusions: The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition

  13. Multimodality molecular imaging - from target description to clinical studies

    International Nuclear Information System (INIS)

    Schober, O.; Rahbar, K.; Riemann, B.

    2009-01-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. (orig.)

  14. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  15. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    International Nuclear Information System (INIS)

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-01-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  16. Use of clinical simulations for patient education: targeting an untapped audience.

    Science.gov (United States)

    Siwe, Karin; Berterö, Carina; Pugh, Carla; Wijma, Barbro

    2009-01-01

    In most cases, the health professional has been the target for simulation based learning curricula. We have developed a simulation based curriculum for patient education. In our curriculum lay-women learn how to perform the clinical female pelvic examination using a manikin-based trainer. Learner assessments show that prior negative expectations turned into positive expectations regarding future pelvic examinations.

  17. Clinical Validation of Atlas-Based Auto-Segmentation of Multiple Target Volumes and Normal Tissue (Swallowing/Mastication) Structures in the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Teguh, David N. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Levendag, Peter C., E-mail: p.levendag@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Voet, Peter W.J.; Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Han Xiao; Wolf, Theresa K.; Hibbard, Lyndon S. [Elekta-CMS Software, Maryland Heights, MO 63043 (United States); Nowak, Peter; Akhiat, Hafid; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2011-11-15

    Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images. Methods and Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing times were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas. Results: The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a 'minor deviation, editable' or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min

  18. Clinical Validation of Atlas-Based Auto-Segmentation of Multiple Target Volumes and Normal Tissue (Swallowing/Mastication) Structures in the Head and Neck

    International Nuclear Information System (INIS)

    Teguh, David N.; Levendag, Peter C.; Voet, Peter W.J.; Al-Mamgani, Abrahim; Han Xiao; Wolf, Theresa K.; Hibbard, Lyndon S.; Nowak, Peter; Akhiat, Hafid; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2011-01-01

    Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images. Methods and Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing times were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas. Results: The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a “minor deviation, editable” or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min

  19. HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples.

    Science.gov (United States)

    Moens, Lotte N J; Falk-Sörqvist, Elin; Ljungström, Viktor; Mattsson, Johanna; Sundström, Magnus; La Fleur, Linnéa; Mathot, Lucy; Micke, Patrick; Nilsson, Mats; Botling, Johan

    2015-11-01

    In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomolecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    Science.gov (United States)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of

  1. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M. [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses

  2. Distributions of hit-numbers in single targets

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J F [Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom)

    1966-07-01

    Very general models can be proposed for relating the surviving proportion of an irradiated population of cells or bacteria to the absorbed dose, but if the number of free parameters is large the model can never be tested experimentally (Zimmer; Zirkie; Tobias). A relatively simple model is therefore proposed here, based on the physical facts of energy deposition in small volumes which are currently under active investigation (Rossi), and on cell-survival experiments over a wide range of LET (e.g. Barendsen et al.; Barendsen). It is not suggested that the model is correct or final, but only that its shortcomings should be demonstrated by comparison with experimental results before more complicated models are worth pursuing. It is basically a multihit model applied first to a single target volume, but also applicable to the situation where only one out of many potential target volumes has to be inactivated to kill the organism. It can be extended to two or more target volumes if necessary. Emphasis is placed upon the amount of energy locally deposited in certain sensitive volumes called 'target volumes'.

  3. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  4. Importance of protocol target definition on the ability to spare normal tissue: An IMRT and 3D-CRT planning comparison for intraorbital tumors

    International Nuclear Information System (INIS)

    Hein, Patrick A.; Gladstone, David J.; Bellerive, Marc R.; Hug, Eugen B.

    2005-01-01

    Purpose: We selected five intraorbital tumor sites that are frequently found in clinical practice in children diagnosed with orbital rhabdomyosarcoma and performed three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated photon radiotherapy (IMRT) planning. Results of target coverage and doses to critical structures were compared. The goal of this study was to evaluate and to document realistic expectations as to organ-sparing capabilities of modern radiation therapy planning technologies with a focus on lens-sparing irradiation. Furthermore, we investigated potential added benefits of IMRT compared with 3D-CRT and the influence of protocol volume criteria definitions on the ability to obtain normal tissue dose sparing using the orbit as an example of a complex anatomic site. Methods and Materials: The five intraorbital tumor sites were placed retrobulbar, temporal, nasal, in the upper inner and upper outer quadrant, the latter two more complex in shape. Gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV) were defined in image-fused computed tomography and magnetic resonance data sets. 3D-CRT and IMRT photon plans, using equal beam angles and collimation for direct comparison, were designed to 45 Gy prescription dose according to Intergroup Rhabdomyosarcoma Study Group-D9602 (IRSG-D9602) protocol (Intergroup Rhabdomyosarcoma Study V [IRS-V] protocol) for Stage I, Clinical Group 3 orbital rhabdomyosarcoma. To compare the impact of changed target definitions in IMRT planning, additional IMRT plans were generated using modified volume and dose coverage criteria. The minimum dose constraint (95%) of the PTV was substituted by a required minimum volume coverage (95%) with the prescribed dose. Dose-volume histograms (DVHs) were obtained, including target volumes, lens, optic nerves, optic chiasm, lacrimal gland, bony orbit, pituitary gland, frontal and temporal lobes. Results: Protocol target volume coverage criteria

  5. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an invehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-time route guidance to a vehicle based on (a) an on-board static (fixed) data base of average network link travel times by time of day, combined as available and appropriate with (b) dynamic (real-time) information on traffic conditions provided by radio frequency (RF) communications to and from a traffic information center (TIC). Originally conceived in 1990 as a major project that would have installed 3,000 to 5,000 route guidance units in privately owned vehicles throughout the test area, ADVANCE was restructured in 1995 as a {open_quotes}targeted deployment,{close_quotes} in which approximately 80 vehicles were to be equipped with the guidance units - Mobile Navigation Assistants (MNAs) - to be in full communication with the TIC while driving the ADVANCE test area road system. Volume one consists of the evaluation managers overview report, and several appendices containing test results.

  6. Development of distributed target

    CERN Document Server

    Yu Hai Jun; Li Qin; Zhou Fu Xin; Shi Jin Shui; Ma Bing; Chen Nan; Jing Xiao Bing

    2002-01-01

    Linear introduction accelerator is expected to generate small diameter X-ray spots with high intensity. The interaction of the electron beam with plasmas generated at the X-ray converter will make the spot on target increase with time and debase the X-ray dose and the imaging resolving power. A distributed target is developed which has about 24 pieces of thin 0.05 mm tantalum films distributed over 1 cm. due to the structure adoption, the distributed target material over a large volume decreases the energy deposition per unit volume and hence reduces the temperature of target surface, then reduces the initial plasma formalizing and its expansion velocity. The comparison and analysis with two kinds of target structures are presented using numerical calculation and experiments, the results show the X-ray dose and normalized angle distribution of the two is basically the same, while the surface of the distributed target is not destroyed like the previous block target

  7. Clinical utility of computed tomographic lung volumes in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Lee, Jae Seung; Lee, Sang-Min; Seo, Joon Beom; Lee, Sei Won; Huh, Jin Won; Oh, Yeon-Mok; Lee, Sang-Do

    2014-01-01

    Published data concerning the utility of computed tomography (CT)-based lung volumes are limited to correlation with lung function. The aim of this study was to evaluate the clinical utility of the CT expiratory-to-inspiratory lung volume ratio (CT Vratio) by assessing the relationship with clinically relevant outcomes. A total of 75 stable chronic obstructive pulmonary disease (COPD) patients having pulmonary function testing and volumetric CT at full inspiration and expiration were retrospectively evaluated. Inspiratory and expiratory CT lung volumes were measured using in-house software. Correlation of the CT Vratio with patient-centered outcomes, including the modified Medical Research Council (MMRC) dyspnea score, the 6-min walk distance (6MWD), the St. George's Respiratory Questionnaire (SGRQ) score, and multidimensional COPD severity indices, such as the BMI, airflow obstruction, dyspnea, and exercise capacity index (BODE) and age, dyspnea, and airflow obstruction (ADO), were analyzed. The CT Vratio correlated significantly with BMI (r = -0.528, p < 0.001). The CT Vratio was also significantly associated with MMRC dyspnea (r = 0.387, p = 0.001), 6MWD (r = -0.459, p < 0.001), and SGRQ (r = 0.369, p = 0.001) scores. Finally, the CT Vratio had significant correlations with the BODE and ADO multidimensional COPD severity indices (r = 0.605, p < 0.001; r = 0.411, p < 0.001). The CT Vratio had significant correlations with patient-centered outcomes and multidimensional COPD severity indices. © 2013 S. Karger AG, Basel.

  8. Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations

    International Nuclear Information System (INIS)

    Foo, M.L.; McCullough, E.C.; Foote, R.L.; Pisansky, T.M.; Shaw, E.G.

    1993-01-01

    This study documents dosage to radiation sensitive organs/structures located outside the radiotherapeutic target volume for four treatment situations: (a) head and neck, (b) brain (pituitary and temporal lobe), (c) breast and (d) pelvis. Clinically relevant treatment fields were simulated on a tissue-equivalent anthropomorphic phantom and subsequently irradiated with Cobalt-60 gamma rays, 6- and 18-MV x-ray beams. Thermoluminescent dosimeters and diodes were used to measure absorbed dose. The head and neck treatment resulted in significant doses of radiation to the lens and thyroid gland. The total treatment lens dose (300-400 cGy) could be cataractogenic while measured thyroid doses (1000-8000 cGy) have the potential of causing chemical hypothyroidism, thyroid neoplasms, Graves' disease and hyperparathyroidism. Total treatment retinal (400-700 cGy) and pituitary (460-1000 cGy) doses are below that considered capable of producing chronic disease. The pituitary treatment studied consisted of various size parallel opposed lateral and vertex fields (4 x 4 through 8 x 8 cm). The lens dose (40-200 cGy) with all field sizes is below those of clinical concern. Parotid doses (130-1200 cGy) and thyroid doses (350-600 cGy) are in a range where temporary xerostomia (parotid) and thyroid neoplasia development are a reasonable possibility. The retinal dose (4000 cGy) from the largest field size (8 x 8 cm 2 ) is in the range where retinopathy has been reported. The left temporal lobe treatment also used parallel opposed lateral and vertex fields (7 x 7 and 10 x 10 cm). Doses to the pituitary gland (5200-6200 cGy), both parotids (200-6900 cGy), left lens (200-300 cGy), and left retina (1700-4500 cGy) are capable of causing significant future clinical problems. Right-sided structures received insignificant doses. Secondary malignancies could result from the measured total treatment thyroid doses (670-980 cGy). 82 refs., 7 figs., 5 tabs

  9. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    International Nuclear Information System (INIS)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-01-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: 'conservative' IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; 'radical' IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. 'Conservative' IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. 'Radical' plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning

  10. Accuracy verification of PET-CT image fusion and its utilization in target delineation of radiotherapy

    International Nuclear Information System (INIS)

    Wang Xuetao; Yu Jinming; Yang Guoren; Gong Heyi

    2005-01-01

    Objective: Evaluate the accuracy of co-registration of PET and CT (PET-CT) images on line with phantom, and utilize it on patients to provide clinical evidence for target delineation in radiotherapy. Methods: A phantom with markers and different volume cylinders was infused with various concentrations of 18 FDG, and scanned at 4 mm by PET and CT respectively. After having been transmitted into GE eNTEGRA and treatment planning system (TPS) workstations, the images were fused and reconstructed. The distance between the markers and the errors were monitored in PET and CT images respectively. The volume of cylinder in PET and CT images were measured and compared by certain pixel value proportion deduction method. The same procedure was performed on the pulmonary tumor image in ten patients. Results: eNTEGRA and TPS workstations had a good length linearity, but the fusion error of the latter was markedly greater than the former. Tumors in different volume filled by varying concentrations of 18 FDG required different pixel deduction proportion. The cylinder volume of PET and CT images were almost the same, so were the images of pulmonary tumor of ten patients. Conclusions: The accuracy of image co-registration of PET-CT on line may fulfill the clinical demand. Pixel value proportion deduction method can be used for target delineation on PET image. (authors)

  11. Improvement of CT-based treatment planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Balter, J.M.; Lam, K.L.; McGinn, C.J.; Lawrence, T.S.

    1996-01-01

    PURPOSE: CT based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Without knowledge of the patient's ventilatory status during the CT scan, a planning target volume margin for the entire range of ventilation is required both inferior and superior to abdominal target volumes to ensure coverage. Also, dose-volume histograms and normal tissue complication probability (NTCP) estimates may be uncertain. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. MATERIALS AND METHODS: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. On repeat simulations, the reproducibility of the diaphragm position at exhale was determined. A clinical protocol was developed for treatment based on exhale CT models. CT scans were acquired at normal exhale using a spiral scanner. Typical volumes were acquired using 5 mm slice thickness and a 1:1 pitch. The scan volume was divided into 2-3 segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. RESULTS: The average patient's diaphragm was located within 2 mm of the average exhale position for 50% of the typical ventilatory cycle. For inhale, this value was reduced to 10%, and for mid ventilation, 15%. The reproducibility of exhale position over multiple breathing cycles was 2 mm (2σ), as opposed to 4 mm for inhale. Combining the variation of exhale position and the

  12. Clinical applications of 3-dimensional printing in radiation therapy

    International Nuclear Information System (INIS)

    Zhao, Yizhou; Moran, Kathryn; Yewondwossen, Mammo; Allan, James; Clarke, Scott; Rajaraman, Murali; Wilke, Derek; Joseph, Paul; Robar, James L.

    2017-01-01

    Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in

  13. Clinical applications of 3-dimensional printing in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yizhou, E-mail: yizhou.zhao@dal.ca [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Moran, Kathryn [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Yewondwossen, Mammo; Allan, James; Clarke, Scott [Department of Medical Physics, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Rajaraman, Murali; Wilke, Derek; Joseph, Paul [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Robar, James L. [Department of Medical Physics, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada)

    2017-07-01

    Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in

  14. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  15. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.; Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A.; Mutter, Robert W.

    2015-01-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted

  16. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay C. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Diehn, Felix E. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Boughey, Judy C. [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert W., E-mail: mutter.robert@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  17. What's new in target volume definition for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice?

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Dobbs, Jane; Kjellén, Elisabeth

    2007-01-01

    The optimal definition of the size, shape and location of gross tumour volume is one of the most important steps in the planning of radiation therapy, and necessitates a proper understanding of the procedure from both the oncologic radiologist and the radiation oncologist. This overview reports...... on the different terms and concepts that have been recommended in the ICRU Reports for this purpose; the latest Report 71 focuses on both previously given recommendations, and especially on electron beam therapy. This paper also highlights some of the problems that are encountered in the use of the International...

  18. Processes for Quality Improvements in Radiation Oncology Clinical Trials

    International Nuclear Information System (INIS)

    FitzGerald, T.J.; Urie, Marcia; Ulin, Kenneth; Laurie, Fran; Yorty, Jeffrey C.; Hanusik, Richard; Kessel, Sandy; Jodoin, Maryann Bishop; Osagie, Gani; Cicchetti, M. Giulia; Pieters, Richard; McCarten, Kathleen; Rosen, Nancy

    2008-01-01

    Quality assurance in radiotherapy (RT) has been an integral aspect of cooperative group clinical trials since 1970. In early clinical trials, data acquisition was nonuniform and inconsistent and computational models for radiation dose calculation varied significantly. Process improvements developed for data acquisition, credentialing, and data management have provided the necessary infrastructure for uniform data. With continued improvement in the technology and delivery of RT, evaluation processes for target definition, RT planning, and execution undergo constant review. As we move to multimodality image-based definitions of target volumes for protocols, future clinical trials will require near real-time image analysis and feedback to field investigators. The ability of quality assurance centers to meet these real-time challenges with robust electronic interaction platforms for imaging acquisition, review, archiving, and quantitative review of volumetric RT plans will be the primary challenge for future successful clinical trials

  19. ICRU reference dose in an era of intensity-modulated radiation therapy clinical trials: Correlation with planning target volume mean dose and suitability for intensity-modulated radiation therapy dose prescription

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Hong, Linda; Mah, Dennis; Shen Jin; Mutyala, Subhakar; Spierer, Marnee; Garg, Madhur; Guha, Chandan; Kalnicki, Shalom

    2008-01-01

    Background and Purpose: IMRT clinical trials lack dose prescription and specification standards similar to ICRU standards for two- and three-dimensional external beam planning. In this study, we analyzed dose distributions for patients whose treatment plans incorporated IMRT, and compared the dose determined at the ICRU reference point to the PTV doses determined from dose-volume histograms. Additionally, we evaluated if ICRU reference type single-point dose prescriptions are suitable for IMRT dose prescriptions. Materials and methods: For this study, IMRT plans of 117 patients treated at our institution were randomly selected and analyzed. The treatment plans were clinically applied to the following disease sites: abdominal (11), anal (10), brain (11), gynecological (15), head and neck (25), lung (15), male pelvis (10) and prostate (20). The ICRU reference point was located in each treatment plan following ICRU Report 50 guidelines. The reference point was placed in the central part of the PTV and at or near the isocenter. In each case, the dose was calculated and recorded to this point. For each patient - volume and dose (PTV, PTV mean, median and modal) information was extracted from the planned dose-volume histogram. Results: The ICRU reference dose vs PTV mean dose relationship in IMRT exhibited a weak positive association (Pearson correlation coefficient 0.63). In approximately 65% of the cases studied, dose at the ICRU reference point was greater than the corresponding PTV mean dose. The dose difference between ICRU reference and PTV mean doses was ≤2% in approximately 79% of the cases studied (average 1.21% (±1.55), range -4% to +4%). Paired t-test analyses showed that the ICRU reference doses and PTV median doses were statistically similar (p = 0.42). The magnitude of PTV did not influence the difference between ICRU reference and PTV mean doses. Conclusions: The general relationship between ICRU reference and PTV mean doses in IMRT is similar to that

  20. Similar clinical benefits from below-target and target dose enalapril in patients with heart failure in the SOLVD Treatment trial.

    Science.gov (United States)

    Lam, Phillip H; Dooley, Daniel J; Fonarow, Gregg C; Butler, Javed; Bhatt, Deepak L; Filippatos, Gerasimos S; Deedwania, Prakash; Forman, Daniel E; White, Michel; Fletcher, Ross D; Arundel, Cherinne; Blackman, Marc R; Adamopoulos, Chris; Kanonidis, Ioannis E; Aban, Inmaculada B; Patel, Kanan; Aronow, Wilbert S; Allman, Richard M; Anker, Stefan D; Pitt, Bertram; Ahmed, Ali

    2018-02-01

    To examine associations of below-target and target dose of enalapril, an angiotensin-converting enzyme (ACE) inhibitor, with outcomes in patients with heart failure and reduced ejection fraction (HFrEF) in the Studies of Left Ventricular Dysfunction (SOLVD) Treatment trial. Two thousand five hundred and sixty-nine patients with HFrEF (ejection fraction ≤35%) were randomized to below-target (5-10 mg/day) dose placebo (n = 1284) or enalapril (n = 1285). One month post-randomization, blind up-titration to target (20 mg/day) dose was attempted for both study drugs in 2458 patients. Among the 1444 patients who achieved dose up-titration (placebo, n = 748; enalapril, n = 696; mean dose for both groups, 20.0 mg/day), target dose enalapril (vs. target dose placebo) was associated with a 9% absolute lower risk of the combined endpoint of heart failure hospitalization or all-cause mortality [adjusted hazard ratio (HR) 0.70; 95% confidence interval (CI) 0.60-0.81; P target dose (placebo, n = 486; enalapril, n = 528; mean dose for both groups, 8.8 mg/day), below-target dose enalapril (vs. below-target dose placebo) was associated with a 12% absolute lower risk of the combined endpoint of heart failure hospitalization or all-cause mortality (adjusted HR 0.68; 95% CI 0.57-0.81; P target (vs. below-target) dose had no association with the combined endpoint of heart failure hospitalization or all-cause mortality (adjusted HR 1.04; 95% CI 0.87-1.23; P = 0.695). In patients with HFrEF, the clinical benefits of ACE inhibitors appear to be similar at both below-target and target doses. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  1. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  2. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    Science.gov (United States)

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  3. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges

    Science.gov (United States)

    Hoshida, Yujin; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Chronic fibrotic liver diseases such as viral hepatitis eventually develop liver cirrhosis, which causes occurrence of hepatocellular carcinoma (HCC). Given the limited therapeutic efficacy in advanced HCC, prevention of HCC development could be an effective strategy for improving patient prognosis. However, there is still no established therapy to meet the goal. Studies have elucidated a wide variety of molecular mechanisms and signaling pathways involved in HCC development. Genetically-engineered or chemically-treated experimental models of cirrhosis and HCC have been developed and shown their potential value in investigating molecular therapeutic targets and diagnostic biomarkers for HCC prevention. In this review, we overview potential targets of prevention and currently available experimental models, and discuss strategies to translate the findings into clinical practice. PMID:22873223

  4. Accelerated Partial Breast Irradiation With IMRT: New Technical Approach and Interim Analysis of Acute Toxicity in a Phase III Randomized Clinical Trial

    International Nuclear Information System (INIS)

    Livi, Lorenzo; Buonamici, Fabrizio Banci; Simontacchi, Gabriele; Scotti, Vieri; Fambrini, Massimiliano; Compagnucci, Antonella; Paiar, Fabiola; Scoccianti, Silvia; Pallotta, Stefania; Detti, Beatrice; Agresti, Benedetta; Talamonti, Cinzia; Mangoni, Monica; Bianchi, Simonetta; Cataliotti, Luigi; Marrazzo, Livia; Bucciolini, Marta; Biti, Giampaolo

    2010-01-01

    Purpose: To evaluate with a randomized clinical trial the possibility of treating the index quadrant with external intensity-modulated radiotherapy (IMRT) in a selected group of patients with early-stage breast cancer and to analyze the acute toxicity. Methods and Materials: From September 2005, a randomized Phase III clinical trial has been conducted to compare conventional (tangential field) fractionated whole breast treatment (Arm A) with accelerated partial breast irradiation plus intensity-modulated radiotherapy (Arm B). For intensity-modulated radiotherapy, the clinical target volume was drawn with a uniform 1-cm margin around the surgical clips in three dimensions. The ipsilateral and contralateral breast, ipsilateral and contralateral lung, heart, and spinal cord were contoured as organs at risk. All the regions of interest were contoured according to the International Commission on Radiation Units and Measurements reports 50 and 62 recommendations. Results: In September 2008, 259 patients were randomized and treated. The mean clinical target volume in Arm B was 44 cm 3 and the mean planning target volume was 123 cm 3 . The mean value of the ratio between the planning target volume and the ipsilateral breast volume was 21%. The rate of Grade 1 and Grade 2 acute skin toxicity was 22% and 19% in Arm A (Radiation Therapy Oncology Group scale), respectively. The tolerance in Arm B was excellent with only 5% Grade 1 and 0.8% Grade 2 acute skin toxicity. The planning constraints were fully satisfied in most patients. In a very few cases, this was not possible because of very unfavorable anatomy. Quality assurance procedures were performed according to our internal quality assurance protocol, with excellent results. Conclusion: In the present preliminary analysis, we have demonstrated that accelerated partial breast irradiation is feasible, with very low acute toxicity.

  5. Recommendations for Clinical Pathology Data Generation, Interpretation, and Reporting in Target Animal Safety Studies for Veterinary Drug Development.

    Science.gov (United States)

    Siska, William; Gupta, Aradhana; Tomlinson, Lindsay; Tripathi, Niraj; von Beust, Barbara

    Clinical pathology testing is routinely performed in target animal safety studies in order to identify potential toxicity associated with administration of an investigational veterinary pharmaceutical product. Regulatory and other testing guidelines that address such studies provide recommendations for clinical pathology testing but occasionally contain outdated analytes and do not take into account interspecies physiologic differences that affect the practical selection of appropriate clinical pathology tests. Additionally, strong emphasis is often placed on statistical analysis and use of reference intervals for interpretation of test article-related clinical pathology changes, with limited attention given to the critical scientific review of clinically, toxicologically, or biologically relevant changes. The purpose of this communication from the Regulatory Affairs Committee of the American Society for Veterinary Clinical Pathology is to provide current recommendations for clinical pathology testing and data interpretation in target animal safety studies and thereby enhance the value of clinical pathology testing in these studies.

  6. Clinical efficacy of local targeted chemotherapy for triple-negative breast cancer

    International Nuclear Information System (INIS)

    He, Jinsong; Wang, Xianming; Guan, Hong; Chen, Weicai; Wang, Ming; Wu, Huisheng; Wang, Zun; Zhou, Ruming; Qiu, Shuibo

    2011-01-01

    The aim of the study was to evaluate the clinical efficacy of superselective intra-arterial targeted neo-adjuvant chemotherapy in the treatment of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and human epidermal growth factor receptor 2 (HER2)-negative (triple-negative) breast cancer. A total of 47 triple-negative breast cancer patients (29 at stage II, 13 at stage III and 5 at stage IV) were randomly assigned to two groups: targeted chemotherapy group (n=24) and control group (n=23). Patients in the targeted chemotherapy group received preoperative superselective intra-arterial chemotherapy with CEF regimen (C: cyclophosphamide [600 mg/m 2 ]; E: epirubicin [90 mg/m 2 ]; F: 5-fluorouracil [600 mg/m 2 ]), and those in the control group received routine neoadjuvant chemotherapy with CEF. The duration of the treatment, changes in lesions and the prognosis were determined. The average course of the treatment was 15 days in the targeted chemotherapy group which was significantly shorter than that in the control group (31 days) (P<0.01). The remission rate of lesions was 91.6% in the targeted chemotherapy group and 60.9% in the control group, respectively. Among these patients, 9 died within two years, including 2 (both at IV stage) in the targeted chemotherapy group and 7 (2 at stage II, 4 at stage III and 1 at stage IV) in the control group. As an neoadjuvant therapy, the superselective intra-arterial chemotherapy is effective for triple-negative breast cancer, with advantages of the short treatment course and favourable remission rates as well as prognoses

  7. Dose-volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2005-01-01

    Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement. Methods and Materials: The general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the

  8. Anomalies in target-controlled infusion: an analysis after 20 years of clinical use.

    Science.gov (United States)

    Engbers, F H M; Dahan, A

    2018-05-01

    Although target-controlled infusion has been in use for more than two decades, its benefits are being obscured by anomalies in clinical practice caused by a number of important problems. These include: a variety of pharmacokinetic models available in open target-controlled infusion systems, which often confuse the user; the extrapolation of anthropomorphic data which provokes anomalous adjustments of dosing by such systems; and the uncertainty of regulatory requirements for the application of target-controlled infusion which causes uncontrolled exploitation of drugs and pharmacokinetic models in target-controlled infusion devices. Comparison of performance of pharmacokinetic models is complex and mostly inconclusive. However, a specific behaviour of a model in a target-controlled infusion system that is neither intended nor supported by scientific data can be considered an artefact or anomaly. Several of these anomalies can be identified in the current commercially available target-controlled infusion systems and are discussed in this review. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  9. PIRATE: pediatric imaging response assessment and targeting environment

    Science.gov (United States)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  10. Initial Clinical Experience With the Strut-Adjusted Volume Implant (SAVI) Breast Brachytherapy Device for Accelerated Partial-Breast Irradiation (APBI): First 100 Patients With More Than 1 Year of Follow-Up

    International Nuclear Information System (INIS)

    Yashar, Catheryn M.; Scanderbeg, Daniel; Kuske, Robert; Wallace, Anne; Zannis, Victor; Blair, Sarah; Grade, Emily; Swenson, Virginia H.; Quiet, Coral

    2011-01-01

    Purpose: The Strut-Adjusted Volume Implant (SAVI; Cianna Medical, Aliso Viejo, CA) is a multichannel single-entry brachytherapy device designed to allow dose modulation to minimize normal tissue dose while simultaneously maximizing target coverage. This is the first report on the initial 102 patients with nearly 2 years of median follow-up. Methods and Materials: One hundred two patients were treated at two institutions. Data were collected on eligibility and dosimetry and followed for toxicity and recurrence. Results: The median follow-up is 21 months. Overall dosimetry is outstanding (median percent of target volume receiving 90% of the prescription dose was 95.9%, volume of target receiving 150% of the prescription dose was 27.8 mL, and volume of target receiving 200% of the prescription dose was 14.0 cm 3 ). No devices were pulled prior to treatment completion. For patients with a skin bridge of less than 7 mm, the maximum median skin dose was 280 cGy (median percent of target volume receiving 90% of the prescription dose was 95.2%, volume of target receiving 150% of the prescription dose was 25.8 cm 3 and volume of target receiving 200% of the prescription dose was 12.7 mL). For patients with both chest wall and skin of less than 7 mm, the maximum median lung dose was 205 cGy with simultaneous skin dose of 272 cGy. The rate of telangiectasia was 1.9%. Grade 1 hyperpigmentation developed in 10 patients (9.8%) and Grade 2 fibrosis in 2 patients (1.9%). There were 2 symptomatic seromas and 2 cases of asymptomatic fat necrosis (1.9%). Of the patients, 27% were not eligible for MammoSite balloon brachytherapy (Hologic, Inc., Marlborough, MA) and 5% were not eligible for any balloon brachytherapy. The recurrence rate was 1%. Conclusions: The SAVI appears to safely allow an increase in eligibility for APBI over balloon brachytherapy or three-dimensional conformal radiation, highlighting the outstanding device flexibility to maximize the target dose and minimize the

  11. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of

  12. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    Science.gov (United States)

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p3D-CRT plans. The doses to the liver and bowel reduced significantly (p3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  13. Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond

    CERN Document Server

    Combs, Stephanie E; Pötter, Richad; Orrechia, Roberto; Haberer, Thomas; Durante, Marco; Fossati, Piero; Parodi, Katia; Balosso, Jacques; Amaldi, Ugo; Baumann, Michael; Debus, Jürgen

    2013-01-01

    Since the middle of the 20th century, particle therapy has been in focus for patient treatments. In 1946, Robert Wilson proposed the use of charged particles for tumor therapy, and since then, the clinical use of protons and heavier ions, mainly carbon ions, has become more widespread. The first clinical evidence was obtained in Berkeley, treating radiation-resistant targets with various ion species. The main advantage of particle beams derive from their physical properties: through an inverted dose profile, regions within the entry channel of the beam can be spared of dose, while a steep dose deposition can be directed in an energydependent manner into the defined treatment volume (Bragg Peak). The following dose fall-off spares tissue behind the target volume, thus reducing integral dose significantly compared to when using photons. Heavier charged particles, such as carbon ions or oxygen, are additionally associated with an increased relative biological effectiveness (RBE), while the RBE of protons is comm...

  14. An interactive tool for CT volume rendering and sagittal plane-picking of the prostate for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Jani, Ashesh B.; Pelizzari, Charles A.; Chen, George T.Y.; Grzezcszuk, Robert P.; Vijayakumar, Srinivasan

    1997-01-01

    was defined using sagittal plane-picking, and a significantly larger volume was defined using volume rendering. Furthermore, the apex of the prostate, when compared to that defined on axial CT, was defined to be at a more inferior anatomic position using either volume rendering or sagittal plane-picking. Conclusions: The preliminary results indicate that a larger prostate volume and a more inferior prostatic apex position were defined using either of the newer visualization techniques (volume rendering or sagittal plane-picking) than using conventional axial CT. A formal clinical study needs to be undertaken to determine whether these greater volumes represent more accurate definition of the prostate target volume (and hence expose underestimation of the volume defined using the current standard) or represent overestimation. The software tool that we have developed greatly facilitates the navigation of data volumes and the volumetric analysis of structures defined using different visualization techniques. While the specific example for this investigation was the prostate, our tool will occupy a central role in formal clinical studies comparing the use of different visualization techniques for defining targets and critical structures at a number of anatomic sites

  15. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Luca; Elisei, Federica [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); Meregalli, Sofia; Niespolo, Rita [San Gerardo Hospital, Radiotherapy, Monza (Italy); Zorz, Alessandra; De Ponti, Elena; Morzenti, Sabrina; Crespi, Andrea [San Gerardo Hospital, Medical Physics, Monza (Italy); Brenna, Sarah [University of Milan-Bicocca, School of Radiation Oncology, Monza (Italy); Gardani, Gianstefano [San Gerardo Hospital, Radiotherapy, Monza (Italy); University of Milan-Bicocca, Milan (Italy); Messa, Cristina [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); University of Milan-Bicocca, Tecnomed Foundation, Milan (Italy); National Research Council, Institute for Bioimaging and Molecular Physiology, Milan (Italy)

    2014-04-15

    The aim of this study was to compare planning target volume (PTV) defined on respiratory-gated positron emission tomography (PET)/CT (RG-PET/CT) to PTV based on ungated free-breathing CT and to evaluate if RG-PET/CT can be useful to personalize PTV by tailoring the target volume to the lesion motion in lung cancer patients. Thirteen lung cancer patients (six men, mean age 70.0 years, 1 small cell lung cancer, 12 non-small cell lung cancer) who were candidates for radiation therapy were prospectively enrolled and submitted to RG-PET/CT. Ungated free-breathing CT images obtained during a PET/CT study were visually contoured by the radiation oncologist to define standard clinical target volumes (CTV1). Standard PTV (PTV1) resulted from CTV1 with the addition of 1-cm expansion of margins in all directions. RG-PET/CT images were contoured by the nuclear medicine physician and radiation oncologist according to a standardized institutional protocol for contouring gated images. Each CT and PET image of the patient's respiratory cycle phases was contoured to obtain the RG-CT-based CTV (CTV2) and the RG-PET/CT-based CTV (CTV3), respectively. RG-CT-based and RG-PET/CT-based PTV (PTV2 and PTV3, respectively) were then derived from gated CTVs with a margin expansion of 7-8 mm in head to feet direction and 5 mm in anterior to posterior and left to right direction. The portions of gated PTV2 and PTV3 geometrically not encompassed in PTV1 (PTV2 out PTV1 and PTV3 out PTV1) were also calculated. Mean ± SD CTV1, CTV2 and CTV3 were 30.5 ± 33.2, 43.1 ± 43.2 and 44.8 ± 45.2 ml, respectively. CTV1 was significantly smaller than CTV2 and CTV3 (p = 0.017 and 0.009 with Student's t test, respectively). No significant difference was found between CTV2 and CTV3. Mean ± SD of PTV1, PTV2 and PTV3 were 118.7 ± 94.1, 93.8 ± 80.2 and 97.0 ± 83.9 ml, respectively. PTV1 was significantly larger than PTV2 and PTV3 (p = 0.038 and 0.043 with Student's t test, respectively). No

  16. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    Science.gov (United States)

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may

  18. Volume definition system for treatment planning

    International Nuclear Information System (INIS)

    Alakuijala, Jyrki; Pekkarinen, Ari; Puurunen, Harri

    1997-01-01

    Purpose: Volume definition is a difficult and time consuming task in 3D treatment planning. We have studied a systems approach for constructing an efficient and reliable set of tools for volume definition. Our intent is to automate body outline, air cavities and bone volume definition and accelerate definition of other anatomical structures. An additional focus is on assisting in definition of CTV and PTV. The primary goals of this work are to cut down the time used in contouring and to improve the accuracy of volume definition. Methods: We used the following tool categories: manual, semi-automatic, automatic, structure management, target volume definition, and visualization tools. The manual tools include mouse contouring tools with contour editing possibilities and painting tools with a scaleable circular brush and an intelligent brush. The intelligent brush adapts its shape to CT value boundaries. The semi-automatic tools consist of edge point chaining, classical 3D region growing of single segment and competitive volume growing of multiple segments. We tuned the volume growing function to take into account both local and global region image values, local volume homogeneity, and distance. Heuristic seeding followed with competitive volume growing finds the body outline, couch and air automatically. The structure management tool stores ICD-O coded structures in a database. The codes have predefined volume growing parameters and thus are able to accommodate the volume growing dissimilarity function for different volume types. The target definition tools include elliptical 3D automargin for CTV to PTV transformation and target volume interpolation and extrapolation by distance transform. Both the CTV and the PTV can overlap with anatomical structures. Visualization tools show the volumes as contours or color wash overlaid on an image and displays voxel rendering or translucent triangle mesh rendering in 3D. Results: The competitive volume growing speeds up the

  19. Clinical validation of targeted next-generation sequencing for inherited disorders.

    Science.gov (United States)

    Yohe, Sophia; Hauge, Adam; Bunjer, Kari; Kemmer, Teresa; Bower, Matthew; Schomaker, Matthew; Onsongo, Getiria; Wilson, Jon; Erdmann, Jesse; Zhou, Yi; Deshpande, Archana; Spears, Michael D; Beckman, Kenneth; Silverstein, Kevin A T; Thyagarajan, Bharat

    2015-02-01

    Although next-generation sequencing (NGS) can revolutionize molecular diagnostics, several hurdles remain in the implementation of this technology in clinical laboratories. To validate and implement an NGS panel for genetic diagnosis of more than 100 inherited diseases, such as neurologic conditions, congenital hearing loss and eye disorders, developmental disorders, nonmalignant diseases treated by hematopoietic cell transplantation, familial cancers, connective tissue disorders, metabolic disorders, disorders of sexual development, and cardiac disorders. The diagnostic gene panels ranged from 1 to 54 genes with most of panels containing 10 genes or fewer. We used a liquid hybridization-based, target-enrichment strategy to enrich 10 067 exons in 568 genes, followed by NGS with a HiSeq 2000 sequencing system (Illumina, San Diego, California). We successfully sequenced 97.6% (9825 of 10 067) of the targeted exons to obtain a minimum coverage of 20× at all bases. We demonstrated 100% concordance in detecting 19 pathogenic single-nucleotide variations and 11 pathogenic insertion-deletion mutations ranging in size from 1 to 18 base pairs across 18 samples that were previously characterized by Sanger sequencing. Using 4 pairs of blinded, duplicate samples, we demonstrated a high degree of concordance (>99%) among the blinded, duplicate pairs. We have successfully demonstrated the feasibility of using the NGS platform to multiplex genetic tests for several rare diseases and the use of cloud computing for bioinformatics analysis as a relatively low-cost solution for implementing NGS in clinical laboratories.

  20. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  1. Target volumes in gastric cancer radiation therapy; Les volumes-cibles de la radiotherapie des adenocarcinomes gastriques

    Energy Technology Data Exchange (ETDEWEB)

    Caudry, M.; Maire, J.P. [Hopital Saint Andre, Service de Cancerologie, 33 - Bordeaux (France); Ratoanina, J.L.; Escarmant, P. [Hopital Clarac, Service de Radiotherapie et de Cancerologie, 97 - Fort de France (France)

    2001-10-01

    The spread of gastric adenocarcinoma may follow three main patterns: hemato-genic, lymphatic and intraperitoneal. A GTV should be considered in preoperative or exclusive radiation therapy. After non-radical surgery, a 'residual GTV' will be defined with the help of the surgeon. The CTV encompasses three intricated volumes. a) A 'tumor bed' volume. After radical surgery, local recurrences appear as frequent as distant metastases. The risk depends upon the depth of parietal invasion and the nodal status. Parietal infiltration may extend beyond macroscopic limits of the tumor, especially in dinitis plastica. Therefore this volume will include: the tumor and the remaining stomach or their 'bed of resection', a part of the transverse colon, the duodenum, the pancreas and the troncus of the portal vein. In postoperative RT, this CTV also includes the jejuno-gastric or jejuno-esophageal anastomosis. b) A peritoneal volume. For practical purposes, two degrees of spread must be considered: (1) contiguous microscopic extension from deeply invasive T3 and T4 tumors, that remain amenable to local sterilization with doses of 45-50 Gy, delivered in a CTV including the peritoneal cavity at the level of the gastric bed, and under the parietal incision; (2) true 'peritoneal carcinomatosis', with widespread seeds, where chemotherapy (systemic or intraperitoneal) is more appropriate. c) A lymphatic volume including the lymph node groups 1 to 16 of the Japanese classification. This volume must encompass the hepatic pedicle and the splenic hilum. In proximal tumors, it is possible to restrict the lover part of the CTV to the lymphatic volume, and therefore to avoid irradiation of large intestinal and renal volumes. In distal and proximal tumors, involvement of resection margins is of poor prognosis -a radiation boost must be delivered at this level. The CTV in tumors of the cardia should encompass the lover part of the thoracic esophagus and the

  2. Contemporary analysis of erectile, voiding, and oncologic outcomes following primary targeted cryoablation of the prostate for clinically localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Christopher J. Diblasio

    2008-08-01

    Full Text Available PURPOSE: To evaluate erectile function (EF and voiding function following primary targeted cryoablation of the prostate (TCAP for clinically localized prostate cancer (CaP in a contemporary cohort. MATERIALS AND METHODS: We retrospectively reviewed all patients treated between 2/2000-5/2006 with primary TCAP. Variables included age, Gleason sum, pre-TCAP prostate specific antigen (PSA, prostate volume, clinical stage, pre-TCAP hormonal ablation, pre-TCAP EF and American Urologic Association Symptom Score (AUASS. EF was recorded as follows: 1 = potent; 2 = sufficient for intercourse; 3 = partial/insufficient; 4 = minimal/insufficient; 5 = none. Voiding function was analyzed by comparing pre/post-TCAP AUASS. Statistical analysis utilized SAS software with p < 0.05 considered significant. RESULTS: After exclusions, 78 consecutive patients were analyzed with a mean age of 69.2 years and follow-up 39.8 months. Thirty-five (44.9% men reported pre-TCAP EF level of 1-2. Post-TCAP, 9 of 35 (25.7% regained EF of level 1-2 while 1 (2.9% achieved level 3 EF. Median pre-TCAP AUASS was 8.75 versus 7.50 postoperatively (p = 0.39. Six patients (7.7% experienced post-TCAP urinary incontinence. Lower pre-TCAP PSA (p = 0.008 and higher Gleason sum (p = 0.002 were associated with higher post-TCAP AUASS while prostate volume demonstrated a trend (p = 0.07. Post-TCAP EF and stable AUASS were not associated with increased disease-recurrence (p = 0.24 and p = 0.67, respectively. CONCLUSIONS: Stable voiding function was observed post-TCAP, with an overall incontinence rate of 7.7%. Further, though erectile dysfunction is common following TCAP, 25.7% of previously potent patients demonstrated erections suitable for intercourse. While long-term data is requisite, consideration should be made for prospective evaluation of penile rehabilitation following primary TCAP.

  3. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  4. Local Recurrence in Rectal Cancer: Anatomic Localization and Effect on Radiation Target

    International Nuclear Information System (INIS)

    Syk, Erik; Torkzad, Michael R.; Blomqvist, Lennart; Nilsson, Per J.; Glimelius, Bengt

    2008-01-01

    Purpose: To determine the sites of local recurrence after total mesorectal excision for rectal cancer in an effort to optimize the radiation target. Methods and Materials: A total of 155 patients with recurrence after abdominal resection for rectal cancer were identified from a population-based consecutive cohort of 2,315 patients who had undergone surgery by surgeons trained in the total mesorectal excision procedure. A total of 99 cross-sectional imaging studies were retrieved and re-examined by one radiologist. The clinical records were examined for the remaining patients. Results: Evidence of residual mesorectal fat was identified in 50 of the 99 patients. In 83 patients, local recurrence was identified on the imaging studies. All recurrences were within the irradiated volume if the patients had undergone preoperative radiotherapy or within the same volume if they had not. The site of recurrence was in the lower 75% of the pelvis, anatomically below the S1-S2 interspace for all patients. Only 5 of the 44 recurrences in patients with primary tumors >5 cm from the anal verge were in the lowest 20% of the pelvis. Six recurrences involved the lateral lymph nodes. Conclusion: These data suggest that a lowering of the upper limit of the clinical target volume could be introduced. The anal sphincter complex with surrounding tissue could also be excluded in patients with primary tumors >5 cm from the anal verge

  5. Antibodies to autoantigen targets in myasthenia and their value in clinical practice

    Directory of Open Access Journals (Sweden)

    S. I. Dedaev

    2014-01-01

    Full Text Available Myasthenia gravis is a classic autoimmune disease, which clinical manifestations in the form of weakness and abnormal muscle fatigue, due to the damaging effect of polyclonal antibodies to different structures of the neuromuscular synapse and muscles. The study of autoimmune substrate with myasthenia is routine in many clinics dealing with the problems of neuromuscular pathology, and the identification of high concentration of serum antibodies to a number of antigenic structures is the gold standard in diagnosis.Determination of serum antibodies to various autoimmune targets is an important tool in clinical practice. The majority of patients shows the high concentration of antibodies to AchR that gives the opportunity to use it as an important diagnostic criterion. The specificity of changes in the concentration of AchR-antibodies due to pathogenetic treatment allows to objectify the suppression of autoimmune aggression and evaluate the reliability of remission. However, the absence of AchR-antibodies when there are clear clinical and electromyography signs of myasthenia gravis suggests an autoimmune attack against a number of other targets, the most studied of which is the MuSK. On the contrary, patients with myasthenia gravis associated with thymoma, almost always have a higher level of AchR-antibodies. The presence of thymoma is accompanied by the generation of antibodies to titin and RyR, which is also observed in persons with late-onset myasthenia without thymoma. High concentration of antibodies to these structures can be interpreted as a reliable sign of thymoma in patients younger than 60 years.

  6. Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew S.; Kim, Hyun J.; Abtin, Fereidoun G.; Galperin-Aizenberg, Maya; Pais, Richard; Da Costa, Irene G.; Ordookhani, Arash; Chong, Daniel; Ni, Chiayi; McNitt-Gray, Michael F.; Goldin, Jonathan G. [David Geffen School of Medicine at UCLA, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, Los Angeles, CA (United States); Strange, Charlie [Medical University of South Carolina, Department of Pulmonary and Critical Care Medicine, Columbia, SC (United States); Tashkin, Donald P. [David Geffen School of Medicine at UCLA, Division of Pulmonary and Critical Care Medicine, Los Angeles, CA (United States)

    2012-07-15

    To investigate volumetric and density changes in the ipsilateral and contralateral lobes following volume reduction of an emphysematous target lobe. The study included 289 subjects with heterogeneous emphysema, who underwent bronchoscopic volume reduction of the most diseased lobe with endobronchial valves and 132 untreated controls. Lobar volume and low-attenuation relative area (RA) changes post-procedure were measured from computed tomography images. Regression analysis (Spearman's rho) was performed to test the association between change in the target lobe volume and changes in volume and density variables in the other lobes. The target lobe volume at full inspiration in the treatment group had a mean reduction of -0.45 L (SE = 0.034, P < 0.0001), and was associated with volume increases in the ipsilateral lobe (rho = -0.68, P < 0.0001) and contralateral lung (rho = -0.16, P = 0.006), and overall reductions in expiratory RA (rho = 0.31, P < 0.0001) and residual volume (RV)/total lung capacity (TLC) (rho = 0.13, P = 0.03). When the volume of an emphysematous target lobe is reduced, the volume is redistributed primarily to the ipsilateral lobe, with an overall reduction. Image-based changes in lobar volumes and densities indicate that target lobe volume reduction is associated with statistically significant overall reductions in air trapping, consistent with expansion of the healthier lung. (orig.)

  7. Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes

    International Nuclear Information System (INIS)

    Brown, Matthew S.; Kim, Hyun J.; Abtin, Fereidoun G.; Galperin-Aizenberg, Maya; Pais, Richard; Da Costa, Irene G.; Ordookhani, Arash; Chong, Daniel; Ni, Chiayi; McNitt-Gray, Michael F.; Goldin, Jonathan G.; Strange, Charlie; Tashkin, Donald P.

    2012-01-01

    To investigate volumetric and density changes in the ipsilateral and contralateral lobes following volume reduction of an emphysematous target lobe. The study included 289 subjects with heterogeneous emphysema, who underwent bronchoscopic volume reduction of the most diseased lobe with endobronchial valves and 132 untreated controls. Lobar volume and low-attenuation relative area (RA) changes post-procedure were measured from computed tomography images. Regression analysis (Spearman's rho) was performed to test the association between change in the target lobe volume and changes in volume and density variables in the other lobes. The target lobe volume at full inspiration in the treatment group had a mean reduction of -0.45 L (SE = 0.034, P < 0.0001), and was associated with volume increases in the ipsilateral lobe (rho = -0.68, P < 0.0001) and contralateral lung (rho = -0.16, P = 0.006), and overall reductions in expiratory RA (rho = 0.31, P < 0.0001) and residual volume (RV)/total lung capacity (TLC) (rho = 0.13, P = 0.03). When the volume of an emphysematous target lobe is reduced, the volume is redistributed primarily to the ipsilateral lobe, with an overall reduction. Image-based changes in lobar volumes and densities indicate that target lobe volume reduction is associated with statistically significant overall reductions in air trapping, consistent with expansion of the healthier lung. (orig.)

  8. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Patrick Grabher

    2017-01-01

    Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials.

  9. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer : reduction in geographic misses with equal inter-observer variability

    NARCIS (Netherlands)

    Schreurs, Liesbeth; Busz, D. M.; Paardekooper, G. M. R. M.; Beukema, J. C.; Jager, P. L.; Van der Jagt, E. J.; van Dam, G. M.; Groen, H.; Plukker, J. Th. M.; Langendijk, J. A.

    P>Target volume definition in modern radiotherapy is based on planning computed tomography (CT). So far, 18-fluorodeoxyglucose positron emission tomography (FDG-PET) has not been included in planning modality in volume definition of esophageal cancer. This study evaluates fusion of FDG-PET and CT in

  10. Pneumothorax following Endobronchial Valve Therapy and Its Impact on Clinical Outcomes in Severe Emphysema

    NARCIS (Netherlands)

    Gompelmann, Daniela; Herth, Felix J. F.; Slebos, Dirk Jan; Valipour, Arschang; Ernst, Armin; Criner, Gerard J.; Eberhardt, Ralf

    2014-01-01

    Background: Patients who achieve significant target lobe volume reduction (TLVR) following endobronchial valve (EBV) treatment may experience substantial improvements in clinical outcome measures. However, in cases of rapid TLVR, the risk of pneumothorax increases due to parenchymal rupture of the

  11. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.

    Science.gov (United States)

    Robar, J; Parsons, D; Berman, A; MacDonald, A

    2012-06-01

    This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.

  12. Echo-planar MR cerebral blood volume mapping of glomas. Clinical utility

    International Nuclear Information System (INIS)

    Aronen, H.J.; Univ. Central Hospital, Helsinki; Glass, J.; Pardo, F.S.; Belliveau, J.W.; Gruber, M.L.; Buchbinder, B.R.; Gazit, I.E.; Linggood, R.M.; Fischman, A.J.; Rosen, F.S.; Hochberg, F.H.

    1995-01-01

    Neovascularization is a common phenomenon in gliomas. MR imaging cerebral blood volume (CBV) mapping utilizes ultrafast echo-planar imaging and simultaneous use of gadolinium-based contrast material. To determine the utility of MR CBV mapping in the clinical evaluation of gliomas, we followed 15 patients with serial studies. This technique provided functional information that was not evident with conventional CT or MR imaging. Low-grade tumors demonstrated homogeneously low CBV, while high-grade tumors often showed areas of both high and low CBV. The maximum tumor CBV/white matter ratio was compared between low- (n=3) and high-grade gliomas (n=5) in patients without previous treatment and with histologic verification (n=8) and was significantly higher in high-grade gliomas (p<0.01), High CBV foci in nonenhancing tumor areas were present in 2 cases. The distinction between radiation necrosis and active tumor could be made correctly in 3 of 4 cases. The information provided by MR CBV mapping has the potential to be an adjunct in the clinical care of glioma patients. (orig.)

  13. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Li, Yexiong

    2017-12-01

    Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior

  14. A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies

    Science.gov (United States)

    Chamrád, Ivo; Rix, Uwe; Stukalov, Alexey; Gridling, Manuela; Parapatics, Katja; Müller, André C.; Altiok, Soner; Colinge, Jacques; Superti-Furga, Giulio; Haura, Eric B.; Bennett, Keiryn L.

    2014-01-01

    While targeted therapy based on the idea of attenuating the activity of a preselected, therapeutically relevant protein has become one of the major trends in modern cancer therapy, no truly specific targeted drug has been developed and most clinical agents have displayed a degree of polypharmacology. Therefore, the specificity of anticancer therapeutics has emerged as a highly important but severely underestimated issue. Chemical proteomics is a powerful technique combining postgenomic drug-affinity chromatography with high-end mass spectrometry analysis and bioinformatic data processing to assemble a target profile of a desired therapeutic molecule. Due to high demands on the starting material, however, chemical proteomic studies have been mostly limited to cancer cell lines. Herein, we report a down-scaling of the technique to enable the analysis of very low abundance samples, as those obtained from needle biopsies. By a systematic investigation of several important parameters in pull-downs with the multikinase inhibitor bosutinib, the standard experimental protocol was optimized to 100 µg protein input. At this level, more than 30 well-known targets were detected per single pull-down replicate with high reproducibility. Moreover, as presented by the comprehensive target profile obtained from miniaturized pull-downs with another clinical drug, dasatinib, the optimized protocol seems to be extendable to other drugs of interest. Sixty distinct human and murine targets were finally identified for bosutinib and dasatinib in chemical proteomic experiments utilizing core needle biopsy samples from xenotransplants derived from patient tumor tissue. Altogether, the developed methodology proves robust and generic and holds many promises for the field of personalized health care. PMID:23901793

  15. Phantom study of PET/CT guided delineation of radiation therapy volume

    International Nuclear Information System (INIS)

    Lin Lin; Zheng Rong; Wang Yibin; Geng Jianhua; Wu Ning; Zhao Ping

    2012-01-01

    Objective: To propose a model-based method for calculating the threshold in GTV determination by 18 F-FDG PET in a phantom study. Methods: A phantom was constructed of a 9 L cylindrical tank.Glass spheres with volumes ranging from 0.5 to 16 ml (0.5, 1, 2, 4, 8 and 16 ml) were suspended within the tank. The six spheres were filled with an identical concentration of FDG (203.5 MBq/L) and suspended within 3 different background baths of FDG (6.179, 16.021, 0 MBq/L) solutions, creating 3 target-to-background ratios of 32.96 : 1, 12.69 : 1 and target to zero background. A linear regressive function was constructed which represented the relationship between the threshold and the average activity concentration of the target. A 40% of maximum intensity threshold and the linear regressive function method were applied to define the spheres filled with 18 F-FDG. The volume differences between the two methods and the true volumes of the spheres were compared with t-test. Results: The linear regressive function model was derived as:threshold =(mean target concentration + 2.6227)/1.9752. The results indicated that a smaller deviation occurred when the function was utilized to estimate the volumes of the phantoms as compared to the 40% of maximum intensity threshold method, but there were no significant differences between them (t=0.306, P>0.05). The effect of the linear regressive function on volume was such that when the phantom sphere volumes were ≥ 1 ml, the average deviation between the defined volumes and the true volumes of phantoms was 1.01%; but when the phantom sphere volume was 0.5 ml, the average deviation was 9.53%. When the 40% of maximum intensity threshold method was applied to define the phantom spheres of volume ≥2 ml, the average deviation between the defined volumes and the true volumes of phantoms was -4.62%; but, the average deviation of that was 19.9% when the volumes of spheres were 0.5 and 1 ml. When the linear regressive function was applied to

  16. Single-Isocenter Multiple-Target Stereotactic Radiosurgery: Risk of Compromised Coverage

    International Nuclear Information System (INIS)

    Roper, Justin; Chanyavanich, Vorakarn; Betzel, Gregory; Switchenko, Jeffrey; Dhabaan, Anees

    2015-01-01

    Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). Methods and Materials: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was related to PTV volume, PTV separation, and rotational error. Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values 95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.

  17. Experience of targeted Usher exome sequencing as a clinical test

    Science.gov (United States)

    Besnard, Thomas; García-García, Gema; Baux, David; Vaché, Christel; Faugère, Valérie; Larrieu, Lise; Léonard, Susana; Millan, Jose M; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2014-01-01

    We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service. PMID:24498627

  18. SU-F-P-51: Similarity Analysis of the Linear Accelerator Machines Based On Clinical Simulation

    International Nuclear Information System (INIS)

    Li, K

    2016-01-01

    Purpose: To evaluate the clinical rationale for Truebeam and Trilogy Linac machines from Varian Medical System as exchangeable treatment modalities in the same radiation oncology department. Methods: Intensity Modulated Radiotherapy (IMRT) plans for different diseases were selected for this study. These disease sites included brain, head and neck, breast, lung, and prostate. The parameters selected for this study were the energy amount, Monitor Unit (MU); dose coverage of target reflected by prescription isodose volume(PIV); dose spillage described by the volume of 50% isodoseline of the prescription; and dose homogeneities represented by the maximum dose (MaxD) and the minimum dose (MinD) of target volume (TV) and critical structure (CS). Each percentage difference between the values of these parameters formed an element of a matrix, which was called Similarity Comparison Matrix(SCM). The elements of the SCM were then simplified by dimensional conversion algorithm, which was used to determine clinical similarity between two machines through a single value. Results: For the selected clinical cases in this study, the average percentage differences between Trilogy and Truebeam in MU was 0.28% with standard deviation(SD) 0.66%, PIV was 0.23% with SD 0.20%, Volume at 50% prescription dose was 0.31% with SD at 0.78%, MaxD at TV is 0.26% with SD 0.35%, MinD at TV is −0.04% with SD 0.51%, MaxD in CS is −0.53% with SD 0.92%, and MinD in CS 3.31%, with SD at 2.89%. The sum, product, geometric and harmonic mean for the matrix elements were 19.0%, 0.00%, 0.19%, and 0.00%. Conclusion: A method to compare two machines in clinical level was developed and some reference values were calculated for decision-making in clinical practice, and this strategy could be expanded to different clinical applications.

  19. SU-F-P-51: Similarity Analysis of the Linear Accelerator Machines Based On Clinical Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, K [Associates In Medical Physics, Lanham, MD (United States); John R Marsh Cancer Center (United States)

    2016-06-15

    Purpose: To evaluate the clinical rationale for Truebeam and Trilogy Linac machines from Varian Medical System as exchangeable treatment modalities in the same radiation oncology department. Methods: Intensity Modulated Radiotherapy (IMRT) plans for different diseases were selected for this study. These disease sites included brain, head and neck, breast, lung, and prostate. The parameters selected for this study were the energy amount, Monitor Unit (MU); dose coverage of target reflected by prescription isodose volume(PIV); dose spillage described by the volume of 50% isodoseline of the prescription; and dose homogeneities represented by the maximum dose (MaxD) and the minimum dose (MinD) of target volume (TV) and critical structure (CS). Each percentage difference between the values of these parameters formed an element of a matrix, which was called Similarity Comparison Matrix(SCM). The elements of the SCM were then simplified by dimensional conversion algorithm, which was used to determine clinical similarity between two machines through a single value. Results: For the selected clinical cases in this study, the average percentage differences between Trilogy and Truebeam in MU was 0.28% with standard deviation(SD) 0.66%, PIV was 0.23% with SD 0.20%, Volume at 50% prescription dose was 0.31% with SD at 0.78%, MaxD at TV is 0.26% with SD 0.35%, MinD at TV is −0.04% with SD 0.51%, MaxD in CS is −0.53% with SD 0.92%, and MinD in CS 3.31%, with SD at 2.89%. The sum, product, geometric and harmonic mean for the matrix elements were 19.0%, 0.00%, 0.19%, and 0.00%. Conclusion: A method to compare two machines in clinical level was developed and some reference values were calculated for decision-making in clinical practice, and this strategy could be expanded to different clinical applications.

  20. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volume modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Kevin Casey

    2014-03-01

    Full Text Available Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT.Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor site. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs and a second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient’s treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the deformed low neck contours.Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3.Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.-------------------------------------------Cite this article as: Casey K

  1. Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies

    Science.gov (United States)

    2017-10-01

    prostate cancer . Cancer Res 70: 7992-8002, 2010 8. Nelson PS: Molecular states underlying an- drogen receptor activation: A framework for thera- peutics...targeting androgen signaling in prostate cancer . J Clin Oncol 30:644-646, 2012 9. Thadani-Mulero M, Nanus DM, Giannakakou P: Androgen receptor on the... prostate cancer . Clin Cancer Res 21:795-807, 2015 17. van Soest RJ, de Morrée ES, Kweldam CF, et al: Targeting the androgen receptor confers in vivo

  2. Clinical significance of measurement of hepatic volume by computed tomography

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Matsuda, Yoshiro; Takada, Akira

    1984-01-01

    Hepatic volumes were measured by computed tomography (CT) in 91 patients with chronic liver diseases. Mean hepatic volume in alcoholic liver disease was significantly larger than that in non-alcoholic liver disease. Hepatic volumes in the majority of decompensated liver cirrhosis were significantly smaller than those of compensated liver cirrhosis. In liver cirrhosis, significant correlations between hepatic volume and various hepatic tests which reflect the total functioning hepatic cell masses were found. Combinations of hepatic volume with ICG maximum removal rate and with serum cholinesterase activity were most useful for the assessment of prognosis in liver cirrhosis. These results indicated that estimation of hepatic volume by CT is useful for analysis of pathophysiology and prognosis of chronic liver diseases, and for diagnosis of alcoholic liver diseases. (author)

  3. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects.

    Science.gov (United States)

    Gao, Jinhao; Chen, Kai; Luong, Richard; Bouley, Donna M; Mao, Hua; Qiao, Tiecheng; Gambhir, Sanjiv S; Cheng, Zhen

    2012-01-11

    The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. © 2011 American Chemical Society

  4. Volume and hormonal effects for acute side effects of rectum and bladder during conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Peeters, Stephanie T.H.; Hoogeman, Mischa S.; Heemsbergen, Wilma D.; Slot, Annerie; Tabak, Hans; Koper, Peter C.M.; Lebesque, Joos V.

    2005-01-01

    Purpose: To identify dosimetric variables predictive of acute gastrointestinal (GI) and genitourinary (GU) toxicity and to determine whether hormonal therapy (HT) is independently associated with acute GI and GU toxicity in prostate cancer patients treated with conformal radiotherapy (RT). Methods and Materials: This analysis was performed on 336 patients participating in a multicenter (four hospitals) randomized trial comparing 68 Gy and 78 Gy. The clinical target volume consisted of the prostate with or without the seminal vesicles, depending on the risk of seminal vesicle involvement. The margin from the clinical target volume to the planning target volume was 1 cm. For these patients, the treatment plan for a total dose of 68 Gy was used, because nearly all toxicity appeared before the onset of the 10-Gy boost. Acute toxicity ( 3 months before RT). Results: Acute GI toxicity Grade 2 or worse was seen in 46% of the patients. Patients with long-term neoadjuvant HT experienced less Grade 2 or worse toxicity (27%) compared with those receiving short-term neoadjuvant HT (50%) and no HT (50%). The volumes of the prostate and seminal vesicles were significantly smaller in both groups receiving neoadjuvant HT compared with those receiving no HT. In multivariate logistic regression analysis, including the two statistically significant clinical variables neoadjuvant HT and hospital, a volume effect was found for the relative, as well as absolute, rectal wall volumes exposed to intermediate and high doses. Of all the length parameters, the relative rectal length irradiated to doses of ≥5 Gy and ≥30 Gy and absolute lengths receiving ≥5-15 and 30 Gy were significant. Acute GU toxicity Grade 2 or worse was reported in 56% of cases. For patients with pretreatment GU symptoms, the rate was 93%. The use of short-term and long-term neoadjuvant HT resulted in more GU toxicity (73% and 71%) compared with no HT (50%). In multivariate analysis, containing the variables

  5. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics.

    Science.gov (United States)

    Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Hochreiter, Sepp; Wimmer, Katharina

    2017-07-01

    Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to single-nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  6. Residual Tumor After Neoadjuvant Chemoradiation Outside the Radiation Therapy Target Volume: A New Prognostic Factor for Survival in Esophageal Cancer

    International Nuclear Information System (INIS)

    Muijs, Christina; Smit, Justin; Karrenbeld, Arend; Beukema, Jannet; Mul, Veronique; Dam, Go van; Hospers, Geke; Kluin, Phillip; Langendijk, Johannes; Plukker, John

    2014-01-01

    Purpose/Objective(s): The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. Methods and Materials: The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis was performed. Results: After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Conclusions: Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities

  7. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Plumridge, Nikki; Herschtal, Alan; Bressel, Mathias; Ball, David; Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Binns, David; Hicks, Rodney J.

    2013-01-01

    Background and purpose: To investigate the impact of treatment delays on radiation therapy (RT) target volumes and overall survival (OS) in patients with non-small cell lung cancer (NSCLC) who underwent two baseline FDG PET/CT scans. Material and methods: Patients underwent a staging (PET1) and RT planning (PET2) FDG PET/CT scan. At PET1 all patients were eligible for radical chemo-RT. OS and progression-free survival (PFS) were compared for patients remaining eligible for radical RT and those treated palliatively because PET2 showed progression. RT target volumes were contoured using PET1 and PET2. Normal tissue doses were compared for patients remaining eligible for radical RT. Results: Eighty-two patients underwent PET2 scans between October 2004 and February 2007. Of these, 21 had a prior PET1 scan, median 23 days apart (range 8–176 days). Six patients (29%) were unsuitable for radical RT after PET2; five received palliative treatment and one received no treatment. Patients treated palliatively had significantly worse OS and PFS than patients treated radically p < 0.001. Mean RT tumour volume increased from 105cc to 198cc (p < 0.005) between scans. Conclusions: Disease progression while awaiting initiation of curative RT in NSCLC is associated with larger treatment volumes and worse survival

  8. Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    International Nuclear Information System (INIS)

    Veres, C; Garsi, J P; Rubino, C; De Vathaire, F; Diallo, I; Pouzoulet, F; Bidault, F; Chavaudra, J; Bridier, A; Ricard, M; Ferreira, I; Lefkopoulos, D

    2010-01-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm 3 at 2 years to about 16 cm 3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm 3 for males and 17.5 ± 8 cm 3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients. (note)

  9. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. proposal for standardizing terminology and procedure based on the surgical experience

    International Nuclear Information System (INIS)

    Gregoire, V.; Coche, E.; Cosnard, G.; Hamoir, M.; Reychler, H.

    2000-01-01

    The increasing use of 3D treatment planning in head and neck radiation oncology has created an urgent need for new guidelines for the selection and the delineation of the neck node areas to be included in the clinical target volume. Surgical literature has provided us with valuable information on the extent of pathological nodal involvement in the neck as a function of the primary tumor site. In addition, few clinical series have also reported information on radiological nodal involvement in those areas not commonly included in radical neck dissection. Taking all these data together, guidelines for the selection of the node levels to be irradiated for the major head and neck sites could be proposed. To fill the missing link between these Guidelines and the 3D treatment planning, recommendations for the delineation of these node levels (levels I-VI and retropharyngeal) on CT (or MRI) slices have been proposed using the guidelines outlined by the Committee for Head and Neck Surgery and Oncology of the American Academy for Otolarynology-Head and Neck Surgery. These guidelines were adapted to take into account specific radiological landmarks more easily identified on CT or MRI slices than in the operating field. (author)

  10. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-01-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted

  11. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lina [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhou, Shouhao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Balter, Peter [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Chan [Department of Health Service Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R.; Welsh, James D.; Lin, Steve H. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis. Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD95 BED

  12. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2016-01-01

    Full Text Available The failure of several Phase II/III clinical trials in Alzheimer’s disease (AD with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI is methylthioninium (MT, a drug existing in equilibrium between a reduced (leuco-methylthioninium and oxidized form (MT+. MT chloride (methylene blue was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid.

  13. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  14. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: Clinical experience and dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Weitmann, Hajo Dirk; Poetter, Richard; Waldhaeusl, Claudia; Nechvile, Elisabeth; Kirisits, Christian; Knocke, Tomas Hendrik

    2005-01-01

    Purpose: The aim of this study was to evaluate dose distribution within uterus (clinical target volume [CTV]) and tumor (gross tumor volume [GTV]) and the resulting clinical outcome based on systematic three-dimensional treatment planning with dose-volume adaptation. Dose-volume assessment and adaptation in organs at risk and its impact on side effects were investigated in parallel. Methods and Materials: Sixteen patients with either locally confined endometrial carcinoma (n = 15) or adenocarcinoma of uterus and ovaries after bilateral salpingo-oophorectomy (n = 1) were included. Heyman packing was performed with mean 11 Norman-Simon applicators (3-18). Three-dimensional treatment planning based on computed tomography (n = 29) or magnetic resonance imaging (n = 18) was done in all patients with contouring of CTV, GTV, and organs at risk. Dose-volume adaptation was achieved by dwell location and time variation (intensity modulation). Twelve patients treated with curative intent received five to seven fractions of high-dose-rate brachytherapy (7 Gy per fraction) corresponding to a total dose of 60 Gy (2 Gy per fraction and α/β of 10 Gy) to the CTV. Four patients had additional external beam radiotherapy (range, 10-40 Gy). One patient had salvage brachytherapy and 3 patients were treated with palliative intent. A dose-volume histogram analysis was performed in all patients. On average, 68% of the CTV and 92% of the GTV were encompassed by the 60 Gy reference volume. Median minimum dose to 90% of CTV and GTV (D90) was 35.3 Gy and 74 Gy, respectively. Results: All patients treated with curative intent had complete remission (12/12). After a median follow-up of 47 months, 5 patients are alive without tumor. Seven patients died without tumor from intercurrent disease after median 22 months. The patient with salvage treatment had a second local recurrence after 27 months and died of endometrial carcinoma after 57 months. In patients treated with palliative intent

  15. SU-G-JeP3-09: Tumor Location Prediction Using Natural Respiratory Volume for Respiratory Gated Radiation Therapy (RGRT): System Verification Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Jung, J; Yoon, D; Shin, H; Kim, S; Suh, T [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Respiratory gated radiation therapy (RGRT) gives accurate results when a patient’s breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. Methods: In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using the random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. Results: The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. Conclusion: We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.

  16. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  17. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  18. Realization of a liquid hydrogen target

    International Nuclear Information System (INIS)

    Libin, J.F.; Gangnant, F.

    1997-01-01

    Experiments by the SPEG facility at GANIL need liquid hydrogen targets of some cm 3 . To achieve such targets, temperatures lower than 20 K must be obtained while their thin windows must withstand to pressures higher than 1000 m bars at these temperatures. Havar windows of 4.4 μm thickness met these requirements. A RW5 type Leybold cryo-generator was used as well as a system of ohmic heaters allowing regaining the initial state in a time equivalent with time elapsed for cooling. The working regime was chosen to be constant volume - variable pressure. The various components of this equipment (cryogenic head, buffer volume, hydrogen reservoir and vacuum pump) were coupled through 'aeroquip' allowing by dismantling and changes to keep the hydrogen isolated from the ambient atmosphere. The tests confirmed the accuracy of estimations done for the buffer volume and pressure. The only uncertainty is related to the window deformations. The time of cooling and reheating of target is around one hour. This allows during an experiment to aerate the chamber as the target was accessible to any necessary intervention

  19. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl; Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  20. 3D reconstruction from X-ray fluoroscopy for clinical veterinary medicine using differential volume rendering

    International Nuclear Information System (INIS)

    Khongsomboon, K.; Hamamoto, Kazuhiko; Kondo, Shozo

    2007-01-01

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the technique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians. (author)

  1. The ART of social networking: how SART member clinics are connecting with patients online.

    Science.gov (United States)

    Omurtag, Kenan; Jimenez, Patricia T; Ratts, Valerie; Odem, Randall; Cooper, Amber R

    2012-01-01

    To study and describe the use of social networking websites among Society for Assisted Reproductive Technology (SART) member clinics. Cross-sectional study. University-based practice. Not applicable. Not applicable. Prevalence of social networking websites among SART member clinics and evaluation of content, volume, and location (i.e., mandated state, region) using multivariate regression analysis. A total of 384 SART-registered clinics and 1,382 social networking posts were evaluated. Of the clinics, 96% had a website and 30% linked to a social networking website. The majority of clinics (89%) with social networking websites were affiliated with nonacademic centers. Social networking posts mostly provided information (31%) and/or advertising (28%), and the remaining offered support (19%) or were irrelevant (17%) to the target audience. Only 5% of posts involved patients requesting information. Clinic volume correlated with the presence of a clinic website and a social networking website. Almost all SART member clinics have a website. Nearly one-third of these clinics host a social networking website such as Facebook, Twitter, and/or a blog. Large-volume clinics commonly host social networking websites. These sites provide new ways to communicate with patients, but clinics should maintain policies on the incorporation of social networks into practice. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bichay, T; Mayville, A [Mercy Health, Saint Mary’s, Grand Rapids, MI (United States)

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fraction and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.

  3. Diabetes guidelines and clinical practice: is there a gap? The South ...

    African Journals Online (AJOL)

    2012-01-03

    Jan 3, 2012 ... Original Research: Diabetes guidelines and clinical practice. 85. 2012 Volume 17 No 2 ... endorsed by The Society of Endocrinology Metabolism and Diabetes of ... do not reach the target HbA1c value of < 7%.8-10 In striving to achieve ..... reflected the worst glycaemic control, as assessed by HbA1c levels.

  4. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    Science.gov (United States)

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  5. Clinically significant change in stroke volume in pulmonary hypertension

    NARCIS (Netherlands)

    van Wolferen, S.A.; van de Veerdonk, M.C.; Mauritz, G.J.; Jacobs, W.; Marcus, J.T.; Marques, K.M.J.; Bronzwaer, J.G.F.; Heijmans, M.W.; Boonstra, A.; Postmus, P.E.; Westerhof, N.; Noordegraaf, A.V.

    2011-01-01

    Background: Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory

  6. Blood, blood compounds and cell cultures irradiation in clinical radiotherapy equipment: studies on ideal volume and dose

    International Nuclear Information System (INIS)

    Fernandes, Marco Antonio R.; Pereira, Adelino Jose; Novaes, Paulo Eduardo R.S.

    1995-01-01

    The authors present the technic and equipment used by the Physical Radiologic Service of Radiation Therapy Department of A.C. Camargo Hospital to irradiate blood and blood compounds. The practical routine is illustrated. The results from others Institutions are presented, discussing about the homogeneity of dose of 2000 to 3500 c Gy to all target volume, sufficient to neutralize cells responsible by graft-versus-host disease from blood transfusions. (author). 6 refs., 2 figs., 1 tab

  7. Targeted drugs for pulmonary arterial hypertension: a network meta-analysis of 32 randomized clinical trials

    Directory of Open Access Journals (Sweden)

    Gao XF

    2017-05-01

    Full Text Available Xiao-Fei Gao,1 Jun-Jie Zhang,1,2 Xiao-Min Jiang,1 Zhen Ge,1,2 Zhi-Mei Wang,1 Bing Li,1 Wen-Xing Mao,1 Shao-Liang Chen1,2 1Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 2Department of Cardiology, Nanjing Heart Center, Nanjing, People’s Republic of China Background: Pulmonary arterial hypertension (PAH is a devastating disease and ultimately leads to right heart failure and premature death. A total of four classical targeted drugs, prostanoids, endothelin receptor antagonists (ERAs, phosphodiesterase 5 inhibitors (PDE-5Is, and soluble guanylate cyclase stimulator (sGCS, have been proved to improve exercise capacity and hemodynamics compared to placebo; however, direct head-to-head comparisons of these drugs are lacking. This network meta-analysis was conducted to comprehensively compare the efficacy of these targeted drugs for PAH.Methods: Medline, the Cochrane Library, and other Internet sources were searched for randomized clinical trials exploring the efficacy of targeted drugs for patients with PAH. The primary effective end point of this network meta-analysis was a 6-minute walk distance (6MWD.Results: Thirty-two eligible trials including 6,758 patients were identified. There was a statistically significant improvement in 6MWD, mean pulmonary arterial pressure, pulmonary vascular resistance, and clinical worsening events associated with each of the four targeted drugs compared with placebo. Combination therapy improved 6MWD by 20.94 m (95% confidence interval [CI]: 6.94, 34.94; P=0.003 vs prostanoids, and 16.94 m (95% CI: 4.41, 29.47; P=0.008 vs ERAs. PDE-5Is improved 6MWD by 17.28 m (95% CI: 1.91, 32.65; P=0.028 vs prostanoids, with a similar result with combination therapy. In addition, combination therapy reduced mean pulmonary artery pressure by 3.97 mmHg (95% CI: -6.06, -1.88; P<0.001 vs prostanoids, 8.24 mmHg (95% CI: -10.71, -5.76; P<0.001 vs ERAs, 3.38 mmHg (95% CI: -6.30, -0.47; P=0.023 vs

  8. Effect of geometrical optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Esassolak, Mustafa; Aydin, Ayhan; Aras, Arif; Olacak, Ibrahim; Haydaroglu, Ayfer

    1997-01-01

    Background and purpose: The isodose distributions of HDR stepping source brachytherapy implants can be modified by changing dwell times and this procedure is called optimization. The purpose of this study is to evaluate the effect of geometrical optimization on the brachytherapy volumes and the dose homogeneity inside the implant and to compare them with non-optimized counterparts. Material and methods: A set of biplane breast implants consisting of 84 different configurations have been digitized by the planning computer and volumetric analysis was performed for both non-optimized and geometrically optimized implants. Treated length (T L ), treated volume (V 100 ), irradiated volume (V 50 ), overdose volume (V 200 ) and quality index (QI) have been calculated for every non-optimized implant and compared to its corresponding geometrically optimized implant having a similar configuration and covering the same target length. Results: The mean T L was 74.48% of the active length (A L ) for non-optimized implants and was 91.87% for optimized implants (P 50 /V 100 value was 2.71 for non-optimized implants and 2.65 for optimized implants (P 200 /V 100 value was 0.09 for non-optimized implants and 0.10 for optimized implants (P < 0.001). Conclusions: By performing geometrical optimization it is possible to implant shorter needles for a given tumour to adequately cover the target volume with the reference isodose and thus surgical damage is reduced. The amount of healthy tissues outside the target receiving considerable radiation is significantly reduced due to the decrease in irradiated volume. Dose homogeneity inside the implant is significantly improved. Although there is a slight increase of overdose volume inside the implant, this increase is considered to be negligible in clinical applications

  9. Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Balter, James M.; Lam, Kwok L.; McGinn, Cornealeus J.; Lawrence, Theodore S.; Haken, Randall K. ten

    1998-01-01

    Purpose: CT-based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. Methods and Materials: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. A subsequent clinical protocol was developed for treatment based on exhale CT models. CT scans (typically 3.5-mm slice thickness) were acquired at normal exhale using a spiral scanner. The scan volume was divided into two to three segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. Results: The average patient's diaphragm remained within 25% of the range of ventilatory excursion from the average exhale position for 42% of the typical breathing cycle, and within 25% of the range from the average inhale position for 15% of the cycle. The reproducibility of exhale position over multiple breathing cycles was 0.9 mm (2σ), as opposed to 2.6 mm for inhale. Combining the variation of exhale position and the uncertainty in diaphragm position from CT slices led to typical margins of 10 mm superior to the target, and 19 mm inferior to the target, compared to margins of 19 mm in both directions under our prior protocol of margins based on free-breathing CT studies. For a typical intrahepatic target, these smaller volumes resulted in a 3.6% reduction in V eff for the liver. Analysis of portal films shows proper

  10. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  11. Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases

    International Nuclear Information System (INIS)

    Treuer, Harald; Kocher, Martin; Hoevels, Moritz; Hunsche, Stefan; Luyken, Klaus; Maarouf, Mohammad; Voges, Juergen; Mueller, Rolf-Peter; Sturm, Volker

    2006-01-01

    Objective: Determination of the impact of inaccuracies in the determination and setup of the target point in stereotactic radiosurgery (SRS) on the expectable complication and control probabilities. Methods: Two randomized samples of patients with arteriovenous malformation (AVM) (n = 20) and with brain metastases (n = 20) treated with SRS were formed, and the probability for complete obliteration (COP) or complete remission (CRP), the size of the 10 Gy-volume in the brain tissue (VOI10), and the probability for radiation necrosis (NTCP) were calculated. The dose-effect relations for COP and CRP were fitted to clinical data. Target point deviations were simulated through random vectors and the resulting probabilities and volumes were calculated and compared with the values of the treatment plan. Results: The decrease of the relative value of the control probabilities at 1 mm target point deviation was up to 4% for AVMs and up to 10% for metastases. At 2 mm the median decrease was 5% for AVMs and 9% for metastases. The value for the target point deviation, at which COP and CRP decreased about 0.05 in 90% of the cases, was 1.3 mm. The increase of NTCP was maximally 0.0025 per mm target point deviation for AVMs and 0.0035/mm for metastases. The maximal increase of VOI10 was 0.7 cm 3 /mm target point deviation in both patient groups. Conclusions: The upper limit for tolerable target point deviations is at 1.3 mm. If this value cannot be achieved during the system test, a supplementary safety margin should be applied for the definition of the target volume. A better accuracy level is desirable, in order to ensure optimal chances for the success of the treatment. The target point precision is less important for the minimization of the probability of radiation necroses

  12. Dose distribution assessment (comparison) in the target volume treated with VMAT given by the planning system and evaluated by TL dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, A.; Sakuraba, R.K.; Campos, L.L., E-mail: ambravim@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes

    2015-07-01

    Volumetric-modulated arc therapy (VMAT) is a relatively new therapy technique in which treatment is delivered using a cone beam that rotates around the patient. The radiation is delivered in a continuous gantry rotation while the cone beam is modulated by the intertwining of dynamic multileaf collimators (MLCs). Studies of VMAT plans have shown reduction in the treatment delivery time and monitor units (MU) comparable to IMRT plans improving major comfort to the patient and reducing uncertainties associated with patient movement during treatment. The treatment using VMAT minimizes the biological effects of radiation to critical structures near to the target volumes and produces excellent dose distributions. The dosimetry of ionizing radiation is essential for the radiological protection programs for quality assurance and licensing of equipment. For radiation oncology a quality assurance program is essentially to maintain the quality of patient care. As the VMAT is a new technique of radiation therapy it is important to optimize quality assurance mechanisms to ensure that tests are performed in order to preserve the patient and the equipment. This paper aims to determinate the dose distribution in the target volume (tumor to be treated) and the scattered dose distribution in the risk organs for VMAT technique comparing data given by the planning system and thermoluminescent (TL) response. (author)

  13. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    LENUS (Irish Health Repository)

    Bratland, Ase

    2011-04-08

    Abstract Background In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Findings Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. Conclusions When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile. Trial registration ClinicalTrials.gov: NCT00455351

  14. MRI-assisted versus conventional treatment planning in brachytherapy of cervical and endometrial carcinoma: The impact of individual anatomy on dose distribution in target volume and organs at risk

    International Nuclear Information System (INIS)

    Wulf, Joern; Sauer, Otto A.; Herbolsheimer, Michael; Oppitz, Ulrich; Flentje, Michael

    1996-01-01

    Objective: Dose prescription and definition of target volume in brachytherapy of cervical and endometrial cancer are calculated to standard points as Manchester point A or point My(ometrium) in most centers. Calculation of doses to organs at risk mainly relies on ICRU-report 38. But standard dose prescription neglects individual patient anatomy. While MRI and CT had widespread impact on individual planning in external beam radiotherapy, there is still a minor influence on brachytherapy. The impact of individual anatomy on dose distribution in target volume and organs at risk demonstrates the objective of individual brachytherapy planning. Materials and Methods: 8 patients with cervical and 4 patients with endometrial carcinoma underwent MRI of the pelvis with in-situ applicators (ring-tandem applicators for cervical carcinoma and modified Heyman-capsules for endometrial carcinoma). T1w slices were angulated coronal and sagittal to get rectangular reproductions to applicator axis. Orthogonal or isocentric X-ray films for conventional treatment planning were done. MRI-information on target and organs at risk was transformed into coordinates relative to applicator axis and dose calculation on the database of conventional treatment planning was performed by Nucletron Planning System PLATO. Isodoses were projected into MRI slices. Prescribed dose to patients with cervical cancer was 8.5 Gy to point A resp. 10 Gy to point My (2cm below fundal myometrium and 2cm lateral applicator axis) in endometrial cancer. Results: Dose prescription to Manchester point A or point My represented in only 50% of cases uterine serosa. Instead of 2cm lateral of applicator axis, uterine surface ranged from 1.0 cm to 3.9 cm at the level of point A (mean 2.25 cm coronal and 1.77 cm sagittal) and from 1.5 cm to 4.4 cm at the level of point My (mean 2.7 cm coronal and 2.1 cm sagittal). Uterine volume ranged from 69 cc to 277 cc, mean volume was 150cc. Dose-volume histograms of patients with

  15. Clinical practice in BNCT to the brain

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    2001-01-01

    Our concept of Boron Neutron Capture Therapy (BNCT) is to selectively destroy tumour cells using the high LET particles yielded from the 10B(n,α)7Li reactions. The effort of clinical investigators has concentrated on how to escalate the radiation dose at the target point. BNCT in Japan combines thermal neutrons and BSH (Na 2 B 12 H 11 SH). The radiation dose is determined by the neutron fluence at the target point and the boron concentration in the tumour tissue. According to the recent analysis, the ratio of boron concentration (BSH) in tumour tissue and blood is nearly stable at around 1.2 to 1.69. Escalation of the radiation dose was carried out by means of improving the penetration of the thermal neutron beam. Since 1968, 175 patients with glioblastoma (n=83), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumour (n=32) were treated by BNCT at 5 reactors (HTR n=13, JRR-3 n=1, MulTR n=98, KUR n=30, JRR-2 n=33). The retrospective analysis revealed that the important factors related to the clinical results and QOL of the patients were minimum tumour volume radiation dose, more than 18Gy of physical dose and maximum vascular radiation dose (less than 15Gy) in the normal cortex. We have planned several trials to escalate the target radiation dose. One trial makes use of a cavity in the cortex following debulking surgery of the tumour tissue to improve neutron penetration. The other trial is introduction of epithermal neutron. KUR and JRR-4 were reconstructed and developed to be able to irradiate using epithermal neutrons. The new combination of surgical procedure and irradiation using epithermal neutrons should remarkably improve the target volume dose compared to the radiation dose treated by thermal neutrons. (author)

  16. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  17. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    International Nuclear Information System (INIS)

    Lee, Deuk Hee; Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik

    2016-01-01

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm 3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way

  18. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  19. SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y; Turian, J; Templeton, A; Redler, G; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2015-06-15

    Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT. PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.

  20. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  1. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    Science.gov (United States)

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  2. Clinical application of three-dimensional spiral CT cerebral angiography with volume rendering

    International Nuclear Information System (INIS)

    Duan Shaoyin; Huang Xi'en; Kang Jianghe; Zhang Dantong; Lin Qingchi; Cai Guoxiang; Xu Meixin; Pang Ruilin

    2002-01-01

    Objective: To study the methodology and assess the clinical value of three-dimensional CT angiography (3D-CTA) with volume rendering (VR) in cerebral vessels. Methods: Sixty-two patients were examined by means of 3D-CTA with volume rendering. VR was used in the reconstruction of 3D images, and the demonstration of normal vessels and vascular lesions were particularly analyzed. At the same time, comparisons were made between the images of VR and SSD, MIP, and also between the diagnosis of VR-CTA and DSA or postoperative results. Results: In VR images, cerebral vessel routes and vessel cavities were showed clearly, while the relationship among vascular lesions, surrounding vessels, and neighboring structure was distinguished. 50 cases (80.6%) were found positive, 48 of which were correct and 2 were false-positive compared with DSA or postoperative results. The accurate rate of diagnosis was 96.0%. There was no obvious difference in showing the cerebral vessel among the images of VR, SSD and MIP (P > 0.25). Conclusion: Three-dimensional CT cerebral angiography with VR is a new noninvasive effective method. It can even partly replace the DSA. The 3D-images have the characteristics of showing the cerebral vascular cavity and overlapped vessels without cutting the skull

  3. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application

    Directory of Open Access Journals (Sweden)

    Kaichun Li

    2016-01-01

    Full Text Available Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2, can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab, VEGF targeting monoclonal antibodies (bevacizumab, mTOR inhibitor (everolimus, or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer.

  4. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    International Nuclear Information System (INIS)

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-01-01

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing

  5. cExternal beam radiation results in minimal changes in post void residual urine volumes during the treatment of clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Orio, Peter F III; Merrick, Gregory S; Allen, Zachariah A; Butler, Wayne M; Wallner, Kent E; Kurko, Brian S; Galbreath, Robert W

    2009-01-01

    To evaluate the impact of external beam radiation therapy (XRT) on weekly ultrasound determined post-void residual (PVR) urine volumes in patients with prostate cancer. 125 patients received XRT for clinically localized prostate cancer. XRT was delivered to the prostate only (n = 66) or if the risk of lymph node involvement was greater than 10% to the whole pelvis followed by a prostate boost (n = 59). All patients were irradiated in the prone position in a custom hip-fix mobilization device with an empty bladder and rectum. PVR was obtained at baseline and weekly. Multiple clinical and treatment parameters were evaluated as predictors for weekly PVR changes. The mean patient age was 73.9 years with a mean pre-treatment prostate volume of 53.3 cc, a mean IPSS of 11.3 and a mean baseline PVR of 57.6 cc. During treatment, PVR decreased from baseline in both cohorts with the absolute difference within the limits of accuracy of the bladder scanner. Alpha-blockers did not predict for a lower PVR during treatment. There was no significant difference in mean PVR urine volumes or differences from baseline in either the prostate only or pelvic radiation groups (p = 0.664 and p = 0.458, respectively). Patients with a larger baseline PVR (>40 cc) had a greater reduction in PVR, although the greatest reduction was seen between weeks one and three. Patients with a small PVR (<40 cc) had no demonstrable change throughout treatment. Prostate XRT results in clinically insignificant changes in weekly PVR volumes, suggesting that radiation induced bladder irritation does not substantially influence bladder residual urine volumes

  6. cExternal beam radiation results in minimal changes in post void residual urine volumes during the treatment of clinically localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Wallner Kent E

    2009-07-01

    Full Text Available Abstract Background To evaluate the impact of external beam radiation therapy (XRT on weekly ultrasound determined post-void residual (PVR urine volumes in patients with prostate cancer. Methods 125 patients received XRT for clinically localized prostate cancer. XRT was delivered to the prostate only (n = 66 or if the risk of lymph node involvement was greater than 10% to the whole pelvis followed by a prostate boost (n = 59. All patients were irradiated in the prone position in a custom hip-fix mobilization device with an empty bladder and rectum. PVR was obtained at baseline and weekly. Multiple clinical and treatment parameters were evaluated as predictors for weekly PVR changes. Results The mean patient age was 73.9 years with a mean pre-treatment prostate volume of 53.3 cc, a mean IPSS of 11.3 and a mean baseline PVR of 57.6 cc. During treatment, PVR decreased from baseline in both cohorts with the absolute difference within the limits of accuracy of the bladder scanner. Alpha-blockers did not predict for a lower PVR during treatment. There was no significant difference in mean PVR urine volumes or differences from baseline in either the prostate only or pelvic radiation groups (p = 0.664 and p = 0.458, respectively. Patients with a larger baseline PVR (>40 cc had a greater reduction in PVR, although the greatest reduction was seen between weeks one and three. Patients with a small PVR ( Conclusion Prostate XRT results in clinically insignificant changes in weekly PVR volumes, suggesting that radiation induced bladder irritation does not substantially influence bladder residual urine volumes.

  7. Patterns of Primary Tumor Invasion and Regional Lymph Node Spread Based on Magnetic Resonance Imaging in Early-Stage Nasal NK/T-cell Lymphoma: Implications for Clinical Target Volume Definition and Prognostic Significance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Run-Ye [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Liu, Kang [Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Wei-Hu; Jin, Jing; Song, Yong-Wen; Wang, Shu-Lian; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Liu, Qing-Feng; Yang, Yong; Chen, Bo; Qi, Shu-Nan; Lu, Ning-Ning; Tang, Yu; Tang, Yuan; Li, Ning [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Ouyang, Han [Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Li, Ye-Xiong, E-mail: yexiong12@163.com [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2017-01-01

    Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surrounding the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.

  8. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Shreerang A [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Davies, Mark; Burke, Kevin; McNair, Helen A; Hansen, Vibeke [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Barbachano, Y [Department of Statistics, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); El-Hariry, I A [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Newbold, Kate [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Harrington, Kevin J [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Nutting, Christopher M., E-mail: chris.nutting@rmh.nhs.u [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom)

    2010-04-15

    Purpose: The aim of this study was to investigate prospectively the weekly volume changes in the target volumes and organs at risk and the resulting dosimetric changes during induction chemotherapy followed by chemoradiotherapy with intensity-modulated radiation therapy (C-IMRT) for head-and-neck cancer patients. Methods and Materials: Patients receiving C-IMRT for head-and-neck cancer had repeat CT scans at weeks 2, 3, 4, and 5 during radiotherapy. The volume changes of clinical target volume 1 (CTV1) and CTV2 and the resulting dosimetric changes to planning target volume 1 (PTV1) and PTV2 and the organs at risk were measured. Results: The most significant volume differences were seen at week 2 for CTV1 and CTV2. The reductions in the volumes of CTV1 and CTV2 at week 2 were 3.2% and 10%, respectively (p = 0.003 and p < 0.001). The volume changes resulted in a significant reduction in the minimum dose to PTV1 and PTV2 (2 Gy, p = 0.002, and 3.9 Gy, p = 0.03, respectively) and an increased dose range across PTV1 and PTV2 (2.5 Gy, p < 0.001, and 5.1 Gy, p = 0.008, respectively). There was a 15% reduction in the parotid volumes by week 2 (p < 0.001) and 31% by week 4 (p < 0.001). There was a statistically significant increase in the mean dose to the ipsilateral parotid only at week 4 (2.7 Gy, p = 0.006). The parotid glands shifted medially by an average of 2.3 mm (p < 0.001) by week 4. Conclusion: The most significant volumetric changes and dosimetric alterations in the tumor volumes and organs at risk during a course of C-IMRT occur by week 2 of radiotherapy. Further adaptive radiotherapy with replanning, if appropriate, is recommended.

  9. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben

    2016-01-01

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM...... of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting...

  10. Physics and imaging for targeting of oligometastases.

    Science.gov (United States)

    Yin, Fang-Fang; Das, Shiva; Kirkpatrick, John; Oldham, Mark; Wang, Zhiheng; Zhou, Su-Min

    2006-04-01

    Oligometastases refer to metastases that are limited in number and location and are amenable to regional treatment. The majority of these metastases appear in the brain, lung, liver, and bone. Although the focus of interest in the past within radiation oncology has been on the treatment of intracranial metastases, there has been growing interest in extracranial sites such as the liver and lung. This is largely because of the rapid development of targeting techniques for oligometastases such as intensity-modulated and image-guided radiation therapy, which has made it possible to deliver single or a few fractions of high-dose radiation treatments, highly conformal to the target. The clinical decision to use radiation to treat oligometastases is based on both radiobiological and physics considerations. The radiobiological considerations involve improvement of treatment schema for time, dose, and volume. Areas of interests are hypofractionation, tumor and normal tissue tolerance, and hypoxia. The physics considerations for oligometastases treatment are focused mainly on ensuring treatment accuracy and precision. This article discusses the physics and imaging aspects involved in each step of the radiation treatment process for oligometastases, including target definition, treatment simulation, treatment planning, pretreatment target localization, radiation delivery, treatment verification, and treatment evaluation.

  11. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma.

    Science.gov (United States)

    Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo

    2016-01-01

    Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.

  12. Clinical trials in hospitalized heart failure patients: targeting interventions to optimal phenotypic subpopulations.

    Science.gov (United States)

    Vaduganathan, Muthiah; Butler, Javed; Roessig, Lothar; Fonarow, Gregg C; Greene, Stephen J; Metra, Marco; Cotter, Gadi; Kupfer, Stuart; Zalewski, Andrew; Sato, Naoki; Filippatos, Gerasimos; Gheorghiade, Mihai

    2015-07-01

    With one possible exception, the last decade of clinical trials in hospitalized heart failure (HHF) patients has failed to demonstrate improvement in long-term clinical outcomes. This trend necessitates a need to evaluate optimal drug development strategies and standards of trial conduct. It has become increasingly important to recognize the heterogeneity among HHF patients and the differential characterization of novel drug candidates. Targeting these agents to specific subpopulations may afford optimal net response related to the particular mode of action of the drug. Analyses of previous trials demonstrate profound differences in the baseline characteristics of patients enrolled across global regions and participating sites. Such differences may influence risks for events and interpretation of results. Therefore, the actual execution of trials and the epidemiology of HHF populations at the investigative sites must be taken into consideration. Collaboration among participating sites including the provision of registry data tailored to the planned development program will optimize trial conduct. Observational data prior to study initiation may enable sites to feedback and engage in protocol development to allow for feasible and valid clinical trial conduct. This site-centered, epidemiology-based network environment may facilitate studies in specific patient populations and promote optimal data collection and clear interpretation of drug safety and efficacy. This review summarizes the roundtable discussion held by a multidisciplinary team of representatives from academia, National Institutes of Health, industry, regulatory agencies, payers, and contract and academic research organizations to answer the question: Who should be targeted for novel therapies in HHF?

  13. The clinical importance of radiological determination of the heart volume

    International Nuclear Information System (INIS)

    Jaedicke, W.; Ong, T.S.; Barmeyer, J.

    1982-01-01

    The size of the heart is an autonomous, important parameter of its functional state, i.e. in the radiologic heart diagnostics, the measurement of the heart volume is of equal value as the shape analysis. A size determination which must be exact enough for course controls and differentiation from the normal picture makes sense only if the measurement is carriet out in 3 dimensions and not in only one as is done when determining the heart-lung-quotient. The heart volume measurement carried out in lying or sitting position is considerably more reliable than in standing position as too many extracardiac factors influence the heart volume when the patient is standing. The echo cardiogram is a nearly ideal supplement but no competitor of radiological heart volume measurement and can be of the same value as or superior to heart volume measurement for functional diagnostics only in diseases limited to nearly exclusively to the left ventricle as in coronary diseases. (orig.) [de

  14. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    Science.gov (United States)

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    regression model. Analysis of variance was used to determine whether the absolute log proportional error differed by the intended injection volume. Interindividual and intraindividual deviation from the intended injection volume was also characterized. As the intended injection volumes decreased, the absolute log proportional injection volume error increased (analysis of variance, P standard deviations of the log proportional errors for injection volumes between physicians and pediatric PACU nurses; however, the difference in absolute bias was significantly higher for nurses with a 2-sided significance of P = .03. Clinically significant dose variation occurs when injecting volumes ≤0.5 mL. Administering small volumes of medications may result in unintended medication administration errors.

  15. SU-F-T-36: Dosimetric Comparison of Point Based Vs. Target Based Prescription for Intracavitary Brachytherapy in Cancer of the Cervix

    Energy Technology Data Exchange (ETDEWEB)

    Ashenafi, M; McDonald, D; Peng, J; Mart, C; Koch, N; Cooper, L; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2016-06-15

    Purpose: Improved patient imaging used for planning the treatment of cervical cancer with Tandem and Ovoid (T&O) Intracavitary high-dose-rate brachytherapy (HDR) now allows for 3D delineation of target volumes and organs-at-risk. However, historical data relies on the conventional point A-based planning technique. A comparative dosimetric study was performed by generating both target-based (TBP) and point-based (PBP) plans for ten clinical patients. Methods: Treatment plans created using Elekta Oncentra v. 4.3 for ten consecutive cervical cancer patients were analyzed. All patients were treated with HDR using the Utrecht T&O applicator. Both CT and MRI imaging modalities were utilized to delineate clinical target volume (CTV) and organs-at-risk (rectum, sigmoid, bladder, and small bowel). Point A (left and right), vaginal mucosa, and ICRU rectum and bladder points were defined on CT. Two plans were generated for each patient using two prescription methods (PBP and TBP). 7Gy was prescribed to each point A for each PBP plan and to the target D90% for each TBP plan. Target V90%, V100%, and V200% were evaluated. In addition, D0.1cc and D2cc were analyzed for each organ-at-risk. Differences were assessed for statistical significance (p<0.05) by use of Student’s t-test. Results: Target coverage was comparable for both planning methods, with each method providing adequate target coverage. TBP showed lower absolute dose to the target volume than PBP (D90% = 7.0Gy vs. 7.4Gy, p=0.028), (V200% = 10.9cc vs. 12.8cc, p=0.014), (ALeft = 6.4Gy vs. 7Gy, p=0.009), and (ARight = 6.4Gy vs. 7Gy, p=0.013). TBP also showed a statistically significant reduction in bladder, rectum, small bowel, and sigmoid doses compared to PBP. There was no statistically significant difference in vaginal mucosa or ICRU-defined rectum and bladder dose. Conclusion: Target based prescription resulted in substantially lower dose to delineated organs-at-risk compared to point based prescription, while

  16. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    International Nuclear Information System (INIS)

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Françoise; Devriendt, Daniel

    2011-01-01

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose–volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  17. The relationship between the bladder volume and optimal treatment planning in definitive radiotherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Sekiguchi, Kenji; Akahane, Keiko; Shikama, Naoto; Takahashi, Osamu; Hama, Yukihiro; Nakagawa, Keiichi

    2012-01-01

    Background and purpose: There is no current consensus regarding the optimal bladder volumes in definitive radiotherapy for localized prostate cancer. The aim of this study was to clarify the relationship between the bladder volume and optimal treatment planning in radiotherapy for localized prostate cancer. Material and methods: Two hundred and forty-three patients underwent definitive radiotherapy with helical tomotherapy for intermediate- and high-risk localized prostate cancer. The prescribed dose defined as 95 % of the planning target volume (PTV) receiving 100 % of the prescription dose was 76 Gy in 38 fractions. The clinical target volume (CTV) was defined as the prostate with a 5-mm margin and 2 cm of the proximal seminal vesicle. The PTV was defined as the CTV with a 5-mm margin. Treatment plans were optimized to satisfy the dose constraints defined by in-house protocols for PTV and organs at risk (rectum wall, bladder wall, sigmoid colon and small intestine). If all dose constraints were satisfied, the plan was defined as an optimal plan (OP). Results: An OP was achieved with 203 patients (84%). Mean bladder volume (± 1 SD) was 266 ml (± 130 ml) among those with an OP and 214 ml (±130 ml) among those without an OP (p = 0.02). Logistic regression analysis also showed that bladder volumes below 150 ml decreased the possibility of achieving an OP. However, the percentage of patients with an OP showed a plateau effect at bladder volumes above 150 ml. Conclusions. Bladder volume is a significant factor affecting OP rates. However, our results suggest that bladder volumes exceeding 150 ml may not help meet planning dose constraints

  18. Prostatic edema in 125I permanent prostate implants: Dynamical dosimetry taking volume changes into account

    International Nuclear Information System (INIS)

    Leclerc, Ghyslain; Lavallee, Marie-Claude; Roy, Rene; Vigneault, Eric; Beaulieu, Luc

    2006-01-01

    The purpose of this study is to determine the impact of edema on the dose delivered to the target volume. An evaluation of the edema characteristics was first made, and then a dynamical dosimetry algorithm was developed and used to compare its results to a standard clinical (static) dosimetry. Source positions and prostate contours extracted from 66 clinical cases on images taken at different points in time (planning, implant day, post-implant evaluation) were used, via the mean interseed distance, to characterize edema [initial increase (Δr 0 ), half-life (τ)]. An algorithm was developed to take into account the edema by summing a time series of dose-volume histograms (DVHs) with a weight based on the fraction of the dose delivered during the time interval considered. The algorithm was then used to evaluate the impact of edema on the dosimetry of permanent implants by comparing its results to those of a standard clinical dosimetry. The volumetric study yielded results as follows: the initial prostate volume increase was found to be 1.58 (ranging from 1.15 to 2.48) and the edema half-life, approximately 30 days (range: 3 to 170 days). The dosimetric differences in D 90 observed between the dynamic dosimetry and the clinical one for a single case were up to 15 Gy and depended on the edema half-life and the initial volume increase. The average edema half-life, 30 days, is about 3 times longer than the previously reported 9 days. Dosimetric differences up to 10% of the prescription dose are observed, which can lead to differences in the quality assertion of an implant. The study of individual patient edema resorption with time might be necessary to extract meaningful clinical correlation or biological parameters in permanent implants

  19. Targeted hepatic sonography during clinic visits for detection of fatty liver in overweight children: a pilot study.

    Science.gov (United States)

    Perito, Emily R; Tsai, Patrika M; Hawley, Sarah; Lustig, Robert H; Feldstein, Vickie A

    2013-04-01

    The purpose of this study was to assess the feasibility and utility of targeted hepatic sonography to evaluate for hepatic steatosis during a subspecialty clinic visit. In this pilot study, we performed targeted hepatic sonography on 25 overweight children aged 7 to 17 years consecutively seen in a pediatric obesity clinic. Long-axis images of the right lobe of the liver and a split-screen image of liver and spleen were taken. Images were interpreted in real time by the radiologist and shown to the family. Demographics, clinical measurements, and laboratory parameters were also collected from the specialty clinic visit on the same day. Sonography required a median of 4 minutes during the visit (interquartile range, 3-5 minutes). All consented patients completed the study. The median alanine aminotransferase (ALT) level was 23 U/L in those with no steatosis (n = 14), 26 U/L with mild steatosis (n = 6), and 41 U/L with moderate/marked steatosis (n = 5). Children with ALT levels of 25 to 50 U/L had very variable sonographic measures of hepatic steatosis. When the participants were categorized by the overall degree of fatty liver, hepatic steatosis was significantly associated with the aspartate aminotransferase level (P = .028), ALT level (P = .003), and diastolic blood pressure (P = .05) but did not correlate with age, sex, Latino race, or insulin resistance. Targeted hepatic sonography added information not apparent from routine ALT screening and provided immediate feedback to clinicians and families about the effect of obesity on end organs. This examination could be a feasible, informative addition to screening for children at high risk for nonalcoholic fatty liver disease who are seen in clinics that specialize in obesity.

  20. The dependence of prostate postimplant dosimetric quality on CT volume determination

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Dorsey, Anthony T.; Lief, Jonathan H.

    1999-01-01

    Purpose: The postoperative evaluation of permanent prostate brachytherapy requires a subjective determination of the implant volume. This work investigates the magnitude of the effect that various methods of treatment volume delineation have on dosimetric quality parameters for a treatment planning philosophy that defines a target volume as the prostate with a periprostatic margin. Methods and Materials: Eight consecutive prostate brachytherapy patients with a prescribed dose of 145 Gy from 125 I as monotherapy comprised the study population. The prostate ultrasound volume was enlarged to a planning volume by an average factor of 1.8 to encompass probable extracapsular extension in the periprostatic region. For this cohort, the mean pretreatment parameters were 30.3 cm 3 ultrasound volume, 51.8 cm 3 planning volume, 131 seeds per patient, and 42.9 mCi total activity. On CT study sets obtained less than 2 hours postoperatively, target volumes were drawn using three methods: prostate plus a periprostatic margin, prostate only which excluded the puborectalis muscles, the periprostatic fat and the periprostatic venous plexus, and the preplanning ultrasound magnified to conform to the magnification factor of the postimplant CT scan. Three sets of 5 dosimetric quality parameters corresponding to the different volumetric approaches were calculated: V100, V150, and V200 which are the fractions of the target volume covered by 100, 150, and 200% of the prescribed dose, and D90 and D100, which are the minimal doses covering 90 and 100% of the target volume. Results: The postoperative CT volume utilizing the prostate plus margin technique was comparable to the initial planning volume (mean 55.5 cm 3 vs. 51.8 cm 3 , respectively) whereas those determined via superimposing the preplan ultrasound resulted in volumes nearly identical to the initial ultrasound evaluation (mean 32.4 cm 3 vs. 30.3 cm 3 ). The prostate only approach resulted in volumes approximately 25% larger than