WorldWideScience

Sample records for clinical laboratory science

  1. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  2. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  3. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  4. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  5. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  6. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  7. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  8. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  9. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  10. Journal of Medical Laboratory Science

    African Journals Online (AJOL)

    The Journal of Medical Laboratory Science is a Quarterly Publication of the Association of Medical Laboratory Scientists of Nigeria. It Publishes Original Research and Review Articles in All Fields of Biomedical Sciences and Laboratory Medicine, Covering Medical Microbiology, Medical Parasitology, Clinical Chemistry, ...

  11. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  12. Updating the immunology curriculum in clinical laboratory science.

    Science.gov (United States)

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.

  13. Science outside the laboratory measurement in field science and economics

    CERN Document Server

    Boumans, Marcel

    2015-01-01

    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement theory, its reliability, and the role expert judgment plays in field investigations from the perspective of the philosophy of science. Its discussion of the problems of passive observation, the calculus of observation, the two-model problem, and model-based consensus uses illustrations drawn primarily from economics. Rich in research and discussion, the volume clarifies the extent to which measurement provides valid information about objects an...

  14. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    Directory of Open Access Journals (Sweden)

    Brian H Shirts

    2015-01-01

    Full Text Available The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed.

  15. Decision-Making, Tacit Knowledge, and Motivation in Semi-Professional Practice: Humanizing the Environment through Anthropomorphism in Clinical Laboratory Science

    Science.gov (United States)

    Mortier, Teresa

    2017-01-01

    The clinical laboratory science field requires an abundance of technical knowledge; however, the importance of implicit or tacit knowledge gained through observation and practice is often discounted in this field, even though it is a critical part of reflective thinking, critical thinking, and reflective practice. The "de-skilling" of…

  16. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  17. Assessment of leadership among clinical laboratories managers of teaching hospitals: Quantum leadership approach

    Directory of Open Access Journals (Sweden)

    H. Dargahi

    2017-10-01

    Full Text Available Background: Quantum leadership approach causes efficient and effective procedures among health care organizations, specially clinical laboratories. Objective: This research was aimed to determine the status of quantum leadership dimensions among all management levels of clinical laboratories of teaching hospitals of medical sciences universities in Tehran. Methods: This descriptive, analytical and cross-sectional study was induced among 180 managers of 35 clinical laboratories of Iran, Shahid Beheshti and Tehran Universities of Medical Sciences 2016. The research tool was researcher - constructed questionnaire of quantum skills, demographic details that its content and face validity and reliability were confirmed. For analysis of data, T-test and ANOVA techniques were used. Findings: Most of the studied clinical laboratories managers were male, married, with 15-20 years work experiences, 1-5 years managerial services, and minimally one training courses in clinical laboratory management. The managers had relatively desired and desired score of quantum skills and leadership respectively. Also, there was significant correlation between quantum leadership with age (P=0.01, and with management training courses (P=0.02. Conclusion: It is expected this paradigm may change the clinical laboratory management in the near future with regards to desirability of quantum leadership dimensions among clinical laboratories.

  18. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  19. Clinical laboratory technologist professional development in Camagüey

    Directory of Open Access Journals (Sweden)

    Mercedes Caridad García González

    2015-05-01

    Full Text Available The paper describes the results of research aimed at assessing the current conditions related to clinical laboratory technologist professional development. A descriptive cross study covering the period between November 2013 and January 2014 is presented. Several techniques for identifying and hierarchically arranging professional developmental related problems were used to study a sample at the Faculty of Health Technology of the Medical University “Carlos Juan Finlay”. The study involved heads of teaching departments and methodologists of health care technology specialties; moreover a survey and a content test were given graduate clinical laboratory technicians. The authors reached at the conclusion that clinical laboratory technologist professional development is limited and usually underestimate the necessities and interests of these graduates. Likewise, a lack of systematization and integration of the biomedical basic sciences contents and the laboratory diagnosis is noticeable.

  20. Building bridges between clinical and forensic toxicology laboratories.

    Science.gov (United States)

    Martin, Bernardino Barcelo; Gomila, Isabel; Noce, Valeria

    2018-05-09

    Clinical and forensic toxicology can be defined as the two disciplines involved the detection, identification and measurement of xenobiotics in biological and non-biological specimens to help in the diagnosis, treatment, prognosis, prevention of poisonings and to disclose causes and contributory causes of fatal intoxications, respectively. This article explores the close connections between clinical and forensic toxicology in overlapping areas of interest. An update has been carried out of the following seven areas of interest in analytical toxicology: doping control, sudden cardiac death (SCD), brain death, sudden infant death syndrome (SIDS) and Munchausen syndrome by proxy (MSBP), prenatal exposure to drugs and fetal alcohol syndrome (FAS), drug-facilitated crimes (DFC) and intoxications by new psychoactive substances (NPS). While issues such as SCD, SIDS or doping control are investigated mainly in forensic laboratories, other as prenatal exposure to drugs or FAS are mainly treated in clinical laboratories. On the other hand, areas such MSBP, DFC or the intoxications by NPS are of interest in both laboratories. Some of these topics are initially treated in hospital emergency departments, involving clinical laboratories and sometimes lately derived to forensic laboratories. Conversely, cases with initial medical-legal implications and fatalities are directly handled by forensic toxicology, but may trigger further studies in the clinical setting. Many areas of common interest between clinical and forensic laboratories are building bridges between them. The increasing relationships are improving the growth, the reliability and the robustness of both kind of laboratories. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. [Future roles of clinical laboratories and clinical laboratory technologists in university hospitals].

    Science.gov (United States)

    Yokota, Hiromitsu; Yatomi, Yutaka

    2013-08-01

    Clinical laboratories in university hospitals should be operated with a good balance of medical practice, education, research, and management. The role of a clinical laboratory is to promptly provide highly reliable laboratory data to satisfy the needs of clinicians involved in medical practice and health maintenance of patients. Improvement and maintenance of the quality of the laboratory staff and environment are essential to achieve this goal. In order to implement these requirements efficiently, an appropriate quality management system should be introduced and established, and evaluated objectively by a third party (e.g. by obtaining ISO 15189 certification). ISO 15189 is an international standard regarding the quality and competence of clinical laboratories, and specifies a review of the efficient operational system and technical requirements such as competence in implementing practical tests and calibration. This means the results of laboratory tests reported by accredited laboratories withstand any international evaluation, which is very important to assure the future importance of the existence and management of clinical laboratories as well as internationalization of medical practice. "Education" and "research" have important implications in addition to "medical practice" and "management", as the roles that clinical laboratories should play in university hospitals. University hospital laboratories should be operated by keeping these four factors in good balance. Why are "education" and "research" required in addition to "medical practice" services? If individual clinical laboratory technologists can provide an appropriate response to this question, the importance of the existence of clinical laboratories would be reinforced, without being compromised.

  2. Students' Psychosocial Perception of Science Laboratory ...

    African Journals Online (AJOL)

    Data was obtained with the Science Laboratory Environment Questionnaire, administered on 338 third year science students. Four factors were found to influence students' perception of their science laboratory environment. Two distinct material environments emerged, which have not been reported in the literature.

  3. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of... and Clinical Science Research and Development Services Scientific Merit Review Board will meet on... medical specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  4. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... Science Research and Development Services Scientific Merit Review Board; Notice of Meeting Amendment The... and Clinical Science Research and Development Services Scientific Merit Review Board have been..., behavioral and clinical science research. The panel meetings will be open to the public for approximately one...

  5. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  6. Emotional intelligence in medical laboratory science

    Science.gov (United States)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  7. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  8. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  9. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  10. Clinical protein science developments for patient monitoring in hospital central laboratories.

    Science.gov (United States)

    Malm, Johan; Marko-Varga, György

    2016-12-01

    Patient care relies heavily on standardized tests performed in hospital laboratories, typically including clinical chemistry, pathology and microbiology. With the introduction of personalized medicine tremendous efforts have been made to identify new biomarkers of disease with various omics technologies, often including mass spectrometry. In order to validate new biomarkers and perform clinical studies high quality biobank samples are of key importance. In this editorial different aspects of mass spectrometry in future personalized medicine are discussed.

  11. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  12. Egyptian Journal of Medical Laboratory Sciences

    African Journals Online (AJOL)

    The main objective of this journal is to cover all aspects of medical laboratory science. Contributions are received from staff members of academic, basic and laboratory science departments of the different medical schools and research centres all over Egypt and it fulfils a real need amongst Egyptian doctors working in the ...

  13. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  14. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  15. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  16. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  17. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  18. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  19. Clinical science: prospects, payment and public policy.

    Science.gov (United States)

    Raslavicus, P A

    1999-01-01

    The last several decades of this century have witnessed significant changes in health care financing and delivery. Similar changes have occurred within laboratory medicine. While government involvement has been principally in insurance and the control of costs through regulation, the demise of the Clinton Health Plan ushered in an era of deregulation and market competition. In this environment, clinical science and clinical scientists have a new challenge: to prove their worth by establishing methods in which their services and tests are more clinically efficient than competing approaches.

  20. Clinical Correlations as a Tool in Basic Science Medical Education

    Directory of Open Access Journals (Sweden)

    Brenda J. Klement

    2016-01-01

    Full Text Available Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1 Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2 Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3 Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4 Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5 Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills.

  1. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  2. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  3. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  5. Post-genome integrative biology: so that's what they call clinical science.

    Science.gov (United States)

    Rees, J

    2001-01-01

    Medical science is increasingly dominated by slogans, a characteristic reflecting its growing bureaucratic and corporate structure. Chief amongst these slogans is the idea that genomics will transform the public health. I believe this view is mistaken. Using studies of the genetics of skin cancer and the genetics of skin pigmentation, I describe how recent discoveries have contributed to our understanding of these topics and of human evolution. I contrast these discoveries with insights gained from other approaches, particularly those based on clinical studies. The 'IKEA model of medical advance'--you just do the basic science in the laboratory and self-assemble in the clinic--is not only damaging to clinical advance, but reflects a widespread ignorance about the nature of disease and how clinical discovery arises. We need to think more about disease and less about genes; more in the clinic and less in the laboratory.

  6. Egyptian Journal of Medical Laboratory Sciences: Advanced Search

    African Journals Online (AJOL)

    Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Journal Home > Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  7. Service quality framework for clinical laboratories.

    Science.gov (United States)

    Ramessur, Vinaysing; Hurreeram, Dinesh Kumar; Maistry, Kaylasson

    2015-01-01

    The purpose of this paper is to illustrate a service quality framework that enhances service delivery in clinical laboratories by gauging medical practitioner satisfaction and by providing avenues for continuous improvement. The case study method has been used for conducting the exploratory study, with focus on the Mauritian public clinical laboratory. A structured questionnaire based on the SERVQUAL service quality model was used for data collection, analysis and for the development of the service quality framework. The study confirms the pertinence of the following service quality dimensions within the context of clinical laboratories: tangibility, reliability, responsiveness, turnaround time, technology, test reports, communication and laboratory staff attitude and behaviour. The service quality framework developed, termed LabSERV, is vital for clinical laboratories in the search for improving service delivery to medical practitioners. This is a pioneering work carried out in the clinical laboratory sector in Mauritius. Medical practitioner expectations and perceptions have been simultaneously considered to generate a novel service quality framework for clinical laboratories.

  8. Diversity in laboratory animal science: issues and initiatives.

    Science.gov (United States)

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt

    2010-03-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science.

  9. Variation in interoperability across clinical laboratories nationwide.

    Science.gov (United States)

    Patel, Vaishali; McNamara, Lauren; Dullabh, Prashila; Sawchuk, Megan E; Swain, Matthew

    2017-12-01

    To characterize nationwide variation and factors associated with clinical laboratories': (1) capabilities to send structured test results electronically to ordering practitioners' EHR systems; and (2) their levels of exchange activity, as measured by whether they sent more than three-quarters of their test results as structured data to ordering practitioners' EHR systems. A national survey of all independent and hospital laboratories was conducted in 2013. Using an analytic weighted sample of 9382 clinical laboratories, a series of logistic regression analyses were conducted to identify organizational and area characteristics associated with clinical laboratories' exchange capability and activity. Hospital-based clinical laboratories (71%) and larger clinical laboratories (80%) had significantly higher levels of capability compared to independent (58%) and smaller laboratories (48%), respectively; though all had similar levels of exchange activity, with 30% of clinical laboratories sending 75% or more of their test results electronically. In multivariate analyses, hospital and the largest laboratories had 1.87 and 4.40 higher odds, respectively, of possessing the capability to send results electronically compared to independent laboratories (pLaboratories located in areas with a higher share of potential exchange partners had a small but significantly greater capability to send results electronically and higher levels of exchange activity(pClinical laboratories' capability to exchange varied by size and type; however, all clinical laboratories had relatively low levels of exchange activity. The role of exchange partners potentially played a small but significant role in driving exchange capability and activity. Published by Elsevier B.V.

  10. Cooperative learning effects on teamwork attitudes in clinical laboratory science students.

    Science.gov (United States)

    Laatsch, Linda; Britton, Lynda; Keating, Susan; Kirchner, Phyllis; Lehman, Don; Madsen-Myers, Karen; Milson, Linda; Otto, Catherine; Spence, Libby

    2005-01-01

    To evaluate clinical laboratory science (CLS) student attitudes toward teamwork when using cooperative learning (CL) as compared to individual learning (IL) in a course and to determine if learning method affects student attitudes toward the course itself. This was a multi-institutional study involving eight classrooms in seven states. The effects of CL and IL on student attitudes were compared for 216 student participants. One group of students learned the course material through a CL approach while a second group of students learned via a traditional IL approach. For each course, the instructor, class material, and examination content was identical for the CL and IL students; the only variable was learning method. Student attitudes toward teamwork and toward the course were evaluated with a 35-item Attitude Questionnaire administered as a posttest. Mean scores for the CL and IL groups were compared using the Student t-test for independent samples. No significant difference was seen between the CL and IL students when assessing the first 30 questions on student attitudes toward teamwork (means = 98.42 and 98.22, respectively) when all institutions were combined. Comparable results were seen for each of the eight institutions. For the five questions comparing attitudes toward the course itself, there usually was no significant difference in attitude between CL and IL students. The only classrooms where CL students had more positive attitudes were those with instructors who had more than 10 years experience with CL. Results suggest that CL produces similar student attitudes toward teamwork and toward a CLS course as does IL.

  11. A Review of Research on Technology-Assisted School Science Laboratories

    Science.gov (United States)

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  12. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    Science.gov (United States)

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  13. Managing Science: Management for R&D Laboratories

    Science.gov (United States)

    Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian

    1999-10-01

    A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.

  14. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  15. Clinical laboratory accreditation in India.

    Science.gov (United States)

    Handoo, Anil; Sood, Swaroop Krishan

    2012-06-01

    Test results from clinical laboratories must ensure accuracy, as these are crucial in several areas of health care. It is necessary that the laboratory implements quality assurance to achieve this goal. The implementation of quality should be audited by independent bodies,referred to as accreditation bodies. Accreditation is a third-party attestation by an authoritative body, which certifies that the applicant laboratory meets quality requirements of accreditation body and has demonstrated its competence to carry out specific tasks. Although in most of the countries,accreditation is mandatory, in India it is voluntary. The quality requirements are described in standards developed by many accreditation organizations. The internationally acceptable standard for clinical laboratories is ISO15189, which is based on ISO/IEC standard 17025. The accreditation body in India is the National Accreditation Board for Testing and Calibration Laboratories, which has signed Mutual Recognition Agreement with the regional cooperation the Asia Pacific Laboratory Accreditation Cooperation and with the apex cooperation the International Laboratory Accreditation Cooperation.

  16. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  17. Automation in the clinical microbiology laboratory.

    Science.gov (United States)

    Novak, Susan M; Marlowe, Elizabeth M

    2013-09-01

    Imagine a clinical microbiology laboratory where a patient's specimens are placed on a conveyor belt and sent on an automation line for processing and plating. Technologists need only log onto a computer to visualize the images of a culture and send to a mass spectrometer for identification. Once a pathogen is identified, the system knows to send the colony for susceptibility testing. This is the future of the clinical microbiology laboratory. This article outlines the operational and staffing challenges facing clinical microbiology laboratories and the evolution of automation that is shaping the way laboratory medicine will be practiced in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  19. [The future of clinical laboratory database management system].

    Science.gov (United States)

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  20. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  1. Changing the way science is taught through gamified laboratories

    DEFF Research Database (Denmark)

    Bonde, Mads; Makransky, G.; Wandall, J.

    2015-01-01

    A large proportion of high school and college students indicate that they have little interest in science, and many graduate with marginal science competencies. However, laboratory exercises, usually the most engaging part of science courses, tend to be expensive, time consuming and occasionally...... the crime-scene case in an introductory, college-level, life science course was conducted revealed that a gamified laboratory simulation can significantly increase both learning outcomes and motivation levels when compared with, and particularly when combined with, traditional teaching....

  2. An analysis of laboratory activities found in "Applications In Biology/Chemistry: A Contextual Approach to Laboratory Science"

    Science.gov (United States)

    Haskins, Sandra Sue

    The purpose of this study was to quantitatively determine whether the material found in ABC promotes scientific inquiry through the inclusion of science process skills, and to quantitatively determine the type (experimental, comparative, or descriptive) and character (wet-lab, paper and pencil, model, or computer) of laboratory activities. The research design allowed for an examination of the frequency and type of science process skills required of students in 79 laboratory activities sampled from all 12 units utilizing a modified 33-item laboratory analysis inventory (LAI) (Germane et al, 1996). Interrater reliability for the science process skills was completed on 19 of the laboratory activities with a mean score of 86.1%. Interrater reliability for the type and character of the laboratory, on the same 19 laboratory activities, was completed with mean scores of 79.0% and 96.5%, respectively. It was found that all laboratory activities provide a prelaboratory activity. In addition, the science process skill category of student performance is required most often of students with the skill of learning techniques or manipulating apparatus occurring 99% of the time. The science process skill category observed the least was student planning and design, occurring only 3% of the time. Students were rarely given the opportunity to practice science process skills such as developing and testing hypotheses through experiments they have designed. Chi-square tests, applied at the .05 level of significance, revealed that there was a significant difference in the type of laboratory activities; comparative laboratory activities appeared more often (59%). In addition the character of laboratory activities, "wet-lab" activities appeared more often (90%) than any of the others.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Clinical Laboratory Science, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, P R China; Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, P R China ...

  4. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    Science.gov (United States)

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  5. Implementation science: the laboratory as a command centre.

    Science.gov (United States)

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  6. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    Science.gov (United States)

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  9. [Quality Management and Quality Specifications of Laboratory Tests in Clinical Studies--Challenges in Pre-Analytical Processes in Clinical Laboratories].

    Science.gov (United States)

    Ishibashi, Midori

    2015-01-01

    The cost, speed, and quality are the three important factors recently indicated by the Ministry of Health, Labour and Welfare (MHLW) for the purpose of accelerating clinical studies. Based on this background, the importance of laboratory tests is increasing, especially in the evaluation of clinical study participants' entry and safety, and drug efficacy. To assure the quality of laboratory tests, providing high-quality laboratory tests is mandatory. For providing adequate quality assurance in laboratory tests, quality control in the three fields of pre-analytical, analytical, and post-analytical processes is extremely important. There are, however, no detailed written requirements concerning specimen collection, handling, preparation, storage, and shipping. Most laboratory tests for clinical studies are performed onsite in a local laboratory; however, a part of laboratory tests is done in offsite central laboratories after specimen shipping. As factors affecting laboratory tests, individual and inter-individual variations are well-known. Besides these factors, standardizing the factors of specimen collection, handling, preparation, storage, and shipping, may improve and maintain the high quality of clinical studies in general. Furthermore, the analytical method, units, and reference interval are also important factors. It is concluded that, to overcome the problems derived from pre-analytical processes, it is necessary to standardize specimen handling in a broad sense.

  10. 75 FR 39028 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2010-07-07

    ... accommodate technological advances. Matters to be Discussed: The agenda will include agency updates from the... attendees are required to register for the meeting online at least 14 days in advance at http://wwwn.cdc.gov... Standards Branch, Division of Laboratory Science and Standards (proposed), Laboratory Science, Policy and...

  11. 77 FR 41188 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2012-07-12

    ... to general issues related to improvement in clinical laboratory quality and laboratory medicine... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Clinical... patient-centeredness of laboratory services; revisions to the standards under which clinical laboratories...

  12. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  13. The Development of Laboratory Safety Questionnaire for Middle School Science Teachers

    Science.gov (United States)

    Akpullukcu, Simge; Cavas, Bulent

    2017-01-01

    The purpose of this paper is to develop a "valid and reliable laboratory safety questionnaire" which could be used to identify science teachers' understanding about laboratory safety issues during their science laboratory activities. The questionnaire was developed from a literature review and prior instruments developed on laboratory…

  14. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  15. Selecting automation for the clinical chemistry laboratory.

    Science.gov (United States)

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  16. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  17. U.S. Ebola Treatment Center Clinical Laboratory Support.

    Science.gov (United States)

    Jelden, Katelyn C; Iwen, Peter C; Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Smith, Philip W; Hewlett, Angela L; Gibbs, Shawn G; Lowe, John J

    2016-04-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  19. The current status of forensic science laboratory accreditation in Europe.

    Science.gov (United States)

    Malkoc, Ekrem; Neuteboom, Wim

    2007-04-11

    Forensic science is gaining some solid ground in the area of effective crime prevention, especially in the areas where more sophisticated use of available technology is prevalent. All it takes is high-level cooperation among nations that can help them deal with criminality that adopts a cross-border nature more and more. It is apparent that cooperation will not be enough on its own and this development will require a network of qualified forensic laboratories spread over Europe. It is argued in this paper that forensic science laboratories play an important role in the fight against crime. Another, complimentary argument is that forensic science laboratories need to be better involved in the fight against crime. For this to be achieved, a good level of cooperation should be established and maintained. It is also noted that harmonization is required for such cooperation and seeking accreditation according to an internationally acceptable standard, such as ISO/IEC 17025, will eventually bring harmonization as an end result. Because, ISO/IEC 17025 as an international standard, has been a tool that helps forensic science laboratories in the current trend towards accreditation that can be observed not only in Europe, but also in the rest of the world of forensic science. In the introduction part, ISO/IEC 17025 states that "the acceptance of testing and calibration results between countries should be facilitated if laboratories comply with this international standard and if they obtain accreditation from bodies which have entered into mutual recognition agreements with equivalent bodies in other countries using this international standard." Furthermore, it is emphasized that the use of this international standard will assist in the harmonization of standards and procedures. The background of forensic science cooperation in Europe will be explained by using an existing European forensic science network, i.e. ENFSI, in order to understand the current status of forensic

  20. Miniaturization and globalization of clinical laboratory activities.

    Science.gov (United States)

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  1. The laboratory in higher science education: Problems, premises and objectives

    NARCIS (Netherlands)

    Kirschner, P.A.; Meester, M.A.M.

    1988-01-01

    A university study in the natural sciences, devoid of a practical component such as laboratory work is virtually unthinkable. One could even go so far as saying that it is extremely rare for anyone to question the necessity of laboratory work in either high school or university science

  2. Educating Laboratory Science Learners at a Distance Using Interactive Television

    Science.gov (United States)

    Reddy, Christopher

    2014-01-01

    Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…

  3. Status of Safety Precautions in Science Laboratories in Enugu State ...

    African Journals Online (AJOL)

    This study was conducted to determine the status of safety precautions in science laboratories in Enugu State of Nigeria. Three research questions and two hypotheses guided the study. The research questions include: 1. What are the sources of hazards in school science laboratories? 2. What are the causes of accidents in ...

  4. Pharmacy students' use and perceptions of Apple mobile devices incorporated into a basic health science laboratory.

    Science.gov (United States)

    Bryant, Jennifer E; Richard, Craig A H

    To describe pharmacy students' use of mobile devices in a basic health science laboratory and to report the students' perceptions on how solving cases with their mobile devices influenced their attitudes, abilities, and view on the use of mobile devices as tools for pharmacists. First-year pharmacy students utilized mobile devices to solve clinical case studies in a basic health sciences laboratory. A pre-survey and two post-surveys were administered to assess the students' comfort, awareness, use, and perceptions on the use of their mobile devices and apps. The pre-survey and first post-survey each had a response rate of 99%, and the second post-survey had a response rate of 100%. In comparing the pre-survey and first post-survey data, there was a statistically significant increase in the number of students that agreed or strongly agreed that they were more comfortable utilizing their mobile device (p = 0.025), they were more aware of apps for pharmacists (p mobile devices, to be more aware of apps that can be useful for pharmacists, and to be more agreeable with mobile device utilization by pharmacists in improving patient care. In addition, the second post-survey also demonstrated that 84% of students responded that using their mobile devices to solve the cases influenced them to either use their mobile device in a clinical setting for a clinical and/or pharmacy-related purpose for the first time or to use it more frequently for this purpose. The use of mobile devices to solve clinical cases in a first-year basic health science laboratory course was perceived as beneficial by students and influenced them to utilize their mobile device even more in a pharmacy practice setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Accreditation of clinical laboratories based on ISO standards].

    Science.gov (United States)

    Kawai, Tadashi

    2004-11-01

    International Organization for Standardization (ISO) have published two international standards (IS) to be used for accreditation of clinical laboratories; ISO/IEC 17025:1999 and ISO 15189:2003. Any laboratory accreditation body must satisfy the requirements stated in ISO/IEC Guide 58. In order to maintain the quality of the laboratory accreditation bodies worldwide, the International Laboratory Accreditation Cooperation (ILAC) has established the mutual recognition arrangement (MRA). In Japan, the International Accreditation Japan (IAJapan) and the Japan Accreditation Board for Conformity Assessment (JAB) are the members of the ILAC/MRA group. In 2003, the Japanese Committee for Clinical Laboratory Standards (JCCLS) and the JAB have established the Development Committee of Clinical Laboratory Accreditation Program (CLAP), in order to establish the CLAP, probably starting in 2005.

  6. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  7. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  8. Burkholderia pseudomallei: Challenges for the Clinical Microbiology Laboratory.

    Science.gov (United States)

    Hemarajata, Peera; Baghdadi, Jonathan D; Hoffman, Risa; Humphries, Romney M

    2016-12-01

    Melioidosis is a potentially fatal infection caused by the bacterium Burkholderia pseudomallei Clinical diagnosis of melioidosis can be challenging since there is no pathognomonic clinical syndrome, and the organism is often misidentified by methods used routinely in clinical laboratories. Although the disease is more prevalent in Thailand and northern Australia, sporadic cases may be encountered in areas where it is not endemic, including the United States. Since the organism is considered a tier 1 select agent according to the Centers for Disease Control and Prevention and the U.S. Department of Agriculture Animal and Plant Health Inspection Service, clinical laboratories must be proficient at rapidly recognizing isolates suspicious for B. pseudomallei, be able to safely perform necessary rule-out tests, and to refer suspect isolates to Laboratory Response Network reference laboratories. In this minireview, we report a case of melioidosis encountered at our institution and discuss the laboratory challenges encountered when dealing with clinical isolates suspicious for B. pseudomallei or clinical specimens from suspected melioidosis cases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The management of clinical laboratories in Europe: a FESCC survey. Forum of the European Societies of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    de Kieviet, Wim; Blaton, Victor; Kovacs, Gabor L; Palicka, Vladimir; Pulkki, Kari

    2002-03-01

    The professional duties of the specialists in clinical chemistry differ from country to country in Europe. One of the main goals of the Strategic Plan of the Forum of the European Societies of Clinical Chemistry and Laboratory Medicine (FESCC; IFCC-Europe) is to promote a high scientific and professional standard in the field of clinical chemistry and laboratory medicine in Europe. This can be stimulated by the knowledge of the local conditions in each country and by striving towards a strong and harmonised position in all the European countries. In order to enhance the knowledge of the managerial situation of the specialists in clinical chemistry in Europe, FESCC launched a survey in September 2000. This survey provides information about the position of the specialists in clinical chemistry in the various disciplines in the medical laboratories and in hospitals, and about the advisory tasks and the managerial education during the post-graduate training in clinical chemistry. Of the 35 FESCC member countries 33 have participated in the survey (94%). The results show a rather heterogeneous situation in Europe caused by the local historical developments, the differences in academic background and the relative numbers of private and physicians' office laboratories. Large differences exist between the European countries in the disciplines of laboratory medicine that are headed by a specialist in clinical chemistry. In the different countries the clinical chemistry laboratories are headed by specialists in clinical chemistry in between 20% and 100% of the laboratories. The haematology, immunology, microbiology, therapeutic drug monitoring, molecular biology and haemostasis laboratories and departments of blood banking are headed by specialists in clinical chemistry in between 0% and 100% of the laboratories. The responsibilities for the various managerial tasks of the specialists in clinical chemistry show no uniformity in Europe. In the majority of the countries the

  10. [Why medical consultation is needed in the clinical laboratory].

    Science.gov (United States)

    Kawai, T

    1998-10-01

    During the 20th century, at least until the 1980s, clinical laboratory practice had been rapidly expanded, mainly because of a significant advancement in medicine as a whole and also in laboratory technology. However, recent economic changes in health care environment worldwide have been influencing greatly future trends in clinical laboratory practice. Four major macroeconomic forces drive change in clinical laboratory practice as follows; (1) Increasing cost of health care, (2) Implications of an aging population, (3) Social change in the patient population, and (4) Explosion of new technologies. Obviously, the increasing cost of health care is the primary driver. Considering a rapid change in the health care environment, clearly there are two separate pathways to be considered with regard to future modes of delivering patient care services through the clinical laboratory: commercial independent laboratories and hospital laboratories. In most hospital laboratories, in addition to high-quality, accurate and precise laboratory data being delivered through automated informatics in a timely fashion, laboratory physicians and other laboratorians should be available 24 hours a day and 7 days a week. The primary purpose of this approach is to develop a system in which the physician can order the most efficient number of tests, which will provide the maximum amount of clinically relevant informations most rapidly and most accurately at the least cost to the patient. Laboratory physicians must play a key role particularly in hospital laboratories. Their most important roles include those of a professional supplier of laboratory results being useful for health care and clinically relevant, and that of a consultative role for primary care physicians and other co-medical staffs to make important medical decision, based on laboratory results obtained. Therefore, the Japan Society of Clinical Pathology started in 1990 in publishing a series of proposed guidelines for adequate

  11. The Effect of Using 3E, 5E Learning Cycle in General Chemistry Laboratory to Prospective Science Teachers Attitude and Perceptions to the Science, Chemistry and Laboratory

    OpenAIRE

    Toprak, Fatih; Çelikler, Dilek

    2013-01-01

    The study aimed to investigate the emerging changes in prospective science teachers" attitudes and perceptions towards science, chemistry and laboratory resulting from the implementation of 3E. 5E learning cycles and traditional instruction in laboratory environment in which learning is achieved by doing and experiencing. The study included 74 first grade prospective science teachers from Ondokuz Mayıs University at the Department of Science Education. In the study, quasi-experimental pre-tes...

  12. Clinical Laboratory Tests in Some Acute Exogenous Poisonings.

    Science.gov (United States)

    Tufkova, Stoilka G; Yankov, Ivan V; Paskaleva, Diana A

    2017-09-01

    There is no specific toxicological screening of clinical laboratory parameters in clinical toxicology when it comes to acute exogenous poisoning. To determine routine clinical laboratory parameters and indicators for assessment of vital functions in patients with acute intoxications. One hundred and fifty-three patients were included in the present study. They were hospitalized in the Department of Clinical Toxicology at St. George University Hospital, Plovdiv for cerebral toxicity inducing medication (n = 45), alcohol (n = 40), heroin abuse (n = 33). The controls were 35. The laboratory tests were conducted in compliance with the standards of the clinical laboratory. We used the following statistical analyses: analysis of variance (the ucriterion of normal distribution, the Student's t-test, dispersion analysis based on ANOVA) and non-parametric analysis. Based on the routine hematological parameters with statistically significant changes in three groups of poisoning are: red blood cells, hematocrit, hemoglobin (except alcohol intoxication) and leukocytes. We found statistically significant changes in serum total protein, sodium and bilirubin. The highest statistical significance is the increased activity of AST and ALT. We present a model for selection of clinical laboratory tests for severe acute poisoning with modern equipment under standardized conditions. The results of the study suggest that the clinical laboratory constellation we used can be used as a mandatory element in the diagnosis of moderate and severe intoxication with the mentioned toxic substances.

  13. The American Society for Clinical Pathology's 2015 Wage Survey of Medical Laboratories in the United States.

    Science.gov (United States)

    Garcia, Edna; Fisher, Patrick B

    2017-05-01

    To inform the pathology and laboratory field of the most recent national wage data from the American Society for Clinical Pathology (ASCP). Historically, the results of this biennial survey have served as a basis for additional research on laboratory recruitment, retention, education, marketing, certification, and advocacy. The 2015 wage survey was conducted through collaboration between the ASCP's Institute of Science, Technology, and Policy in Washington, DC, and the ASCP Board of Certification in Chicago, Illinois. Electronic survey invitations were sent to individuals who are currently practicing in the field. Data reveal increased salaries since 2013 for all staff-level laboratory professionals surveyed except phlebotomists and pathologists' assistants. Laboratory assistants and phlebotomists, regardless of level, continue to have lower salaries while pathologists' assistants and administration personnel have higher salaries than the rest of the laboratory professions surveyed. Survey results put emphasis on strategic recruitment and retention by laboratory training programs and institutions that hire laboratory professionals. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. [Evaluation of clinical laboratories--assurance of their quality and competence].

    Science.gov (United States)

    Kawai, Tadashi

    2007-01-01

    Since ISO 15189:2003 was published, the accreditation program of clinical laboratories based on ISO 15189 has been introduced in many countries, except for those in USA where all clinical laboratories must be required to follow the federal law, CLIA'88. It will certainly help the accredited clinical laboratories improve their quality and competence. In relation to the activity of JCTLM, reference measurement laboratories will be accredited, based on ISO 15195 which is now under its review and amendment by ISO/TC212/WG2. In Japan, JCCLS (Japanese Committee for Clinical Laboratory Standards) and JAB (Japan Accreditation Board for Conformity Assessment) cojointly started the accreditation program for clinical laboratories, based on ISO 15189:2003, and a total of 15 laboratories including university hospitals, community hospitals and independent clinical laboratories have been accredited up until the end of 2006.

  15. Investigating the status and barriers of science laboratory activities ...

    African Journals Online (AJOL)

    Amy Stambach

    of 1502 secondary schools) schools having science laboratories (MINEDUC, 2014). ... focusing on primary teacher‟s pre-service education in terms of trainability ..... teaching approaches used in teaching „science and elementary technology ...

  16. Laboratory and software applications for clinical trials: the global laboratory environment.

    Science.gov (United States)

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  17. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  18. Prevalence of estimated GFR reporting among US clinical laboratories.

    Science.gov (United States)

    Accetta, Nancy A; Gladstone, Elisa H; DiSogra, Charles; Wright, Elizabeth C; Briggs, Michael; Narva, Andrew S

    2008-10-01

    Routine laboratory reporting of estimated glomerular filtration rate (eGFR) may help clinicians detect kidney disease. The current national prevalence of eGFR reporting in clinical laboratories is unknown; thus, the extent of the situation of laboratories not routinely reporting eGFR with serum creatinine results is not quantified. Observational analysis. National Kidney Disease Education Program survey of clinical laboratories conducted in 2006 to 2007 by mail, web, and telephone follow-up. A national random sample, 6,350 clinical laboratories, drawn from the Federal Clinical Laboratory Improvement Amendments database and stratified by 6 major laboratory types/groupings. Laboratory reports serum creatinine results. Reporting eGFR values with serum creatinine results. Percentage of laboratories reporting eGFR along with reporting serum creatinine values, reporting protocol, eGFR formula used, and style of reporting cutoff values. Of laboratories reporting serum creatinine values, 38.4% report eGFR (physician offices, 25.8%; hospitals, 43.6%; independents, 38.9%; community clinics, 47.2%; health fair/insurance/public health, 45.5%; and others, 43.2%). Physician office laboratories have a reporting prevalence lower than other laboratory types (P laboratories reporting eGFR, 66.7% do so routinely with all adult serum creatinine determinations; 71.6% use the 4-variable Modification of Diet in Renal Disease Study equation; and 45.3% use the ">60 mL/min/1.73 m(2)" reporting convention. Independent laboratories are least likely to routinely report eGFR (50.6%; P laboratories across all strata are more likely to report eGFR (P laboratories, federal database did not have names of laboratory directors/managers (intended respondents), assumed accuracy of federal database for sample purposes. Routine eGFR reporting with serum creatinine values is not yet universal, and laboratories vary in their reporting practices.

  19. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  20. [Outsourcing of clinical laboratory department].

    Science.gov (United States)

    Murai, T

    2000-03-01

    Recently, to improve financial difficulties at various hospitals, outsourcing of the laboratory department is be coming more wide spread. At the department of clinical pathology of St. Luke's International Hospital, the system, so called, "Branch labo" which is one of the outsourcing laboratory conditions, was adopted in March 1999. In this reports. We described the decision procedure for accepting the situation and the circumstances of operation.

  1. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  2. Selecting clinical quality indicators for laboratory medicine.

    Science.gov (United States)

    Barth, Julian H

    2012-05-01

    Quality in laboratory medicine is often described as doing the right test at the right time for the right person. Laboratory processes currently operate under the oversight of an accreditation body which gives confidence that the process is good. However, there are aspects of quality that are not measured by these processes. These are largely focused on ensuring that the most clinically appropriate test is performed and interpreted correctly. Clinical quality indicators were selected through a two-phase process. Firstly, a series of focus groups of clinical scientists were held with the aim of developing a list of quality indicators. These were subsequently ranked in order by an expert panel of primary and secondary care physicians. The 10 top indicators included the communication of critical results, comprehensive education to all users and adequate quality assurance for point-of-care testing. Laboratories should ensure their tests are used to national standards, that they have clinical utility, are calibrated to national standards and have long-term stability for chronic disease management. Laboratories should have error logs and demonstrate evidence of measures introduced to reduce chances of similar future errors. Laboratories should make a formal scientific evaluation of analytical quality. This paper describes the process of selection of quality indicators for laboratory medicine that have been validated sequentially by deliverers and users of the service. They now need to be converted into measureable variables related to outcome and validated in practice.

  3. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  4. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    Science.gov (United States)

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  5. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  6. The changing face of clinical laboratories.

    Science.gov (United States)

    Plebani, M

    1999-07-01

    Laboratory medicine has undergone a sea change, and medical laboratories must now adapt to, and meet new, customer-supplier needs springing from shifts in the patterns of disease prevalence, medical practice, and demographics. Managed care and other cost-containment processes have forced those involved in health care to cooperate to develop a full picture of patient care, and this has affected clinical laboratory objectives, the main focus now being on improvement in medical outcomes. More recently, the resource shortages in health care and results of cost/effectiveness analysis have demonstrated that the value of a laboratory test must be ascertained not only on the basis of its chemical or clinical performance characteristics, but also by its impact on patient management, the only true assessment of the quality of testing being quality of patient outcomes. The time is ripe for changing the vision of laboratory medicine, and some of the reasons for this are the availability of results in real-time, the introduction of more specific tests, and the trend to prevent diseases rather than cure them. The information from laboratory tests designed to evaluate biochemical or genetic risk and/or prognostic factors cannot be replaced either by physical examination and/or the assessment of symptoms. Today, the importance of laboratory scientists must be proven in three broad areas: a) guaranteeing the quality of tests, irrespective of where they are performed; b) improving the quality of the service; c) maximizing the impact of laboratory information on patient management.

  7. Chemistry Students' Challenges in Using MBL's in Science Laboratories.

    Science.gov (United States)

    Atar, Hakan Yavuz

    Understanding students' challenges about using microcomputer based laboratories (MBLs) would provide important data in understanding the appropriateness of using MBLs in high school chemistry laboratories. Identifying students' concerns about this technology will in part help educators identify the obstacles to science learning when using this…

  8. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  9. Liability of Science Educators for Laboratory Safety. NSTA Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    Laboratory investigations are essential for the effective teaching and learning of science. A school laboratory investigation ("lab") is an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data…

  10. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    Science.gov (United States)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  11. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Science.gov (United States)

    2010-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  12. A pocket guide to electronic laboratory notebooks in the academic life sciences.

    Science.gov (United States)

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  13. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    Science.gov (United States)

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  14. Quality knowledge of science through virtual laboratory as an element of visualization

    Science.gov (United States)

    Rizman Herga, Natasa

    Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic

  15. Investigating the status and barriers of science laboratory activities ...

    African Journals Online (AJOL)

    This study aims at investigating the barriers encountered by science teachers in laboratory activities in Rwandan teacher training colleges (TTCs) using questionnaires and interviews. The results confirmed that teachers face barriers like time limitation, material scarcity and lack of improvising skills in their everyday science ...

  16. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  17. A Guide to Undergraduate Science Course and Laboratory Improvements.

    Science.gov (United States)

    Straumanis, Joan, Ed.; Watson, Robert F., Ed.

    Reported are activities carried out at colleges and universities during 1976-1980 with support from the National Science Foundation's Local Course Improvement (LOCI) and Instructional Scientific Equipment Program (ISEP). It is intended as a reference for persons interested in current course and laboratory developments in the sciences at the…

  18. Emerging Technologies for the Clinical Microbiology Laboratory

    Science.gov (United States)

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  19. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    Science.gov (United States)

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  20. Clinical laboratory billing: superfluous requirements without justification?

    Science.gov (United States)

    Stadler, Stephen

    2004-01-01

    Congress occasionally passes new laws that affect how clinical laboratories handle test orders from physicians and, subsequently, process the billing for tests. Once a bill is signed into law, it is forwarded to administrative agencies, which draft regulations and administrative procedures, under which the intentions of Congress are carried out. In the case of laboratory test ordering and billing, the Centers for Medicare and Medicaid Services (CMS) has the greatest influence over how these regulations and procedures are defined. Unfortunately, in many cases, billing rules have been promulgated in ways that create the need for hospitals and commercial laboratories to expend huge sums of money to bill within the confines of the administrative rules; cause clinical laboratories to suffer from omissions and mistakes of other parties who are part of the patient care process but are not accountable for the billing information they provide to laboratories; and, frankly, in some respects, simply defy common sense.

  1. Clinical caring science as a scientific discipline.

    Science.gov (United States)

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  2. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  3. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    Science.gov (United States)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  4. The American Society for Clinical Pathology's 2014 vacancy survey of medical laboratories in the United States.

    Science.gov (United States)

    Garcia, Edna; Ali, Asma M; Soles, Ryan M; Lewis, D Grace

    2015-09-01

    To determine the extent and distribution of workforce shortages within the nation's medical laboratories. Historically, the results of this biennial survey have served as a basis for additional research on laboratory recruitment, retention, education, marketing, certification, and advocacy. The 2014 Vacancy Survey was conducted through collaboration between American Society for Clinical Pathology's Institute of Science, Technology, and Policy in Washington, DC, and the Evaluation, Measurement, and Assessment Department and Board of Certification in Chicago, Illinois. Data were collected via an Internet survey that was distributed to individuals who were able to report on staffing and certifications for their laboratories. Data reveal increased overall vacancy rates since 2012 for all departments surveyed except cytology and cytogenetics. Also, results show higher anticipated retirement rates for both staff and supervisors. Overall certification rates are highest among laboratory personnel in cytogenetics, hematology/coagulation, and flow cytometry departments and lowest among phlebotomy, specimen processing, and anatomic pathology. Factors such as retirement and the improving economy are driving the need for more laboratory professionals. Recruitment of qualified laboratory professionals in the workforce and students in laboratory programs will be the key in fulfilling the higher vacancies revealed from the survey results in 2014. Copyright© by the American Society for Clinical Pathology.

  5. [View of a Laboratory Physician on the Present and Future of Clinical Laboratories].

    Science.gov (United States)

    Matsuo, Shuji

    2014-10-01

    It is meaningful to discuss the "present and future of laboratories" for the development of laboratories and education of medical technologists. Laboratory staff must be able to perform urgent high-quality tests and take part in so-called team-based medicine and should be proud of devising systems that efficiently provide laboratory data for all medical staff. On the other hand, there may be staff with a poor sense of professionalism who work no more than is expected and too readily ask firms and commercial laboratories to solve problems. Overwork caused by providing team-based medicine and a decrease in numbers of clinical chemists are concerns. The following are hoped for in the future. Firstly, laboratory staff will become conscious of their own high-level abilities and expand their areas of work, for example, bioscience, proteomics, and reproductive medicine. Secondly, a consultation system for medical staff and patients will be established. Thirdly, clinical research will be advanced, such as investigating unknown pathophysiologies using laboratory data and samples, and developing new methods of measurement. Lastly, it is of overriding importance that staff of laboratory and educational facilities will cooperate with each other to train the next generation. In conclusion, each laboratory should be appreciated, attractive, positive regarding its contribution to society, and show individuality.

  6. Use and Acceptance of Information and Communication Technology Among Laboratory Science Students

    Science.gov (United States)

    Barnes, Brenda C.

    Online and blended learning platforms are being promoted within laboratory science education under the assumption that students have the necessary skills to navigate online and blended learning environments. Yet little research has examined the use of information and communication technology (ICT) among the laboratory science student population. The purpose of this correlational, survey research study was to explore factors that affect use and acceptance of ICT among laboratory science students through the theoretical lens of the unified theory of acceptance and use of technology (UTAUT) model. An electronically delivered survey drew upon current students and recent graduates (within 2 years) of accredited laboratory science training programs. During the 4 week data collection period, 168 responses were received. Results showed that the UTAUT model did not perform well within this study, explaining 25.2% of the variance in use behavior. A new model incorporating attitudes toward technology and computer anxiety as two of the top variables, a model significantly different from the original UTAUT model, was developed that explained 37.0% of the variance in use behavior. The significance of this study may affect curriculum design of laboratory science training programs wanting to incorporate more teaching techniques that use ICT-based educational delivery, and provide more options for potential students who may not currently have access to this type of training.

  7. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  8. 76 FR 39879 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2011-07-07

    ... the standards to accommodate technological advances. Matters to be Discussed: The agenda will include... the meeting online at least 14 days in advance at http://www.cdc.gov/cliac/default.aspx by clicking... Information: Nancy Anderson, Chief, Laboratory Practice Standards Branch, Division of Laboratory Science and...

  9. Figure 1. Associations between pre-ART clinical and laboratory ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events.

  10. Clinical laboratory: bigger is not always better.

    Science.gov (United States)

    Plebani, Mario

    2018-06-27

    Laboratory services around the world are undergoing substantial consolidation and changes through mechanisms ranging from mergers, acquisitions and outsourcing, primarily based on expectations to improve efficiency, increasing volumes and reducing the cost per test. However, the relationship between volume and costs is not linear and numerous variables influence the end cost per test. In particular, the relationship between volumes and costs does not span the entire platter of clinical laboratories: high costs are associated with low volumes up to a threshold of 1 million test per year. Over this threshold, there is no linear association between volumes and costs, as laboratory organization rather than test volume more significantly affects the final costs. Currently, data on laboratory errors and associated diagnostic errors and risk for patient harm emphasize the need for a paradigmatic shift: from a focus on volumes and efficiency to a patient-centered vision restoring the nature of laboratory services as an integral part of the diagnostic and therapy process. Process and outcome quality indicators are effective tools to measure and improve laboratory services, by stimulating a competition based on intra- and extra-analytical performance specifications, intermediate outcomes and customer satisfaction. Rather than competing with economic value, clinical laboratories should adopt a strategy based on a set of harmonized quality indicators and performance specifications, active laboratory stewardship, and improved patient safety.

  11. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  12. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  13. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  14. Error tracking in a clinical biochemistry laboratory

    DEFF Research Database (Denmark)

    Szecsi, Pal Bela; Ødum, Lars

    2009-01-01

    BACKGROUND: We report our results for the systematic recording of all errors in a standard clinical laboratory over a 1-year period. METHODS: Recording was performed using a commercial database program. All individuals in the laboratory were allowed to report errors. The testing processes were cl...

  15. Decision Analysis: Engineering Science or Clinical Art

    Science.gov (United States)

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  16. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  17. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  18. Enabling Data Intensive Science through Service Oriented Science: Virtual Laboratories and Science Gateways

    Science.gov (United States)

    Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.

    2014-12-01

    We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory

  19. QUALITY MANAGEMENT SYSTEM IN CLINICAL LABORATORIES ACCORDING TO THE ISO 15189:2007 STANDARD - EVALUATION OF THE BENEFITS OF IMPLEMENTATION IN AN ASSISTED REPRODUCTION LABORATORY

    Directory of Open Access Journals (Sweden)

    A.D. Sialakouma

    2011-03-01

    Full Text Available Biomedical science is a sensitive discipline and presents unique challenges due to its social character, continuous development and competitiveness. The issue of quality management systems and accreditation is gaining increasing interest in this sector. All over Europe, Health Services Units have started to introduce quality management systems and harmonization of criteria for accreditation is of increasing importance. Moreover, clinical laboratories, like the Assisted Reproduction laboratories and biochemical laboratories are required to apply a Quality Management System in order to ensure their correct, scientific and effective operation. Ultimately, it is a moral obligation for every health care organisation to supply the best possible care for the patient. The specific features and the diversity of clinical laboratories led to the introduction (2003 and, recently to the revision (2007 of the international standard ISO 15189, which is the first international standard developed specifically to address the requirements for accreditation of this type of laboratory. The basic principles for the quality assurance in the clinical laboratories are: x Complete and unambiguous standardized operating procedures. x Complete and unambiguous directives of operation. x Obligatory detailed written documentation, i.e., how each action is done, who will do it, where will this action take place and when. x Suitable scheduling of calibration/control/preventive maintenance of laboratory equipment and recording of each activity. x Distribution of responsibilities among the staff and continuous education and briefing according to current scientific data. x Complete and informed record file keeping. x Continuous improvement which is monitored with the adoption of quantified indicators. x Internal and external audit of all activities. x Troubleshooting. All these principles should be supported by the Management in order that the necessary adaptations should be made

  20. Comparison of student achievement among two science laboratory types: traditional and virtual

    Science.gov (United States)

    Reese, Mary Celeste

    Technology has changed almost every aspect of our daily lives. It is not surprising then that technology has made its way into the classroom. More and more educators are utilizing technological resources in creative ways with the intent to enhance learning, including using virtual laboratories in the sciences in place of the "traditional" science laboratories. This has generated much discussion as to the influence on student achievement when online learning replaces the face-to-face contact between instructor and student. The purpose of this study was to discern differences in achievement of two laboratory instruction types: virtual laboratory and a traditional laboratory. Results of this study indicate statistical significant differences in student achievement defined by averages on quiz scores in virtual labs compared with traditional face-to-face laboratories and traditional laboratories result in greater student learning gains than virtual labs. Lecture exam averages were also greater for students enrolled in the traditional laboratories compared to students enrolled in the virtual laboratories. To account for possible differences in ability among students, a potential extraneous variable, GPA and ACT scores were used as covariates.

  1. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  2. Sensitivity and Specificity of Clinical and Laboratory Otolith Function Tests.

    Science.gov (United States)

    Kumar, Lokesh; Thakar, Alok; Thakur, Bhaskar; Sikka, Kapil

    2017-10-01

    To evaluate clinic based and laboratory tests of otolith function for their sensitivity and specificity in demarcating unilateral compensated complete vestibular deficit from normal. Prospective cross-sectional study. Tertiary care hospital vestibular physiology laboratory. Control group-30 healthy adults, 20-45 years age; Case group-15 subjects post vestibular shwannoma excision or post-labyrinthectomy with compensated unilateral complete audio-vestibular loss. Otolith function evaluation by precise clinical testing (head tilt test-HTT; subjective visual vertical-SVV) and laboratory testing (headroll-eye counterroll-HR-ECR; vesibular evoked myogenic potentials-cVEMP). Sensitivity and specificity of clinical and laboratory tests in differentiating case and control subjects. Measurable test results were universally obtained with clinical otolith tests (SVV; HTT) but not with laboratory tests. The HR-ECR test did not indicate any definitive wave forms in 10% controls and 26% cases. cVEMP responses were absent in 10% controls.HTT test with normative cutoff at 2 degrees deviations from vertical noted as 93.33% sensitive and 100% specific. SVV test with normative cutoff at 1.3 degrees noted as 100% sensitive and 100% specific. Laboratory tests demonstrated poorer specificities owing primarily to significant unresponsiveness in normal controls. Clinical otolith function tests, if conducted with precision, demonstrate greater ability than laboratory testing in discriminating normal controls from cases with unilateral complete compensated vestibular dysfunction.

  3. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  4. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  5. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae.

    Science.gov (United States)

    Miller, Shelley; Humphries, Romney M

    2016-08-01

    Carbapenemases, enzymes that hydrolyze carbapenem-class antimicrobials, pose serious clinical and diagnostic challenges, including their recent rapid spread among members of the Enterobacteriaceae, a family with no inherent carbapenem resistance. Currently there is no one-size-fits-all method for detecting carbapenem-resistant Enterobacteriaceae (CRE) in the laboratory, nor how to differentiate carbapenemase-producers (CP) from isolates that are carbapenem-resistant via other or combined mechanisms. This article reviews definitions for CRE and CP-CRE, and discusses current phenotypic and molecular methods available to the clinical laboratory for the detection of both CP and non-CP CRE. Expert commentary: Routine evaluation of carbapenem resistance mechanism by the routine clinical laboratory are not necessary for patient care, as clinical breakpoints best predict response. However, evaluation for carbapenemase is integral to infection control efforts, and laboratories should have the capacity to do such testing, either in house or by submitting isolates to a reference laboratory.

  6. Understanding the interface between clinical and laboratory staff

    Directory of Open Access Journals (Sweden)

    Ankie van den Broek

    2014-07-01

    Objectives: To propose a new conceptual model to gain insight and analyse factors that influence the laboratory–clinical staff interface. Methods: To develop the conceptual model, a literature study was performed, regulatory guidelines and standards for laboratories were analysed and discussions were held with experts on the topic. Result: A conceptual model and analytical framework provided good guidance in understanding and assessing the organisational and personal factors shaping the interface. The model was based on three elements: (1 the three phases of communication (pre-analytical, analytical and post-analytical; (2 the organisational and personal factors of interaction; and (3 the socio-political, economic and cultural context in which clinicians and laboratory staff operate. Conclusion: Assessment of the interface between clinicians and laboratory workers can be performed in a systematic way. Applying this model will provide information to managers of health institutions and heads of laboratories and clinical departments about what happens when clinicians and laboratory staff interact, thus aiding them in designing strategies to improve this interface.

  7. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  8. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  9. An Investigation into Prospective Science Teachers' Attitudes towards Laboratory Course and Self-Efficacy Beliefs in Laboratory Use

    Science.gov (United States)

    Aka, Elvan Ince

    2016-01-01

    The aim of the current study is to identify the attitudes towards the laboratory course and self-efficacy beliefs in the laboratory use of prospective teachers who are attending Gazi University Gazi Education Faculty Primary Education Science Teaching program, and to investigate the relationship between the attitudes and self-efficacy beliefs.…

  10. Laboratory research at the clinical trials of Veterinary medicinal Products

    OpenAIRE

    ZHYLA M.I.

    2011-01-01

    The article analyses the importance of laboratory test methods, namely pathomorfological at conduct of clinical trials. The article focuses on complex laboratory diagnostics at determination of clinical condition of animals, safety and efficacy of tested medicinal product.

  11. Clinical laboratory as an economic model for business performance analysis.

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen

    2011-08-15

    To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal

  12. Quality of Control of Clinical-Biochemical Laboratories – Serbian Case

    Directory of Open Access Journals (Sweden)

    Vinko Peric

    2014-06-01

    Full Text Available In the last 20 years in medical laboratories, numerous activities regarding quality and accreditation system were taken. Approach to this problem in European countries is different, so the task of the Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 to help the efforts to harmonize this issue. External quality control in clinical-chemical laboratories imposed the need for the implementation of quality management system. »Good laboratory practice« and its principles were adopted by nominated bodies, both international and national. In the beginning, the standard ISO 9001 was applied for certification and for accreditation EN 45001 and ISO Guide 25, which are prepared for testing and calibration laboratories. Standard ISO 17025 is the successor of the previous documents and for now it is a reference for mentioned laboratories. Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 made an amendment of the requirements for medical laboratories, which this standard describes. Standard draft ISO 15189 was adopted on February 2003 as a final version with requirements for medical laboratories.

  13. 42 CFR 405.515 - Reimbursement for clinical laboratory services billed by physicians.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Reimbursement for clinical laboratory services... Criteria for Determining Reasonable Charges § 405.515 Reimbursement for clinical laboratory services billed... limitation on reimbursement for markups on clinical laboratory services billed by physicians. If a physician...

  14. Rules for the certification of good practices in clinical laboratories. No regulation. 3-2009. Good Laboratory Practice

    International Nuclear Information System (INIS)

    2015-01-01

    Regulation for Certification of Good Practices in clinical laboratories, hereinafter Regulation establishes the methodology and procedures for clinical laboratories to demonstrate their state of compliance with good practices, according to Regulation 3-2009, and that the CECMED can verify.

  15. Assessing and Analyzing Behavior Strategies of Instructors in College Science Laboratories.

    Science.gov (United States)

    Kyle, William C., Jr.; And Others

    1980-01-01

    Analyzed are university instructor behaviors in introductory and advanced level laboratories of botany, chemistry, geology, physics and zoology. Science Laboratory Interaction Categories--Teacher (SLIC) was used to assess 15 individual categories of teacher behaviors in the areas of questioning, giving directions, transmitting information,…

  16. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  17. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  18. Simulation-based medical education in clinical skills laboratory.

    Science.gov (United States)

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education.

  19. Quality documentation challenges for veterinary clinical pathology laboratories.

    Science.gov (United States)

    Sacchini, Federico; Freeman, Kathleen P

    2008-05-01

    An increasing number of veterinary laboratories worldwide have obtained or are seeking certification based on international standards, such as the International Organization for Standardization/International Electrotechnical Commission 17025. Compliance with any certification standard or quality management system requires quality documentation, an activity that may present several unique challenges in the case of veterinary laboratories. Research specifically addressing quality documentation is conspicuously absent in the veterinary literature. This article provides an overview of the quality system documentation needed to comply with a quality management system with an emphasis on preparing written standard operating procedures specific for veterinary laboratories. In addition, the quality documentation challenges that are unique to veterinary clinical pathology laboratories are critically evaluated against the existing quality standards and discussed with respect to possible solutions and/or recommended courses of action. Documentation challenges include the establishment of quality requirements for veterinary tests, the use or modification of human analytic methods for animal samples, the limited availability of quality control materials satisfactory for veterinary clinical pathology laboratories, the limited availability of veterinary proficiency programs, and the complications in establishing species-specific reference intervals.

  20. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  1. Nontyphoidal Salmonella: An Occupational Hazard for Clinical Laboratory Workers

    OpenAIRE

    Barker, Anna; Duster, Megan; Van Hoof, Sarah; Safdar, Nasia

    2015-01-01

    Laboratory-acquired infections due to nontyphoidal Salmonella are rare. Yet, recent outbreaks in microbiology teaching laboratories show that these species are still an appreciable occupational hazard for laboratory employees. This article presents two cases of nontyphoidal Salmonella that occurred at the authors' institution—an infected patient and a clinical laboratory worker who acquired the infection by handling this patient's specimens.

  2. The Effect of a Laboratory Approach Based on Predict-Observation-Explain (POE Strategy on the Development of Students’ Science Process Skills and Views about Nature of Science

    Directory of Open Access Journals (Sweden)

    Kadir Bilen

    2012-06-01

    Full Text Available The purpose of this study was to investigate the effects of a laboratory instruction prepared based on “Predict-Observation-Explain” (POE strategy compared to a verification laboratory approach on the development of pre-service science teachers’ science skill processes and their views of nature of sceince in a general biology laboratory course. The participants of this study consisted of 122 pre-service teachers who took the General Biology Laboratory at the department of science education at Pamukkale University during the fall semester of 2007-2008 academic year. Data was collected through Science Process Skills Test (SPST and Nature of Science Questionnaire. Results indicated that there was a statistically significant difference between the verification laboratory approach and the laboratory approach based on the POE strategy on the development of students’ science process skills [F=10.41, p

  3. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  4. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  5. Clinical laboratory as an economic model for business performance analysis

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen

    2011-01-01

    Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by

  6. [CAP quality management system in clinical laboratory and its issue].

    Science.gov (United States)

    Tazawa, Hiromitsu

    2004-03-01

    The CAP (College of American Pathologists) was established in 1962 and, at present, CAP-accredited laboratories include about 6000 institutions all over the world, mainly in the U.S. The essential purpose of CAP accreditation is high quality reservation and improvement of clinical laboratory services for patient care, and is based on seven points, listed below. (1) Establishment of a laboratory management program and laboratory techniques to assure accuracy and improve overall quality of laboratory services. (2) Maintenance and improvement of accuracy objectively by centering on a CAP survey. (3) Thoroughness in safety and health administration. (4) Reservation of the performance of laboratory services by personnel and proficiency management. (5) Provision of appropriate information to physicians, and contribution to improved quality of patient care by close communication with physicians (improvement in patient care). (6) Reduction of running costs and personnel costs based on evidence by employing the above-mentioned criteria. (7) Reduction of laboratory error. In the future, accreditation and/or certification by organizations such as CAP, ISO, etc., may become a requirement for providing any clinical laboratory services in Japan. Taking the essence of the CAP and the characteristics of the new international standard, ISO151589, into consideration, it is important to choose the best suited accreditation and/or certification depending of the purpose of clinical laboratory.

  7. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  8. XML Syntax for Clinical Laboratory Procedure Manuals

    OpenAIRE

    Saadawi, Gilan; Harrison, James H.

    2003-01-01

    We have developed a document type description (DTD) in Extensable Markup Language (XML)1 for clinical laboratory procedures. Our XML syntax can adequately structure a variety of procedure types across different laboratories and is compatible with current procedure standards. The combination of this format with an XML content management system and appropriate style sheets will allow efficient procedure maintenance, distributed access, customized display and effective searching across a large b...

  9. Viral Contamination Source in Clinical Microbiology Laboratory.

    Science.gov (United States)

    Wang, Xin Ling; Song, Juan; Song, Qin Qin; Yu, Jie; Luo, Xiao Nuan; Wu, Gui Zhen; Han, Jun

    2016-08-01

    To understand the potential causes of laboratory-acquired infections and to provide possible solutions that would protect laboratory personnel, samples from a viral laboratory were screened to determine the main sources of contamination with six subtypes of Rhinovirus. Rhinovirus contamination was found in the gloves, cuffs of protective wear, inner surface of biological safety cabinet (BSC) windows, and trash handles. Remarkably, high contamination was found on the inner walls of the centrifuge and the inner surface of centrifuge tube casing in the rotor. Spilling infectious medium on the surface of centrifuge tubes was found to contribute to contamination of centrifuge surfaces. Exposure to sodium hypochlorite containing no less than 0.2 g/L available chlorine decontaminated the surface of the centrifuge tubes from Rhinovirus after 2 min. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Laboratory automation in clinical bacteriology: what system to choose?

    Science.gov (United States)

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Outsourcing of Academic Clinical Laboratories

    Science.gov (United States)

    Mrak, Robert E.; Parslow, Tristram G.; Tomaszewski, John E.

    2018-01-01

    American hospitals are increasingly turning to service outsourcing to reduce costs, including laboratory services. Studies of this practice have largely focused on nonacademic medical centers. In contrast, academic medical centers have unique practice environments and unique mission considerations. We sought to elucidate and analyze clinical laboratory outsourcing experiences in US academic medical centers. Seventeen chairs of pathology with relevant experience were willing to participate in in-depth interviews about their experiences. Anticipated financial benefits from joint venture arrangements often eroded after the initial years of the agreement, due to increased test pricing, management fees, duplication of services in support of inpatients, and lack of incentive for utilization control on the part of the for-profit partner. Outsourcing can preclude development of lucrative outreach programs; such programs were successfully launched in several cases after joint ventures were either avoided or terminated. Common complaints included poor test turnaround time and problems with test quality (especially in molecular pathology, microbiology, and flow cytometry), leading to clinician dissatisfaction. Joint ventures adversely affected retention of academically oriented clinical pathology faculty, with adverse effects on research and education, which further exacerbated clinician dissatisfaction due to lack of available consultative expertise. Resident education in pathology and in other disciplines (especially infectious disease) suffered both from lack of on-site laboratory capabilities and from lack of teaching faculty. Most joint ventures were initiated with little or no input from pathology leadership, and input from pathology leadership was seen to have been critical in those cases where such arrangements were declined or terminated. PMID:29637086

  12. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    Science.gov (United States)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  13. Science and Technology Teachers' Views about the Causes of Laboratory Accidents

    Science.gov (United States)

    Aydogdu, Cemil

    2015-01-01

    The aim of this study was to determine science and technology teachers' views about the causes of the problems encountered in laboratories. In this research, phenomenology, a qualitative research design, was used. 21 science and technology teachers who were working in elementary schools in Eskisehir during the 2010-2011 spring semester were the…

  14. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID...

  15. Increasing Scientific Literacy about Global Climate Change through a Laboratory-Based Feminist Science Course

    Science.gov (United States)

    George, Linda A.; Brenner, Johanna

    2010-01-01

    The authors have developed and implemented a novel general education science course that examines scientific knowledge, laboratory experimentation, and science-related public policy through the lens of feminist science studies. They argue that this approach to teaching general science education is useful for improving science literacy. Goals for…

  16. 42 CFR 493.1415 - Condition: Laboratories performing moderate complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... § 493.1415 Condition: Laboratories performing moderate complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the qualification requirements of § 493.1417 of this... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate...

  17. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    Science.gov (United States)

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field.

  18. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  19. Laboratory exercises to teach clinically relevant chemistry of antibiotics.

    Science.gov (United States)

    El Sayed, Khalid A; Chelette, Candace T

    2014-03-12

    To design, implement, and evaluate student performance on clinically relevant chemical and spectral laboratory exercises on antibiotics. In the first of 2 exercises, second-year pharmacy students enrolled in an integrated laboratory sequence course studied the aqueous stability of ß-lactam antibiotics using a spectral visual approach. In a second exercise, students studied the tendency of tetracycline, rifamycins, and fluoroquinolones to form insoluble chelate complexes (turbidity) with polyvalent metals. On a survey to assess achievement of class learning objectives, students agreed the laboratory activities helped them better retain important information concerning antibiotic stability and interactions. A significant improvement was observed in performance on examination questions related to the laboratory topics for 2012 and 2013 students compared to 2011 students who did not complete the laboratory. A 1-year follow-up examination question administered in a separate course showed >75% of the students were able to identify rifamycins-food interactions compared with laboratory exercises. The use of spectral visual approaches allowed students to investigate antibiotic stability and interactions, thus reinforcing the clinical relevance of medicinal chemistry. Students' performance on questions at the 1-year follow-up suggested increased retention of the concepts learned as a result of completing the exercises.

  20. Laboratory hematology in the history of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Hoffmann, Johannes J M L

    2013-01-01

    For the occasion of the 50th anniversary of the journal Clinical Chemistry and Laboratory Medicine (CCLM), an historic overview of papers that the journal has published in the field of laboratory hematology (LH) is presented. All past volumes of CCLM were screened for papers on LH and these were categorized. Bibliographic data of these papers were also analyzed. CCLM published in total 387 LH papers. The absolute number of LH papers published annually showed a significant increase over the years since 1985. Also the share of LH papers demonstrated a steady increase (overall mean 5%, but mean 8% over the past 4 years). The most frequent category was coagulation and fibrinolysis (23.5%). Authors from Germany contributed the most LH papers to the journal (22.7%), followed by the Netherlands and Italy (16.3 and 13.2%, respectively). Recent citation data indicated that other publications cited LH review papers much more frequently than other types of papers. The history of the journal reflects the emergence and development of laboratory hematology as a separate discipline of laboratory medicine.

  1. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-05

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office has oversight and stewardship duties associated with the Pacific Northwest National Laboratory Marine Sciences Laboratory located on Battelle Land – Sequim. This report is prepared to document compliance with the 40 CFR Part 61, Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code . The EDE to the MSL MEI due to routine operations in 2015 was 1.1E-04 mrem (1.1E-06 mSv). No non-routine emissions occurred in 2015. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  2. Report on the International Society for Laboratory Hematology Survey on guidelines to support clinical hematology laboratory practice.

    Science.gov (United States)

    Hayward, C P M; Moffat, K A; George, T I; Proytcheva, M; Iorio, A

    2016-05-01

    Given the importance of evidence-based guidelines in health care, we surveyed the laboratory hematology community to determine their opinions on guideline development and their experience and interest in developing clinical hematology laboratory practice guidelines. The study was conducted using an online survey, distributed to members of the International Society for Laboratory Hematology (ISLH) in 2015, with analysis of collected, anonymized responses. A total of 245 individuals participated. Most worked in clinical and/or research laboratories (83%) or industry (11%). 42% felt there were gaps in current guidelines. The majority (58%) recommended that ISLH engages its membership in guideline development. Participants differed in their familiarity with, and use of, different organizations' guidelines. Participants felt it was important to follow best practice recommendations on guideline development, including engagement of experts, statement about conflict of interests and how they were managed, systematic review and grading evidence for recommendations, identifying recommendations lacking evidence or consensus, and public input and peer review of the guideline. Moreover, it was considered important to provide guidelines free of charge. Industry involvement in guidelines was considered less important. The clinical laboratory hematology community has high expectations of laboratory practice guidelines that are consistent with recent recommendations on evidence-based guideline development. © 2016 John Wiley & Sons Ltd.

  3. Building Transnational Bodies: Norway and the International Development of Laboratory Animal Science, ca. 1956–1980

    Science.gov (United States)

    Druglitrø, Tone; Kirk, Robert G. W.

    2015-01-01

    Argument This article adopts a historical perspective to examine the development of Laboratory Animal Science and Medicine, an auxiliary field which formed to facilitate the work of the biomedical sciences by systematically improving laboratory animal production, provision, and maintenance in the post Second World War period. We investigate how Laboratory Animal Science and Medicine co-developed at the local level (responding to national needs and concerns) yet was simultaneously transnational in orientation (responding to the scientific need that knowledge, practices, objects and animals circulate freely). Adapting the work of Tsing (2004), we argue that national differences provided the creative “friction” that helped drive the formation of Laboratory Animal Science and Medicine as a transnational endeavor. Our analysis engages with the themes of this special issue by focusing on the development of Laboratory Animal Science and Medicine in Norway, which both informed wider transnational developments and was formed by them. We show that Laboratory Animal Science and Medicine can only be properly understood from a spatial perspective; whilst it developed and was structured through national “centers,” its orientation was transnational necessitating international networks through which knowledge, practice, technologies, and animals circulated. More and better laboratory animals are today required than ever before, and this demand will continue to rise if it is to keep pace with the quickening tempo of biological and veterinary research. The provision of this living experimental material is no longer a local problem; local, that is, to the research institute. It has become a national concern, and, in some of its aspects . . . even international. (William Lane-Petter 1957, 240) PMID:24941794

  4. Color blindness defect and medical laboratory technologists: unnoticed problems and the care for screening.

    Science.gov (United States)

    Dargahi, Hossein; Einollahi, Nahid; Dashti, Nasrin

    2010-01-01

    Color-blindness is the inability to perceive differences between some color that other people can distinguish. Using a literature search, the results indicate the prevalence of color vision deficiency in the medical profession and its on medical skills. Medical laboratory technicians and technologists employees should also screen for color blindness. This research aimed to study color blindness prevalence among Hospitals' Clinical Laboratories' Employees and Students in Tehran University of Medical Sciences (TUMS). A cross-sectional descriptive and analytical study was conducted among 633 TUMS Clinical Laboratory Sciences' Students and Hospitals' Clinical Laboratories' Employees to detect color-blindness problems by Ishihara Test. The tests were first screened with certain pictures, then compared to the Ishihara criteria to be possible color defective were tested further with other plates to determine color - blindness defects. The data was saved using with SPSS software and analyzed by statistical methods. This is the first study to determine the prevalence of color - blindness in Clinical Laboratory Sciences' Students and Employees. 2.4% of TUMS Medical Laboratory Sciences Students and Hospitals' Clinical Laboratories' Employees are color-blind. There is significant correlation between color-blindness and sex and age. But the results showed that there is not significant correlation between color-blindness defect and exposure to chemical agents, type of job, trauma and surgery history, history of familial defect and race. It would be a wide range of difficulties by color blinded students and employees in their practice of laboratory diagnosis and techniques with a potentially of errors. We suggest color blindness as a medical conditions should restrict employment choices for medical laboratory technicians and technologists job in Iran.

  5. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  6. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  7. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  8. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    International Nuclear Information System (INIS)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform

  9. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform.

  10. Life sciences laboratory breadboard simulations for shuttle

    Science.gov (United States)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  11. Health and safety in clinical laboratories in developing countries: safety considerations.

    Science.gov (United States)

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  12. The Role of the National Laboratory in Improving Secondary Science Education

    Energy Technology Data Exchange (ETDEWEB)

    White,K.; Morris, M.; Stegman, M.

    2008-10-20

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limit teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  13. Annals of Medical and Health Sciences Research

    African Journals Online (AJOL)

    The journal covers technical and clinical studies related to health, ethical and social issues in field of all aspects of medicine (Basic and Clinical), Health Sciences, Nursing, Medical Laboratory Sciences, Medical Radiography and Rehabilitation, Pharmacy, Biomedical Engineering, etc. Articles with clinical interest and ...

  14. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  15. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  16. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  17. Practicing Handoffs Early: Applying a Clinical Framework in the Anatomy Laboratory

    Science.gov (United States)

    Lazarus, Michelle D.; Dos Santos, Jason A.; Haidet, Paul M.; Whitcomb, Tiffany L.

    2016-01-01

    The anatomy laboratory provides an ideal environment for the integration of clinical contexts as the willed-donor is often regarded as a student's "first patient." This study evaluated an innovative approach to peer teaching in the anatomy laboratory using a clinical handoff context. The authors introduced the "Situation,…

  18. Clinical and laboratory assessment of dehydration severity in children with acute gastroenteritis.

    Science.gov (United States)

    Parkin, Patricia C; Macarthur, Colin; Khambalia, Amina; Goldman, Ran D; Friedman, Jeremy N

    2010-03-01

    To evaluate clinical and laboratory assessment of dehydration severity in children, 1 to 36 months, with acute gastroenteritis. Clinical and laboratory measures and weight change following rehydration were collected for enrolled children. Pediatric emergency department. Likelihood ratio (LR+) and 95% confidence interval (CI): for a clinical score of 0, the LR+ was 2.2 (95% CI = 0.9-5.3); for a clinical score of 1 to 4, the LR+ was 1.3 (95% CI = 0.90-1.74); for a clinical score of 5 to 8, the LR+ was 5.2 (95% CI = 2.2-12.8); for a venous pH Dehydration Scale and laboratory measures into clinical decision-making algorithms to assess dehydration severity in children with acute gastroenteritis.

  19. Evaluating laboratory key performance using quality indicators in Alexandria University Hospital Clinical Chemistry Laboratories.

    Science.gov (United States)

    Rizk, Mostafa M; Zaki, Adel; Hossam, Nermine; Aboul-Ela, Yasmin

    2014-12-01

    The performance of clinical laboratories plays a fundamental role in the quality and effectiveness of healthcare. To evaluate the laboratory performance in Alexandria University Hospital Clinical Laboratories using key quality indicators and to compare the performance before and after an improvement plan based on ISO 15189 standards. The study was carried out on inpatient samples for a period of 7 months that was divided into three phases: phase I included data collection for evaluation of the existing process before improvement (March-May 2012); an intermediate phase, which included corrective, preventive action, quality initiative and steps for improvement (June 2012); and phase II, which included data collection for evaluation of the process after improvement (July 2012-September 2012). In terms of the preanalytical indicators, incomplete request forms in phase I showed that the total number of received requests were 31 944, with a percentage of defected request of 33.66%; whereas in phase II, there was a significant reduction in all defected request items (Plaboratories.

  20. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  1. A Comparison of Students' Achievement and Attitude Changes Resulting From a Laboratory and Non-Laboratory Approach to General Education Physical Science Courses.

    Science.gov (United States)

    Gunsch, Leonhardt Maurice

    Student achievement and attitude changes resulting from two different approaches to teaching of physical science were studied among 94 non-science freshmen enrolled at Valley City State College during the 1970-71 winter quarter. Thirty-four students were taught the laboratory-oriented Physical Science for Nonscience Students (PSNS) Project course…

  2. The Effect of Using 3E, 5E Learning Cycle in General Chemistry Laboratory to Prospective Scinence Teachers’ Attitude and Perceptions to the Science, Chemistry and Laboratory

    OpenAIRE

    Toprak, Fatih; Çelikler, Dilek

    2013-01-01

    The study aimed to investigate the emerging changes in prospective science teachers" attitudes and perceptions towards science, chemistry and laboratory resulting from the implementation of 3E. 5E learning cycles and traditional instruction in laboratory environment in which learning is achieved by doing and experiencing. The study included 74 first grade prospective science teachers from Ondokuz Mayıs University at the Department of Science Education. In the study, quasi-experimental pr...

  3. Decision analysis. Clinical art or Clinical Science

    Science.gov (United States)

    1977-05-01

    having helped some clients. Over the past half century, psychotherapy has faced a series of crises concerned with its transformation from an art to a...clinical science . These include validation of the effectiveness of various forms of therapy, validating elements of treatment programs and

  4. Clinical biochemistry education in Spain.

    Science.gov (United States)

    Queraltó, J M

    1994-12-31

    Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.

  5. Interference by pralidoxime (PAM) salts in clinical laboratory tests.

    Science.gov (United States)

    Nagase, Sumika; Kohguchi, Katsunori; Tohyama, Kaoru; Watanabe, Mikio; Iwatani, Yoshinori

    2013-02-01

    Drugs sometimes alter the results of clinical laboratory tests. We examined the effects of pralidoxime (PAM) salts, a medicine used to treat organophosphorus poisoning, on clinical laboratory test results for the first time. The effects of PAM salts on glucose (GLU) measurements were examined using a point-of-care testing (POCT) meter, four self-monitoring of blood glucose (SMBG) meters, and two biochemical autoanalyzers. The effects of PAM salts on other clinical tests were also evaluated. The addition of PAM iodide or potassium iodide, but not of PAM chloride or potassium chloride, to blood samples increased the GLU values measured by one POCT meter and 4 SMBG meters using the enzyme electrode (hydrogen peroxidase or oxygen electrode) method. On the other hand, PAM iodide or PAM chloride, but not KI or KCl, affected the values measured at 340 nm by an autoanalyzer using absorption spectrophotometry in 8 of 14 clinical laboratory tests. The absorption spectrum of PAM changed from 294 to 338 nm due to the reaction between PAM and the alkaline buffer, a component of the measuring reagents. PAM iodide increases the GLU values measured by the enzyme electrode method, and PAM salts affected the values measured at 340 nm by absorption spectrophotometry in many other clinical test items. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Report of the results of the International Clinical Cytometry Society and American Society for Clinical Pathology workload survey of clinical flow cytometry laboratories.

    Science.gov (United States)

    Wolniak, Kristy; Goolsby, Charles; Choi, Sarah; Ali, Asma; Serdy, Nina; Stetler-Stevenson, Maryalice

    2017-11-01

    Thorough review of current workload, staffing, and testing practices in clinical laboratories allows for optimization of laboratory efficiency and quality. This information is largely missing with regard to clinical flow cytometry laboratories. The purpose of this survey is to provide comprehensive, current, and accurate data on testing practices and laboratory staffing in clinical laboratories performing flow cytometric studies. Survey data was collected from flow cytometry laboratories through the ASCP website. Data was collected on the workload during a 1-year time period of full-time and part-time technical and professional (M.D./D.O./Ph.D. or equivalent) flow cytometry employees. Workload was examined as number of specimens and tubes per full time equivalent (FTE) technical and professional staff. Test complexity, test result interpretation, and reporting practices were also evaluated. There were 205 respondent laboratories affiliated predominantly with academic and health system institutions. Overall, 1,132 FTE employees were reported with 29% professional FTE employees and 71% technical. Fifty-one percent of the testing performed was considered high complexity and 49% was low complexity. The average number of tubes per FTE technologist was 1,194 per year and the average number of specimens per FTE professional was 1,659 per year. The flow cytometry reports were predominantly written by pathologists (57%) and were typically written as a separate report (58%). This survey evaluates the overall status of the current practice of clinical flow cytometry and provides a comprehensive dataset as a framework to help laboratory departments, directors, and managers make appropriate, cost-effective staffing decisions. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  7. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Science.gov (United States)

    2010-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution; and (i) Be certified by the American Board of Medical Microbiology, the American Board of Clinical... certified in anatomic or clinical pathology, or both, by the American Board of Pathology or the American...

  8. On-Orbit Planetary Science Laboratories for Simulating Surface Conditions of Planets and Small Bodies

    Science.gov (United States)

    Thangavelautham, J.; Asphaug, E.; Schwartz, S.

    2017-02-01

    Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.

  9. Effect of Cooperative Learning and Traditional Methods on Students' Achievements and Identifications of Laboratory Equipments in Science-Technology Laboratory Course

    Science.gov (United States)

    Aydin, Suleyman

    2011-01-01

    Science lessons taught via experiments motivate the students, and make them more insistent on learning science. This study aims to examine the effects of cooperative learning on students' academic achievements and their skills in identifying laboratory equipments. The sample for the study consisted of a total of 43 sophomore students in primary…

  10. Laboratory animal science course in Switzerland: participants' points of view and implications for organizers.

    Science.gov (United States)

    Crettaz von Roten, Fabienne

    2018-02-01

    Switzerland has implemented a mandatory training in laboratory animal science since 1999; however a comprehensive assessment of its effects has never been undertaken so far. The results from the analysis of participants in the Swiss Federation of European Laboratory Animal Science Associations (FELASA) Category B compulsory courses in laboratory animal science run in 2010, 2012, 2014 and 2016 showed that the participants fully appreciated all elements of the course. The use of live animals during the course was supported and explained by six arguments characterized with cognitive, emotional and forward-looking factors. A large majority considered that the 3R (replacement, reduction and refinement) principles were adequately applied during the course. Responses to an open question offered some ideas for improvements. This overall positive picture, however, revealed divergent answers from different subpopulations in our sample (for example, scientists with more hindsight, scientists trained in biology, or participants from Asian countries).

  11. Bonding to oxide ceramics—laboratory testing versus clinical outcome.

    Science.gov (United States)

    Kern, Matthias

    2015-01-01

    Despite a huge number of published laboratory bonding studies on dental oxide ceramics clinical long-term studies on resin bonded oxide ceramic restorations are rare. The purpose of this review is to present the best available clinical evidence for successful bonding of dental oxide ceramic restorations. Clinical trials with resin-bonded restorations that had no or only limited mechanical retention and were made from alumina or zirconia ceramic were identified using an electronic search in PubMed database. Overall 10 publications with clinical trials could be identified. Their clinical outcome was compared with that laboratory bond strength studies. Clinical data provide strong evidence that air-abrasion at a moderate pressure in combination with using phosphate monomer containing primers and/or luting resins provide long-term durable bonding to glass-infiltrated alumina and zirconia ceramic under the humid and stressful oral conditions. As simple and clinically reliable bonding methods to oxide ceramics exist, the rationale for development of alternative bonding methods might be reconsidered especially when these methods are more time consuming or require rather complicated and/or technique sensitive procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Multimedia interactive eBooks in laboratory science education

    OpenAIRE

    Morris, NP; Lambe, J

    2017-01-01

    Bioscience students in the UK higher education system are making increasing use of technology to support their learning within taught classes and during private study. This experimental study was designed to assess the role for multimedia interactive eBooks in bioscience laboratory classes, delivered using a blended learning approach. Thirty-nine second-year students on a Biomedical Science undergraduate course in a UK university were grouped using an experimental design into alternating tria...

  13. Factors that impact clinical laboratory scientists' commitment to their work organizations.

    Science.gov (United States)

    Bamberg, Richard; Akroyd, Duane; Moore, Ti'eshia M

    2008-01-01

    To assess the predictive ability of various aspects of the work environment for organizational commitment. A questionnaire measuring three dimensions of organizational commitment along with five aspects of work environment and 10 demographic and work setting characteristics was sent to a national, convenience sample of clinical laboratory professionals. All persons obtaining the CLS certification by NCA from January 1, 1997 to December 31, 2006. Only respondents who worked full-time in a clinical laboratory setting were included in the database. Levels of affective, normative, and continuance organizational commitment, organizational support, role clarity, role conflict, transformational leadership behavior of supervisor, and organizational type, total years work experience in clinical laboratories, and educational level of respondents. Questionnaire items used either a 7-point or 5-point Likert response scale. Based on multiple regression analysis for the 427 respondents, organizational support and transformational leadership behavior were found to be significant positive predictors of affective and normative organizational commitment. Work setting (non-hospital laboratory) and total years of work experience in clinical laboratories were found to be significant positive predictors of continuance organizational commitment. Overall the organizational commitment levels for all three dimensions were at the neutral rating or below in the slightly disagree range. The results indicate a less than optimal level of organizational commitment to employers, which were predominantly hospitals, by CLS practitioners. This may result in continuing retention problems for hospital laboratories. The results offer strategies for improving organizational commitment via the significant predictors.

  14. Obtaining patient test results from clinical laboratories: a survey of state law for pharmacists.

    Science.gov (United States)

    Witry, Matthew J; Doucette, William R

    2009-01-01

    To identify states with laws that restrict to whom clinical laboratories may release copies of laboratory test results and to describe how these laws may affect pharmacists' ability to obtain patient laboratory test results. Researchers examined state statutes and administrative codes for all 50 states and the District of Columbia at the University of Iowa Law Library between June and July 2007. Researchers also consulted with lawyers, state Clinical Laboratory Improvement Amendments officers, and law librarians. Laws relating to the study objective were analyzed. 34 jurisdictions do not restrict the release of laboratory test results, while 17 states have laws that restrict to whom clinical laboratories can send copies of test results. In these states, pharmacists will have to use alternative sources, such as physician offices, to obtain test results. Pharmacists must consider state law before requesting copies of laboratory test results from clinical laboratories. This may be an issue that state pharmacy associations can address to increase pharmacist access to important patient information.

  15. What Clinical and Laboratory Parameters Distinguish Between ...

    African Journals Online (AJOL)

    Introduction: In developing countries, a large number of patients presenting acutely in renal failure are indeed cases of advanced chronic renal failure. In this study, we compared clinical and laboratory parameters between patients with acute renal failure (ARF) and chronic renal failure (CRF), to identify discriminatory ...

  16. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  17. Clinical and laboratory profile of patients with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Phelipe Gabriel dos Santos Sant'Ana

    Full Text Available Abstract Objective: This study aimed to describe and analyze clinical and laboratory characteristics of patients with sickle cell anemia treated at the Hemominas Foundation, in Divinópolis, Brazil. Furthermore, this study aimed to compare the clinical and laboratory outcomes of the group of patients treated with hydroxyurea with those patients that were not treated with hydroxyurea. Methods: Clinical and laboratorial data were obtained by analyzing medical records of patients with sickle cell anemia. Results: Data from the medical records of 50 patients were analyzed. Most of the patients were female (56%, aged between 20 and 29 years old. Infections, transfusions, cholecystectomy, splenectomy and systemic arterial hypertension were the most common clinical adverse events of the patients. The most frequent cause of hospitalization was painful crisis. The majority of patients had reduced values of hemoglobin and hematocrit (8.55 ± 1.33 g/dL and 25.7 ± 4.4%, respectively and increased fetal hemoglobin levels (12 ± 7%. None of the clinical variables was statistically significant on comparing the two groups of patients. Among hematological variables only hemoglobin and hematocrit levels were statistically different between patients treated with hydroxyurea and untreated patients (p-value = 0.005 and p-value = 0.001, respectively. Conclusion: Sickle cell anemia requires treatment and follow-up by a multiprofessional team. A current therapeutic option is hydroxyurea. This drug reduces complications and improves laboratorial parameters of patients. In this study, the use of the drug increased the hemoglobin and hematocrit levels of patients.

  18. Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological sciences. Other websites ...

  19. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    Science.gov (United States)

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  20. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  1. The deep underground science and engineering laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T, E-mail: ktlesko@lbl.go [Department of Physics, University of California Berkeley and Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50R5239, Berkeley, CA 94720-8156 (United States)

    2009-06-01

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory - DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.

  2. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  3. Atomic spectrometry and trends in clinical laboratory medicine

    Science.gov (United States)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-09-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.

  4. Atomic spectrometry and trends in clinical laboratory medicine

    International Nuclear Information System (INIS)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-01-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes

  5. [Software for illustrating a cost-quality balance carried out by clinical laboratory practice].

    Science.gov (United States)

    Nishibori, Masahiro; Asayama, Hitoshi; Kimura, Satoshi; Takagi, Yasushi; Hagihara, Michio; Fujiwara, Mutsunori; Yoneyama, Akiko; Watanabe, Takashi

    2010-09-01

    We have no proper reference indicating the quality of clinical laboratory practice, which should clearly illustrates that better medical tests require more expenses. Japanese Society of Laboratory Medicine was concerned about recent difficult medical economy and issued a committee report proposing a guideline to evaluate the good laboratory practice. According to the guideline, we developed software that illustrate a cost-quality balance carried out by clinical laboratory practice. We encountered a number of controversial problems, for example, how to measure and weight each quality-related factor, how to calculate costs of a laboratory test and how to consider characteristics of a clinical laboratory. Consequently we finished only prototype software within the given period and the budget. In this paper, software implementation of the guideline and the above-mentioned problems are summarized. Aiming to stimulate these discussions, the operative software will be put on the Society's homepage for trial

  6. A pocket guide to electronic laboratory notebooks in the academic life sciences [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ulrich Dirnagl

    2016-01-01

    Full Text Available Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  7. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    Science.gov (United States)

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (plaboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (plaboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  8. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    Science.gov (United States)

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  9. Has compliance with CLIA requirements really improved quality in US clinical laboratories?

    Science.gov (United States)

    Ehrmeyer, Sharon S; Laessig, Ronald H

    2004-08-02

    The Clinical Laboratory Improvement Amendments of 1988 (CLIA'88) mandate universal requirements for all U.S. clinical laboratory-testing sites. The intent of CLIA'88 is to ensure quality testing through a combination of minimum quality practices that incorporate total quality management concepts. These regulations do not contain established, objective indicators or measures to assess quality. However, there is an implicit assumption that compliance with traditionally accepted good laboratory practices--following manufacturers' directions, routinely analysing quality control materials, applying quality assurance principles, employing and assessing competent testing personnel, and participating in external quality assessment or proficiency testing (PT)--will result in improved test quality. The CLIA'88 regulations do include PT performance standards, which intentionally or unintentionally, define intra-laboratory performance. Passing PT has become a prime motivation for improving laboratory performance; it can also be used as an objective indicator to assess whether compliance to CLIA has improved intra-laboratory quality. Data from 1994 through 2002 indicate that the percentage of laboratories passing PT has increased. In addition to PT performance, subjective indicators of improved quality--frequency of inspection deficiencies, the number of government sanctions for non-compliance, and customer satisfaction--were evaluated. The results from these subjective indicators are more difficult to interpret but also seem to show improved quality in US clinical laboratories eleven years post-CLIA'88.

  10. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    Science.gov (United States)

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  11. Selection of the Mars Science Laboratory landing site

    Science.gov (United States)

    Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, Randolph L.; Fergason, Robin L.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; Huertas, A.; Beyer, R.; Chen, A.; Parker, T.; Pollard, B.; Lee, S.; Hoover, R.; Sladek, H.; Grotzinger, J.; Welch, R.; Dobrea, E. Noe; Michalski, J.; Watkins, M.

    2012-01-01

    The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

  12. Polycystic ovary syndrome: clinical and laboratory evaluation

    Directory of Open Access Journals (Sweden)

    Marcos Yorghi Khoury

    Full Text Available OBJECTIVE: To evaluate clinically, and with laboratory, tests, women with polycystic ovary syndrome (PCO. PATIENTS: One hundred and twelve women with PCO were studied. METHODS: The following data was recorded: Current age; age at menarche; menstrual irregularity, occurrence of similar cases in the family; fertility, obstetric history; body mass index (BMI; and presence of hirsutism. Serum measurements of follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin, free testosterone, and dehydroepiandrosterone sulfate were taken. RESULTS: All patients presented either oligomenorrhea (31 percent, periods of secondary amenorrhea (9 percent, or both alterations (60 percent. The majority of the patients were infertile (75.6 percent. The LH/FSH ratio was higher than 2:1 in 55 percent of the patients and higher than 3:1 in 26.2 percent. The ultrasonographic aspect of the ovaries was considered to be normal in 31 percent. CONCLUSION: The main clinical feature of the PCO is the irregularity of menses since menarche, and that the laboratory tests would be important to exclude other disorders such as hyperprolactinemia or hyperandrogenemia caused by late-onset congenital adrenal hyperplasia.

  13. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  14. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  15. Information systems as a quality management tool in clinical laboratories

    Science.gov (United States)

    Schmitz, Vanessa; Rosecler Bez el Boukhari, Marta

    2007-11-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system.

  16. Information systems as a quality management tool in clinical laboratories

    International Nuclear Information System (INIS)

    Schmitz, Vanessa; Boukhari, Marta Rosecler Bez el

    2007-01-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system

  17. Laboratory-based surveillance in the molecular era: The typened model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    H.G.M. Niesters (Bert); J.W. Rossen (John); H.G.A.M. van der Avoort (Harrie); D. Baas; K. Benschop (Kimberley); E.C.J. Claas (Eric); A. Kroneman; N.M. van Maarseveen (Noortje); S.D. Pas (Suzan); W. van Pelt (Wilfred); J. Rahamat-Langendoen (Janette); R. Schuurman (Rob); H. Vennema (Harry); L. Verhoef; K.C. Wolthers (Katja); M.P.G. Koopmans D.V.M. (Marion)

    2013-01-01

    textabstractLaboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories

  18. Laboratory-based surveillance in the molecular era : the TYPENED model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    Niesters, H G; Rossen, J W; van der Avoort, H; Baas, D; Benschop, K; Claas, E C; Kroneman, A; van Maarseveen, N; Pas, S; van Pelt, W; Rahamat-Langendoen, J C; Schuurman, R; Vennema, H; Verhoef, L; Wolthers, K; Koopmans, Marion

    2013-01-01

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for

  19. Laboratory-based surveillance in the molecular era: the TYPENED model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    Niesters, H. G.; Rossen, J. W.; van der Avoort, H.; Baas, D.; Benschop, K.; Claas, E. C.; Kroneman, A.; van Maarseveen, N.; Pas, S.; van Pelt, W.; Rahamat-Langendoen, J. C.; Schuurman, R.; Vennema, H.; Verhoef, L.; Wolthers, K.; Koopmans, M.

    2013-01-01

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for

  20. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories

    Science.gov (United States)

    Kiehlbauch, Julia A.; Hannett, George E.; Salfinger, Max; Archinal, Wendy; Monserrat, Catherine; Carlyn, Cynthia

    2000-01-01

    Accurate antimicrobial susceptibility testing is vital for patient care and surveillance of emerging antimicrobial resistance. The National Committee for Clinical Laboratory Standards (NCCLS) outlines generally agreed upon guidelines for reliable and reproducible results. In January 1997 we surveyed 320 laboratories participating in the New York State Clinical Evaluation Program for General Bacteriology proficiency testing. Our survey addressed compliance with NCCLS susceptibility testing guidelines for bacterial species designated a problem (Staphylococcus aureus and Enterococcus species) or fastidious (Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria gonorrhoeae) organism. Specifically, we assessed compliance with guidelines for inoculum preparation, medium choice, number of disks per plate, and incubation conditions for disk diffusion tests. We also included length of incubation for S. aureus and Enterococcus species. We found overall compliance with the five characteristics listed above in 80 of 153 responding laboratories (50.6%) for S. aureus and 72 of 151 (47.7%) laboratories for Enterococcus species. The most common problem was an incubation time shortened to less than 24 h. Overall compliance with the first four characteristics was reported by 92 of 221 (41.6%) laboratories for S. pneumoniae, 49 of 163 (30.1%) laboratories for H. influenzae, and 11 of 77 (14.3%) laboratories for N. gonorrhoeae. Laboratories varied from NCCLS guidelines by placing an excess number of disks per plate. Laboratories also reported using alternative media for Enterococcus species, N. gonorrhoeae, and H. influenzae. This study demonstrates a need for education among clinical laboratories to increase compliance with NCCLS guidelines. PMID:10970381

  1. Clinical and laboratory criteria for type 2 diabetes mellitus in children

    OpenAIRE

    T.V. Sorokman; O.V. Makarova; V.G. Ostapchuk

    2018-01-01

    The purpose of this review was the analysis of literature data on clinical and laboratory criteria for type 2 diabetes mellitus in children. A review of scientific literature was conducted using Pubmed as the search engine by the keywords: diabetes mellitus, type 2 diabetes mellitus, clinical picture, laboratory criteria, risk factors, taking into consideration studies conducted in the last 10 years, citation review of relevant primary and review articles, conference abstracts, personal files...

  2. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    Science.gov (United States)

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  3. [Clinical governance and patient safety culture in clinical laboratories in the Spanish National Health System].

    Science.gov (United States)

    Giménez-Marín, Á; Rivas-Ruiz, F

    To conduct a situational analysis of patient safety culture in public laboratories in the Spanish National Health System and to determine the clinical governance variables that most strongly influence patient safety. A descriptive cross-sectional study was carried out, in which a Survey of Patient Safety in Clinical Laboratories was addressed to workers in 26 participating laboratories. In this survey, which consisted of 45 items grouped into 6 areas, scores were assigned on a scale from 0 to 100 (where 0 is the lowest perception of patient safety). Laboratory managers were asked specific questions about quality management systems and technology. The mean scores for the 26 participating hospitals were evaluated, and the following results observed: in 4of the 6areas, the mean score was higher than 70 points. In the third area (equipment and resources) and the fourth area (working conditions), the scores were lower than 60 points. Every hospital had a digital medical record system. This 100% level of provision was followed by that of an electronic request management system, which was implemented in 82.6% of the hospitals. The results obtained show that the culture of security is homogeneous and of high quality in health service laboratories, probably due to the steady improvement observed. However, in terms of clinical governance, there is still some way to go, as shown by the presence of weaknesses in crucial dimensions of safety culture, together with variable levels of implementation of fail-safe technologies and quality management systems. Copyright © 2017 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. The Effects of Using Jigsaw Method Based on Cooperative Learning Model in the Undergraduate Science Laboratory Practices

    Science.gov (United States)

    Karacop, Ataman

    2017-01-01

    The main aim of the present study is to determine the influence of a Jigsaw method based on cooperative learning and a confirmatory laboratory method on prospective science teachers' achievements of physics in science teaching laboratory practice courses. The sample of this study consisted of 33 female and 15 male third-grade prospective science…

  5. The Effect of Simulation-Assisted Laboratory Applications on Pre-Service Teachers' Attitudes towards Science Teaching

    Science.gov (United States)

    Ulukök, Seyma; Sari, Ugur

    2016-01-01

    In this study, the effects of computer-assisted laboratory applications on pre-service science teachers' attitudes towards science teaching were investigated and the opinions of the pre-service teachers about the application were also determined. The study sample consisted of 46 students studying science teaching Faculty of Education. The study…

  6. Hidden sources of mercury in clinical laboratories.

    Science.gov (United States)

    Alvarez-Chavez, C R; Federico-Perez, R A; Gomez-Alvarez, A; Velazquez-Contreras, L E; Perez-Rios, R

    2014-09-01

    The healthcare sector is an important contributor to mercury (Hg) pollution because of the potential presence of mercury in thermometers, blood pressure cuffs, amalgams, etc. There are also other potential sources of mercury in this sector which are used frequently and in high volumes where the presence of the metal is not obvious and which might be collectively contributing to pollution. For instance, some chemicals used for the clinical diagnosis of illness may contain mercury. The goal of this study was to investigate potential sources of mercury pollution, which originate from clinical laboratory discharges, using an exploratory approach. The focus was on the residue generated during automatic analysis of patients' bodily fluids at a medical center in Hermosillo, Sonora, Mexico. This study shows an overview of what might be happening in the region or the country related to non-obvious sources of mercury in the healthcare sector. The results showed measurable levels of mercury in the residues coming from urine sediment analysis. These amounts do not exceed the maximum allowed by Mexican environmental regulations; nevertheless, the frequency and cumulative volume of residues generated, combined with the potential for persistence and the bioaccumulation of mercury in the environment, warrant attention. The work carried out in this study is being taken as a model for future studies for pollution prevention in the healthcare sector with the goal of measuring mercury emissions to the environment from clinical laboratory wastewater, including identifying sources which--while not obvious--could be important given the frequency and volume of their use in the clinical diagnosis.

  7. Laboratory-based surveillance in the molecular era: the TYPENED model, a joint data-sharing platform for clinical and public health laboratories.

    Science.gov (United States)

    Niesters, H G; Rossen, J W; van der Avoort, H; Baas, D; Benschop, K; Claas, E C; Kroneman, A; van Maarseveen, N; Pas, S; van Pelt, W; Rahamat-Langendoen, J C; Schuurman, R; Vennema, H; Verhoef, L; Wolthers, K; Koopmans, M

    2013-01-24

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for characterisation and typing. However, with the introduction of molecular diagnostic methods and sequencing in most of the larger diagnostic and university hospital centres in high-income countries, the distinction between diagnostic and reference/public health laboratory functions has become less clear-cut. Given these developments, new ways of networking and data sharing are needed. Assuming that clinical and public health laboratories may be able to use the same data for their own purposes when sequence-based testing and typing are used, we explored ways to develop a collaborative approach and a jointly owned database (TYPENED) in the Netherlands. The rationale was that sequence data - whether produced to support clinical care or for surveillance -can be aggregated to meet both needs. Here we describe the development of the TYPENED approach and supporting infrastructure, and the implementation of a pilot laboratory network sharing enterovirus sequences and metadata.

  8. Strategies for the assessment of competence in laboratory animal science courses

    DEFF Research Database (Denmark)

    Hansen, Axel Kornerup; Sørensen, Dorte Bratbo

    2014-01-01

    Evaluation of skills, knowledge and competencies is an essential part of education in laboratory animal science. In Europe, a greater emphasis will be placed on such evaluations going forward, because the European Union will base its education and training framework on learning outcomes rather than...

  9. A national survey on pediatric critical values used in clinical laboratories across Canada.

    Science.gov (United States)

    Gong, Yanping; Adeli, Khosrow

    2009-11-01

    Notification of critical values to clinical staff is an important post-analytical process in all acute care clinical laboratories. No data are available however on how laboratories obtain or establish critical values, particularly in pediatric settings. This study was designed to examine and compare critical values used for pediatric patients in biochemistry laboratories in Canada and assess potential interlaboratory variability. Fourteen clinical laboratories, including two in pediatric hospitals and twelve in hospitals caring for both children and adults, participated in a survey that included 14 pre-selected STAT chemistry tests and 19 pre-selected therapeutic drug monitoring (TDM) tests. Among fourteen chemistry tests, good agreement was observed for critical values used for sodium and pH at both low and high levels within 14 participant laboratories. Significant interlaboratory variability existed for glucose critical values at the high end, magnesium at high end, and PO2 at the low end. For 19 TDM tests, the majority of laboratories did not have alert values to report values over the therapeutic level but not toxic. For critical values greater than the toxic range, significant variability existed at both trough and peak levels among laboratories surveyed. When asked to provide the source for critical values established at each site, only a limited number of laboratories identified their sources as either internal decision or published references. Although all laboratories have established and routinely use critical values to alert clinical staff, considerable variability exists in both the critical limits reported as well as the source of such values. There is a clear need for new national efforts to standardize pediatric critical value reporting and establish evidence-based critical limits for all medical laboratories across Canada.

  10. 76 FR 5379 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2011-01-31

    ... modification of the standards to accommodate technological advances. Matters To Be Discussed: The agenda will... Coordinating Council on the Clinical Laboratory Workforce; the National Institutes of Health Genetic Test...

  11. Research with radioisotopes in clinical and laboratory medicine: a bibliographic review

    International Nuclear Information System (INIS)

    Metz, J.; Van der Walt, L.A.; Malan, J.M.

    1985-01-01

    This bibliography is restricted mainly to AEC-supported projects which are considered to amply reflect the widespread use of radioisotopes in clinical and laboratory medicine in South Africa and which describe research with radioisotopes of some direct relevance to diagnostic-clinical or laboratory medicine, or both, but excluding therapy with isotopes. General information is given in this review on oncology, endocrinology, metabolism and nutrition, haematology, neurology, angiocardiology, pulmonology, gastroenterology, gynaecology and obstetrics, nephrology, immunology and transplantation, microbiology and parasitology

  12. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  13. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    2013-12-14

    Dec 14, 2013 ... clinical and laboratory procedures, including general characteristics of women, indications and outcome, .... quality assurance, accuracy and reliability of results. ... controls for confirmation of results, while negative control.

  14. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    Science.gov (United States)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  15. Oropharyngeal Dysphagia in Dermatomyositis: Associations with Clinical and Laboratory Features Including Autoantibodies

    OpenAIRE

    Mugii, Naoki; Hasegawa, Minoru; Matsushita, Takashi; Hamaguchi, Yasuhito; Oohata, Sacihe; Okita, Hirokazu; Yahata, Tetsutarou; Someya, Fujiko; Inoue, Katsumi; Murono, Shigeyuki; Fujimoto, Manabu; Takehara, Kazuhiko

    2016-01-01

    Objective Dysphagia develops with low frequency in patients with dermatomyositis. Our objective was to determine the clinical and laboratory features that can estimate the development of dysphagia in dermatomyositis. Methods This study included 92 Japanese patients with adult-onset dermatomyositis. The associations between dysphagia and clinical and laboratory features including disease-specific autoantibodies determined by immunoprecipitation assays were analyzed. Results Videofluoroscopy sw...

  16. A Computerized Clinical Support System and Psychological Laboratory.

    Science.gov (United States)

    Cassel, Russell N.

    1978-01-01

    Advocating "holistic" medicine, this article details the benefits to be derived from using a computerized clinical support system in a psychological laboratory focusing on internal healing where the client/patient becomes a committed partner utilizing biofeedback equipment, gaming, and simulation to achieve self-understanding and…

  17. The laboratory of the mind thought experiments in the natural sciences

    CERN Document Server

    Brown, James Robert

    1993-01-01

    Thought experiments are performed in the laboratory of the mind. Beyond this metaphor it is difficult to say just what these remarkable devices for investigating nature are or how they work. Though most scientists and philosophers would admit their great importance, there has been very little serious study of them. This volume is the first book-length investigation of thought experiments. Starting with Galileo's argument on falling bodies, Brown describes numerous examples of the most influential thought experiments from the history of science. Following this introduction to the subject, some substantial and provocative claims are made, the principle being that some thought experiments should be understood in the same way that platonists understand mathematical activity: as an intellectual grasp of an independently existing abstract realm. With its clarity of style and structure, The Laboratory of the Mind will find readers among all philosophers of science as well as scientists who have puzzled over how thou...

  18. The uses of Interactive Whiteboard in a science laboratory

    OpenAIRE

    Bozzo, Giacomo

    2015-01-01

    In the last ten years several studies were conducted about the educational use of interactive whiteboard (IWB) in teaching and learning activities, showing different advantages introduced by this technology and analysing different implications for teachers (both from technical and pedagogical point of view). In this context, we planned a research with the aim of analysing the activities that can be performed through the interactive whiteboard in science laboratories, in order to characterize ...

  19. Critical value reporting: a survey of 36 clinical laboratories in South Africa.

    Science.gov (United States)

    Schapkaitz, Elise; Mafika, Zipho

    2013-10-11

    Critical value policies are used by clinical laboratories to decide when to notify caregivers of life-threatening results. Despite their widespread use, critical value policies have not been published locally. A survey was designed to determine critical value policies for haematology tests in South Africa. A survey was carried out on 136 identified laboratories across South Africa in January 2013. Of these, 36 responded. Data collected included critical value policies, critical values for haematology parameters, and critical value reporting. Of the 36 laboratories surveyed, 11.1% (n=4) were private, 33.3% (n=12) were affiliated to academic institutions and 55.6% (n=20) were peripheral or regional National Health Laboratory Service laboratories. All the laboratories confirmed that they had a critical value policy, and 83.3% of such policies were derived from local clinical opinion. Mean low and high critical limits for the most frequently listed tests were as follows: haemoglobin 20 g/dl, platelet count 1 000 ×10(9)/l, white cell count 46 ×10(9)/l, activated partial thromboplastin time >101 seconds, and international normalised ratio >6. In almost all cases critical value reporting was performed by the technologist on duty (97.2%). The majority of laboratories required that the person notified of the critical value be the doctor who ordered the test or the caregiver directly involved in the patient's care (83.3%); 73.3% of laboratories indicated that they followed an algorithm if the doctor/caregiver could not be reached. Each laboratory is responsible for establishing clinically relevant critical limits. Clinicians should be involved in developing the laboratory's critical value policy. The findings of this survey may be of value to local laboratories that are in the process of establishing or reviewing critical value policies.

  20. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    Angela Smith, PharmD Candidate

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a “clinical decision” relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory “had relevance and value in the pharmacy curriculum”. Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.

  1. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    David F. Kisor

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a "clinical decision" relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory "had relevance and value in the pharmacy curriculum" Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.   Type: Case Study

  2. Customer satisfaction survey with clinical laboratory and phlebotomy services at a tertiary care unit level.

    Science.gov (United States)

    Koh, Young Rae; Kim, Shine Young; Kim, In Suk; Chang, Chulhun L; Lee, Eun Yup; Son, Han Chul; Kim, Hyung Hoi

    2014-09-01

    We performed customer satisfaction surveys for physicians and nurses regarding clinical laboratory services, and for outpatients who used phlebotomy services at a tertiary care unit level to evaluate our clinical laboratory and phlebotomy services. Thus, we wish to share our experiences with the customer satisfaction survey for clinical laboratory and phlebotomy services. Board members of our laboratory designed a study procedure and study population, and developed two types of questionnaire. A satisfaction survey for clinical laboratory services was conducted with 370 physicians and 125 nurses by using an online or paper questionnaire. The satisfaction survey for phlebotomy services was performed with 347 outpatients who received phlebotomy services by using computer-aided interviews. Mean satisfaction scores of physicians and nurses was 58.1, while outpatients' satisfaction score was 70.5. We identified several dissatisfactions with our clinical laboratory and phlebotomy services. First, physicians and nurses were most dissatisfied with the specimen collection and delivery process. Second, physicians and nurses were dissatisfied with phlebotomy services. Third, molecular genetic and cytogenetic tests were found more expensive than other tests. This study is significant in that it describes the first reference survey that offers a survey procedure and questionnaire to assess customer satisfaction with clinical laboratory and phlebotomy services at a tertiary care unit level.

  3. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    Science.gov (United States)

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  4. Medical laboratory science and nursing students' perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM).

    Science.gov (United States)

    Barcelo, Jonathan M

    2016-01-01

    This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains 'perception of learning' and 'perception of teaching.' Male medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning' among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning.' Nursing students identified 7 problem areas, most of which were related to their instructors. Medical laboratory science and nursing students viewed their academic learning environment as 'more positive than negative.' However, the relationship of the nursing instructors to their students needs improvement.

  5. Correlation of 111In-labeled leukocyte scintigraphy with clinical and laboratory findings

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Kitakata, Yuusuke; Uno, Kimiichi; Minoshima, Satoshi; Arimizu, Noboru.

    1993-01-01

    This study evaluated the relationship between 111 In-labeled leukocyte scintigraphy and clinical information and laboratory findings in 24 patients with bone infection and 35 patients with abdominal infection. Fifty-nine scintigrams were retrospectively reviewed and classified into positive or negative results. As the laboratory findings, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR) at 60 minutes, and peripheral blood leukocyte counts (WBCC) were evaluated. Clinical information such as presence of fever and administration of antibiotics was also compared. No significant relationship between the scintigraphic results and clinical as well as laboratory findings was observed in bone infection patients. CRP levels in positive scintigraphic patients were significantly higher than those in negative scintigraphic patients in the abdominal infection group, otherwise the other indices were not correlated with the scintigraphic results. A few patients with slightly increased CRP (mostly chronic cases) did not show positive scintigrams, suggesting an increased false negative rate of leukocyte scintigraphy in such circumstances. These results suggest that it is inappropriate to determine the application of leukocyte scintigraphy depending on clinical as well as laboratory findings, and leukocyte scintigraphy would yield additional information different from other indices when evaluating inflammatory foci. (author)

  6. The intelligent clinical laboratory as a tool to increase cancer care management productivity.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    Studies of the causes of cancer, early detection, prevention or treatment need accurate, comprehensive, and timely cancer data. The clinical laboratory provides important cancer information needed for physicians which influence clinical decisions regarding treatment, diagnosis and patient monitoring. Poor communication between health care providers and clinical laboratory personnel can lead to medical errors and wrong decisions in providing cancer care. Because of the key impact of laboratory information on cancer diagnosis and treatment the quality of the tests, lab reports, and appropriate lab management are very important. A laboratory information management system (LIMS) can have an important role in diagnosis, fast and effective access to cancer data, decrease redundancy and costs, and facilitate the integration and collection of data from different types of instruments and systems. In spite of significant advantages LIMS is limited by factors such as problems in adaption to new instruments that may change existing work processes. Applications of intelligent software simultaneously with existing information systems, in addition to remove these restrictions, have important benefits including adding additional non-laboratory-generated information to the reports, facilitating decision making, and improving quality and productivity of cancer care services. Laboratory systems must have flexibility to change and have the capability to develop and benefit from intelligent devices. Intelligent laboratory information management systems need to benefit from informatics tools and latest technologies like open sources. The aim of this commentary is to survey application, opportunities and necessity of intelligent clinical laboratory as a tool to increase cancer care management productivity.

  7. Clinical and laboratory findings in 220 children with recurrent abdominal pain

    NARCIS (Netherlands)

    Gijsbers, C. F. M.; Benninga, M. A.; Büller, H. A.

    2011-01-01

    Aim: To investigate the clinical and laboratory findings in children with recurrent abdominal pain (RAP). Methods: Consecutive patients with RAP (Apley criteria), age 4-16 years, referred to a secondary medical centre were evaluated by a standardized history, physical examination and laboratory

  8. Psychosocial and individual characteristics and musculoskeletal complaints among clinical laboratory workers.

    Science.gov (United States)

    Sadeghian, Farideh; Kasaeian, Amir; Noroozi, Pirasteh; Vatani, Javad; Taiebi, Seiyed Hassan

    2014-01-01

    Musculoskeletal disorders (MSDs) are an important health problem among healthcare workers, including clinical laboratory ones. The aim of the present study was to investigate the prevalence of MSDs and individual and psychosocial risk factors among clinical laboratory workers. A cross-sectional study was carried out among 156 workers of 30 clinical laboratories in 3 towns of Iran. The Nordic questionnaire with individual and psychosocial risk factors was used to collect data. Multiple logistic regression analysis was performed. The prevalence of reported MSDs among the study population was 72.4% in the past 12 months. The most prevalent MSDs were pain in the lower back and neck; 42.7% and 33.3%, respectively. Significant relations were found between MSDs and age, gender, heavy work at home and job control (p workers were high and associated with age, gender, heavy work at home and job control. More research into measuring these factors and workplace physical demands is suggested.

  9. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  10. A Map for Clinical Laboratories Management Indicators in the Intelligent Dashboard.

    Science.gov (United States)

    Azadmanjir, Zahra; Torabi, Mashallah; Safdari, Reza; Bayat, Maryam; Golmahi, Fatemeh

    2015-08-01

    management challenges of clinical laboratories are more complicated for educational hospital clinical laboratories. Managers can use tools of business intelligence (BI), such as information dashboards that provide the possibility of intelligent decision-making and problem solving about increasing income, reducing spending, utilization management and even improving quality. Critical phase of dashboard design is setting indicators and modeling causal relations between them. The paper describes the process of creating a map for laboratory dashboard. the study is one part of an action research that begins from 2012 by innovation initiative for implementing laboratory intelligent dashboard. Laboratories management problems were determined in educational hospitals by the brainstorming sessions. Then, with regard to the problems key performance indicators (KPIs) specified. the map of indicators designed in form of three layered. They have a causal relationship so that issues measured in the subsequent layers affect issues measured in the prime layers. the proposed indicator map can be the base of performance monitoring. However, these indicators can be modified to improve during iterations of dashboard designing process.

  11. Autoverification in a core clinical chemistry laboratory at an academic medical center

    Directory of Open Access Journals (Sweden)

    Matthew D Krasowski

    2014-01-01

    Full Text Available Background: Autoverification is a process of using computer-based rules to verify clinical laboratory test results without manual intervention. To date, there is little published data on the use of autoverification over the course of years in a clinical laboratory. We describe the evolution and application of autoverification in an academic medical center clinical chemistry core laboratory. Subjects and Methods: At the institution of the study, autoverification developed from rudimentary rules in the laboratory information system (LIS to extensive and sophisticated rules mostly in middleware software. Rules incorporated decisions based on instrument error flags, interference indices, analytical measurement ranges (AMRs, delta checks, dilution protocols, results suggestive of compromised or contaminated specimens, and ′absurd′ (physiologically improbable values. Results: The autoverification rate for tests performed in the core clinical chemistry laboratory has increased over the course of 13 years from 40% to the current overall rate of 99.5%. A high percentage of critical values now autoverify. The highest rates of autoverification occurred with the most frequently ordered tests such as the basic metabolic panel (sodium, potassium, chloride, carbon dioxide, creatinine, blood urea nitrogen, calcium, glucose; 99.6%, albumin (99.8%, and alanine aminotransferase (99.7%. The lowest rates of autoverification occurred with some therapeutic drug levels (gentamicin, lithium, and methotrexate and with serum free light chains (kappa/lambda, mostly due to need for offline dilution and manual filing of results. Rules also caught very rare occurrences such as plasma albumin exceeding total protein (usually indicative of an error such as short sample or bubble that evaded detection and marked discrepancy between total bilirubin and the spectrophotometric icteric index (usually due to interference of the bilirubin assay by immunoglobulin (Ig M monoclonal

  12. Quality assurance of laboratory work and clinical use of laboratory tests in general practice in norway: a survey.

    Science.gov (United States)

    Thue, Geir; Jevnaker, Marianne; Gulstad, Guri Andersen; Sandberg, Sverre

    2011-09-01

    Virtually all the general practices in Norway participate in the Norwegian Quality Improvement of Laboratory Services in Primary Care, NOKLUS. In order to assess and develop NOKLUS's services, it was decided to carry out an investigation in the largest participating group, general practices. In autumn 2008 a questionnaire was sent to all Norwegian general practices asking for feedback on different aspects of NOKLUS's main services: contact with medical laboratory technologists, sending of control materials, use and maintenance of practice-specific laboratory binders, courses, and testing of laboratory equipment. In addition, attitudes were elicited towards possible new services directed at assessing other technical equipment and clinical use of tests. Responses were received from 1290 of 1552 practices (83%). The great majority thought that the frequency of sending out control material should continue as at present, and they were pleased with the feedback reports and follow-up by the laboratory technologists in the counties. Even after many years of practical experience, there is still a need to update laboratory knowledge through visits to practices, courses, and written information. Practices also wanted quality assurance of blood pressure meters and spirometers, and many doctors wanted feedback on their use of laboratory tests. Services regarding quality assurance of point-of-care tests, guidance, and courses should be continued. Quality assurance of other technical equipment and of the doctor's clinical use of laboratory tests should be established as part of comprehensive quality assurance.

  13. Pharmacology Portal: An Open Database for Clinical Pharmacologic Laboratory Services.

    Science.gov (United States)

    Karlsen Bjånes, Tormod; Mjåset Hjertø, Espen; Lønne, Lars; Aronsen, Lena; Andsnes Berg, Jon; Bergan, Stein; Otto Berg-Hansen, Grim; Bernard, Jean-Paul; Larsen Burns, Margrete; Toralf Fosen, Jan; Frost, Joachim; Hilberg, Thor; Krabseth, Hege-Merete; Kvan, Elena; Narum, Sigrid; Austgulen Westin, Andreas

    2016-01-01

    More than 50 Norwegian public and private laboratories provide one or more analyses for therapeutic drug monitoring or testing for drugs of abuse. Practices differ among laboratories, and analytical repertoires can change rapidly as new substances become available for analysis. The Pharmacology Portal was developed to provide an overview of these activities and to standardize the practices and terminology among laboratories. The Pharmacology Portal is a modern dynamic web database comprising all available analyses within therapeutic drug monitoring and testing for drugs of abuse in Norway. Content can be retrieved by using the search engine or by scrolling through substance lists. The core content is a substance registry updated by a national editorial board of experts within the field of clinical pharmacology. This ensures quality and consistency regarding substance terminologies and classification. All laboratories publish their own repertoires in a user-friendly workflow, adding laboratory-specific details to the core information in the substance registry. The user management system ensures that laboratories are restricted from editing content in the database core or in repertoires within other laboratory subpages. The portal is for nonprofit use, and has been fully funded by the Norwegian Medical Association, the Norwegian Society of Clinical Pharmacology, and the 8 largest pharmacologic institutions in Norway. The database server runs an open-source content management system that ensures flexibility with respect to further development projects, including the potential expansion of the Pharmacology Portal to other countries. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  14. Integrating Bioethics into Clinical and Translational Science Research: A Roadmap

    Science.gov (United States)

    Shapiro, Robyn S.; Layde, Peter M.

    2008-01-01

    Abstract Recent initiatives to improve human health emphasize the need to effectively and appropriately translate new knowledge gleaned from basic biomedical and behavioral research to clinical and community application. To maximize the beneficial impact of scientific advances in clinical practice and community health, and to guard against potential deleterious medical and societal consequences of such advances, incorporation of bioethics at each stage of clinical and translational science research is essential. At the earliest stage, bioethics input is critical to address issues such as whether to limit certain areas of scientific inquiry. Subsequently, bioethics input is important to assure not only that human subjects trials are conducted and reported responsibly, but also that results are incorporated into clinical and community practices in a way that promotes and protects bioethical principles. At the final stage of clinical and translational science research, bioethics helps to identify the need and approach for refining clinical practices when safety or other concerns arise. The framework we present depicts how bioethics interfaces with each stage of clinical and translational science research, and suggests an important research agenda for systematically and comprehensively assuring bioethics input into clinical and translational science initiatives. PMID:20443821

  15. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael W.; Ezrailson, Cathy M.; Pearce, David A.; Elliott, Amy J.

    2015-01-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  16. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  17. Walking the bridge: Nursing students' learning in clinical skill laboratories.

    Science.gov (United States)

    Ewertsson, Mona; Allvin, Renée; Holmström, Inger K; Blomberg, Karin

    2015-07-01

    Despite an increasing focus on simulation as a learning strategy in nursing education, there is limited evidence on the transfer of simulated skills into clinical practice. Therefore it's important to increase knowledge of how clinical skills laboratories (CSL) can optimize students' learning for development of professional knowledge and skills, necessary for quality nursing practice and for patient safety. Thus, the aim was to describe nursing students' experiences of learning in the CSL as a preparation for their clinical practice. Interviews with 16 students were analysed with content analysis. An overall theme was identified - walking the bridge - in which the CSL formed a bridge between the university and clinical settings, allowing students to integrate theory and practice and develop a reflective stance. The theme was based on categories: conditions for learning, strategies for learning, tension between learning in the skills laboratory and clinical settings, and development of professional and personal competence. The CSL prepared the students for clinical practice, but a negative tension between learning in CSL and clinical settings was experienced. However, this tension may create reflection. This provides a new perspective that can be used as a pedagogical approach to create opportunities for students to develop their critical thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and... project; correction. SUMMARY: On September 9, 2010 (75 FR 55199), DoD published a notice concerning the...

  19. 76 FR 67154 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Program

    Science.gov (United States)

    2011-10-31

    ... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act... flexibilities, modifying demo project plans, or executing Federal Register Notices has identified some areas for...

  20. The Individualized Quality Control Plan - Coming Soon to Clinical Microbiology Laboratories Everywhere!

    Science.gov (United States)

    Anderson, Nancy

    2015-11-15

    As of January 1, 2016, microbiology laboratories can choose to adopt a new quality control option, the Individualized Quality Control Plan (IQCP), under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). This voluntary approach increases flexibility for meeting regulatory requirements and provides laboratories the opportunity to customize QC for their testing in their unique environments and by their testing personnel. IQCP is an all-inclusive approach to quality based on risk management to address potential errors in the total testing process. It includes three main steps, (1) performing a risk assessment, (2) developing a QC plan, and (3) monitoring the plan through quality assessment. Resources are available from the Centers for Medicare & Medicaid Services, Centers for Disease Control and Prevention, American Society for Microbiology, Clinical and Laboratory Standards Institute, and accrediting organizations, such as the College of American Pathologists and Joint Commission, to assist microbiology laboratories implementing IQCP.

  1. Medical laboratory science and nursing students’ perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM

    Directory of Open Access Journals (Sweden)

    Jonathan M. Barcelo

    2016-09-01

    Full Text Available Purpose This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. Methods A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. Results The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains ‘perception of learning’ and ‘perception of teaching.’ Male medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning’ among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning.’ Nursing students identified 7 problem areas, most of which were related to their instructors. Conclusion Medical laboratory science and nursing students viewed their academic learning environment as ‘more positive than negative.’ However, the relationship of the nursing instructors to their students needs improvement.

  2. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    Science.gov (United States)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  3. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  4. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    Science.gov (United States)

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  5. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  6. The paediatric change laboratory: optimising postgraduate learning in the outpatient clinic.

    Science.gov (United States)

    Skipper, Mads; Musaeus, Peter; Nøhr, Susanne Backman

    2016-02-02

    This study aimed to analyse and redesign the outpatient clinic in a paediatric department. The study was a joint collaboration with the doctors of the department (paediatric residents and specialists) using the Change Laboratory intervention method as a means to model and implement change in the outpatient clinic. This study was motivated by a perceived failure to integrate the activities of the outpatient clinic, patient care and training of residents. The ultimate goal of the intervention was to create improved care for patients through resident learning and development. We combined the Change Laboratory intervention with an already established innovative process for residents, 3-h meetings. The Change Laboratory intervention method consists of a well-defined theory (Cultural-historical activity theory) and concrete actions where participants construct a new theoretical model of the activity, which in this case was paediatric doctors' workplace learning modelled in order to improve medical social practice. The notion of expansive learning was used during the intervention in conjunction with thematic analysis of data in order to fuel the process of analysis and intervention. The activity system of the outpatient clinic can meaningfully be analysed in terms of the objects of patient care and training residents. The Change Laboratory sessions resulted in a joint action plan for the outpatient clinic structured around three themes: (1) Before: Preparation, expectations, and introduction; (2) During: Structural context and resources; (3) After: Follow-up and feedback. The participants found the Change Laboratory method to be a successful way of sharing reflections on how to optimise the organisation of work and training with patient care in mind. The Change Laboratory approach outlined in this study succeeded to change practices and to help medical doctors redesigning their work. Participating doctors must be motivated to uncover inherent contradictions in their

  7. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  8. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    Science.gov (United States)

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  9. The Impact of Differentiated Instructional Materials on English Language Learner (ELL) Students' Comprehension of Science Laboratory Tasks

    Science.gov (United States)

    Manavathu, Marian; Zhou, George

    2012-01-01

    Through a qualitative research design, this article investigates the impacts of differentiated laboratory instructional materials on English language learners' (ELLs) laboratory task comprehension. The factors affecting ELLs' science learning experiences are further explored. Data analysis reveals a greater degree of laboratory task comprehension…

  10. Quality control of parasitology stool examination in Tabriz clinical laboratories

    Directory of Open Access Journals (Sweden)

    shahram Khademvatan

    2011-06-01

    Full Text Available The purpose of quality control program was to make doctors and laboratory personnel trust in laboratory results and consequently increasing confidence in laboratory achievements. The quality assurance means raising the level of quality in all tests that lead to raising the level of work efficiency and laboratories including minimum expense for society and minimum time for lab personnel. This study aimed to assess and determine the accuracy and precision of results in Tabriz medical diagnostic laboratories. Materials and Methods: In this retrospective study, 790 stool samples were selected randomly and tested by standard methods.Student t- test, SPSS software and sensitivity and accuracy formulas were used for data analysis. Results: The sensitivity was 62%, 22% and 8% with 95% confidence intervals for worm's eggs, protozoan cysts and trophozoite detection respectively. Conclusion: To elevate quality assurance in clinical diagnostic laboratory, monitoring and check of the laboratories by standard methods continually should be done.

  11. Single and Combined Diagnostic Value of Clinical Features and Laboratory Tests in Acute Appendicitis

    NARCIS (Netherlands)

    Laméris, Wytze; van Randen, Adrienne; Go, Peter M. N. Y. H.; Bouma, Wim H.; Donkervoort, Sandra C.; Bossuyt, Patrick M. M.; Stoker, Jaap; Boermeester, Marja A.

    2009-01-01

    Objectives: The objective was to evaluate the diagnostic accuracy of clinical features and laboratory test results in detecting acute appendicitis. Methods: Clinical features and laboratory test results were prospectively recorded in a consecutive series of 1,101 patients presenting with abdominal

  12. The Deep Underground Science and Engineering Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T [Department of Physics, University of California Berkeley and the Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS50R5239, Berkeley, CA 94720-8146 (United States)], E-mail: KTLesko@lbl.gov

    2008-11-01

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  13. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    Science.gov (United States)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  14. Hyperthermia: from the clinic to the laboratory and back again

    International Nuclear Information System (INIS)

    Maher, E.J.

    1989-01-01

    Murine tumours have been used extensively to investigate the effects of heat and radiation, but there are significant differences between controlled laboratory studies and relatively uncontrolled clinical experience. From 1983 to 1986 a simple clinical system was developed in order to investigate biological questions in the clinic. This involved identifying a suitable patient population, reliable heating and thermometry, and methods of evaluating response of human tumours and their vasculature. (author)

  15. GeoBrain Computational Cyber-laboratory for Earth Science Studies

    Science.gov (United States)

    Deng, M.; di, L.

    2009-12-01

    Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and

  16. Modern clinical laboratory diagnostics

    International Nuclear Information System (INIS)

    Balakhovskij, I.S.

    1986-01-01

    Laboratory diagnosis is auxillary medical discipline studying specific laboratory symptoms of diseases, revealed by investigations of materials taken from patients. The structure of laboratory servie in our country and abroad, items of laboratory investigations, organizational principles are described. Attention is being given to the cost of analyses, the amount of conducted investigations, methods of result presentation, problems of accuracy, quality control and information content

  17. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice

    DEFF Research Database (Denmark)

    Sturgeon, Catharine M; Hoffman, Barry R; Chan, Daniel W

    2008-01-01

    BACKGROUND: This report presents updated National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines summarizing quality requirements for the use of tumor markers. METHODS: One subcommittee developed guidelines for analytical quality relevant to serum and tissue-based tumor...... questions to ensure selection of the appropriate test, adherence to good clinical and laboratory practices (e.g., minimization of the risk of incorrect patient and/or specimen identification, tube type, or timing), use of internationally standardized and well-characterized methods, careful adherence...... records. Also mandatory is extensive validation encompassing all stages of analysis before introduction of new technologies such as microarrays and mass spectrometry. Provision of high-quality tumor marker services is facilitated by dialogue involving researchers, diagnostic companies, clinical...

  18. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    Science.gov (United States)

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  19. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  20. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  1. Clinical Laboratory Data Management: A Distributed Data Processing Solution

    OpenAIRE

    Levin, Martin; Morgner, Raymond; Packer, Bernice

    1980-01-01

    Two turn-key systems, one for patient registration and the other for the clinical laboratory have been installed and linked together at the Hospital of the University of Pennsylvania, forming the nucleus of an evolving distributed Hospital Information System.

  2. Evaluation of clinical, laboratory and morphologic prognostic factors in colon cancer

    Directory of Open Access Journals (Sweden)

    Nigro Casimiro

    2008-09-01

    Full Text Available Abstract Background The long-term prognosis of patients with colon cancer is dependent on many factors. To investigate the influence of a series of clinical, laboratory and morphological variables on prognosis of colon carcinoma we conducted a retrospective analysis of our data. Methods Ninety-two patients with colon cancer, who underwent surgical resection between January 1999 and December 2001, were analyzed. On survival analysis, demographics, clinical, laboratory and pathomorphological parameters were tested for their potential prognostic value. Furthermore, univariate and multivariate analysis of the above mentioned data were performed considering the depth of tumour invasion into the bowel wall as independent variable. Results On survival analysis we found that depth of tumour invasion (P Conclusion The various clinical, laboratory and patho-morphological parameters showed different prognostic value for colon carcinoma. In the future, preoperative prognostic markers will probably gain relevance in order to make a proper choice between surgery, chemotherapy and radiotherapy. Nevertheless, current data do not provide sufficient evidence for preoperative stratification of high and low risk patients. Further assessments in prospective large studies are warranted.

  3. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010

    DEFF Research Database (Denmark)

    McMurray, Janet; Zérah, Simone; Hallworth, Michael

    2010-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more...... than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous...

  4. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  5. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  6. 10 CFR 32.71 - Manufacture and distribution of byproduct material for certain in vitro clinical or laboratory...

    Science.gov (United States)

    2010-01-01

    ... certain in vitro clinical or laboratory testing under general license. 32.71 Section 32.71 Energy NUCLEAR... certain in vitro clinical or laboratory testing under general license. An application for a specific... only by physicians, veterinarians in the practice of veterinary medicine, clinical laboratories or...

  7. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    Science.gov (United States)

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. Copyright © 2015 The American Physiological Society.

  8. Symptomatic HIV infection in infancy - clinical and laboratory ...

    African Journals Online (AJOL)

    in infancy - clinical and laboratory markers of infection. M P Meyer, Z Latief, C Haworlh, 5 Salie,. A van Dyk. Objective. To investigate the usefulness of immunological tests in the diagnosis of HIV infection in young symptomatic children « 15 months of age). Design. Tests were evaluated in HIV-infected (HIV antibody- and ...

  9. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  10. Clinical and Laboratory evaluation of measleslike rash in children and young adults

    Directory of Open Access Journals (Sweden)

    Stewien Klaus Eberhard

    2000-01-01

    Full Text Available A clinical and laboratory evaluation of 11 children and young adults with measleslike rash was done during the measles outbreak in the Greater São Paulo Metropolitan area at the end of 1996 and spread over the country during 1997. Measles was laboratory confirmed in 07 patients by specific IgM detection in acute serum specimens using an IgM-capture EIA, by specific IgG seroconversion in serum pairs, and by reverse transcription PCR and virus isolation in peripheral blood lymphocytes. Clinical presentations were not always classic; one of the 07 cases had received measles vaccine and corresponded to modified clinical case of measles. The 4 remaining cases were negative for measles and were diagnosed as exanthem subitum (2 cases, scarlet fever and Kawasaki disease. The present study reinforces the view that clinical features alone are not sufficient for establishing an accurate diagnosis in the post-vaccine era, and a surveillance system based on sensitive laboratory results is needed so that it can confirm IgM-negative measles cases.

  11. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  12. How to design a program of clinical biochemistry, for health technicians in clinical laboratory profile taking into account the new teaching approaches?

    Directory of Open Access Journals (Sweden)

    Mercedes Moleiro Hernández

    2007-06-01

    Full Text Available The formation process of the Licentiate in Health Technology of the profile of Clinical Laboratory is based in the mastery of the essential knowledge that, linked with the performance ways, allow him the solution of the professional problems he faces, as part of the health team of his specialty, so that within his teaching curriculum a group of subjects are included which have a special linking with the labor practice that the students carry out, on the base of a new didactic approach, starting from invariants of didactics as science which energize the teaching-learning process, and taking as base structure the didactic unity, which makes possible that the student consolidates his learning, achieving partial objectives, but around a well defined object of learning.

  13. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  14. The Role of the Clinical Laboratory in the Future of Health Care: Lean Microbiology

    Science.gov (United States)

    Samuel, Linoj

    2014-01-01

    This commentary will introduce lean concepts into the clinical microbiology laboratory. The practice of lean in the clinical microbiology laboratory can remove waste, increase efficiency, and reduce costs. Lean, Six Sigma, and other such management initiatives are useful tools and can provide dividends but must be accompanied by organizational leadership commitment to sustaining the lean culture in the laboratory setting and providing resources and time to work through the process. PMID:24574289

  15. Experiences in Accreditation of Laboratories in the Field of Radiation Science

    International Nuclear Information System (INIS)

    Franic, Z.; Galjanic, S.; Krizanec, D.

    2011-01-01

    Efficient interaction of technical legislation, metrology, standardization and accreditation within the system of quality infrastructure is precondition for assurance of safety of goods and services as well as protection of humans and environment. In the paper importance of quality infrastructure on national and international levels is presented while special interest is paid to accreditation. Current situation regarding the accreditation of laboratories in the field of radiation science is presented. Regarding this field, in Croatia three laboratories are accredited by Croatian Accreditation Agency: 1. Laboratory for Radioecology, Rudjer Boskovic Institute (Scope: Measurement of radionuclide content in environmental samples and commodities - Including foodstuffs and drinking water) 2. EKOTEH Dozimetrija Ltd., Department for Radiation Protection (Scope: Testing in the scope of ionizing and nonionizing radiation) 3. Radiation Protection Unit, Institute for Medical Research and Occupational Health (Scope: Determination of radioactivity). (author)

  16. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    Science.gov (United States)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  17. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  18. [Validation of a questionnaire to evaluate patient safety in clinical laboratories].

    Science.gov (United States)

    Giménez Marín, Ángeles; Rivas-Ruiz, Francisco

    2012-01-01

    The aim of this study was to prepare, pilot and validate a questionnaire to evaluate patient safety in the specific context of clinical laboratories. A specific questionnaire on patient safety in the laboratory, with 62 items grouped into six areas, was developed, taking into consideration the diverse human and laboratory contextual factors which may contribute to producing errors. A pilot study of 30 interviews was carried out, including validity and reliability analyses using principal components factor analysis and Cronbach's alpha. Subsequently, 240 questionnaires were sent to 21 hospitals, followed by a test-retest of 41 questionnaires with the definitive version. The sample analyzed was composed of 225 questionnaires (an overall response rate of 80%). Of the 62 items initially assessed, 17 were eliminated due to non-compliance with the criteria established before the principal components factor analysis was performed. For the 45 remaining items, 12 components were identified, with an cumulative variance of 69.5%. In seven of the 10 components with two or more items, Cronbach's alpha was higher than 0.7. The questionnaire items assessed in the test-retest were found to be stable. We present the first questionnaire with sufficiently proven validity and reliability for evaluating patient safety in the specific context of clinical laboratories. This questionnaire provides a useful instrument to perform a subsequent macrostudy of hospital clinical laboratories in Spain. The questionnaire can also be used to monitor and promote commitment to patient safety within the search for continuous quality improvement. Copyright © 2011 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. Preparation for microgravity - The role of the Microgravity Material Science Laboratory

    Science.gov (United States)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.

  20. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    Science.gov (United States)

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  1. Quality and future of clinical laboratories: the Vico's whole cyclical theory of the recurring cycles.

    Science.gov (United States)

    Plebani, Mario

    2018-05-24

    In the last few decades, laboratory medicine has undergone monumental changes, and laboratory technology, which has made enormous advances, now has new clinical applications thanks to the identification of a growing number of biomarkers and risk factors conducive to the promotion of predictive and preventive interventions that have enhanced the role of laboratory medicine in health care delivering. However, the paradigm shift in the past 50 years has led to a gap between laboratory and clinic, with an increased risk of inappropriateness in test request and interpretation, as well as the consolidation of analytical work in focused factories and megastructurers oriented only toward achieving greater volumes, decreasing cost per test and generating a vision of laboratory services as simple commodities. A careful historical revision of the changing models for delivering laboratory services in the United States leads to the prediction that there are several reasons for counteracting the vision of clinical laboratory as a commodity, and restoring the true nature of laboratory services as an integral part of the diagnosis and therapy process. The present study, which reports on internal and external drivers for change, proposes an integrated vision of quality in laboratory medicine.

  2. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  3. Error identification in a high-volume clinical chemistry laboratory: Five-year experience.

    Science.gov (United States)

    Jafri, Lena; Khan, Aysha Habib; Ghani, Farooq; Shakeel, Shahid; Raheem, Ahmed; Siddiqui, Imran

    2015-07-01

    Quality indicators for assessing the performance of a laboratory require a systematic and continuous approach in collecting and analyzing data. The aim of this study was to determine the frequency of errors utilizing the quality indicators in a clinical chemistry laboratory and to convert errors to the Sigma scale. Five-year quality indicator data of a clinical chemistry laboratory was evaluated to describe the frequency of errors. An 'error' was defined as a defect during the entire testing process from the time requisition was raised and phlebotomy was done until the result dispatch. An indicator with a Sigma value of 4 was considered good but a process for which the Sigma value was 5 (i.e. 99.977% error-free) was considered well controlled. In the five-year period, a total of 6,792,020 specimens were received in the laboratory. Among a total of 17,631,834 analyses, 15.5% were from within hospital. Total error rate was 0.45% and of all the quality indicators used in this study the average Sigma level was 5.2. Three indicators - visible hemolysis, failure of proficiency testing and delay in stat tests - were below 5 on the Sigma scale and highlight the need to rigorously monitor these processes. Using Six Sigma metrics quality in a clinical laboratory can be monitored more effectively and it can set benchmarks for improving efficiency.

  4. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  5. value-sensitive clinical accompaniment in community nursing science

    African Journals Online (AJOL)

    2010-11-05

    Nov 5, 2010 ... negative effects on clinical learning in community nursing science. The goal of this ..... such positive effect of value-sensitive communication during clinical .... computer games the whole morning; it was unpleasant);. 'Ons [die ...

  6. Filter Strategies for Mars Science Laboratory Orbit Determination

    Science.gov (United States)

    Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.

    2013-01-01

    The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.

  7. Beam line 4: A dedicated surface science facility at Daresbury Laboratory

    International Nuclear Information System (INIS)

    Dhanak, V.R.; Robinson, A.W.; van der Laan, G.; Thornton, G.

    1992-01-01

    We describe a beam line currently under construction at the Daresbury Laboratory which forms part of a surface science research facility for the Interdisciplinary Research Centre in Surface Science. The beam line has three branches, two of which are described here. The first branch covers the high-energy range 640 eV≤hν≤10 keV, being equipped with a double-crystal monochromator and a novel multicoated premirror system. The second branch line is optimized for the energy range 15≤hν≤250 eV, using cylindrical focusing mirrors, a spherical diffraction grating and an ellipsoidal refocusing mirror to achieve high resolution with a small spot size

  8. A Required Rotation in Clinical Laboratory Management for Pathology Residents

    OpenAIRE

    Arvind Rishi MD; Syed T. Hoda MD; James M. Crawford MD, PhD

    2016-01-01

    Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and ins...

  9. A national clinical quality program for Veterans Affairs catheterization laboratories (from the Veterans Affairs clinical assessment, reporting, and tracking program).

    Science.gov (United States)

    Maddox, Thomas M; Plomondon, Mary E; Petrich, Megan; Tsai, Thomas T; Gethoffer, Hans; Noonan, Gregory; Gillespie, Brian; Box, Tamara; Fihn, Stephen D; Jesse, Robert L; Rumsfeld, John S

    2014-12-01

    A "learning health care system", as outlined in a recent Institute of Medicine report, harnesses real-time clinical data to continuously measure and improve clinical care. However, most current efforts to understand and improve the quality of care rely on retrospective chart abstractions complied long after the provision of clinical care. To align more closely with the goals of a learning health care system, we present the novel design and initial results of the Veterans Affairs (VA) Clinical Assessment, Reporting, and Tracking (CART) program-a national clinical quality program for VA cardiac catheterization laboratories that harnesses real-time clinical data to support clinical care and quality-monitoring efforts. Integrated within the VA electronic health record, the CART program uses a specialized software platform to collect real-time patient and procedural data for all VA patients undergoing coronary procedures in VA catheterization laboratories. The program began in 2005 and currently contains data on 434,967 catheterization laboratory procedures, including 272,097 coronary angiograms and 86,481 percutaneous coronary interventions, performed by 801 clinicians on 246,967 patients. We present the initial data from the CART program and describe 3 quality-monitoring programs that use its unique characteristics-procedural and complications feedback to individual labs, coronary device surveillance, and major adverse event peer review. The VA CART program is a novel approach to electronic health record design that supports clinical care, quality, and safety in VA catheterization laboratories. Its approach holds promise in achieving the goals of a learning health care system. Published by Elsevier Inc.

  10. [Critical role of clinical laboratories in hospital infection control].

    Science.gov (United States)

    Yagi, Tetsuya

    2010-11-01

    The hospital infection control and prevention is recognized to be more and more important according to the advances in modern medical treatment and care. Clinical microbiology laboratory play critical roles in the hospital infection control as a member of infection control team (ICT). They are the first in a hospital to identify outbreak of MRSA in NICU and molecular epidemiological analysis of the isolates lead proper intervention of ICT to the concerned ward. From a viewpoint of infectious disease specialist, rapid and precise microbiological information is essential for the appropriate diagnosis and treatment of infectious diseases. Each medical technologist need to make efforts to understand the characteristics of the examinations for infectious diseases and send out information useful for clinical practices. In our hospital, with the participation of all members of medical technologists, rapid reporting system was developed for blood culture examinations, which greatly contribute to the appropriate treatment of bloodstream infections. Collaborations of clinical microbiology laboratory with other members of ICT realize high quality hospital infection control. They also need to be aware of themselves as good practitioners of infection control measures to prevent hospital infections.

  11. Clinical and Laboratory Predictors of Articular Disorders Among HIV ...

    African Journals Online (AJOL)

    radiologist for features of avascular necrosis (AVN) and sacroiliitis, respectively. Synovial fluid was obtained, for analysis and microscopy, culture/sensitivity testing and acid fast bacilli detection in those with demonstrable joint effusion. The clinically evident articular features, laboratory, and radiographic findings were used ...

  12. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    Science.gov (United States)

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  13. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  14. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  15. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  16. 77 FR 31072 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2012-05-24

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... Development Officer through the Director of the Clinical Science Research and Development Service on the... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  17. 76 FR 19189 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  18. 76 FR 65781 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  19. 75 FR 28686 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  20. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  1. SSPM based radiation sensing: Preliminary laboratory and clinical results

    International Nuclear Information System (INIS)

    Konnoff, Daniel C.; Plant, Thomas K.; Shiner, Elizabeth

    2011-01-01

    Recent Solid State Photomultiplier (SSPM) technology has matured, reaching a performance level that is suitable for replacement of the ubiquitous photomultiplier tube in selected applications for environmental radiation monitoring, clinical dosimetry, and medical imaging purposes. The objective of this work is low signal level laboratory and high signal level clinical testing of the Hamamatsu MPPC (S10362-11-050C), Photonique SSPM (0810G1), and Voxtel SiPM (SQBF-EKAA/SQBF-EIOA) SSPMs coupled to different inorganic scintillator crystals (Prelude 420, BGO), inorganic doped glass scintillator material SiO 2 :Cu 2+ and organic BCF-12 plastic scintillating fibers, used as detector elements. Plastic Optical Fibers (POFs) and Glass Optical Fibers (GOFs) are used as signal conduits for laboratory and clinical testing. Further, reduction of electron-beam-generated Cerenkov light in optical fibers is facilitated by the inclusion of metalized air-core capillary tubing between the BCF-12 plastic scintillating fiber and the POF. In a clinical setting dose linearity, percent depth dose, and angular measurements for 6 MV/18 MV photon beams and 9 MeV electron beams are compared with and without the use of the air-core capillary tubing for BCF-12 plastic scintillating fiber. These same measurements are repeated for SiO 2 :Cu 2+ scintillator material without air-core capillary tubing.

  2. Implementation of a companion diagnostic in the clinical laboratory

    DEFF Research Database (Denmark)

    Mancini, Irene; Pinzani, Pamela; Simi, Lisa

    2015-01-01

    A companion diagnostic test provides information that is essential for the safe and effective use of a corresponding therapeutic product as indicated in the drug instructions. The implementation of a companion diagnostic follows the rules of a molecular test for somatic mutations in a routine...... clinical laboratory environment and needs guidance on practical aspects, including the choice of the proper analytical method and the procedures for internal and external quality controls. Selection of the appropriate assay for detection of genetic alterations depends on several factors: the type...... on restrictions of the method used. In relation to these aspects herein we report an opinion paper of the Working Group Personalized Laboratory Medicine jointly constituted by the European Federation of Laboratory Medicine (EFLM) and by the European Society of Pharmacogenomics and Theranostics (ESPT) using...

  3. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  4. Gamification in Science Education: Gamifying Learning of Microscopic Processes in the Laboratory

    Science.gov (United States)

    Fleischmann, Katja; Ariel, Ellen

    2016-01-01

    Understanding and trouble-shooting microscopic processes involved in laboratory tests are often challenging for students in science education because of the inability to visualize the different steps and the various errors that may influence test outcome. The effectiveness of gamification or the use of game design elements and game-mechanics were…

  5. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    Science.gov (United States)

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  6. 78 FR 70102 - Clinical Science Research and Development Service Cooperative Studies; Scientific Evaluation...

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... notice under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... Development Officer through the Director of the Clinical Science Research and Development Service on the...

  7. 75 FR 79446 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2010-12-20

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... Officer through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  8. 77 FR 72438 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2012-12-05

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... through the Director of the Clinical Science Research and Development Service on the relevance and...

  9. 78 FR 53015 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2013-08-27

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects and...

  10. 76 FR 73781 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... Officer through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  11. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  12. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    Background: Chorionic villous sampling is a first trimester invasive diagnosis procedure that was introduced in Nigeria <2 decades ago. Objective: The objective of the following study is to review experience with chorionic villous sampling in relation to clinical and laboratory procedures, including general characteristics of ...

  13. The use of reference change values in clinical laboratories.

    Science.gov (United States)

    Bugdayci, Guler; Oguzman, Hamdi; Arattan, Havva Yasemin; Sasmaz, Guler

    2015-01-01

    The use of Reference Change Values (RCV) has been advocated as very useful for monitoring individuals. Most of these are performed for monitoring individuals in acute situations and for following up the improvement or deterioration of chronic diseases. In our study, we aimed at evaluating the RCV calculation for 24 clinical chemistry analytes widely used in clinical laboratories and the utilization of this data. Twenty-four serum samples were analyzed with Abbott kits (Abbott Laboratories, Abbott Park, IL, USA), manufactured for use with the Architect c8000 (Abbott Laboratories, Abbott Park, IL, USA) auto-analyzer. We calculated RCV using the following formula: RCV = Z x 2 1/2x (CVA2 + CVw2)1/2. Four reference change values (RCV) were calculated for each analyte using four statistical probabilities (0.95, and 0.99, unidirectional and bidirectional). Moreover, by providing an interval after identifying upper and lower limits with the Reference Change Factor (RCF), serially measured tests were calculated by using two formulas: exp (Z x 2 1/2 x (CV(A)2 + CVw2)½/100) for RCF(UP) and (1/RCF(UP)) for RCF(DOWN). RCVs of these analytes were calculated as 14.63% for glucose, 29.88% for urea, 17.75% for ALP, 53.39% for CK, 46.98% for CK-MB, 21.00% amylase, 8.00% for total protein, 8.70% for albumin, 51.08% for total bilirubin, 86.34% for direct bilirubin, 6.40% for calcium, 15.03% for creatinine, 21.47% for urate, 14.19% for total cholesterol, 46.62% for triglyceride, 20.51% for HDL-cholesterol, 29.59% for AST, 46.31% for ALT, 31.54% for GGT, 20.92% for LDH, 19.75% for inorganic phosphate, 3.05% for sodium, 11.75% for potassium, 4.44% for chloride (RCV, p laboratories. RCV could be available as a tool for making clinical decision, especially when monitoring individuals.

  14. Obtaining valid laboratory data in clinical trials conducted in resource diverse settings: lessons learned from a microbicide phase III clinical trial.

    Directory of Open Access Journals (Sweden)

    Tania Crucitti

    2010-10-01

    Full Text Available Over the last decade several phase III microbicides trials have been conducted in developing countries. However, laboratories in resource constrained settings do not always have the experience, infrastructure, and the capacity to deliver laboratory data meeting the high standards of clinical trials. This paper describes the design and outcomes of a laboratory quality assurance program which was implemented during a phase III clinical trial evaluating the efficacy of the candidate microbicide Cellulose Sulfate 6% (CS [1].In order to assess the effectiveness of CS for HIV and STI prevention, a phase III clinical trial was conducted in 5 sites: 3 in Africa and 2 in India. The trial sponsor identified an International Central Reference Laboratory (ICRL, responsible for the design and management of a quality assurance program, which would guarantee the reliability of laboratory data. The ICRL provided advice on the tests, assessed local laboratories, organized trainings, conducted supervision visits, performed re-tests, and prepared control panels. Local laboratories were provided with control panels for HIV rapid tests and Chlamydia trachomatis/Neisseria gonorrhoeae (CT/NG amplification technique. Aliquots from respective control panels were tested by local laboratories and were compared with results obtained at the ICRL.Overall, good results were observed. However, discordances between the ICRL and site laboratories were identified for HIV and CT/NG results. One particular site experienced difficulties with HIV rapid testing shortly after study initiation. At all sites, DNA contamination was identified as a cause of invalid CT/NG results. Both problems were timely detected and solved. Through immediate feedback, guidance and repeated training of laboratory staff, additional inaccuracies were prevented.Quality control guidelines when applied in field laboratories ensured the reliability and validity of final study data. It is essential that sponsors

  15. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  16. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  17. CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.

    Science.gov (United States)

    HANLEY, T.D.; STEER, M.D.

    THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…

  18. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  19. Terrain Safety Assessment in Support of the Mars Science Laboratory Mission

    Science.gov (United States)

    Kipp, Devin

    2012-01-01

    In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.

  20. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  1. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    Science.gov (United States)

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  2. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    Science.gov (United States)

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  3. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  4. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  5. Building Connecticut's clinical biodosimetry laboratory surge capacity to mitigate the health consequences of radiological and nuclear disasters: A collaborative approach between the state biodosimetry laboratory and Connecticut's medical infrastructure

    International Nuclear Information System (INIS)

    Albanese, Joseph; Martens, Kelly; Arnold, Jeffrey L.; Kelley, Katherine; Kristie, Virginia; Forte, Elaine; Schneider, Mark; Dainiak, Nicholas

    2007-01-01

    Biodosimetry, based on the analysis of dicentric chromosomes in circulating mononuclear cells, is considered the 'gold standard' for estimating radiation dose and is used to make informed decisions regarding the medical management of irradiated persons. This paper describes the development of biodosimetry laboratory surge capacity for the health consequences of radiological and nuclear disasters in Connecticut, including: (1) establishment of the Biodosimetry Laboratory for the timely assessment of radiation dosage in biodosimetry specimens; (2) identification of clinical laboratories qualified and willing to process biodosimetry specimens from a large number of victims; (3) training of clinical laboratorians in initial biodosimetry specimen processing; and (4) conducting a functional drill that evaluated the effectiveness of these elements. Descriptive information was obtained from: (1) personal observations; (2) a needs assessment of clinical laboratories in Connecticut; (3) records from a training program of clinical laboratorians in biodosimetry specimen processing that was developed and provided by the Yale New Haven Center for Emergency Preparedness and Disaster Response; and (4) records from a statewide functional drill in biodosimetry specimen processing that was developed and conducted by the State of Connecticut Biodosimetry Laboratory. A needs assessment of clinical laboratories in Connecticut identified 30 of 32 clinical laboratories qualified and willing to perform initial biodosimetry specimen processing. Currently, 79 clinical laboratorians in 19 of these qualified clinical laboratories have been trained in biodosimetry specimen processing. A functional exercise was conducted involving 37 of these trained clinical laboratorians in 18 qualified laboratories as well as the Biodosimetry Laboratory. The average turnaround time for biodosimetry specimen processing in this drill was 199 min. Exercise participants provided feedback which will be used to

  6. Nigerian Journal of Physiological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological ...

  7. Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times.

    Science.gov (United States)

    Inal, Tamer C; Goruroglu Ozturk, Ozlem; Kibar, Filiz; Cetiner, Salih; Matyar, Selcuk; Daglioglu, Gulcin; Yaman, Akgun

    2018-01-01

    Organizing work flow is a major task of laboratory management. Recently, clinical laboratories have started to adopt methodologies such as Lean Six Sigma and some successful implementations have been reported. This study used Lean Six Sigma to simplify the laboratory work process and decrease the turnaround time by eliminating non-value-adding steps. The five-stage Six Sigma system known as define, measure, analyze, improve, and control (DMAIC) is used to identify and solve problems. The laboratory turnaround time for individual tests, total delay time in the sample reception area, and percentage of steps involving risks of medical errors and biological hazards in the overall process are measured. The pre-analytical process in the reception area was improved by eliminating 3 h and 22.5 min of non-value-adding work. Turnaround time also improved for stat samples from 68 to 59 min after applying Lean. Steps prone to medical errors and posing potential biological hazards to receptionists were reduced from 30% to 3%. Successful implementation of Lean Six Sigma significantly improved all of the selected performance metrics. This quality-improvement methodology has the potential to significantly improve clinical laboratories. © 2017 Wiley Periodicals, Inc.

  8. Kikuchi-Fujimoto disease: Clinical and laboratory characteristics and outcome

    Directory of Open Access Journals (Sweden)

    P S Rakesh

    2014-01-01

    Full Text Available Introduction: Kikuchi-Fujimoto disease is an uncommon disorder with worldwide distribution, characterized by fever and benign enlargement of the lymph nodes, primarily affecting young adults. Awareness about this disorder may help prevent misdiagnosis and inappropriate investigations and treatment. The objective of the study was to evaluate the clinical and laboratory characteristics of histopathologically confirmed cases of Kikuchi′s disease from a tertiary care center in southern India. Materials and Methods: Retrospective analysis of all adult patients with histopathologically confirmed Kikuchi′s disease from January 2007 to December 2011 in a 2700-bed teaching hospital in South India was done. The clinical and laboratory characteristics and outcome were analyzed. Results: There were 22 histopathologically confirmed cases of Kikuchi′s disease over the 5-year period of this study. The mean age of the subjects′ was 29.7 years (SD 8.11 and majority were women (Male: female- 1:3.4. Apart from enlarged cervical lymph nodes, prolonged fever was the most common presenting complaint (77.3%. The major laboratory features included anemia (54.5%, increased erythrocyte sedimentation rate (31.8%, elevated alanine aminotransferase (27.2% and elevated lactate dehydrogenase (LDH (31.8%. Conclusion: Even though rare, Kikuchi′s disease should be considered in the differential diagnosis of young individuals, especially women, presenting with lymphadenopathy and prolonged fever. Establishing the diagnosis histopathologically is essential to avoid inappropriate investigations and therapy.

  9. Clinimetrics: the science of clinical measurements.

    Science.gov (United States)

    Fava, G A; Tomba, E; Sonino, N

    2012-01-01

    'Clinimetrics' is the term introduced by Alvan R. Feinstein in the early 1980s to indicate a domain concerned with indexes, rating scales and other expressions that are used to describe or measure symptoms, physical signs and other clinical phenomena. Clinimetrics has a set of rules that govern the structure of indexes, the choice of component variables, the evaluation of consistency, validity and responsiveness. This review illustrates how clinimetrics may help expanding the narrow range of information that is currently used in clinical science. It will focus on characteristics and types of clinimetric indexes and their current use. The clinimetric perspective provides an intellectual home for clinical judgment, whose implementation is likely to improve outcomes both in clinical research and practice. © 2011 Blackwell Publishing Ltd.

  10. Nomenclature and basic concepts in automation in the clinical laboratory setting: a practical glossary.

    Science.gov (United States)

    Evangelopoulos, Angelos A; Dalamaga, Maria; Panoutsopoulos, Konstantinos; Dima, Kleanthi

    2013-01-01

    In the early 80s, the word automation was used in the clinical laboratory setting referring only to analyzers. But in late 80s and afterwards, automation found its way into all aspects of the diagnostic process, embracing not only the analytical but also the pre- and post-analytical phase. While laboratories in the eastern world, mainly Japan, paved the way for laboratory automation, US and European laboratories soon realized the benefits and were quick to follow. Clearly, automation and robotics will be a key survival tool in a very competitive and cost-concious healthcare market. What sets automation technology apart from so many other efficiency solutions are the dramatic savings that it brings to the clinical laboratory. Further standardization will assure the success of this revolutionary new technology. One of the main difficulties laboratory managers and personnel must deal with when studying solutions to reengineer a laboratory is familiarizing themselves with the multidisciplinary and technical terminology of this new and exciting field. The present review/glossary aims at giving an overview of the most frequently used terms within the scope of laboratory automation and to put laboratory automation on a sounder linguistic basis.

  11. Socio-demographic, Clinical and Laboratory Features of Rotavirus Gastroenteritis in Children Treated in Pediatric Clinic

    OpenAIRE

    Azemi, Mehmedali; Berisha, Majlinda; Ismaili-Jaha, Vlora; Kolgeci, Selim; Avdiu, Muharrem; Jakupi, Xhevat; Hoxha, Rina; Hoxha-Kamberi, Teuta

    2013-01-01

    Aim: The aim of work was presentation of several socio-demographic, clinical and laboratory characteristics of gastroenteritis caused by rotavirus. The examinees and methods: The examinees were children under the age of five years treated at the Pediatric Clinic due to acute gastroenteritis caused by rotavirus. Rotavirus is isolated by method chromatographic immunoassay by Cer Test Biotec. Results: From the total number of patients (850) suffering from acute gastroenteritis, feces test on bac...

  12. The comparative importance of books: clinical psychology in the health sciences library.

    Science.gov (United States)

    Wehmeyer, J M; Wehmeyer, S

    1999-01-01

    Clinical psychology has received little attention as a subject in health sciences library collections. This study seeks to demonstrate the relative importance of the monographic literature to clinical psychology through the examination of citations in graduate student theses and dissertations at the Fordham Health Sciences Library, Wright State University. Dissertations and theses were sampled randomly; citations were classified by format, counted, and subjected to statistical analysis. Books and book chapters together account for 35% of the citations in clinical psychology dissertations, 25% in nursing theses, and 8% in biomedical sciences theses and dissertations. Analysis of variance indicates that the citations in dissertations and theses in the three areas differ significantly (F = 162.2 with 2 and 253 degrees of freedom, P = 0.0001). Dissertations and theses in biomedical sciences and nursing theses both cite significantly more journals per book than the dissertations in clinical psychology. These results support the hypothesis that users of clinical psychology literature rely more heavily on books than many other users of a health sciences library. Problems with using citation analyses in a single subject to determine a serials to monographs ratio for a health sciences library are pointed out. PMID:10219478

  13. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  14. Chemistry as the defining science: discipline and training in nineteenth-century chemical laboratories.

    Science.gov (United States)

    Jackson, Catherine M

    2011-06-01

    The institutional revolution has become a major landmark of late-nineteenth century science, marking the rapid construction of large, institutional laboratories which transformed scientific training and practice. Although it has served historians of physics well, the institutional revolution has proved much more contentious in the case of chemistry. I use published sources, mainly written by chemists and largely focused on laboratories built in German-speaking lands between about 1865 and 1900, to show that chemical laboratory design was inextricably linked to productive practice, large-scale pedagogy and disciplinary management. I argue that effective management of the novel risks inherent in teaching and doing organic synthesis was significant in driving and shaping the construction of late-nineteenth century institutional chemical laboratories, and that these laboratories were essential to the disciplinary development of chemistry. Seen in this way, the laboratory necessarily becomes part of the material culture of late-nineteenth century chemistry, and I show how this view leads not only to a revision of what is usually known as the laboratory revolution in chemistry but also to a new interpretation of the institutional revolution in physics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Candida bloodstream infection: a clinical microbiology laboratory perspective.

    Science.gov (United States)

    Pongrácz, Júlia; Kristóf, Katalin

    2014-09-01

    The incidence of Candida bloodstream infection (BSI) has been on the rise in several countries worldwide. Species distribution is changing; an increase in the percentage of non-albicans species, mainly fluconazole non-susceptible C. glabrata was reported. Existing microbiology diagnostic methods lack sensitivity, and new methods need to be developed or further evaluation for routine application is necessary. Although reliable, standardized methods for antifungal susceptibility testing are available, the determination of clinical breakpoints remains challenging. Correct species identification is important and provides information on the intrinsic susceptibility profile of the isolate. Currently, acquired resistance in clinical Candida isolates is rare, but reports indicate that it could be an issue in the future. The role of the clinical microbiology laboratory is to isolate and correctly identify the infective agent and provide relevant and reliable susceptibility data as soon as possible to guide antifungal therapy.

  16. [Study of continuous quality improvement for clinical laboratory processes via the platform of Hospital Group].

    Science.gov (United States)

    Song, Wenqi; Shen, Ying; Peng, Xiaoxia; Tian, Jian; Wang, Hui; Xu, Lili; Nie, Xiaolu; Ni, Xin

    2015-05-26

    The program of continuous quality improvement in clinical laboratory processes for complete blood count (CBC) was launched via the platform of Beijing Children's Hospital Group in order to improve the quality of pediatric clinical laboratories. Fifteen children's hospitals of Beijing Children's Hospital group were investigated using the method of Chinese adapted continuous quality improvement with PDCA (Plan-Do-Check-Action). The questionnaire survey and inter-laboratory comparison was conducted to find the existing problems, to analyze reasons, to set forth quality targets and to put them into practice. Then, targeted training was conducted to 15 children's hospitals and the second questionnaire survey, self examinations by the clinical laboratories was performed. At the same time, the Group's online internal quality control platform was established. Overall effects of the program were evaluated so that lay a foundation for the next stage of PDCA. Both quality of control system documents and CBC internal quality control scheme for all of clinical laboratories were improved through this program. In addition, standardization of performance verification was also improved, especially with the comparable verification rate of precision and internal laboratory results up to 100%. In terms of instrument calibration and mandatory diagnostic rates, only three out of the 15 hospitals (20%) failed to pass muster in 2014 from 46.67% (seven out of the 15 hospitals) in 2013. The abnormal data of intraday precision variance coefficients of the five CBC indicator parameters (WBC, RBC, Hb, Plt and Hct) of all the 15 laboratories accounted for 1.2% (2/165) in 2014, a marked decrease from 9.6% (14/145) in 2013. While the number of the hospitals using only one horizontal quality control object for daily quality control has dropped to three from five. The 15 hospitals organized a total of 263 times of training in 2014 from 101 times in 2013, up 160%. The quality improvement program for

  17. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: Code of Conduct, Version 2--2008.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2009-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 10 years, more than 2000 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Federation of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). A Code of Conduct was adopted in 2003 and a revised and updated version, taking account particularly of the guidelines of the Conseil Européen des Professions Libérales (CEPLIS) of which EFCC is a member, is presented in this article. The revised version was approved by the EC4 Register Commission and by the EFCC Executive Board in Paris on 6 November, 2008.

  18. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    Science.gov (United States)

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  19. The effectiveness of digital microscopy as a teaching tool in medical laboratory science curriculum.

    Science.gov (United States)

    Castillo, Demetra

    2012-01-01

    A fundamental component to the practice of Medical Laboratory Science (MLS) is the microscope. While traditional microscopy (TM) is gold standard, the high cost of maintenance has led to an increased demand for alternative methods, such as digital microscopy (DM). Slides embedded with blood specimens are converted into a digital form that can be run with computer driven software. The aim of this study was to investigate the effectiveness of digital microscopy as a teaching tool in the field of Medical Laboratory Science. Participants reviewed known study slides using both traditional and digital microscopy methods and were assessed using both methods. Participants were randomly divided into two groups. Group 1 performed TM as the primary method and DM as the alternate. Group 2 performed DM as the primary and TM as the alternate. Participants performed differentials with their primary method, were assessed with both methods, and then performed differentials with their alternate method. A detailed assessment rubric was created to determine the accuracy of student responses through comparison of clinical laboratory and instructor results. Student scores were reflected as a percentage correct from these methods. This assessment was done over two different classes. When comparing results between methods for each, independent of the primary method used, results were not statistically different. However, when comparing methods between groups, Group 1 (n = 11) (TM = 73.79% +/- 9.19, DM = 81.43% +/- 8.30; paired t10 = 0.182, p < 0.001) showed a significant difference from Group 2 (n = 14) (TM = 85.64% +/- 5.30, DM = 85.91% +/- 7.62; paired t13 = 3.647, p = 0.860). In the subsequent class, results between both groups (n = 13, n = 16, respectively) did not show any significant difference between groups (Group 1 TM = 86.38% +/- 8.17, Group 1 DM = 88.69% +/- 3.86; paired t12 = 1.253, p = 0.234; Group 2 TM = 86.75% +/- 5.37, Group 2 DM = 86.25% +/- 7.01, paired t15 = 0.280, p

  20. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Science.gov (United States)

    2011-10-13

    ...The U.S. EPA invites interested stakeholders to participate in a laboratory-based technical workshop that will focus on the conduct of the Association of Official Analytical Chemists (AOAC) Use-dilution method (UDM) and the status and implementation of a new test method, the Organization for Economic Cooperation and Development (OECD) Quantitative Method for Evaluating Bactericidal Activity of Microbicides Used on Hard, Non-Porous Surfaces. The workshop is being held to discuss current and proposed revisions mainly associated with the Staphyloccocus aureus and Pseudomonas aeruginosa methodologies. The goals of the workshop are to provide a comprehensive review and discussion period on the status of the UDM and OEDC methods integrated with hands-on laboratory demonstrations. An overview of various data sets and collaborative studies will be used to supplement the discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory.

  1. Learning of Musculoskeletal Ligament Stress Testing in a Gross Anatomy Laboratory

    Science.gov (United States)

    Krause, David A.; Youdas, James W.; Hollman, John H.

    2011-01-01

    Human anatomy in physical therapy programs is a basic science course serving as a foundation for subsequent clinical courses. Integration of anatomy with a clinical emphasis throughout a curriculum provides opportunities for reinforcement of previously learned material. Considering the human cadaver laboratory as a fixed cost to our program, we…

  2. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  3. [Security Management in Clinical Laboratory Departments and Facilities: Current Status and Issues].

    Science.gov (United States)

    Ishida, Haku; Nakamura, Junji; Yoshida, Hiroshi; Koike, Masaru; Inoue, Yuji

    2014-11-01

    We conducted a questionnaire survey regarding the current activities for protecting patients' privacy and the security of information systems (IS) related to the clinical laboratory departments of university hospitals, certified training facilities for clinical laboratories, and general hospitals in Yamaguchi Prefecture. The response rate was 47% from 215 medical institutions, including three commercial clinical laboratory centers. The results showed that there were some differences in management activities among facilities with respect to continuing education, the documentation or regulation of operational management for paper records, electronic information, remaining samples, genetic testing, and laboratory information for secondary use. They were suggested to be caused by differences in functions between university and general hospitals, differences in the scale of hospitals, or whether or not hospitals have received accreditation or ISO 15189. Regarding the IS, although the majority of facilities had sufficiently employed the access control to IS, there was some room for improvement in the management of special cases such as VIPs and patients with HIV infection. Furthermore, there were issues regarding the login method for computers shared by multiple staff, the showing of the names of personnel in charge of reports, and the risks associated with direct connections to systems and the Internet and the use of portable media such as USB memory sticks. These results indicated that further efforts are necessary for each facility to continue self-assessment and make improvements.

  4. Near-drowning and clinical laboratory changes.

    Science.gov (United States)

    Oehmichen, Manfred; Hennig, Renate; Meissner, Christoph

    2008-01-01

    Opposite to clinical laboratory findings in experimental drowning of animals (erythrocytic lysis, hyperkalemia, and final cardial fibrillation) are the observations in drowned humans (increase of pCO2, hypoxic encephalopathy), which leads to a different pathophysiological interpretation of the drowning process. This process, however, is recently discussed again, therefore an additional study seemed to be recommended. In a retrospective study, 31 cases of near-drowning (23 cases: fresh water; 8 cases: brackish water) clinical laboratory data were analysed. While 21 of the cases were fatal with a delay of up to 180 days, 10 individuals survived the accident, four cases with severe neurological deficits. Data of pH, potassium, sodium, chloride, hemoglobin and total protein were collected during the very early post-drowning period. Nearly all cases (96%) revealed a reduction of pH due to hypoxic acidosis, and only two cases (6.5%) exhibited a slight hyperkalemia. The hemoglobin level was normal in most of the cases (83%) and slightly reduced in the others (17%) while the protein level was slightly reduced in most of the fatalities (80%). As a result of our investigation we have to state the lack of hyperkalemia as well as of an increase of the hemoglobin level indicate that there is no distinct intravascular red cell lysis due to influx of water into the vascular compartment. Therefore the death by drowning in humans in most cases is the result of a hypoxic cerebral process. A comparison with animal experiments obviously is not helpful because the drowning process in humans leads to an aspiration of only 2-4 ml water/kg, while in animal experiments more than 10 ml water/kg will be artificially aspirated leading to red cell lysis as well as to electrolyte disturbances and cardial fibrillation.

  5. On art and science: an epistemic framework for integrating social science and clinical medicine.

    Science.gov (United States)

    Wasserman, Jason Adam

    2014-06-01

    Calls for incorporating social science into patient care typically have accounted for neither the logistic constraints of medical training nor the methodological fallacies of utilizing aggregate "social facts" in clinical practice. By elucidating the different epistemic approaches of artistic and scientific practices, this paper illustrates an integrative artistic pedagogy that allows clinical practitioners to generate social scientific insights from actual patient encounters. Although there is no shortage of calls to bring social science into medicine, the more fundamental processes of thinking by which art and science proceed have not been addressed to this end. As such, the art of medical practice is conceptualized as an innate gift, and thus little is done to cultivate it. Yet doing so is more important than ever because uncertainty in diagnosing and treating chronic illnesses, the most significant contemporary mortality risks, suggests a re-expanding role for clinical judgment. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Using network science in the language sciences and clinic.

    Science.gov (United States)

    Vitevitch, Michael S; Castro, Nichol

    2015-02-01

    A number of variables—word frequency, word length—have long been known to influence language processing. This study briefly reviews the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighbourhood density. It then describes a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics and other disciplines. In this approach, nodes represent individual entities in a system (i.e. phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e. phonological neighbours) and various measures enable researchers to assess the micro-level (i.e. the individual word), the macro-level (i.e. characteristics about the whole system) and the meso-level (i.e. how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased understanding of language processing, these measures only assess the "micro-level". Using network science, researchers can examine words at various levels in the system and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice.

  7. Transmission of hepatitis B virus in clinical laboratory areas.

    Science.gov (United States)

    Lauer, J L; VanDrunen, N A; Washburn, J W; Balfour, H H

    1979-10-01

    The transmission of hepatitis B virus (HBV) in clinical laboratory areas was delineated by the use of hepatitis B surface antigen (HBsAg) as presumptive evidence for the presence of the infective agent. Twenty-six (34%) of 76 environmental surfaces sampled were positive for HBsAg. The outer surfaces of blood- and serum-specimen containers had HBsAg contamination rates of 55% (six of 11) and 44% (four of nine), respectively. Subsequent handling of pipetting aids, marking devices, and other items led to their contamination and further dissemination of HBsAg. An assay instrument for complete determinations of blood cell counts was observed to splatter and drip blood during its operation. The contamination rate for environmental surfaces associated with this instrument was 15%. The data indicate that transmission of HBV in the clinical laboratory is subtle and mainly via hand contact with contaminated items during the various steps of blood processing. These data support the concept that the portal of entry of HBV is through inapparent breaks in skin and mucous membranes.

  8. Practices for Identifying and Rejecting Hemolyzed Specimens Are Highly Variable in Clinical Laboratories.

    Science.gov (United States)

    Howanitz, Peter J; Lehman, Christopher M; Jones, Bruce A; Meier, Frederick A; Horowitz, Gary L

    2015-08-01

    Hemolysis is an important clinical laboratory quality attribute that influences result reliability. To determine hemolysis identification and rejection practices occurring in clinical laboratories. We used the College of American Pathologists Survey program to distribute a Q-Probes-type questionnaire about hemolysis practices to Chemistry Survey participants. Of 3495 participants sent the questionnaire, 846 (24%) responded. In 71% of 772 laboratories, the hemolysis rate was less than 3.0%, whereas in 5%, it was 6.0% or greater. A visual scale, an instrument scale, and combination of visual and instrument scales were used to identify hemolysis in 48%, 11%, and 41% of laboratories, respectively. A picture of the hemolysis level was used as an aid to technologists' visual interpretation of hemolysis levels in 40% of laboratories. In 7.0% of laboratories, all hemolyzed specimens were rejected; in 4% of laboratories, no hemolyzed specimens were rejected; and in 88% of laboratories, some specimens were rejected depending on hemolysis levels. Participants used 69 different terms to describe hemolysis scales, with 21 terms used in more than 10 laboratories. Slight and moderate were the terms used most commonly. Of 16 different cutoffs used to reject hemolyzed specimens, moderate was the most common, occurring in 30% of laboratories. For whole blood electrolyte measurements performed in 86 laboratories, 57% did not evaluate the presence of hemolysis, but for those that did, the most common practice in 21 laboratories (24%) was centrifuging and visually determining the presence of hemolysis in all specimens. Hemolysis practices vary widely. Standard assessment and consistent reporting are the first steps in reducing interlaboratory variability among results.

  9. Developing Critical Thinking Skills Using the Science Writing Heuristic in the Chemistry Laboratory

    Science.gov (United States)

    Stephenson, N. S.; Sadler-McKnight, N. P.

    2016-01-01

    The Science Writing Heuristic (SWH) laboratory approach is a teaching and learning tool which combines writing, inquiry, collaboration and reflection, and provides scaffolding for the development of critical thinking skills. In this study, the California Critical Thinking Skills Test (CCTST) was used to measure the critical thinking skills of…

  10. Comparing the use of SNOMED CT and ICD10 for coding clinical conditions to implement laboratory guidelines.

    Science.gov (United States)

    Yasini, Mobin; Ebrahiminia, Vahid; Duclos, Catherine; Venot, Alain; Lamy, Jean-Baptiste

    2013-01-01

    Laboratory medicine is responsible for an important part of hospital expenditure. Providing appropriate decision support to laboratory test requesters at the point of care is one of the main incentives for implementing laboratory guidelines, which can improve medical care. Laboratory guidelines developed by local experts in the Parisian region and two national guidelines for dyslipidemia were analyzed to extract test ordering recommendations. Clinical conditions which can be a trigger to order or not to order laboratory tests were extracted and mapped with ICD10 and SNOMED CT: 43.1% of clinical conditions were matched by ICD10 whereas SNOMED CT covered 80.1% of these conditions. For the non-mapped conditions, the main problem was found to be the ambiguity of the terms used in the guidelines. Ordinal characteristics of some clinical conditions and using terms more specific than SNOMED CT were other causes of mapping failure. Applying consistent and explicit concepts in the development of guidelines would lead to better implementation. By resolving the guideline ambiguity, SNOMED CT is a good choice and covers almost all of the clinical conditions in laboratory guidelines which are needed to implement in a Clinical Decision Support System.

  11. BioVeL: a virtual laboratory for data analysis and modelling in biodiversity science and ecology.

    Science.gov (United States)

    Hardisty, Alex R; Bacall, Finn; Beard, Niall; Balcázar-Vargas, Maria-Paula; Balech, Bachir; Barcza, Zoltán; Bourlat, Sarah J; De Giovanni, Renato; de Jong, Yde; De Leo, Francesca; Dobor, Laura; Donvito, Giacinto; Fellows, Donal; Guerra, Antonio Fernandez; Ferreira, Nuno; Fetyukova, Yuliya; Fosso, Bruno; Giddy, Jonathan; Goble, Carole; Güntsch, Anton; Haines, Robert; Ernst, Vera Hernández; Hettling, Hannes; Hidy, Dóra; Horváth, Ferenc; Ittzés, Dóra; Ittzés, Péter; Jones, Andrew; Kottmann, Renzo; Kulawik, Robert; Leidenberger, Sonja; Lyytikäinen-Saarenmaa, Päivi; Mathew, Cherian; Morrison, Norman; Nenadic, Aleksandra; de la Hidalga, Abraham Nieva; Obst, Matthias; Oostermeijer, Gerard; Paymal, Elisabeth; Pesole, Graziano; Pinto, Salvatore; Poigné, Axel; Fernandez, Francisco Quevedo; Santamaria, Monica; Saarenmaa, Hannu; Sipos, Gergely; Sylla, Karl-Heinz; Tähtinen, Marko; Vicario, Saverio; Vos, Rutger Aldo; Williams, Alan R; Yilmaz, Pelin

    2016-10-20

    Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. Our work shows we can deliver an operational

  12. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  13. Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories.

    Science.gov (United States)

    Boyle, Maeve; Moore, John E; Whitehouse, Joanna L; Bilton, Diana; Downey, Damian G

    2018-03-02

    There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.

  14. Yeast identification in routine clinical microbiology laboratory and its clinical relevance

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2011-01-01

    Full Text Available Rapid identification of yeast infections is helpful in prompt appropriate antifungal therapy. In the present study, the usefulness of chromogenic medium, slide culture technique and Vitek2 Compact (V2C has been analysed. A total of 173 clinical isolates of yeast species were included in the study. An algorithm to identify such isolates in routine clinical microbiology laboratory was prepared and followed. Chromogenic medium was able to identify Candida albicans, C. tropicalis, C. krusei, C. parapsilosis and Trichosporon asahii. Chromogenic medium was also helpful in identifying "multi-species" yeast infections. The medium was unable to provide presumptive identification of C. pelliculosa, C. utilis, C. rugosa, C. glabrata and C. hemulonii. Vitek 2 compact (V2C differentiated all pseudohypae non-producing yeast species. The algorithm followed was helpful in timely presumptive identification and final diagnosis of yeast infections, including multi-species yeast infections.

  15. Adult Hematology and Clinical Chemistry Laboratory Reference Ranges in a Zimbabwean Population.

    Science.gov (United States)

    Samaneka, Wadzanai P; Mandozana, Gibson; Tinago, Willard; Nhando, Nehemiah; Mgodi, Nyaradzo M; Bwakura-Dangarembizi, Mutsawashe F; Munjoma, Marshall W; Gomo, Zvenyika A R; Chirenje, Zvavahera M; Hakim, James G

    2016-01-01

    Laboratory reference ranges used for clinical care and clinical trials in various laboratories in Zimbabwe were derived from textbooks and research studies conducted more than ten years ago. Periodic verification of these ranges is essential to track changes over time. The purpose of this study was to establish hematology and chemistry laboratory reference ranges using more rigorous methods. A community-based cross-sectional study was carried out in Harare, Chitungwiza, and Mutoko. A multistage sampling technique was used. Samples were transported from the field for analysis at the ISO15189 certified University of Zimbabwe-University of California San Francisco Central Research Laboratory. Hematology and clinical chemistry reference ranges lower and upper reference limits were estimated at the 2.5th and 97.5th percentiles respectively. A total of 769 adults (54% males) aged 18 to 55 years were included in the analysis. Median age was 28 [IQR: 23-35] years. Males had significantly higher red cell counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin compared to females. Females had higher white cell counts, platelets, absolute neutrophil counts, and absolute lymphocyte counts compared to males. There were no gender differences in eosinophils, monocytes, and absolute basophil count. Males had significantly higher levels of urea, sodium, potassium, calcium, creatinine, amylase, total protein, albumin and liver enzymes levels compared to females. Females had higher cholesterol and lipase compared with males. There are notable differences in the white cell counts, neutrophils, cholesterol, and creatinine kinase when compared with the currently used reference ranges. Data from this study provides new country specific reference ranges which should be immediately adopted for routine clinical care and accurate monitoring of adverse events in research studies.

  16. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    Science.gov (United States)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  17. Preanalytical quality in clinical chemistry laboratory.

    Science.gov (United States)

    Ahmad, M Imteyaz; Ramesh, K L; Kumar, Ravi

    2014-01-01

    Haemolysis is usually caused by inadequate specimen collection or preanalytical handling and is suggested to be a suitable indicator of preanalytical quality. We investigated the prevalence of detectable haemolysis in all routine venous blood samples in OPDs and IPDs to identify differences in preanalytical quality. Haemolysis index (HI) values were obtained from a Vitros 5,1 in the routine clinical chemistry laboratory for samples collected in the outpatient department (OPD) collection centres, a hospital, and inpatient departments (IPD). Haemolysis was defined as a HI > or = 15 (detection limit). Samples from the OPD with the highest prevalence of haemolysis were 6.1 times (95% confidence interval (CI) 4.0 - 9.2) more often haemolysed compared to the center with the lowest prevalence. Of the samples collected in primary health care, 10.4% were haemolysed compared to 31.1% in the IPDs (p = 0.001). A notable difference in haemolysed samples was found between the IPDs section staffed by emergency medicine physicians and the section staffed by primary health care physicians (34.8% vs. 11.3%, p = 0.001). The significant variation in haemolysis indices among the investigated units is likely to reflect varying preanalytical conditions. The HI is a valuable tool for estimation and follow-up of preanalytical quality in the health care laboratory.

  18. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  19. Clinical and laboratory evaluation of adrenal dysfunction

    International Nuclear Information System (INIS)

    Ashkar, F.S.; Fishman, L.M.

    1983-01-01

    Because of their special physical and chemical properties, the adrenal secretory products were among the first hormonal substances to be measured by methods other than bioassay. Over the past several years, the development of sensitive and specific methods of hormone assay dependent on the use of radionuclides has revolutionized investigative and clinical endocrinology. While the capacity of defining most abnormalities of adrenal function antedates hormone measurement and adrenal imaging utilizing radioisotopes, the availability of such methods has greatly facilitated and made more precise the diagnostic approach to patients with suspected adrenal dysfunction. As an example of how clinical and laboratory considerations can be integrated into a rational approach to the diagnosis of adrenal disease, the problem of suspected adrenal hyperfunction is analyzed in light of current understanding of its pathophysiology. Reflection demonstrates that suspected primary aldosteronism and adrenal insufficiency are equally amenable to such an approach

  20. Access to scientific information. A national survey of the Italian Society of Clinical Biochemistry and Laboratory Medicine (SIBioC).

    Science.gov (United States)

    Lippi, Giuseppe; Ciaccio, Marcello; Giavarina, Davide

    2016-09-01

    Digital libraries are typically used for retrieving and accessing articles in academic journals and repositories. Previous studies have been published about the performance of various biomedical research platforms, but no information is available about access preferences. A six-question survey was designed by the Italian Society of Clinical Biochemistry and Laboratory Medicine (SIBioC) using the platform Google Drive, and made available for 1 month to the members of the society. The information about the survey was published on the website of SIBioC and also disseminated by two sequential newsletters. Overall, 165 replies were collected throughout the 1-month survey availability. The largest number of replies were provided by laboratory professionals working in the national healthcare system (44.2%), followed by those working in private facilities (13.9%), university professors (12.7%) and specialization training staff (12.7%). The majority of responders published zero to one articles per year (55.2%), followed by two to five articles per year (37.6%), whereas only 7.3% published more than five articles per year. A total of 34.5% of the responders consulted biomedical research platforms on weekly basis, followed by 33.9% who did so on daily basis. PubMed/Medline was the most accessed scientific database, followed by Scopus, ISI Web of Science and Google Scholar. The impact factor was the leading reason when selecting which journal to publish in. The most consulted journals in the field of laboratory medicine were Clinical Chemistry and Laboratory Medicine and Biochimica Clinica. This survey provides useful indications about the personal inclination towards access to scientific information in our country.

  1. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    International Nuclear Information System (INIS)

    Bourg, S.; Poinssot, C.

    2013-01-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Access to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)

  2. Materials Science Division HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Taylor, A.

    1981-10-01

    The ANL-Materials Science Division High Voltage Electron Microscope-Tandem Facility is a unique national research facility available to scientists from industry, universities, and other national laboratories, following a peer evaluation of their research proposals by the Facility Steering Committee. The principal equipment consists of a Kratos EM7 1.2-MV high voltage electron microscope, a 300-kV Texas Nuclear ion accelerator, and a National Electrostatics 2-MV Tandem accelerator. Ions from both accelerators are transmitted into the electron microscope through the ion-beam interface. Recent work at the facility is summarized

  3. Transformation From a Conventional Clinical Microbiology Laboratory to Full Automation.

    Science.gov (United States)

    Moreno-Camacho, José L; Calva-Espinosa, Diana Y; Leal-Leyva, Yoseli Y; Elizalde-Olivas, Dolores C; Campos-Romero, Abraham; Alcántar-Fernández, Jonathan

    2017-12-22

    To validate the performance, reproducibility, and reliability of BD automated instruments in order to establish a fully automated clinical microbiology laboratory. We used control strains and clinical samples to assess the accuracy, reproducibility, and reliability of the BD Kiestra WCA, the BD Phoenix, and BD Bruker MALDI-Biotyper instruments and compared them to previously established conventional methods. The following processes were evaluated: sample inoculation and spreading, colony counts, sorting of cultures, antibiotic susceptibility test, and microbial identification. The BD Kiestra recovered single colonies in less time than conventional methods (e.g. E. coli, 7h vs 10h, respectively) and agreement between both methodologies was excellent for colony counts (κ=0.824) and sorting cultures (κ=0.821). Antibiotic susceptibility tests performed with BD Phoenix and disk diffusion demonstrated 96.3% agreement with both methods. Finally, we compared microbial identification in BD Phoenix and Bruker MALDI-Biotyper and observed perfect agreement (κ=1) and identification at a species level for control strains. Together these instruments allow us to process clinical urine samples in 36h (effective time). The BD automated technologies have improved performance compared with conventional methods, and are suitable for its implementation in very busy microbiology laboratories. © American Society for Clinical Pathology 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Duplicate laboratory test reduction using a clinical decision support tool.

    Science.gov (United States)

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  5. A 2-year study of patient safety competency assessment in 29 clinical laboratories.

    Science.gov (United States)

    Reed, Robyn C; Kim, Sara; Farquharson, Kara; Astion, Michael L

    2008-06-01

    Competency assessment is critical for laboratory operations and is mandated by the Clinical Laboratory Improvement Amendments of 1988. However, no previous reports describe methods for assessing competency in patient safety. We developed and implemented a Web-based tool to assess performance of 875 laboratory staff from 29 laboratories in patient safety. Question categories included workplace culture, categorizing error, prioritization of patient safety interventions, strength of specific interventions, and general patient safety concepts. The mean score was 85.0%, with individual scores ranging from 56% to 100% and scores by category from 81.3% to 88.6%. Of the most difficult questions (laboratory technologists. Computer-based competency assessments help laboratories identify topics for continuing education in patient safety.

  6. U.S. Ebola Treatment Center Clinical Laboratory Support

    OpenAIRE

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.; Lowe, John J.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronic...

  7. Multiple myeloma in Nigeria: An insight to the clinical, laboratory ...

    African Journals Online (AJOL)

    ... the clinician to investigate along the lines of MM. Majority of patients have osteolytic lesions on X‑ray and pathological fractures, and benefit from melphalan based combinations in situations where facilities for transplant are not available. Key words: Clinical features, chemotherapy, laboratory features, multiple myeloma, ...

  8. Adding value to laboratory medicine: a professional responsibility.

    Science.gov (United States)

    Beastall, Graham H

    2013-01-01

    Laboratory medicine is a medical specialty at the centre of healthcare. When used optimally laboratory medicine generates knowledge that can facilitate patient safety, improve patient outcomes, shorten patient journeys and lead to more cost-effective healthcare. Optimal use of laboratory medicine relies on dynamic and authoritative leadership outside as well as inside the laboratory. The first responsibility of the head of a clinical laboratory is to ensure the provision of a high quality service across a wide range of parameters culminating in laboratory accreditation against an international standard, such as ISO 15189. From that essential baseline the leadership of laboratory medicine at local, national and international level needs to 'add value' to ensure the optimal delivery, use, development and evaluation of the services provided for individuals and for groups of patients. A convenient tool to illustrate added value is use of the mnemonic 'SCIENCE'. This tool allows added value to be considered in seven domains: standardisation and harmonisation; clinical effectiveness; innovation; evidence-based practice; novel applications; cost-effectiveness; and education of others. The assessment of added value in laboratory medicine may be considered against a framework that comprises three dimensions: operational efficiency; patient management; and patient behaviours. The profession and the patient will benefit from sharing examples of adding value to laboratory medicine.

  9. [Qualitative translational science in clinical practice].

    Science.gov (United States)

    Mu, Pei-Fan

    2013-10-01

    Qualitative translational research refers to the "bench-to-bedside" enterprise of harnessing knowledge from the basic sciences to produce new treatment options or nursing interventions for patients. Three evidence-based translational problems related to qualitative translational research discussed this year address the interfaces among the nursing paradigm, the basic sciences, and clinical nursing work. This article illustrates the definition of translational science and translational blocks of evidence-based practice; discusses the qualitative research perspective in evidence synthesis, evidence translation and evidence utilization; and discusses the research questions that must be answered to solve the problems of the three translational gaps from the qualitative research perspective. Qualitative inquiry has an essential role to play in efforts to improve current healthcare-provider nursing interventions, experiences, and contexts. Thus, it is vital to introduce qualitative perspectives into evidence-based practice from the knowledge discovery through to the knowledge implementation process.

  10. [Surgical laboratory in pregraduate medicine.

    Science.gov (United States)

    Tapia-Jurado, Jesús

    2011-01-01

    Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.

  11. External quality assurance performance of clinical research laboratories in sub-saharan Africa.

    Science.gov (United States)

    Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks

    2012-11-01

    Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.

  12. Engaging Rural Appalachian High School Girls in College Science Laboratories to Foster STEM-Related Career Interest

    Directory of Open Access Journals (Sweden)

    Karen Louise Kelly

    2015-11-01

    Full Text Available Setting students on a path to success in careers in science is a challenge in poor rural Appalachian public schools. Students face many socioeconomic obstacles. Their teachers are also limited by many factors including inadequate facilities, under-funding, geographical isolation of the schools, and state-testing constraints. Additionally, students and teachers lack the availability of outside science educational opportunities. In an effort to address this situation, 24 academically strong high school junior girls and their teachers from the Carter County School System in rural east Tennessee were invited for a laboratory day at Milligan College, a small liberal arts college in the heart of the county. Science faculty, female science majors, and admissions staff volunteered in service to the project. The event included three laboratory sessions, lunch in the college cafeteria, and campus tours. This successful example, as evidenced by positive evaluations by the invited girls and their teachers, of educational outreach by a local, small liberal arts college to a rural county school system provides a model for establishing a relationship between higher education institutions and these underprivileged schools, with the intention of drawing more of these poor, rural Appalachian students, particularly girls, into a science, technology, engineering, and mathematics (STEM career path.

  13. Assessing clinical competency in the health sciences

    Science.gov (United States)

    Panzarella, Karen Joanne

    To test the success of integrated curricula in schools of health sciences, meaningful measurements of student performance are required to assess clinical competency. This research project analyzed a new performance assessment tool, the Integrated Standardized Patient Examination (ISPE), for assessing clinical competency: specifically, to assess Doctor of Physical Therapy (DPT) students' clinical competence as the ability to integrate basic science knowledge with clinical communication skills. Thirty-four DPT students performed two ISPE cases, one of a patient who sustained a stroke and the other a patient with a herniated lumbar disc. Cases were portrayed by standardized patients (SPs) in a simulated clinical setting. Each case was scored by an expert evaluator in the exam room and then by one investigator and the students themselves via videotape. The SPs scored each student on an overall encounter rubric. Written feedback was obtained from all participants in the study. Acceptable reliability was demonstrated via inter-rater agreement as well as inter-rater correlations on items that used a dichotomous scale, whereas the items requiring the use of the 4-point rubric were somewhat less reliable. For the entire scale both cases had a significant correlation between the Expert-Investigator pair of raters, for the CVA case r = .547, p performances on the ISPE with other independent estimates of students' competence. The unique integration questions of the ISPE were judged to have good content validity from experts and students, suggestive that integration, a most crucial element of clinical competence, while done in the mind of the student, can be practiced, learned and assessed.

  14. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  15. Utility of repeat testing of critical values: a Q-probes analysis of 86 clinical laboratories.

    Science.gov (United States)

    Lehman, Christopher M; Howanitz, Peter J; Souers, Rhona; Karcher, Donald S

    2014-06-01

    A common laboratory practice is to repeat critical values before reporting the test results to the clinical care provider. This may be an unnecessary step that delays the reporting of critical test results without adding value to the accuracy of the test result. To determine the proportions of repeated chemistry and hematology critical values that differ significantly from the original value as defined by the participating laboratory, to determine the threshold differences defined by the laboratory as clinically significant, and to determine the additional time required to analyze the repeat test. Participants prospectively reviewed critical test results for 4 laboratory tests: glucose, potassium, white blood cell count, and platelet count. Participants reported the following information: initial and repeated test result; time initial and repeat results were first known to laboratory staff; critical result notification time; if the repeat result was still a critical result; if the repeat result was significantly different from the initial result, as judged by the laboratory professional or policy; significant difference threshold, as defined by the laboratory; the make and model of the instrument used for primary and repeat testing. Routine, repeat analysis of critical values is a common practice. Most laboratories did not formally define a significant difference between repeat results. Repeated results were rarely considered significantly different. Median repeated times were at least 17 to 21 minutes for 10% of laboratories. Twenty percent of laboratories reported at least 1 incident in the last calendar year of delayed result reporting that clinicians indicated had adversely affected patient care. Routine repeat analysis of automated chemistry and hematology critical values is unlikely to be clinically useful and may adversely affect patient care.

  16. The Importance of a Laboratory Section on Student Learning Outcomes in a University Introductory Earth Science Course

    Science.gov (United States)

    Forcino, Frank L.

    2013-01-01

    Laboratory sections of university Earth science courses provide hands-on, inquiry-based activities for students in support of lecture and discussion. Here, I compare student conceptual knowledge outcomes of laboratory sections by administering an independent concept inventory at the beginning and end of two courses: one that had a lecture and a…

  17. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2010-07-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous Guides to the Register have been published, one in 1997 and another in 2003. The third version of the Guide is presented in this article and is based on the experience gained and development of the profession since the last revision. Registration is valid for 5 years and the procedure and criteria for re-registration are presented as an Appendix at the end of the article.

  18. 78 FR 41198 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2013-07-09

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and.... The Committee advises the Chief Research and Development Officer through the Director of the Clinical...

  19. Addressing the key communication barriers between microbiology laboratories and clinical units: a qualitative study.

    Science.gov (United States)

    Skodvin, Brita; Aase, Karina; Brekken, Anita Løvås; Charani, Esmita; Lindemann, Paul Christoffer; Smith, Ingrid

    2017-09-01

    Many countries are on the brink of establishing antibiotic stewardship programmes in hospitals nationwide. In a previous study we found that communication between microbiology laboratories and clinical units is a barrier to implementing efficient antibiotic stewardship programmes in Norway. We have now addressed the key communication barriers between microbiology laboratories and clinical units from a laboratory point of view. Qualitative semi-structured interviews were conducted with 18 employees (managers, doctors and technicians) from six diverse Norwegian microbiological laboratories, representing all four regional health authorities. Interviews were recorded and transcribed verbatim. Thematic analysis was applied, identifying emergent themes, subthemes and corresponding descriptions. The main barrier to communication is disruption involving specimen logistics, information on request forms, verbal reporting of test results and information transfer between poorly integrated IT systems. Furthermore, communication is challenged by lack of insight into each other's area of expertise and limited provision of laboratory services, leading to prolonged turnaround time, limited advisory services and restricted opening hours. Communication between microbiology laboratories and clinical units can be improved by a review of testing processes, educational programmes to increase insights into the other's area of expertise, an evaluation of work tasks and expansion of rapid and point-of-care test services. Antibiotic stewardship programmes may serve as a valuable framework to establish these measures. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  20. Choosing the right laboratory: a review of clinical and forensic toxicology services for urine drug testing in pain management.

    Science.gov (United States)

    Reisfield, Gary M; Goldberger, Bruce A; Bertholf, Roger L

    2015-01-01

    Urine drug testing (UDT) services are provided by a variety of clinical, forensic, and reference/specialty laboratories. These UDT services differ based on the principal activity of the laboratory. Clinical laboratories provide testing primarily focused on medical care (eg, emergency care, inpatients, and outpatient clinics), whereas forensic laboratories perform toxicology tests related to postmortem and criminal investigations, and drug-free workplace programs. Some laboratories now provide UDT specifically designed for monitoring patients on chronic opioid therapy. Accreditation programs for clinical laboratories have existed for nearly half a century, and a federal certification program for drug-testing laboratories was established in the 1980s. Standards of practice for forensic toxicology services other than workplace drug testing have been established in recent years. However, no accreditation program currently exists for UDT in pain management, and this review considers several aspects of laboratory accreditation and certification relevant to toxicology services, with the intention to provide guidance to clinicians in their selection of the appropriate laboratory for UDT surveillance of their patients on opioid therapy.

  1. Exploratory analyses of the association of MRI with clinical, laboratory and radiographic findings in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Emery, Paul; van der Heijde, Désirée; Østergaard, Mikkel

    2011-01-01

    Evaluate relationships between MRI and clinical/laboratory/radiographic findings in rheumatoid arthritis (RA).......Evaluate relationships between MRI and clinical/laboratory/radiographic findings in rheumatoid arthritis (RA)....

  2. Adult Hematology and Clinical Chemistry Laboratory Reference Ranges in a Zimbabwean Population.

    Directory of Open Access Journals (Sweden)

    Wadzanai P Samaneka

    Full Text Available Laboratory reference ranges used for clinical care and clinical trials in various laboratories in Zimbabwe were derived from textbooks and research studies conducted more than ten years ago. Periodic verification of these ranges is essential to track changes over time. The purpose of this study was to establish hematology and chemistry laboratory reference ranges using more rigorous methods.A community-based cross-sectional study was carried out in Harare, Chitungwiza, and Mutoko. A multistage sampling technique was used. Samples were transported from the field for analysis at the ISO15189 certified University of Zimbabwe-University of California San Francisco Central Research Laboratory. Hematology and clinical chemistry reference ranges lower and upper reference limits were estimated at the 2.5th and 97.5th percentiles respectively.A total of 769 adults (54% males aged 18 to 55 years were included in the analysis. Median age was 28 [IQR: 23-35] years. Males had significantly higher red cell counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin compared to females. Females had higher white cell counts, platelets, absolute neutrophil counts, and absolute lymphocyte counts compared to males. There were no gender differences in eosinophils, monocytes, and absolute basophil count. Males had significantly higher levels of urea, sodium, potassium, calcium, creatinine, amylase, total protein, albumin and liver enzymes levels compared to females. Females had higher cholesterol and lipase compared with males. There are notable differences in the white cell counts, neutrophils, cholesterol, and creatinine kinase when compared with the currently used reference ranges.Data from this study provides new country specific reference ranges which should be immediately adopted for routine clinical care and accurate monitoring of adverse events in research studies.

  3. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Getsi, J.A.

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  4. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  5. Comparison of clinical associations and laboratory abnormalities in children with moderate and severe dehydration.

    Science.gov (United States)

    Hayajneh, Wail A; Jdaitawi, Hussein; Al Shurman, Abdullah; Hayajneh, Yaseen A

    2010-03-01

    To search for possible early clinical associations and laboratory abnormalities in children with severe dehydration in northern Jordan. We prospectively evaluated 251 children with acute gastroenteritis. Dehydration assessment was done following a known clinical scheme. Probable clinical associations and laboratory abnormalities were examined against the preassigned dehydration status. Children with severe dehydration had significantly more hypernatremia and hyperkalemia, less isonatremia, and higher mean levels of urea, creatinine, and glucose (P dehydration. Historic clinical characteristics of patients did not correlate to dehydration degree. Serum urea, creatinine, sodium, potassium, and glucose were useful independently in augmenting clinical examination to diagnose the degree of dehydration status among children presenting with gastroenteritis. Serum urea performed the best among all. On the contrary, none of the examined historical clinical patterns could be correlated to the dehydration status. Larger and multicenter studies are needed to validate our results and to examine their impact on final outcomes.

  6. An Investigation of Zimbabwe High School Chemistry Students' Laboratory Work-Based Images of the Nature of Science

    Science.gov (United States)

    Vhurumuku, Elaosi; Holtman, Lorna; Mikalsen, Oyvind; Kolsto, Stein D.

    2006-01-01

    This study investigates the proximal and distal images of the nature of science (NOS) that A-level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the…

  7. Conceptual framework for behavioral and social science in HIV vaccine clinical research.

    Science.gov (United States)

    Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P

    2011-10-13

    HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.

  8. 75 FR 11551 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2010-03-11

    ...] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General... Pharmaceutical Science (OPS) on the regulatory challenges of drug-induced phospholipidosis (excessive...

  9. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.

    Science.gov (United States)

    Liu, Xuan; Jiang, Hui

    2017-12-04

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.

  10. 76 FR 38188 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2011-06-29

    ...] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General..., 2011, the committee will discuss current strategies for FDA's Office of Pharmaceutical Science...

  11. Life sciences payload definition and integration study. Volume 4: Appendix, costs, and data management requirements of the dedicated 30-day laboratory. [carry-on laboratory for Spacelab

    Science.gov (United States)

    1974-01-01

    The results of the updated 30-day life sciences dedicated laboratory scheduling and costing activities are documented, and the 'low cost' methodology used to establish individual equipment item costs is explained in terms of its allowances for equipment that is commerical off-the-shelf, modified commercial, and laboratory prototype; a method which significantly lowers program costs. The costs generated include estimates for non-recurring development, recurring production, and recurring operations costs. A cost for a biomedical emphasis laboratory and a Delta cost to provide a bioscience and technology laboratory were also generated. All cost reported are commensurate with the design and schedule definitions available.

  12. Evaluation of clinical, laboratory and morphologic prognostic factors in colon cancer

    Science.gov (United States)

    Grande, Michele; Milito, Giovanni; Attinà, Grazia Maria; Cadeddu, Federica; Muzi, Marco Gallinella; Nigro, Casimiro; Rulli, Francesco; Farinon, Attilio Maria

    2008-01-01

    Background The long-term prognosis of patients with colon cancer is dependent on many factors. To investigate the influence of a series of clinical, laboratory and morphological variables on prognosis of colon carcinoma we conducted a retrospective analysis of our data. Methods Ninety-two patients with colon cancer, who underwent surgical resection between January 1999 and December 2001, were analyzed. On survival analysis, demographics, clinical, laboratory and pathomorphological parameters were tested for their potential prognostic value. Furthermore, univariate and multivariate analysis of the above mentioned data were performed considering the depth of tumour invasion into the bowel wall as independent variable. Results On survival analysis we found that depth of tumour invasion (P anismus, hematocrit, WBC count, fibrinogen value and CT scanning were significantly related to the degree of mural invasion of the cancer. On the multivariate analysis, fibrinogen value was the most statistically significant variable (P < 0.001) with the highest F-ratio (F-ratio 5.86). Finally, in the present study, the tumour site was significantly related neither to the survival nor to the mural invasion of the tumour. Conclusion The various clinical, laboratory and patho-morphological parameters showed different prognostic value for colon carcinoma. In the future, preoperative prognostic markers will probably gain relevance in order to make a proper choice between surgery, chemotherapy and radiotherapy. Nevertheless, current data do not provide sufficient evidence for preoperative stratification of high and low risk patients. Further assessments in prospective large studies are warranted. PMID:18778464

  13. Law in the laboratory a guide to the ethics of federally funded science research

    CERN Document Server

    Charrow, Robert P

    2010-01-01

    The National Institutes of Health and the National Science Foundation together fund more than $40 billon of research annually in the United States and around the globe. These large public expenditures come with strings, including a complex set of laws and guidelines that regulate how scientists may use NIH and NSF funds, how federally funded research may be conducted, and who may have access to or own the product of the research. Until now, researchers have had little instruction on the nature of these laws and how they work. But now, with Robert P. Charrow’s Law in the Laboratory, they have a readable and entertaining introduction to the major ethical and legal considerations pertaining to research under the aegis of federal science funding. For any academic whose position is grant funded, or for any faculty involved in securing grants, this book will be an essential reference manual. And for those who want to learn how federal legislation and regulations affect laboratory research, Charrow’s primer wil...

  14. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  15. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  16. Radiological Contingency Planning for the Mars Science Laboratory Launch

    Energy Technology Data Exchange (ETDEWEB)

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  17. Argument-Driven Inquiry: Using the Laboratory to Improve Undergraduates' Science Writing Skills through Meaningful Science Writing, Peer-Review, and Revision

    Science.gov (United States)

    Walker, Joi Phelps; Sampson, Victor

    2013-01-01

    This paper presents preliminary evidence supporting the use of peer review in undergraduate science as a means to improve student writing and to alleviate barriers, such as lost class time, by incorporation of the peer-review process into the laboratory component of the course. The study was conducted in a single section of an undergraduate…

  18. Introduction to clinical pathology: A brief course of laboratory medicine in the field for medical students

    Science.gov (United States)

    Omidifar, Navid; Keshtkari, Ali; Dehghani, Mohammadreza; Shokripour, Mansoureh

    2017-01-01

    OBJECTIVES: Teaching of clinical pathology to medical students has been ignored in many countries such as Iran. We aim to introduce a practical brief course and its proper timing. MATERIALS AND METHODS: Three groups of medical students from consecutive years of entrance passed a 1.5 working day practical course on the field. Their level of knowledge was assessed by pre- and post-tests. Their idea and satisfaction were gathered by questionnaires. RESULTS: Knowledge of students became significantly higher after the course. Their satisfaction was high. Students in later year of education got significantly higher marks. Most of the students wished such a course should be away from basic sciences period and as near as possible to internship. DISCUSSION: Due to overloaded curriculum of general medicine in Iran, we decided to run a brief practical course of laboratory medicine education for medical students. Although the course was practical, the knowledge of students became higher. Students with more clinical experience and knowledge absorbed more. Being actively involved in the classes lit the enthusiasm of students and made them satisfied with the course. It seemed that the course should be placed in later years of clinical training to get the best uptake and results. PMID:29114552

  19. Clinical manifestations and laboratory findings of 496 children with brucellosis in Van, Turkey.

    Science.gov (United States)

    Parlak, Mehmet; Akbayram, Sinan; Doğan, Murat; Tuncer, Oğuz; Bayram, Yasemin; Ceylan, Nesrin; Özlük, Suat; Akbayram, Hatice Tuba; Öner, Abdurrahman

    2015-08-01

    Brucellosis is the most common zoonotic disease worldwide and remains an important human disease especially in developing countries. The aim of the present study was to evaluate clinical manifestations and laboratory findings of childhood brucellosis in Van province of Eastern Turkey. To our knowledge, this is the largest series of childhood brucellosis reported in the literature. In this retrospective study, 496 children with brucellosis were assessed for the clinical manifestations and laboratory findings from July 2009 through December 2013. The diagnosis of brucellosis was based on clinical findings and a standard tube agglutination test (titer ≥ 1:160). Data were analyzed using Minitab version 16. The study included 496 children (boys, 60.5%) with a mean age of 10.0 ± 3.95 years (range, 1-16 years). The most frequent clinical symptoms were arthralgia (46.2%), fever (32.1%), and abdominal pain (17.1%) and the most common clinical signs were peripheral arthritis (10.1%), splenomegaly (2.2%) and hepatomegaly (1.8%). The most contagious seasons were summer and autumn (63.3%). Elevated lactate dehydrogenase and C-reactive protein and erythrocyte sedimentation rate were reported in 63.1%, 58.7%, and 55.2% of the patients, respectively. Anemia (20.4%), thrombocytopenia (15.5%), and leukopenia (12.1%) were the most common hematologic findings. Brucellosis remains a serious public health problem in Turkey. The clinical and laboratory characteristics of childhood brucellosis have been described in order to assist clinicians in diagnosing and monitoring the disease. © 2015 Japan Pediatric Society.

  20. 76 FR 38668 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2011-07-01

    ...] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General.... In response to feedback during the April 13, 2010, Advisory Committee for Pharmaceutical Science and...

  1. 78 FR 58314 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2013-09-23

    ...] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General... session, the Office of Pharmaceutical Science and the Office of Compliance will discuss with the committee...

  2. Towards an evaluation framework for Laboratory Information Systems.

    Science.gov (United States)

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  3. The impact of automation on organizational changes in a community hospital clinical microbiology laboratory.

    Science.gov (United States)

    Camporese, Alessandro

    2004-06-01

    The diagnosis of infectious diseases and the role of the microbiology laboratory are currently undergoing a process of change. The need for overall efficiency in providing results is now given the same importance as accuracy. This means that laboratories must be able to produce quality results in less time with the capacity to interpret the results clinically. To improve the clinical impact of microbiology results, the new challenge facing the microbiologist has become one of process management instead of pure analysis. A proper project management process designed to improve workflow, reduce analytical time, and provide the same high quality results without losing valuable time treating the patient, has become essential. Our objective was to study the impact of introducing automation and computerization into the microbiology laboratory, and the reorganization of the laboratory workflow, i.e. scheduling personnel to work shifts covering both the entire day and the entire week. In our laboratory, the introduction of automation and computerization, as well as the reorganization of personnel, thus the workflow itself, has resulted in an improvement in response time and greater efficiency in diagnostic procedures.

  4. [Effectiveness assessment of public clinical laboratories: the case of Belo Horizonte, Minas Gerais State].

    Science.gov (United States)

    Sancho, Leyla Gomes; Vargens, José Muniz da Costa; Sancho, Rafael Gomes

    2011-01-01

    The organization of public clinical laboratories is experiencing changes without, however, an organizational assessment of its effectiveness. The study aimed to determine a parameter of effectiveness for public clinical laboratories of Belo Horizonte, Minas Gerais State, and set cut-off points for the sections of these laboratories. In order to do so, the total production and number of hours worked during a period of 7 months in the year 2008 were consolidated. Due to the entrance of the workers in the mode of production in the laboratories network, it could be observed a variability regarding the performance of these workers. The effectiveness parameter of the network was established in 29.90 tests per hour. As a consequence of this first analysis, the cut-off points are: 15.50 for the hematology section; 67.29 for chemistry; 6.45 for parasitology; 11.35 for urinalysis; 4.94 for microbiology and 19.03 for immunology. From these results, it was concluded that the working process in laboratories can generate a decrease in effectiveness.

  5. MODERN CLINICAL AND LABORATORY FEATURES OF ENTEROVIRAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    O. V. Usacheva

    2014-04-01

    Full Text Available Among numerous viral meningitises from 80% to 90% of cases are accounted for meningitis of enteroviral etiology according to the international data. Despite the favorable disease course, there are forms which are characterized by severe damage of CNS. In order to improve diagnostics of enteroviral meningitis in this article we have made a comparative analysis of clinical and laboratory parameters in 23 patients with enteroviral meningitis and 18 patients with serous meningitis of non-enteroviral etiology. Anamnesis data and the major clinical manifestations of the disease dynamics were analyzed. Particular attention is paid to the comparison of diagnoses, by which patients were sent to infectious hospital, the symptoms that occurred during patients’ admission into hospitals and their severity. The presence and severity of meningeal symptoms and the indices of cerebrospinal fluid in the patients of the comparison group were analyzed in detail. It is shown that enteroviruses are the important factor in the development of meningitis in the children of younger age. The clinical picture of enteroviral meningitis often develops gradually for 2-3 days and includes the typical syndromes: intoxication and meningeal ones. Every third patient with enterovirus infection has diarrhea and catarrhal symptoms, that’s why it is difficult to diagnose meningitis in its early stages, but it allows to assume enteroviral etiology of the disease. The meningitis of enteroviral etiology is characterized by multiple meningeal signs, while the non-enteroviral meningitis is characterized by dissociation with the prevalence of the of Kernig’s and Brudzinski’s symptoms. The analysis of the laboratory data showed that the enteroviral meningitis is characterized by low (over 50-100 cells "mixed" pleocytosis (the ratio of lymphocytes and neutrophils is about 1:1. These data can be used for differential diagnosis between enteroviral meningitis and serous meningitis of

  6. Sociology of scientific knowledge and science education part 2: Laboratory life under the microscope

    Science.gov (United States)

    Slezak, Peter

    1994-10-01

    This article is the second of two that examine some of the claims of contemporary sociology of scientific knowledge (SSK) and the bearing of these claims upon the rationale and practice of science teaching. In the present article the celebrated work Laboratory Life of Latour and Woolgar is critically examined. Its radical, iconoclastic view of science is shown to be not merely without foundation but an extravagant deconstructionist nihilism according to which all science is fiction and the world is said to be socially constructed by negotiation. On this view, the success of a theory is not due to its intellectual merits or explanatory plausibility but to the capacity of its proponents to “extract compliance” from others. If warranted, such views pose a revolutionary challenge to the entire Western tradition of science and the goals of science education which must be misguided and unrealizable in principle. Fortunately, there is little reason to take these views seriously, though their widespread popularity is cause for concern among science educators.

  7. Quality management and accreditation in a mixed research and clinical hair testing analytical laboratory setting-a review.

    Science.gov (United States)

    Fulga, Netta

    2013-06-01

    Quality management and accreditation in the analytical laboratory setting are developing rapidly and becoming the standard worldwide. Quality management refers to all the activities used by organizations to ensure product or service consistency. Accreditation is a formal recognition by an authoritative regulatory body that a laboratory is competent to perform examinations and report results. The Motherisk Drug Testing Laboratory is licensed to operate at the Hospital for Sick Children in Toronto, Ontario. The laboratory performs toxicology tests of hair and meconium samples for research and clinical purposes. Most of the samples are involved in a chain of custody cases. Establishing a quality management system and achieving accreditation became mandatory by legislation for all Ontario clinical laboratories since 2003. The Ontario Laboratory Accreditation program is based on International Organization for Standardization 15189-Medical laboratories-Particular requirements for quality and competence, an international standard that has been adopted as a national standard in Canada. The implementation of a quality management system involves management commitment, planning and staff education, documentation of the system, validation of processes, and assessment against the requirements. The maintenance of a quality management system requires control and monitoring of the entire laboratory path of workflow. The process of transformation of a research/clinical laboratory into an accredited laboratory, and the benefits of maintaining an effective quality management system, are presented in this article.

  8. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  9. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    Science.gov (United States)

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  10. AstraZeneca and Covance Laboratories Clinical Bioanalysis Alliance: an evolutionary outsourcing model.

    Science.gov (United States)

    Arfvidsson, Cecilia; Severin, Paul; Holmes, Victoria; Mitchell, Richard; Bailey, Christopher; Cape, Stephanie; Li, Yan; Harter, Tammy

    2017-08-01

    The AstraZeneca and Covance Laboratories Clinical Bioanalysis Alliance (CBioA) was launched in 2011 after a period of global economic recession. In this challenging environment, AstraZeneca elected to move to a full and centralized outsourcing model that could optimize the number of people supporting bioanalytical work and reduce the analytical cost. This paper describes the key aspects of CBioA, the innovative operational model implemented, and our ways of ensuring this was much more than simply a cost reduction exercise. As we have recently passed the first 5-year cycle, this paper also summarizes some of the concluding benefits, wins and lessons learned, and how we now plan to extend and develop the relationship even further moving into a new clinical laboratory partnership.

  11. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  12. Opening the Big Black Box: European study reveals visitors' impressions of science laboratories

    CERN Multimedia

    2004-01-01

    "On 29 - 30 March the findings of 'Inside the Big Black Box'- a Europe-wide science and society project - will be revealed during a two-day seminar hosted by CERN*. The principle aim of Inside the Big Black Box (IN3B) is to determine whether a working scientific laboratory can capture the curiosity of the general public through visits" (1 page)

  13. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    Science.gov (United States)

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  14. Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory

    Science.gov (United States)

    Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia

    2014-01-01

    Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.

  15. Clinical symptoms and laboratory findings supporting early diagnosis of Crimean-Congo hemorrhagic fever in Iran.

    Science.gov (United States)

    Mostafavi, Ehsan; Pourhossein, Behzad; Chinikar, Sadegh

    2014-07-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease, which is usually transmitted to humans by tick bites or contact with blood or other infected tissues of livestock. Patients suffering from CCHF demonstrate an extensive spectrum of clinical symptoms. As it can take considerable time from suspecting the disease in hospital until reaching a definitive diagnosis in the laboratory, understanding the clinical symptoms and laboratory findings of CCHF patients is of paramount importance for clinicians. The data were collected from patients who were referred to the Laboratory of Arboviruses and Viral Hemorrhagic Fevers at the Pasteur institute of Iran with a primary diagnosis of CCHF between 1999 and 2012 and were assessed by molecular and serologic tests. Referred patients were divided into two groups: patients with a CCHF positive result and patients with a CCHF negative result. The laboratory and clinical findings of these two groups were then compared. Two-thousand five hundred thirty-six probable cases of CCHF were referred to the laboratory, of which 871 cases (34.3%) were confirmed to be CCHF. Contact with infected humans and animals increased the CCHF infection risk (P important role in patient survival and the application of the findings of this study can prove helpful as a key for early diagnosis. © 2014 Wiley Periodicals, Inc.

  16. 42 CFR 493.1406 - Standard; Laboratory director qualifications on or before February 28, 1992.

    Science.gov (United States)

    2010-10-01

    ... Medical Microbiology, the American Board of Clinical Chemistry, the American Board of Bioanalysis, or... exists; and (b) The laboratory director must: (1) Be a physician certified in anatomical or clinical... biological science as a major subject and (i) Is certified by the American Board of Medical Microbiology, the...

  17. Clinical and laboratory characteristics of women with uterine leiomiyoma

    Directory of Open Access Journals (Sweden)

    Özgür ÖZKUL

    2009-06-01

    Full Text Available The aim of this study was to compare clinical and laboratory findings of women with or without uterine leiomyoma.Study group consisted of 82 women with uterine leiomyoma and the control group comprised 42 healthy women. Women’s age, gravity, parity, blood groups, pattern of menstrual cycles, complaints at presentation, fertility, ultrasonographical findings, surgical operations and thyroid function tests were evaluated.There were no significant differences in blood group distribution, gravity, parity and thyroid function test results between the patients and the control subjects (P>0.05. A significant difference was found in the complaints at presentation between two groups (P<0.001. Mentrual cycles irregularity was more frequently found in the patients compared with the controls (57.3% vs. 42.9%, respectively, P=0.009. Although no infertile woman was found in the control group, 8.5% of patients were found to have infertility. The sensitivity of ultrasonography was found to be 97.6%. Except for the existence of higher infertility rate and the menstrual cycles irregularities, no significant difference was found in the clinical and laboratory findings between women with or without uterine leiomyoma. Therefore, physical examination and imaging methods are remained as the most important diagnostic tools for uterine leiomyoma.

  18. Science and production laboratories: integration between the industry and universities

    International Nuclear Information System (INIS)

    Anokhin, A.N.; Sivokon', V.P.; Rakitin, I.D.

    2010-01-01

    Industry laboratories provide students with an opportunity to resolve real serious tasks and be exposed to a wide range of professional activities. Staffing in the Russian nuclear industry is a serious concern. There is a shortage of experienced specialists, and it is impossible to train a replacement for them quickly. Creation of a true professional is a long and thorough process, whereby the amount of knowledge and experience very slowly transforms into quality of performance. The authors underline that the teacher of a modern technical university should not and must not act as a middle man between the textbook and the students. The teacher must instead become a holder of the latest technological knowledge, which he will pass to students during lessons. The authors report on the ERGOLAB, a problematic science and research laboratory for ergonomic research and development in the nuclear field. Ergonomic support is one of the more important factors in the prevention of human errors, maintenance of professional health and improvement of performance efficiency [ru

  19. National survey on internal quality control for tumour markers in clinical laboratories in China.

    Science.gov (United States)

    Wang, Wei; Zhong, Kun; Yuan, Shuai; He, Falin; Du, Yuxuan; Hu, Zhehui; Wang, Zhiguo

    2018-06-15

    This survey was initiated to obtain knowledge on the current situation of internal quality control (IQC) practice for tumour markers (TMs) in China. Additionally, we tried to acquire the most appropriate quality specifications. This survey was a current status survey. The IQC information had been collected via online questionnaires. All of 1821 clinical laboratories which participated in the 2016 TMs external quality assessment (EQA) programme had been enrolled. The imprecision evaluation criteria were the minimal, desirable, and optimal allowable imprecisions based on biological variations, and 1/3 total allowable error (TEa) and 1/4 TEa. A total of 1628 laboratories answered the questionnaires (89%). The coefficients of variation (CVs) of the IQC of participant laboratories varied greatly from 1% (5 th percentile) to 13% (95 th percentile). More than 82% (82 - 91%) of participant laboratories two types of CVs met 1/3 TEa except for CA 19-9. The percentiles of current CVs were smaller than cumulative CVs. A number of 1240 laboratories (76%) reported their principles and systems used. The electrochemiluminescence was the most used principle (45%) and had the smallest CVs. The performance of laboratories for TMs IQC has yet to be improved. On the basis of the obtained results, 1/3 TEa would be realistic and attainable quality specification for TMs IQC for clinical laboratories in China.

  20. A brief simulation intervention increasing basic science and clinical knowledge

    Directory of Open Access Journals (Sweden)

    Maria L. Sheakley

    2016-04-01

    Full Text Available Background: The United States Medical Licensing Examination (USMLE is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose: To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods: This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515 and the intervention group received lecture plus a simulation exercise (nl+s=1,066. Assessment included summative exam questions (n=4 that were scored as pass/fail (≥75%. USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results: Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003. Discussion: Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  1. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    Science.gov (United States)

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  2. Experimental Psychopathology: From laboratory studies to clinical practice

    Directory of Open Access Journals (Sweden)

    Pierre Philippot

    2006-03-01

    Full Text Available Recently, David Barlow (2004, a pioneer in the field of anxiety disorders, has proposed that psychologists should abandon the concept of psychotherapy and rather use the one of “psychological treatment”. The provoking idea behind this proposal is that the concept of psychotherapy, relying on the notion of “therapeutic school” should be discarded by professional psychologists because it relies too much on conceptions based on pre-scientific models. Barlow (2004 insists that, today, psychology as an empirical science has gathered sufficient knowledge and know-how to found clinical practice. It is no longer necessary to rely on pre-scientific theories. Further, Barlow’s perspective opens clinical practice to the entire field of psychology, i.e. to the advances accomplished by research on emotion, cognition, learning, development, etc.

  3. Using Evernote as an electronic lab notebook in a translational science laboratory.

    Science.gov (United States)

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  4. A Survey of Established Veterinary Clinical Skills Laboratories from Europe and North America: Present Practices and Recent Developments.

    Science.gov (United States)

    Dilly, Marc; Read, Emma K; Baillie, Sarah

    Developing competence in clinical skills is important if graduates are to provide entry-level care, but it is dependent on having had sufficient hands-on practice. Clinical skills laboratories provide opportunities for students to learn on simulators and models in a safe environment and to supplement training with animals. Interest in facilities for developing veterinary clinical skills has increased in recent years as many veterinary colleges face challenges in training their students with traditional methods alone. For the present study, we designed a survey to gather information from established veterinary clinical skills laboratories with the aim of assisting others considering opening or expanding their own facility. Data were collated from 16 veterinary colleges in North America and Europe about the uses of their laboratory, the building and associated facilities, and the staffing, budgets, equipment, and supporting learning resources. The findings indicated that having a dedicated veterinary clinical skills laboratory is a relatively new initiative and that colleges have adopted a range of approaches to implementing and running the laboratory, teaching, and assessments. Major strengths were the motivation and positive characteristics of the staff involved, providing open access and supporting self-directed learning. However, respondents widely recognized the increasing demands placed on the facility to provide more space, equipment, and staff. There is no doubt that veterinary clinical skills laboratories are on the increase and provide opportunities to enhance student learning, complement traditional training, and benefit animal welfare.

  5. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    Science.gov (United States)

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. Copyright © 2010 Elsevier España S.L. All rights reserved.

  6. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories.

    Science.gov (United States)

    Gargis, Amy S; Kalman, Lisa; Lubin, Ira M

    2016-12-01

    Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  8. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  9. Inquiry-based laboratory and History of Science: a report about an activity using Oersted’s experiment

    Directory of Open Access Journals (Sweden)

    José Antonio Ferreira Pinto

    2017-05-01

    Full Text Available This work presents an example of how to explore an historical experiment as a problem to be investigated in an inquiry-based laboratory model. The elaborated and executed purpose is one of the possibilities to insert History of Science in Science classroom. The inquiry-based experimental activity, the texts with historical approach based on modern historiography of science and teacher’s pedagogical knowledge allowed the development of argumentative skills and the comprehension of electromagnetism concepts. This study was developed with 3rd grade high school students from a public school of State of Paraiba.

  10. Practical Environmental Education and Local Contribution in the Environmental Science Laboratory Circle in the College of Science and Technology in Nihon University

    Science.gov (United States)

    Taniai, Tetsuyuki; Ito, Ken-Ichi; Sakamaki, Hiroshi

    In this paper, we presented a method and knowledge about a practical and project management education and local contribution obtained through the student activities of “Environmental science laboratory circle in the College of Science and technology in Nihon University” from 1991 to 2001. In this circle, four major projects were acted such as research, protection, clean up and enlightenment projects. Due to some problems from inside or outside of this circle, this circle projects have been stopped. The diffusion and popularization of the internet technology will help to resolve some of these problems.

  11. A FMEA clinical laboratory case study: how to make problems and improvements measurable.

    Science.gov (United States)

    Capunzo, Mario; Cavallo, Pierpaolo; Boccia, Giovanni; Brunetti, Luigi; Pizzuti, Sante

    2004-01-01

    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI > 400, improvement actions have been implemented that allowed a reduction of RPI values between 25% to 70% with a costs increment of FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System.

  12. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation)

    Science.gov (United States)

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-01-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory

  13. Predicting tularemia with clinical, laboratory and demographical findings in the ED.

    Science.gov (United States)

    Yapar, Derya; Erenler, Ali Kemal; Terzi, Özlem; Akdoğan, Özlem; Ece, Yasemin; Baykam, Nurcan

    2016-02-01

    We aimed to determine clinical, laboratory and demographical characteristics of tularemia on admission to Emergency Department (ED). Medical data of 317 patients admitted to ED and subsequently hospitalized with suspected tularemia between January 1, 2011, and May 31, 2015, were collected. Patients were divided into 2 groups according to microagglutination test results, as tularemia (+) and tularemia (-). Of the 317 patients involved, 49 were found to be tularemia (+) and 268 were tularemia (-). Mean age of the tularemia (+) patients was found to be higher than that of tularemia (-) patients. When compared to tularemia (-) patients, a significant portion of patients in tularemia (+) patients were elderly, living in rural areas and had contact with rodents. When clinical and laboratory findings of the 2 groups were compared, any statistical significance could not be determined. Tularemia is a disease of elderly people living in rural areas. Contact with rodents also increases risk of tularemia in suspected patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    Science.gov (United States)

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P Kruskal-Wallis P < 0.001).

  15. Clinical and Laboratory Characteristics of Leishmaniasis in Armenia

    Directory of Open Access Journals (Sweden)

    A.L. Kazinian

    2014-11-01

    Full Text Available This work presents the clinical and laboratory characteristics of visceral leishmaniasis according to the data from Clinical hospital of infectious diseases «Nork» in Yerevan for 2013. It is shown that Armenia is a country endemic for visceral leishmaniasis. Most patients (81 % were males. About half of the patients were young children (up to 2 years. It was found that the majority of patients had acute onset of the disease with fever up to 40 °C, severe symptoms of intoxication and single hemorrhages on the skin. Enlargement of the liver and spleen was noted in all patients. The enlargement of the spleen was more pronounced, and it reached the level of the pelvis. One of the cardinal symptoms of visceral leishmaniasis — anemia — developed in all patients admitted to the hospital, and a significant change in the hemogram was observed in young children.

  16. Perceived Frequency of Peer-Assisted Learning in the Laboratory and Collegiate Clinical Settings

    Science.gov (United States)

    Henning, Jolene M.; Weidner, Thomas G.; Snyder, Melissa; Dudley, William N.

    2012-01-01

    Context: Peer-assisted learning (PAL) has been recommended as an educational strategy to improve students' skill acquisition and supplement the role of the clinical instructor (CI). How frequently students actually engage in PAL in different settings is unknown. Objective: To determine the perceived frequency of planned and unplanned PAL (peer modeling, peer feedback and assessment, peer mentoring) in different settings. Design: Cross-sectional study. Setting: Laboratory and collegiate clinical settings. Patients or Other Participants: A total of 933 students, 84 administrators, and 208 CIs representing 52 (15%) accredited athletic training education programs. Intervention(s): Three versions (student, CI, administrator) of the Athletic Training Peer Assisted Learning Survey (AT-PALS) were administered. Cronbach α values ranged from .80 to .90. Main Outcome Measure(s): Administrators' and CIs' perceived frequency of 3 PAL categories under 2 conditions (planned, unplanned) and in 2 settings (instructional laboratory, collegiate clinical). Self-reported frequency of students' engagement in 3 categories of PAL in 2 settings. Results: Administrators and CIs perceived that unplanned PAL (0.39 ± 0.22) occurred more frequently than planned PAL (0.29 ± 0.19) regardless of category or setting (F1,282 = 83.48, P < .001). They perceived that PAL occurred more frequently in the collegiate clinical (0.46 ± 0.22) than laboratory (0.21 ± 0.24) setting regardless of condition or category (F1,282 = 217.17, P < .001). Students reported engaging in PAL more frequently in the collegiate clinical (3.31 ± 0.56) than laboratory (3.26 ± 0.62) setting regardless of category (F1,860 = 13.40, P < .001). We found a main effect for category (F2,859 = 1318.02, P < .001), with students reporting they engaged in peer modeling (4.01 ± 0.60) more frequently than peer mentoring (2.99 ± 0.88) (P < .001) and peer assessment and feedback (2.86 ± 0.64) (P < .001). Conclusions: Participants

  17. Definition of an XML markup language for clinical laboratory procedures and comparison with generic XML markup.

    Science.gov (United States)

    Saadawi, Gilan M; Harrison, James H

    2006-10-01

    Clinical laboratory procedure manuals are typically maintained as word processor files and are inefficient to store and search, require substantial effort for review and updating, and integrate poorly with other laboratory information. Electronic document management systems could improve procedure management and utility. As a first step toward building such systems, we have developed a prototype electronic format for laboratory procedures using Extensible Markup Language (XML). Representative laboratory procedures were analyzed to identify document structure and data elements. This information was used to create a markup vocabulary, CLP-ML, expressed as an XML Document Type Definition (DTD). To determine whether this markup provided advantages over generic markup, we compared procedures structured with CLP-ML or with the vocabulary of the Health Level Seven, Inc. (HL7) Clinical Document Architecture (CDA) narrative block. CLP-ML includes 124 XML tags and supports a variety of procedure types across different laboratory sections. When compared with a general-purpose markup vocabulary (CDA narrative block), CLP-ML documents were easier to edit and read, less complex structurally, and simpler to traverse for searching and retrieval. In combination with appropriate software, CLP-ML is designed to support electronic authoring, reviewing, distributing, and searching of clinical laboratory procedures from a central repository, decreasing procedure maintenance effort and increasing the utility of procedure information. A standard electronic procedure format could also allow laboratories and vendors to share procedures and procedure layouts, minimizing duplicative word processor editing. Our results suggest that laboratory-specific markup such as CLP-ML will provide greater benefit for such systems than generic markup.

  18. LabPush: a pilot study of providing remote clinics with laboratory results via short message service (SMS in Swaziland, Africa.

    Directory of Open Access Journals (Sweden)

    Wen-Shan Jian

    Full Text Available BACKGROUND: Turnaround time (TAT is an important indicator of laboratory performance. It is often difficult to achieve fast TAT for blood tests conducted at clinics in developing countries. This is because clinics where the patient is treated are often far away from the laboratory, and transporting blood samples and test results between the two locations creates significant delay. Recent efforts have sought to mitigate this problem by using Short Message Service (SMS to reduce TAT. Studies reporting the impact of this technique have not been published in scientific literature however. In this paper we present a study of LabPush, a system developed to test whether SMS delivery of HIV related laboratory results to clinics could shorten TAT time significantly. METHOD: LapPush was implemented in six clinics of the Kingdom of Swaziland. SMS results were sent out from the laboratory as a supplement to normal transport of paper results. Each clinic was equipped with a mobile phone to receive SMS results. The laboratory that processes the blood tests was equipped with a system for digital input of results, and transmission of results via SMS to the clinics. RESULTS: Laboratory results were received for 1041 different clinical cases. The total number of SMS records received (1032 was higher than that of paper records (965, indicating a higher loss rate for paper records. A statistical comparison of TAT for SMS and paper reports indicates a statistically significant improvement for SMS. Results were more positive for more rural clinics, and an urban clinic with high workload. CONCLUSION: SMS can be used to reduce TAT for blood tests taken at clinics in developing countries. Benefits are likely to be greater at clinics that are further away from laboratories, due to the difficulties this imposes on transport of paper records.

  19. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  20. Simple clinical and laboratory predictors of Chikungunya versus dengue infections in adults.

    Directory of Open Access Journals (Sweden)

    Vernon J Lee

    Full Text Available BACKGROUND: Dengue and chikungunya are co-circulating vector-borne diseases with substantial overlap in clinical presentations. It is important to differentiate between them during first presentation as their management, especially for dengue hemorrhagic fever (DHF, is different. This study compares their clinical presentation in Singapore adults to derive predictors to assist doctors in diagnostic decision-making. METHODS: We compared 117 patients with chikungunya infection diagnosed with reverse transcription-polymerase chain reaction (RT-PCR with 917 dengue RT-PCR-positive adult patients (including 55 with DHF. We compared dengue fever (DF, DHF, and chikungunya infections by evaluating clinical characteristics of dengue and chikungunya; developing classification tools via multivariate logistic regression models and classification trees of disease etiology using clinical and laboratory factors; and assessing the time course of several clinical variables. FINDINGS: At first presentation to hospital, significantly more chikungunya patients had myalgia or arthralgia, and fewer had a sore throat, cough (for DF, nausea, vomiting, diarrhea, abdominal pain, anorexia or tachycardia than DF or DHF patients. From the decision trees, platelets <118 × 10(9/L was the only distinguishing feature for DF versus chikungunya with an overall correct classification of 89%. For DHF versus chikungunya using platelets <100 × 10(9/L and the presence of bleeding, the overall correct classification was 98%. The time course analysis supported platelet count as the key distinguishing variable. INTERPRETATION: There is substantial overlap in clinical presentation between dengue and chikungunya infections, but simple clinical and laboratory variables can predict these infections at presentation for appropriate management.

  1. Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    National Research Council Canada - National Science Library

    Shreve, Elizabeth A; Downs, Aimee C

    2005-01-01

    This report describes laboratory procedures used by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial sediment samples for concentration of sand and finer material...

  2. Clinical and laboratory features of 48 feline hyperthyroidism cases in Japan

    Directory of Open Access Journals (Sweden)

    Shinichi Namba

    2014-02-01

    Full Text Available Feline hyperthyroidism (HT is a common endocrine disorder worldwide, but clinical and laboratory features might vary geographically. The aim of this retrospective study was to evaluate feline HT in Japan, and compare results to those of previous study for feline HT. We evaluated 48 feline HT cases clinical and laboratory features. Surprisingly, the youngest patient was 32 months of age (2 year 9 months. There was no significant difference among the study subjects in sex, but frequency of spayed/castrated cats was high (85.4%. Median age was 186 months (32-272 months. 91.3% (n=42 of subjects were over 10 years of age, and 8.7% (n=4 were under 10 years of age. Clinical symptoms included vomiting, 56.3% (n=27; diarrhea, 2.1% (n=1; hyperactivity, 12.5% (n=6; emaciation, 41.7% (n=20; polyuria and polydipsia, 22.9% (n=11; chronic weight loss, 60.4% (n=29; and palpated enlarged thyroid, 2.1% (n=1. Concurrent findings included chronic kidney disease, 20.8% (n=10; congestive heart failure, 20.8% (n=10; tachycardia (over 240 beats/min, 18.8% (n=9; gallop rhythm, 31.3% (n=15; neurological disorders such as hind-limb paralysis, 14.6% (n=7; cystitis, 8.7% (n=4; gingivitis, 4.2% (n=2; diabetes mellitus, 4.2% (n=2; and arterial thromboembolism, 6.3% (n=3. In addition, laboratory features (complete blood counts and biochemistry differed from those of previous reports in certain respects. Our results show that it might be important for practitioners to comprehend epidemiologic differences regarding feline HT worldwide.

  3. Drop-In Clinics for Environmental Science Students

    Directory of Open Access Journals (Sweden)

    Marcie Lynne Jacklin

    2008-12-01

    Full Text Available This paper describes the use of drop in clinics as a new pedagogical approach in information literacy instruction. Although drop in clinics have been used before for library instruction purposes, they are generally aligned with improvement of student academic writing. In the scenario described in this article, in contrast, the drop in clinic is used in a different manner. The drop in clinic as described here offers students an opportunity to engage in self-directed learning by letting them control the content of the instruction. The clinic is offered to students as a way for them to direct their own learning of the course content. It is facilitated by the librarian but it is not controlled by the librarian. The use of this innovative approach is grounded in the example of environmental science and tourism students at a medium sized university in Ontario and it is an approach that has been jointly promoted to students by both the librarian and the course instructor.

  4. Outbreak of chikungunya in Johor Bahru, Malaysia: clinical and laboratory features of hospitalized patients.

    Science.gov (United States)

    Chew, L P; Chua, H H

    2009-09-01

    In 2008, an outbreak of chikungunya infection occurred in Johor. We performed a retrospective review of all laboratory confirmed adult chikungunya cases admitted to Hospital Sultanah Aminah, Johor Bahru from April to August 2008, looking into clinical and laboratory features. A total of 18 laboratory confirmed cases of chikungunya were identified with patients presenting with fever, joint pain, rash and vomiting. Haemorrhagic signs were not seen. Lymphopenia, neutropenia, thrombocytopenia, raised liver enzymes and deranged coagulation profile were the prominent laboratory findings. We hope this study can help guide physician making a diagnosis of chikungunya against other arborviruses infection.

  5. Radiation protection in clinical chemical laboratories

    International Nuclear Information System (INIS)

    Jacob, K.

    1980-01-01

    In the clinical-chemical laboratory, the problems of the personal radiation protection can be handled relatively simply. Important conditions are certain requirements as far as the building is concerned and the keeping to protection measures to invoid ingestion, inhalation, and resorption of open radioactive substances. Very intensive attention must be paid to a clean working technique in order to be able to exclude the danger of contamination which is very disturbing during the extremely sensitive measurements. The higgest problem in the handling of open radioactive substances, however, is in our opinion the waste management because it requires which space and personnel this causing high costs. Furthermore, since 1 January 1979, the permission for the final storage of radioactive waste in the shut down mine ASSE was taken back from the county collection places and it cannot be said yet if and when this permission will be given again. (orig./HP) [de

  6. Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.

    Science.gov (United States)

    Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry

    2014-12-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.

  7. Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse.

    Science.gov (United States)

    Martínez-Granados, Luis; Serrano, María; González-Utor, Antonio; Ortíz, Nereyda; Badajoz, Vicente; Olaya, Enrique; Prados, Nicolás; Boada, Montse; Castilla, Jose A

    2017-01-01

    The aim of this study is to determine inter-laboratory variability on embryo assessment using time-lapse platform and conventional morphological assessment. This study compares the data obtained from a pilot study of external quality control (EQC) of time lapse, performed in 2014, with the classical EQC of the Spanish Society for the Study of Reproductive Biology (ASEBIR) performed in 2013 and 2014. In total, 24 laboratories (8 using EmbryoScope™, 15 using Primo Vision™ and one with both platforms) took part in the pilot study. The clinics that used EmbryoScope™ analysed 31 embryos and those using Primo Vision™ analysed 35. The classical EQC was implemented by 39 clinics, based on an analysis of 25 embryos per year. Both groups were required to evaluate various qualitative morphological variables (cell fragmentation, the presence of vacuoles, blastomere asymmetry and multinucleation), to classify the embryos in accordance with ASEBIR criteria and to stipulate the clinical decision taken. In the EQC time-lapse pilot study, the groups were asked to determine, as well as the above characteristics, the embryo development times, the number, opposition and size of pronuclei, the direct division of 1 into 3 cells and/or of 3 into 5 cells and false divisions. The degree of agreement was determined by calculating the intra-class correlation coefficients and the coefficient of variation for the quantitative variables and the Gwet index for the qualitative variables. For both EmbryoScope™ and Primo Vision™, two periods of greater inter-laboratory variability were observed in the times of embryo development events. One peak of variability was recorded among the laboratories addressing the first embryo events (extrusion of the second polar body and the appearance of pronuclei); the second peak took place between the times corresponding to the 8-cell and morula stages. In most of the qualitative variables analysed regarding embryo development, there was almost

  8. Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse.

    Directory of Open Access Journals (Sweden)

    Luis Martínez-Granados

    Full Text Available The aim of this study is to determine inter-laboratory variability on embryo assessment using time-lapse platform and conventional morphological assessment. This study compares the data obtained from a pilot study of external quality control (EQC of time lapse, performed in 2014, with the classical EQC of the Spanish Society for the Study of Reproductive Biology (ASEBIR performed in 2013 and 2014. In total, 24 laboratories (8 using EmbryoScope™, 15 using Primo Vision™ and one with both platforms took part in the pilot study. The clinics that used EmbryoScope™ analysed 31 embryos and those using Primo Vision™ analysed 35. The classical EQC was implemented by 39 clinics, based on an analysis of 25 embryos per year. Both groups were required to evaluate various qualitative morphological variables (cell fragmentation, the presence of vacuoles, blastomere asymmetry and multinucleation, to classify the embryos in accordance with ASEBIR criteria and to stipulate the clinical decision taken. In the EQC time-lapse pilot study, the groups were asked to determine, as well as the above characteristics, the embryo development times, the number, opposition and size of pronuclei, the direct division of 1 into 3 cells and/or of 3 into 5 cells and false divisions. The degree of agreement was determined by calculating the intra-class correlation coefficients and the coefficient of variation for the quantitative variables and the Gwet index for the qualitative variables. For both EmbryoScope™ and Primo Vision™, two periods of greater inter-laboratory variability were observed in the times of embryo development events. One peak of variability was recorded among the laboratories addressing the first embryo events (extrusion of the second polar body and the appearance of pronuclei; the second peak took place between the times corresponding to the 8-cell and morula stages. In most of the qualitative variables analysed regarding embryo development, there

  9. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever

    Directory of Open Access Journals (Sweden)

    Asma Azmatullah

    2015-12-01

    Full Text Available Children suffer the highest burden of enteric fever among populations in South Asian countries. The clinical features are non–specific, vary in populations, and are often difficult to distinguish clinically from other febrile illnesses, leading to delayed or inappropriate diagnosis and treatment. We undertook a systematic review to assess the clinical profile and laboratory features of enteric fever across age groups, economic regions, level of care and antibiotic susceptibility patterns.

  10. Application of indices Cp and Cpk to improve quality control capability in clinical biochemistry laboratories.

    Science.gov (United States)

    Chen, Ming-Shu; Wu, Ming-Hsun; Lin, Chih-Ming

    2014-04-30

    The traditional criteria for acceptability of analytic quality may not be objective in clinical laboratories. To establish quality control procedures intended to enhance Westgard multi-rules for improving the quality of clinical biochemistry tests, we applied the Cp and Cpk quality-control indices to monitor tolerance fitting and systematic variation of clinical biochemistry test results. Daily quality-control data of a large Taiwanese hospital in 2009 were analyzed. The test items were selected based on an Olympus biochemistry machine and included serum albumin, aspartate aminotransferase, cholesterol, glucose and potassium levels. Cp and Cpk values were calculated for normal and abnormal levels, respectively. The tolerance range was estimated with data from 50 laboratories using the same instruments and reagents. The results showed a monthly trend of variation for the five items under investigation. The index values of glucose were lower than those of the other items, and their values were usually quality control, but also for revealing inter-laboratory qualitycontrol capability differences.

  11. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  12. The path to the future: The role of science and technology at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reck, R.A.

    1996-04-30

    Today some scientists are concerned that present budget considerations in Washington will make it impossible for the US to maintain its preeminence in important areas of science and technology. In the private sector there has been a demise of substantive R & D efforts through most of the major industries. For DOE a lack of future support for science and technology would be an important issue because this could impact DOE`s abilities to solve problems in its major areas of concern, national security, energy, environment. In fact some scientists maintain that were the present trend to continue unabated it could lead to a national security issue. Preeminence in science and technology plays a critical role in our nation`s position as the leader of world democracy. In contrast with this point of view of gloom and doom, however, in this presentation I hope to bring to you what I see as an exciting message of good news. Today I will list the important opportunities and challenges for the future that I note for ANL, the leadership role that I believe ANL can play and the qualities that will help our laboratory to maintain its status as an outstanding DOE National Laboratory.

  13. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  14. Laboratory and clinical trials of cocamide diethanolamine lotion against head lice

    Directory of Open Access Journals (Sweden)

    Ian F. Burgess

    2015-11-01

    Full Text Available Context. During the late 1990s, insecticide resistance had rendered a number of treatment products ineffective; some companies saw this as an opportunity to develop alternative types of treatment. We investigated the possibility that a surfactant-based lotion containing 10% cocamide diethanolamine (cocamide DEA was effective to eliminate head louse infestation.Settings and Design. Initial in vitro testing of the lotion formulation versus laboratory reared body/clothing lice, followed by two randomised, controlled, community-based, assessor blinded, clinical studies.Materials and Methods. Preliminary laboratory tests were performed by exposing lice or louse eggs to the product using a method that mimicked the intended use. Clinical Study 1: Children and adults with confirmed head louse infestation were treated by investigators using a single application of aqueous 10% cocamide DEA lotion applied for 60 min followed by shampooing or a single 1% permethrin creme rinse treatment applied to pre-washed hair for 10 min. Clinical Study 2: Compared two treatment regimens using 10% cocamide DEA lotion that was concentrated by hair drying. A single application left on for 8 h/overnight was compared with two applications 7 days apart of 2 h duration, followed by a shampoo wash.Results. The initial laboratory tests showed a pediculicidal effect for a 60 min application but limited ovicidal effect. A longer application time of 8 h or overnight was found capable of killing all eggs but this differed between batches of test material. Clinical Study 1: Both treatments performed badly with only 3/23 (13% successful treatments using cocamide DEA and 5/25 (23.8% using permethrin. Clinical Study 2: The single overnight application of cocamide DEA concentrated by hair drying gave 10/56 (17.9% successes compared with 19/56 (33.9% for the 2 h application regimen repeated after 1 week. Intention to treat analysis showed no significant difference (p = 0.0523 between the

  15. Improvement in the performance of external quality assessment in Korean HIV clinical laboratories using unrecalcified human plasma.

    Science.gov (United States)

    Wang, Jin-Sook; Kee, Mee-Kyung; Choi, Byeong-Sun; Kim, Chan-Wha; Kim, Hyon-Suk; Kim, Sung Soon

    2012-01-01

    The external quality assessment schemes (EQAS) organizer provides a suitable program to monitor and improve the quality of human immunodeficiency virus (HIV) testing laboratories with EQAS panels prepared under various conditions. The aim of the current study was to investigate the effects of human plasma samples on the EQAS results of HIV obtained from hospital-based clinical laboratories. From 2007 to 2009, HIV EQAS panels consisted of four to six samples that consisted of undiluted positive and negative samples and were provided to laboratories twice per year. Up until the first half EQAS in 2008, EQAS panel materials were obtained by converting acid citrate dextrose treated plasma to serum via chemical treatment with CaCl2. Beginning with the second EQAS in 2008, all materials were prepared without the defibrination process. Approximately 300 HIV clinical laboratories participated in this program. The overall performance of clinical laboratories was shown to be improved when using unrecalcified plasma panels compared with recalcified panels. Significant differences were observed in EIA analyses of plasma for both positive (plaboratories.

  16. 50th anniversary of Clinical Chemistry and Laboratory Medicine--a historical overview.

    Science.gov (United States)

    Körber, Friedrich; Plebani, Mario

    2013-01-01

    In the early 1960s, Joachim Brugsch, one of the founders of Clinical Chemistry and Laboratory Medicine (CCLM) (then Zeitschrift für Klinische Chemie), had the idea to found a journal in the upcoming field of clinical chemistry. He approached Ernst Schütte, who was associated with the De Gruyter publishing house through another journal, to participate, and Schütte thus became the second founder of this Journal. The aim was to create a vehicle allowing the experts to express their opinions and raise their voices more clearly than they could in a journal that publishes only original experimental papers, a laborious and difficult, but important endeavor, as the profession of clinical chemistry was still in the early stages of development at this time. The first issue of this Journal was published in early 1963, and today, we are proud to celebrate the 50th anniversary of CCLM. This review describes the development of this Journal in light of the political situation of the time when it was founded, the situation of the publisher Walter De Gruyter after the erection of the Berlin Wall, and the development of clinical chemistry, and later on, laboratory medicine as a well-acknowledged discipline and profession.

  17. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories.

    Science.gov (United States)

    Magnette, A; Chatelain, M; Chatelain, B; Ten Cate, H; Mullier, F

    2016-01-01

    Ensuring quality has become a daily requirement in laboratories. In haemostasis, even more than in other disciplines of biology, quality is determined by a pre-analytical step that encompasses all procedures, starting with the formulation of the medical question, and includes patient preparation, sample collection, handling, transportation, processing, and storage until time of analysis. This step, based on a variety of manual activities, is the most vulnerable part of the total testing process and is a major component of the reliability and validity of results in haemostasis and constitutes the most important source of erroneous or un-interpretable results. Pre-analytical errors may occur throughout the testing process and arise from unsuitable, inappropriate or wrongly handled procedures. Problems may arise during the collection of blood specimens such as misidentification of the sample, use of inadequate devices or needles, incorrect order of draw, prolonged tourniquet placing, unsuccessful attempts to locate the vein, incorrect use of additive tubes, collection of unsuitable samples for quality or quantity, inappropriate mixing of a sample, etc. Some factors can alter the result of a sample constituent after collection during transportation, preparation and storage. Laboratory errors can often have serious adverse consequences. Lack of standardized procedures for sample collection accounts for most of the errors encountered within the total testing process. They can also have clinical consequences as well as a significant impact on patient care, especially those related to specialized tests as these are often considered as "diagnostic". Controlling pre-analytical variables is critical since this has a direct influence on the quality of results and on their clinical reliability. The accurate standardization of the pre-analytical phase is of pivotal importance for achieving reliable results of coagulation tests and should reduce the side effects of the influence

  18. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  19. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  20. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    Science.gov (United States)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two