WorldWideScience

Sample records for clinical gait analysis

  1. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Science.gov (United States)

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  2. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  3. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  4. Vector-field statistics for the analysis of time varying clinical gait data.

    Science.gov (United States)

    Donnelly, C J; Alexander, C; Pataky, T C; Stannage, K; Reid, S; Robinson, M A

    2017-01-01

    In clinical settings, the time varying analysis of gait data relies heavily on the experience of the individual(s) assessing these biological signals. Though three dimensional kinematics are recognised as time varying waveforms (1D), exploratory statistical analysis of these data are commonly carried out with multiple discrete or 0D dependent variables. In the absence of an a priori 0D hypothesis, clinicians are at risk of making type I and II errors in their analyis of time varying gait signatures in the event statistics are used in concert with prefered subjective clinical assesment methods. The aim of this communication was to determine if vector field waveform statistics were capable of providing quantitative corroboration to practically significant differences in time varying gait signatures as determined by two clinically trained gait experts. The case study was a left hemiplegic Cerebral Palsy (GMFCS I) gait patient following a botulinum toxin (BoNT-A) injection to their left gastrocnemius muscle. When comparing subjective clinical gait assessments between two testers, they were in agreement with each other for 61% of the joint degrees of freedom and phases of motion analysed. For tester 1 and tester 2, they were in agreement with the vector-field analysis for 78% and 53% of the kinematic variables analysed. When the subjective analyses of tester 1 and tester 2 were pooled together and then compared to the vector-field analysis, they were in agreement for 83% of the time varying kinematic variables analysed. These outcomes demonstrate that in principle, vector-field statistics corroborates with what a team of clinical gait experts would classify as practically meaningful pre- versus post time varying kinematic differences. The potential for vector-field statistics to be used as a useful clinical tool for the objective analysis of time varying clinical gait data is established. Future research is recommended to assess the usefulness of vector-field analyses

  5. Toward a low-cost gait analysis system for clinical and free-living assessment.

    Science.gov (United States)

    Ladha, Cassim; Del Din, Silvia; Nazarpour, Kianoush; Hickey, Aodhan; Morris, Rosie; Catt, Michael; Rochester, Lynn; Godfrey, Alan

    2016-08-01

    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson's disease). We demonstrate the system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to develop gait as a low cost diagnostic in modern healthcare.

  6. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems.

    Science.gov (United States)

    Simon, Sheldon R

    2004-12-01

    The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.

  7. Crouch gait patterns defined using k-means cluster analysis are related to underlying clinical pathology.

    Science.gov (United States)

    Rozumalski, Adam; Schwartz, Michael H

    2009-08-01

    In this study a gait classification method was developed and applied to subjects with Cerebral palsy who walk with excessive knee flexion at initial contact. Sagittal plane gait data, simplified using the gait features method, is used as input into a k-means cluster analysis to determine homogeneous groups. Several clinical domains were explored to determine if the clusters are related to underlying pathology. These domains included age, joint range-of-motion, strength, selective motor control, and spasticity. Principal component analysis is used to determine one overall score for each of the multi-joint domains (strength, selective motor control, and spasticity). The current study shows that there are five clusters among children with excessive knee flexion at initial contact. These clusters were labeled, in order of increasing gait pathology: (1) mild crouch with mild equinus, (2) moderate crouch, (3) moderate crouch with anterior pelvic tilt, (4) moderate crouch with equinus, and (5) severe crouch. Further analysis showed that age, range-of-motion, strength, selective motor control, and spasticity were significantly different between the clusters (p<0.001). The general tendency was for the clinical domains to worsen as gait pathology increased. This new classification tool can be used to define homogeneous groups of subjects in crouch gait, which can help guide treatment decisions and outcomes assessment.

  8. Comparison of a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography.

    Science.gov (United States)

    Stuberg, W A; Colerick, V L; Blanke, D J; Bruce, W

    1988-08-01

    The purpose of this study was to compare a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography in a gait analysis laboratory. Ten children with a diagnosis of cerebral palsy (means age = 8.8 +/- 2.7 years) and 9 healthy children (means age = 8.9 +/- 2.4 years) participated in the study. Stride length, walking velocity, and goniometric measurements of the hip, knee, and ankle were recorded using the two gait analysis methods. A multivariate analysis of variance was used to determine significant differences between the data collected using the two methods. Pearson product-moment correlation coefficients were determined to examine the relationship between the measurements recorded by the two methods. The consistency of performance of the subjects during walking was examined by intraclass correlation coefficients. No significant differences were found between the methods for the variables studied. Pearson product-moment correlation coefficients ranged from .79 to .95, and intraclass coefficients ranged from .89 to .97. The clinical gait analysis method was found to be a valid tool in comparison with 16-mm cinematography for the variables that were studied.

  9. GaitaBase: Web-based repository system for gait analysis.

    Science.gov (United States)

    Tirosh, Oren; Baker, Richard; McGinley, Jenny

    2010-02-01

    The need to share gait analysis data to improve clinical decision support has been recognised since the early 1990s. GaitaBase has been established to provide a web-accessible repository system of gait analysis data to improve the sharing of data across local and international clinical and research community. It is used by several clinical and research groups across the world providing cross-group access permissions to retrieve and analyse the data. The system is useful for bench-marking and quality assurance, clinical consultation, and collaborative research. It has the capacity to increase the population sample size and improve the quality of 'normative' gait data. In addition the accumulated stored data may facilitate clinicians in comparing their own gait data with others, and give a valuable insight into how effective specific interventions have been for others. 2009 Elsevier Ltd. All rights reserved.

  10. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    Science.gov (United States)

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  11. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity

  12. Accuracy of clinical observations of push-off during gait after stroke.

    Science.gov (United States)

    McGinley, Jennifer L; Morris, Meg E; Greenwood, Ken M; Goldie, Patricia A; Olney, Sandra J

    2006-06-01

    To determine the accuracy (criterion-related validity) of real-time clinical observations of push-off in gait after stroke. Criterion-related validity study of gait observations. Rehabilitation hospital in Australia. Eleven participants with stroke and 8 treating physical therapists. Not applicable. Pearson product-moment correlation between physical therapists' observations of push-off during gait and criterion measures of peak ankle power generation from a 3-dimensional motion analysis system. A high correlation was obtained between the observational ratings and the measurements of peak ankle power generation (Pearson r =.98). The standard error of estimation of ankle power generation was .32W/kg. Physical therapists can make accurate real-time clinical observations of push-off during gait following stroke.

  13. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  14. Gait analysis and weight bearing in pre-clinical joint pain research.

    Science.gov (United States)

    Ängeby Möller, Kristina; Svärd, Heta; Suominen, Anni; Immonen, Jarmo; Holappa, Johanna; Stenfors, Carina

    2018-04-15

    There is a need for better joint pain treatment, but development of new medication has not been successful. Pre-clinical models with readouts that better reflect the clinical situation are needed. In patients with joint pain, pain at rest and pain at walking are two major complaints. We describe a new way of calculating results from gait analysis using the CatWalk™ setup. Rats with monoarthritis induced by injection of Complete Freund's Adjuvant (CFA) intra-articularly into the ankle joint of one hind limb were used to assess gait and dynamic weight bearing. The results show that dynamic weight bearing was markedly reduced for the injected paw. Gait parameters such as amount of normal step sequences, walking speed and duration of step placement were also affected. Treatment with naproxen (an NSAID commonly used for inflammatory pain) attenuated the CFA-induced effects. Pregabalin, which is used for neuropathic pain, had no effect. Reduced dynamic weight bearing during locomotion, assessed and calculated in the way we present here, showed a dose-dependent and lasting normalization after naproxen treatment. In contrast, static weight bearing while standing (Incapacitance tester) showed a significant effect for a limited time only. Mechanical sensitivity (von Frey Optihairs) was completely normalized by naproxen, and the window for testing pharmacological effect disappeared. Objective and reproducible effects, with an endpoint showing face validity compared to pain while walking in patients with joint pain, are achieved by a new way of calculating dynamic weight bearing in monoarthritic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Management of a patient's gait abnormality using smartphone technology in-clinic for improved qualitative analysis: A case report.

    Science.gov (United States)

    VanWye, William R; Hoover, Donald L

    2018-05-01

    Qualitative analysis has its limitations as the speed of human movement often occurs more quickly than can be comprehended. Digital video allows for frame-by-frame analysis, and therefore likely more effective interventions for gait dysfunction. Although the use of digital video outside laboratory settings, just a decade ago, was challenging due to cost and time constraints, rapid use of smartphones and software applications has made this technology much more practical for clinical usage. A 35-year-old man presented for evaluation with the chief complaint of knee pain 24 months status-post triple arthrodesis following a work-related crush injury. In-clinic qualitative gait analysis revealed gait dysfunction, which was augmented by using a standard IPhone® 3GS camera. After video capture, an IPhone® application (Speed Up TV®, https://itunes.apple.com/us/app/speeduptv/id386986953?mt=8 ) allowed for frame-by-frame analysis. Corrective techniques were employed using in-clinic equipment to develop and apply a temporary heel-to-toe rocker sole (HTRS) to the patient's shoe. Post-intervention video revealed significantly improved gait efficiency with a decrease in pain. The patient was promptly fitted with a permanent HTRS orthosis. This intervention enabled the patient to successfully complete a work conditioning program and progress to job retraining. Video allows for multiple views, which can be further enhanced by using applications for frame-by-frame analysis and zoom capabilities. This is especially useful for less experienced observers of human motion, as well as for establishing comparative signs prior to implementation of training and/or permanent devices.

  16. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  17. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    Science.gov (United States)

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  18. Clinical gait analysis : A review of research at the Interdepartmental Research group of Kinesiology in Leiden

    NARCIS (Netherlands)

    Daanen, H. A M

    1990-01-01

    In this article the methodology used in the Interdepartmental Research Group of Kinesiology to quantify (clinical) human gait is elaborated upon. Four methods are described: analysis of temporal parameters, goniometry, accelerometry and electromyography. A correct representation of electromyographic

  19. Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis.

    Science.gov (United States)

    Deie, Masataka; Hoso, Takayuki; Shimada, Noboru; Iwaki, Daisuke; Nakamae, Atsuo; Adachi, Nobuo; Ochi, Mitsuo

    2014-12-01

    High tibial osteotomy (HTO) for medial knee osteoarthritis (OA) is mainly performed via two procedures: closing wedge HTO (CW) and opening wedge HTO (OW). In this study, differences between these procedures were assessed by serial clinical evaluation and gait analysis before and after surgery. Twenty-one patients underwent HTO for medial knee OA in 2011 and 2012, with 12 patients undergoing CW and nine undergoing OW. The severity of OA was classified according to the Kellgren-Lawrence classification. The Japanese Orthopedic Association score for assessment of knee OA (JOA score), the Numeric Rating Scale (NRS), and the femoral tibial angle (FTA) on X-ray were evaluated. For gait analysis, gait speed, varus moment, varus angle and lateral thrust were calculated. The JOA score and NRS were improved significantly one year postoperatively in both groups. The FTA was maintained in both groups at one year. Varus angle and varus moment were significantly improved in both groups at each postoperative follow-up, when compared preoperatively. Lateral thrust was significantly improved at three months postoperatively in both groups. However, the significant improvement in lateral thrust had disappeared in the CW group six months postoperatively, whereas it was maintained for at least one year in the OW group. This study found that clinical outcomes were well maintained after HTO. OW reduced knee varus moment and lateral thrust, whereas CW had little effect on reducing lateral thrust. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole.

    Science.gov (United States)

    Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim

    2016-02-01

    Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real

  1. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2017-04-01

    Full Text Available The gold standards for gait analysis are instrumented walkways and marker-based motion capture systems, which require costly infrastructure and are only available in hospitals and specialized gait clinics. Even though the completeness and the accuracy of these systems are unquestionable, a mobile and pervasive gait analysis alternative suitable for non-hospital settings is a clinical necessity. Using inertial sensors for gait analysis has been well explored in the literature with promising results. However, the majority of the existing work does not consider realistic conditions where data collection and sensor placement imperfections are imminent. Moreover, some of the underlying assumptions of the existing work are not compatible with pathological gait, decreasing the accuracy. To overcome these challenges, we propose a foot-mounted inertial sensor-based gait analysis system that extends the well-established zero-velocity update and Kalman filtering methodology. Our system copes with various cases of data collection difficulties and relaxes some of the assumptions invalid for pathological gait (e.g., the assumption of observing a heel strike during a gait cycle. The system is able to extract a rich set of standard gait metrics, including stride length, cadence, cycle time, stance time, swing time, stance ratio, speed, maximum/minimum clearance and turning rate. We validated the spatio-temporal accuracy of the proposed system by comparing the stride length and swing time output with an IR depth-camera-based reference system on a dataset comprised of 22 subjects. Furthermore, to highlight the clinical applicability of the system, we present a clinical discussion of the extracted metrics on a disjoint dataset of 17 subjects with various neurological conditions.

  2. Skeletal and Clinical Effects of Exoskeleton-Assisted Gait

    Science.gov (United States)

    2015-10-01

    robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, the health benefits of exoskeleton -assisted gait have not been...for the use of robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, clinical teams are not provided with...appropriate tools to estimate or predict potential health benefits (e.g. bone health) associated with exoskeleton -assisted gait. What was the impact on other

  3. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2017-08-01

    Full Text Available Background: Gait disorders, a highly prevalent condition in older adults, are associated with several adverse health consequences. Gait analysis allows qualitative and quantitative assessments of gait that improves the understanding of mechanisms of gait disorders and the choice of interventions. This manuscript aims (1 to give consensus guidance for clinical and spatiotemporal gait analysis based on the recorded footfalls in older adults aged 65 years and over, and (2 to provide reference values for spatiotemporal gait parameters based on the recorded footfalls in healthy older adults free of cognitive impairment and multi-morbidities.Methods: International experts working in a network of two different consortiums (i.e., Biomathics and Canadian Gait Consortium participated in this initiative. First, they identified items of standardized information following the usual procedure of formulation of consensus findings. Second, they merged databases including spatiotemporal gait assessments with GAITRite® system and clinical information from the “Gait, cOgnitiOn & Decline” (GOOD initiative and the Generation 100 (Gen 100 study. Only healthy—free of cognitive impairment and multi-morbidities (i.e., ≤ 3 therapeutics taken daily—participants aged 65 and older were selected. Age, sex, body mass index, mean values, and coefficients of variation (CoV of gait parameters were used for the analyses.Results: Standardized systematic assessment of three categories of items, which were demographics and clinical information, and gait characteristics (clinical and spatiotemporal gait analysis based on the recorded footfalls, were selected for the proposed guidelines. Two complementary sets of items were distinguished: a minimal data set and a full data set. In addition, a total of 954 participants (mean age 72.8 ± 4.8 years, 45.8% women were recruited to establish the reference values. Performance of spatiotemporal gait parameters based on the recorded

  5. Skeletal and Clinical Effects of Exoskeletal Assisted - Gait

    Science.gov (United States)

    2016-10-01

    clinical functional outcomes. The hypothesis of the study is that exoskeleton -assisted ambulation has skeletal and general health benefits for...for the use of robotic exoskeletons to enable gait in individuals with a complete SCI, clinical teams are not provided with appropriate tools to...estimate or predict potential health benefits (e.g. bone health) associated with exoskeleton -assisted gait. What was the impact on other disciplines

  6. Use of wand markers on the pelvis in three dimensional gait analysis

    DEFF Research Database (Denmark)

    Smith, Martin; Curtis, Derek; Bencke, Jesper

    2013-01-01

    During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution to this ......During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution...... to this problem has previously been proposed and tested on a limited sample of healthy, adult subjects. This involves use of wand markers on the pelvis, to virtually recreate the ASIS markers. The method was tested here on 20 typical subjects presenting for clinical gait analysis (adults and children, including...

  7. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  8. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  9. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  10. A musculoskeletal foot model for clinical gait analysis.

    Science.gov (United States)

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  11. Gait analysis in prosthetics: Opinions, ideas and conclusions

    NARCIS (Netherlands)

    Rietman, J.S.; Postema, K.; Geertzen, J.H.B.

    2002-01-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were

  12. Neurological gait disorders in elderly people: clinical approach and classification.

    NARCIS (Netherlands)

    Snijders, A.H.; Warrenburg, B.P.C. van de; Giladi, N.; Bloem, B.R.

    2007-01-01

    Gait disorders are common and often devastating companions of ageing, leading to reductions in quality of life and increased mortality. Here, we present a clinically oriented approach to neurological gait disorders in the elderly population. We also draw attention to several exciting scientific

  13. Clinical gait evaluation of patients with knee osteoarthritis.

    Science.gov (United States)

    Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan

    2017-10-01

    Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gait and Cognition in Parkinson’s Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task

    Directory of Open Access Journals (Sweden)

    Heiko Gaßner

    2017-10-01

    Full Text Available IntroductionCognitive and gait deficits are common symptoms in Parkinson’s disease (PD. Motor-cognitive dual tasks (DTs are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters.MethodsCognitive function, single task (ST and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3’s. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT − ST/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs.ResultsCorrelation analysis revealed weak correlations between MoCA score and DT costs of gait parameters (r/rSp ≤ 0.3. DT costs of stride length, swing time variability, and maximum toe clearance (|r/rSp| > 0.2 were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes, but significant between-group effects in DT gait costs were not observed.ConclusionThese findings suggest that DT gait performance is not indicative

  15. Soft tissue artifact in canine kinematic gait analysis

    NARCIS (Netherlands)

    Schwencke, M.; Smolders, L.A.; Bergknut, N.; Gustas, P.; Meij, B.P.; Hazewinkel, H.A.W.

    2012-01-01

    Vet Surg. 2012 Oct;41(7):829-37. doi: 10.1111/j.1532-950X.2012.01021.x. Soft tissue artifact in canine kinematic gait analysis. Schwencke M, Smolders LA, Bergknut N, Gustås P, Meij BP, Hazewinkel HA. Source Department of Clinical Sciences of Companion Animals,, Faculty of Veterinary Medicine,

  16. Performance analysis for gait in camera networks

    OpenAIRE

    Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon

    2008-01-01

    This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real...

  17. Freezing of gait: moving forward on a mysterious clinical phenomenon

    NARCIS (Netherlands)

    Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A.

    2011-01-01

    Freezing of gait (FoG) is a unique and disabling clinical phenomenon characterised by brief episodes of inability to step or by extremely short steps that typically occur on initiating gait or on turning while walking. Patients with FoG, which is a feature of parkinsonian syndromes, show variability

  18. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    Science.gov (United States)

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  19. Gait Analysis Study of Runner Using Force Plate

    Directory of Open Access Journals (Sweden)

    Flaviana Catherine

    2017-02-01

    Full Text Available Humans do regular physical activities such as running. Gait is forward  propulsion of the human body using lower extremities as a thrust. Humans gait pattern is characterized by their limbs movement in terms of velocity, ground reaction force, work, kinetic energy and potential energy cycle . Human gait analysis is used to assess, to plan, and to deliver the treatment for individuals based on the conditions that affect their ability to move. Gait analysis is commonly used in running sport to improve the efficiency of athletes in running and to identify problems related to their posture or movement. The aim of this research is to do running gait analysis study of human, using force plate which equipped by track board. The benefit of this study is to provide information, ideas and new perspectives about running and its prevention over an injury. The main method that will be discussed in this study is system design of gait analysis with specific setting, hardware and software, in order to acquire data(s.

  20. Unstable gait due to spasticity of the rectus femoris: gait analysis and motor nerve block.

    Science.gov (United States)

    Gross, R; Leboeuf, F; Rémy-Néris, O; Perrouin-Verbe, B

    2012-12-01

    We present the case of a 54 year-old man presenting with a right Brown-Séquard plus syndrome (BSPS) after a traumatic cervical spinal cord injury. After being operated on with selective tibial neurotomy and triceps surae lengthening because of a right spastic equinus foot, he developed a gait disorder at high speed. The patient complained about an instability of the right knee. Observational gait analysis exhibited an oscillating, flexion/extension motion of the right knee during stance, which was confirmed by gait analysis. Dynamic electromyographic recordings exhibited a clonus of the right rectus femoris (RF) during stance. The spastic activity of the RF and the abnormal knee motion totally reversed after a motor nerve block of the RF, as well as after botulinum toxin type A injection into the RF. We emphasize that complex, spastic gait disorders can benefit from a comprehensive assessment including gait analysis and nerve blocks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. First signs of elderly gait for women.

    Science.gov (United States)

    Kaczmarczyk, Katarzyna; Wiszomirska, Ida; Błażkiewicz, Michalina; Wychowański, Michał; Wit, Andrzej

    2017-06-27

    The aims of this study have been twofold: to attempt to reduce the number of spatiotemporal parameters used for describing gait through the factor analysis and component analysis; and to explore the critical age of decline for other gait parameters for healthy women. A total of 106 women (aged ≥ 40 years old (N = 76) and ≤ 31 years old (N = 30)) were evaluated using a pressure-sensitive mat (Zebris Medical System, Tübingen, Germany) for collecting spatiotemporal gait parameters. The factor analysis identified 2 factors - labelled Time and Rhythm - that accounted for 72% of the variation in significant free-gait parameters; the principal component analysis identified 4 of these parameters that permit full clinical evaluation of gait quality. No difference was found between the groups in terms of the values of parameters reflecting the temporal nature of gait (Rhythm), namely step time, stride time and cadence, whereas significant differences were found for total double support phase (p gait, we selected 3 parameters: total double support, stride time and velocity. We concluded that the women taking part in the experiment manifested significant signs of senile gait after the age of 60 years old, with the first symptoms thereof already manifesting themselves after 50 years of age. We show that among 26 spatiotemporal parameters that may be used for characterizing gait, at least a half of them may be omitted in the assessment of gait correctness; a finding that may be useful in clinical practice. The finding that the onset of senile gait occurs in the case of women after the age of 60 years old, in turn, may be useful in evaluating the ability for performing types of physical work that mainly require ambulation. Med Pr 2017;68(4):441-448. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Probabilistic Gait Classification in Children with Cerebral Palsy: A Bayesian Approach

    Science.gov (United States)

    Van Gestel, Leen; De Laet, Tinne; Di Lello, Enrico; Bruyninckx, Herman; Molenaers, Guy; Van Campenhout, Anja; Aertbelien, Erwin; Schwartz, Mike; Wambacq, Hans; De Cock, Paul; Desloovere, Kaat

    2011-01-01

    Three-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns. Therefore,…

  3. Insights into gait disorders: walking variability using phase plot analysis, Huntington's disease.

    Science.gov (United States)

    Collett, Johnny; Esser, Patrick; Khalil, Hanan; Busse, Monica; Quinn, Lori; DeBono, Katy; Rosser, Anne; Nemeth, Andrea H; Dawes, Helen

    2014-09-01

    Huntington's disease (HD) is a progressive inherited neurodegenerative disorder. Identifying sensitive methodologies to quantitatively measure early motor changes have been difficult to develop. This exploratory observational study investigated gait variability and symmetry in HD using phase plot analysis. We measured the walking of 22 controls and 35 HD gene carriers (7 premanifest (PreHD)), 16 early/mid (HD1) and 12 late stage (HD2) in Oxford and Cardiff, UK. The unified Huntington's disease rating scale-total motor scores (UHDRS-TMS) and disease burden scores (DBS) were used to quantify disease severity. Data was collected during a clinical walk test (8.8 or 10 m) using an inertial measurement unit attached to the trunk. The 6 middle strides were used to calculate gait variability determined by spatiotemporal parameters (co-efficient of variation (CoV)) and phase plot analysis. Phase plots considered the variability in consecutive wave forms from vertical movement and were quantified by SDA (spatiotemporal variability), SDB (temporal variability), ratio ∀ (ratio SDA:SDB) and Δangleβ (symmetry). Step time CoV was greater in manifest HD (p0.05). Phase plot analysis identified differences between manifest HD and controls for SDB, Ratio ∀ and Δangle (all pplot analysis may be a sensitive method of detecting gait changes in HD and can be performed quickly during clinical walking tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    Science.gov (United States)

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of paclitaxel induced sensory polyneuropathy with "Catwalk" automated gait analysis in mice.

    Directory of Open Access Journals (Sweden)

    Petra Huehnchen

    Full Text Available Neuropathic pain as a symptom of sensory nerve damage is a frequent side effect of chemotherapy. The most common behavioral observation in animal models of chemotherapy induced polyneuropathy is the development of mechanical allodynia, which is quantified with von Frey filaments. The data from one study, however, cannot be easily compared with other studies owing to influences of environmental factors, inter-rater variability and differences in test paradigms. To overcome these limitations, automated quantitative gait analysis was proposed as an alternative, but its usefulness for assessing animals suffering from polyneuropathy has remained unclear. In the present study, we used a novel mouse model of paclitaxel induced polyneuropathy to compare results from electrophysiology and the von Frey method to gait alterations measured with the Catwalk test. To mimic recently improved clinical treatment strategies of gynecological malignancies, we established a mouse model of dose-dense paclitaxel therapy on the common C57Bl/6 background. In this model paclitaxel treated animals developed mechanical allodynia as well as reduced caudal sensory nerve action potential amplitudes indicative of a sensory polyneuropathy. Gait analysis with the Catwalk method detected distinct alterations of gait parameters in animals suffering from sensory neuropathy, revealing a minimized contact of the hind paws with the floor. Treatment of mechanical allodynia with gabapentin improved altered dynamic gait parameters. This study establishes a novel mouse model for investigating the side effects of dose-dense paclitaxel therapy and underlines the usefulness of automated gait analysis as an additional easy-to-use objective test for evaluating painful sensory polyneuropathy.

  7. Femoral anteversion assessment: Comparison of physical examination, gait analysis, and EOS biplanar radiography.

    Science.gov (United States)

    Westberry, David E; Wack, Linda I; Davis, Roy B; Hardin, James W

    2018-05-01

    Multiple measurement methods are available to assess transverse plane alignment of the lower extremity. This study was performed to determine the extent of correlation between femoral anteversion assessment using simultaneous biplanar radiographs and three-dimensional modeling (EOS imaging), clinical hip rotation by physical examination, and dynamic hip rotation assessed by gait analysis. Seventy-seven patients with cerebral palsy (GMFCS Level I and II) and 33 neurologically typical children with torsional abnormalities completed a comprehensive gait analysis with same day biplanar anterior-posterior and lateral radiographs and three-dimensional transverse plane assessment of femoral anteversion. Correlations were determined between physical exam of hip rotation, EOS imaging of femoral anteversion, and transverse plane hip kinematics for this retrospective review study. Linear regression analysis revealed a weak relationship between physical examination measures of hip rotation and biplanar radiographic assessment of femoral anteversion. Similarly, poor correlation was found between clinical evaluation of femoral anteversion and motion assessment of dynamic hip rotation. Correlations were better in neurologically typical children with torsional abnormalities compared to children with gait dysfunction secondary to cerebral palsy. Dynamic hip rotation cannot be predicted by physical examination measures of hip range of motion or from three-dimensional assessment of femoral anteversion derived from biplanar radiographs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Analysis of foot load during ballet dancers' gait.

    Science.gov (United States)

    Prochazkova, Marketa; Tepla, Lucie; Svoboda, Zdenek; Janura, Miroslav; Cieslarová, Miloslava

    2014-01-01

    Ballet is an art that puts extreme demands on the dancer's musculoskeletal system and therefore significantly affects motor behavior of the dancers. The aim of our research was to compare plantar pressure distribution during stance phase of gait between a group of professional ballet dancers and non-dancers. Thirteen professional dancers (5 men, 8 women; mean age of 24.1 ± 3.8 years) and 13 nondancers (5 men, 8 women; mean age of 26.1 ± 5.3 years) participated in this study. Foot pressure analysis during gait was collected using a 2 m pressure plate. The participants were instructed to walk across the platform at a self-selected pace barefoot. Three gait cycles were necessary for the data analysis. The results revealed higher (p < 0.05) pressure peaks in medial edge of forefoot during gait for dancers in comparison with nondancers. Furthermore, differences in total foot loading and foot loading duration of rearfoot was higher (p < 0.05) in dancers as well. We can attribute these differences to long-term and intensive dancing exercises that can change the dancer's gait stereotype.

  9. FreeWalker: a smart insole for longitudinal gait analysis.

    Science.gov (United States)

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  10. Gait analysis in patients with chronic obstructive pulmonary disease: a systematic review.

    Science.gov (United States)

    Zago, Matteo; Sforza, Chiarella; Bonardi, Daniela Rita; Guffanti, Enrico Eugenio; Galli, Manuela

    2018-03-01

    Gait instability is a major fall-risk factor in patients with chronic obstructive pulmonary disease (COPD). Clinical gait analysis is a reliable tool to predict fall onsets. However, controversy still exists on gait impairments associated with COPD. Thus, the aims of this review were to evaluate the current understanding of spatiotemporal, kinematic and kinetic gait features in patients with COPD. In line with PRISMA guidelines, a systematic literature search was performed throughout Web of Science, PubMed Medline, Scopus, PEDro and Scielo databases. We considered observational cross-sectional studies evaluating gait features in patients with COPD as their primary outcome. Risk of bias and applicability of these papers were assessed according to the QUADAS-2 tool. Seven articles, cross-sectional studies published from 2011 to 2017, met the inclusion criteria. Sample size of patients with COPD ranged 14-196 (mean age range: 64-75 years). The main reported gait abnormalities were reduced step length and cadence, and altered variability of spatiotemporal parameters. Only subtle biomechanical changes were reported at the ankle level. A convincing mechanistic link between such gait impairments and falls in patients with COPD is still lacking. The paucity of studies, small sample sizes, gender and disease status pooling were the main risk of biases affecting the results uncertainty. Two research directions emerged: stricter cohorts characterization in terms of COPD phenotype and longitudinal studies. Quantitative assessment of gait would identify abnormalities and sensorimotor postural deficiencies that in turn may lead to better falling prevention strategies in COPD. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gait Disorders in Parkinson's Disease: Assessment and Management

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2013-12-01

    Full Text Available Gait disorder, a major cause of morbidity in the elderly population, is one of the cardinal features of Parkinson's disease. Owing to the characteristics of these gaits varying widely from festination to freezing of gait, analysis can be hardly identified in the clinical setting. Instrumented gait analysis has been widely used in a traditional gait laboratory. Recently, wireless monitoring systems have become highly informative by allowing long-term data collection in a variety of environments outside the labs. The quantitative analysis of gait patterns is probably the first step to a successful management of an individual patient. The presence of abnormal gait usually indicates advanced stages of disease and is often associated with cognitive impairment, falls, and injuries. Besides pharmacological and surgical treatments, parkinsonian gait can benefit from a variety of interventions. Assistive devices prevent patients from falls, and cueing strategies help them decrease episodes of freezing. Therefore, a multidisciplinary team approach to the optimal management is essential for an elderly patient with Parkinson's disease.

  12. GaitKeeper: A System for Measuring Canine Gait

    Directory of Open Access Journals (Sweden)

    Cassim Ladha

    2017-02-01

    Full Text Available It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time. Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance

  13. Quantitative Gait Analysis in Patients with Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Seon Jong Pyo

    2017-09-01

    Full Text Available Objective Gait disturbance is the main factor contributing to a negative impact on quality of life in patients with Huntington’s disease (HD. Understanding gait features in patients with HD is essential for planning a successful gait strategy. The aim of this study was to investigate temporospatial gait parameters in patients with HD compared with healthy controls. Methods We investigated 7 patients with HD. Diagnosis was confirmed by genetic analysis, and patients were evaluated with the Unified Huntington’s Disease Rating Scale (UHDRS. Gait features were assessed with a gait analyzer. We compared the results of patients with HD to those of 7 age- and sex-matched normal controls. Results Step length and stride length were decreased and base of support was increased in the HD group compared to the control group. In addition, coefficients of variability for step and stride length were increased in the HD group. The HD group showed slower walking velocity, an increased stance/swing phase in the gait cycle and a decreased proportion of single support time compared to the control group. Cadence did not differ significantly between groups. Among the UHDRS subscores, total motor score and total behavior score were positively correlated with step length, and total behavior score was positively correlated with walking velocity in patients with HD. Conclusion Increased variability in step and stride length, slower walking velocity, increased stance phase, and decreased swing phase and single support time with preserved cadence suggest that HD gait patterns are slow, ataxic and ineffective. This study suggests that quantitative gait analysis is needed to assess gait problems in HD.

  14. Effects of walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia.

    Science.gov (United States)

    Hwang, Jongseok; Shin, Yongil; Park, Ji-Ho; Cha, Young Joo; You, Joshua Sung H

    2018-04-07

    The robotic-assisted gait training (RAGT) system has gained recognition as an innovative, effective paradigm to improve functional ambulation and activities of daily living in spinal cord injury and stroke. However, the effects of the Walkbot robotic-assisted gait training system with a specialized hip-knee-ankle actuator have never been examined in the paraplegia and quadriplegia population. The aim of this study was to determine the long-term effects of Walkbot training on clinical for hips and knee stiffness in individuals with paraplegia or quadriplegia. Nine adults with subacute or chronic paraplegia resulting from spinal cord injury or quadriplegia resulting from cerebral vascular accident (CVA) and/or hypoxia underwent progressive conventional gait retraining combined with the Walkbot RAGT for 5 days/week over an average of 43 sessions for 8 weeks. Clinical outcomes were measured with the Functional Ambulation Category (FAC), Modified Rankin Scale (MRS), Korean version of the Modified Barthel Index (K-MBI), Modified Ashworth Scale (MAS). Kinetic and kinematic data were collected via a built-in Walkbot program. Wilcoxon signed-rank tests showed significant positive intervention effects on K-MBI, maximal hip flexion and extension, maximal knee flexion, active torque in the knee joint, resistive torque, and stiffness in the hip joint (P quadriplegia who had reached a plateau in motor recovery after conventional therapy.

  15. Gait analysis of adults with generalised joint hypermobility

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Tegner, Heidi; Alkjær, Tine

    2012-01-01

    BACKGROUND: The majority of adults with Generalised Joint Hypermobility experience symptoms such as pain and joint instability, which is likely to influence their gait pattern. Accordingly, the purpose of the present project was to perform a biomechanical gait analysis on a group of patients...

  16. Performance analysis for automated gait extraction and recognition in multi-camera surveillance

    OpenAIRE

    Goffredo, Michela; Bouchrika, Imed; Carter, John N.; Nixon, Mark S.

    2010-01-01

    Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and thei...

  17. Human Gait Feature Extraction Including a Kinematic Analysis toward Robotic Power Assistance

    Directory of Open Access Journals (Sweden)

    Mario I. Chacon-Murguia

    2012-09-01

    Full Text Available The present work proposes a method for human gait and kinematic analysis. Gait analysis consists of the determination of hip, knee and ankle positions through video analysis. Gait kinematic for the thigh and knee is then generated from this data. Evaluations of the gait analysis method indicate an acceptable performance of 86.66% for hip and knee position estimation, and comparable findings with other reported works for gait kinematic. A coordinate systems assignment is performed according to the DH algorithm and a direct kinematic model of the legs is obtained. The legs' angles obtained from the video analysis are applied to the kinematic model in order to revise the application of this model to robotic legs in a power assisted system.

  18. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  19. Vision-based gait impairment analysis for aided diagnosis.

    Science.gov (United States)

    Ortells, Javier; Herrero-Ezquerro, María Trinidad; Mollineda, Ramón A

    2018-02-12

    Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work, provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence about their accuracy. Graphical Abstract Graphical abstract reflecting main contributions of the manuscript: at the top, a robust, semantic and easy-to-interpret feature set to describe impaired gait patterns; at the bottom, a new dataset consisting of video-recordings of a number of volunteers simulating different patterns of pathological gait, where features were statistically assessed.

  20. Mobile gait analysis via eSHOEs instrumented shoe insoles: a pilot study for validation against the gold standard GAITRite®.

    Science.gov (United States)

    Jagos, Harald; Pils, Katharina; Haller, Michael; Wassermann, Claudia; Chhatwal, Christa; Rafolt, Dietmar; Rattay, Frank

    2017-07-01

    Clinical gait analysis contributes massively to rehabilitation support and improvement of in-patient care. The research project eSHOE aspires to be a useful addition to the rich variety of gait analysis systems. It was designed to fill the gap of affordable, reasonably accurate and highly mobile measurement devices. With the overall goal of enabling individual home-based monitoring and training for people suffering from chronic diseases, affecting the locomotor system. Motion and pressure sensors gather movement data directly on the (users) feet, store them locally and/or transmit them wirelessly to a PC. A combination of pattern recognition and feature extraction algorithms translates the motion data into standard gait parameters. Accuracy of eSHOE were evaluated against the reference system GAITRite in a clinical pilot study. Eleven hip fracture patients (78.4 ± 7.7 years) and twelve healthy subjects (40.8 ± 9.1 years) were included in these trials. All subjects performed three measurements at a comfortable walking speed over 8 m, including the 6-m long GAITRite mat. Six standard gait parameters were extracted from a total of 347 gait cycles. Agreement was analysed via scatterplots, histograms and Bland-Altman plots. In the patient group, the average differences between eSHOE and GAITRite range from -0.046 to 0.045 s and in the healthy group from -0.029 to 0.029 s. Therefore, it can be concluded that eSHOE delivers adequately accurate results. Especially with the prospect as an at home supplement or follow-up to clinical gait analysis and compared to other state of the art wearable motion analysis systems.

  1. Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Nooshin Haji Ghassemi

    2018-01-01

    Full Text Available Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson’s disease (PD is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical

  2. Validity of the Nintendo Wii Balance Board for Kinetic Gait Analysis

    Directory of Open Access Journals (Sweden)

    Ryo Eguchi

    2018-02-01

    Full Text Available The Nintendo Wii Balance Board (WBB has been suggested as an inexpensive, portable and accessible alternative to costly laboratory-grade force plates for measuring the vertical ground reaction force (vGRF and center of pressure (COP. Kinetic gait analysis provides important information for the rehabilitation of patients with gait disorders; however, the validity of the WBB for measuring kinetic gait parameters has not been evaluated. Therefore, the purpose of this study is to determine the accuracy of walking force measurements—which change dynamically in a short period of stance time—collected with the WBB. Three healthy adults were asked to walk 10 steps along both straight and curved paths in clockwise (CW and counterclockwise (CCW directions while measurements were taken using the WBB and the force plate. The accuracy of the vGRF, COP trajectory, and stance duration were evaluated using the root-mean-square error (RMSE, Pearson’s correlation coefficient and Bland–Altman plots (BAPs to compare the WBB and the force plate. The results of the vGRF showed high accuracy (r > 0.96 and %RMSE < 6.1% in the mean values, and the stance duration as defined by the vGRF and COP trajectory was equivalent to that of commercial instrumented insoles, which are used as an alternative to the force plates. From these results, we determined that the WBB may be used for kinetic gait analysis in clinical settings where lower accuracy is acceptable.

  3. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Directory of Open Access Journals (Sweden)

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  4. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    Science.gov (United States)

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  5. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis

    Directory of Open Access Journals (Sweden)

    Chen Shih-Wei

    2011-11-01

    Full Text Available Abstract Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD. In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA. Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup

  6. Clinically assessed mediolateral knee motion: impact on gait

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Creaby, Mark W; Simic, Milena

    2011-01-01

    Mediolateral knee movement can be assessed visually with clinical tests. A knee-medial-to-foot position is associated with an increased risk of knee injuries and pathologies. However, the implications of such findings on daily tasks are not well understood. The aim of this study was to investigat...... if a knee-medial-to-foot position assessed during a clinical test was associated with altered hip and knee joint kinematics and knee joint kinetics during gait compared with those with a knee-over-foot position....

  7. Gait Analysis of Symptomatic Flatfoot in Children: An Observational Study.

    Science.gov (United States)

    Kim, Ha Yong; Shin, Hyuck Soo; Ko, Jun Hyuck; Cha, Yong Han; Ahn, Jae Hoon; Hwang, Jae Yeon

    2017-09-01

    Flatfoot deformity is a lever arm disease that incurs kinetic inefficiency during gait. The purpose of this study was to measure the degree of kinetic inefficiency by comparing the gait analysis data of a flatfoot group with a normal control group. The patient group consisted of 26 children (21 males and 5 females) with symptomatic flatfoot. They were examined with gait analysis between May 2005 and February 2014. Exclusion criteria were patients with secondary flatfoot caused by neuromuscular disorders, tarsal coalition, vertical talus, or others. Patients' mean age was 9.5 years (range, 7 to 13 years). The gait analysis data of the study group and the normal control group were compared. The mean vertical ground reaction force (GRF) in the push-off phase was 0.99 for the patient group and 1.15 for the control group ( p push-off phase was 0.89 for the patient group and 1.27 for the control group ( p push-off phase was 1.38 for the patient group and 2.52 for the control group ( p push-off phase during gait. Symptomatic flatfeet had a moment inefficiency of 30% and power inefficiency of 45% during gait compared to feet with preserved medial longitudinal arches.

  8. Quantitative analysis of gait in the visually impaired.

    Science.gov (United States)

    Nakamura, T

    1997-05-01

    In this comparative study concerning characteristics of independent walking by visually impaired persons, we used a motion analyser system to perform gait analysis of 15 late blind (age 36-54, mean 44.3 years), 15 congenitally blind (age 39-48, mean 43.8 years) and 15 sighted persons (age 40-50, mean 44.4 years) while walking a 10-m walkway. All subjects were male. Compared to the sighted, late blind and congenitally blind persons had a significantly slower walking speed, shorter stride length and longer time in the stance phase of gait. However, the relationships between gait parameters in the late and congenitally blind groups were maintained, as in the sighted group. In addition, the gait of the late blind showed a tendency to approximate the gait patterns of the congenitally blind as the duration of visual loss progressed. Based on these results we concluded that the gait of visually impaired persons, through its active use of non-visual sensory input, represents an attempt to adapt to various environmental conditions in order to maintain a more stable posture and to effect safe walking.

  9. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial

    Science.gov (United States)

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano

    2016-01-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928

  10. Use of Photogrammetry and Biomechanical Gait analysis to Identify Individuals

    DEFF Research Database (Denmark)

    Larsen, Peter Kastmand; Simonsen, Erik Bruun; Lynnerup, Niels

    Photogrammetry and recognition of gait patterns are valuable tools to help identify perpetrators based on surveillance recordings. We have found that stature but only few other measures have a satisfying reproducibility for use in forensics. Several gait variables with high recognition rates were...... found. Especially the variables located in the frontal plane are interesting due to large inter-individual differences in time course patterns. The variables with high recognition rates seem preferable for use in forensic gait analysis and as input variables to waveform analysis techniques...

  11. Comparative gait analysis of ankle arthrodesis and arthroplasty: initial findings of a prospective study.

    Science.gov (United States)

    Hahn, Michael E; Wright, Elise S; Segal, Ava D; Orendurff, Michael S; Ledoux, William R; Sangeorzan, Bruce J

    2012-04-01

    Little is known about functional outcomes of ankle arthroplasty compared with arthrodesis. This study compared pre-surgical and post-surgical gait measures in both patient groups. Eighteen patients with end-stage ankle arthritis participated in an ongoing longitudinal study (pre-surgery, 12 months post-surgery) involving gait analysis, assessment of pain and physical function. Outcome measures included temporal-distance, kinematic and kinetic data, the Short Form 36 (SF-36) body pain score, and average daily step count. A mixed effects linear model was used to detect effects of surgical group (arthrodesis and arthroplasty, n = 9 each) with walking speed as a covariate (α = 0.05). Both groups were similar in demographics and anthropometrics. Followup time was the same for each group. There were no complications in either group. Pain decreased (p < 0.001) and gait function improved (gait velocity, p = 0.02; stride length, p = 0.035) in both groups. Neither group increased average daily step count. Joint range of motion (ROM) differences were observed between groups after surgery (increased hip ROM in arthrodesis, p = 0.001; increased ankle ROM in arthroplasty, p = 0.036). Peak plantar flexor moment increased in arthrodesis patients and decreased in arthroplasty patients (p = 0.042). Initial findings of this ongoing clinical study indicate pain reduction and improved gait function 12 months after surgery for both treatments. Arthroplasty appears to regain more natural ankle joint function, with increased ROM. Long-term follow up should may reveal more clinically meaningful differences.

  12. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An analysis of trunk kinematics and gait parameters in people with stroke

    Directory of Open Access Journals (Sweden)

    Adnil W. Titus

    2018-03-01

    Conclusion: This pilot study found significant asymmetry in trunk motion between the affected and unaffected sides that varied across the gait cycle. This suggests the trunk may need to be targeted in clinical gait retraining post-stroke.

  14. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    Science.gov (United States)

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  15. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    Science.gov (United States)

    Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd

    2017-09-01

    The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Donepezil improves gait performance in older adults with mild Alzheimer's disease: a phase II clinical trial.

    Science.gov (United States)

    Montero-Odasso, Manuel; Muir-Hunter, Susan W; Oteng-Amoako, Afua; Gopaul, Karen; Islam, Anam; Borrie, Michael; Wells, Jennie; Speechley, Mark

    2015-01-01

    Gait deficits are prevalent in people with dementia and increase their fall risk and future disability. Few treatments exist for gait impairment in Alzheimer's disease (AD) but preliminary studies have shown that cognitive enhancers may improve gait in this population. To determine the efficacy of donepezil, a cognitive enhancer that improves cholinergic activity, on gait in older adults newly diagnosed with AD. Phase II clinical trial in 43 seniors with mild AD who received donepezil. Participants had not previously received treatment with cognitive enhancers. Primary outcome variables were gait velocity (GV) and stride time variability (STV) under single and dual-task conditions measured using an electronic walkway. Secondary outcomes included attention and executive function. After four months of treatment, participants with mild AD improved their GV from 108.4 ± 18.6 to 113.3 ± 19.5 cm/s, p = 0.010; dual-task GV from 80.6 ± 23.0 to 85.3 ± 22.3 cm/s, p = 0.028. Changes in STV were in the expected direction although not statistically significant. Participants also showed improvements in Trail Making Tests A (p = 0.030), B (p = 0.001), and B-A (p = 0.042). Donepezil improved gait in participants with mild AD. The enhancement of dual-task gait suggests the positive changes achieved in executive function as a possible causal mechanism. This study yielded a clinically significant estimate of effect size; as well, the findings are relevant to the feasibility and ethics considerations for the design of a Phase III clinical trial.

  17. An Integrated Gait and Balance Analysis System to Define Human Locomotor Control

    Science.gov (United States)

    2016-04-29

    test hypotheses they developed about how people walk. An Integrated Gait and Balance Analysis System to define Human Locomotor Control W911NF-14-R-0009...An Integrated Gait and Balance Analysis System to Define Human Locomotor Control Walking is a complicated task that requires the motor coordination...Gait and Balance Analysis System to Define Human Locomotor Control Report Title Walking is a complicated task that requires the motor coordination across

  18. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score.

    Science.gov (United States)

    Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M

    2016-01-01

    The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.

  19. Gait Strategy in Patients with Ehlers-Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…

  20. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    Science.gov (United States)

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  1. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco

    2016-01-01

    Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210

  2. Pilot study of atomoxetine in patients with Parkinson's disease and dopa-unresponsive Freezing of Gait.

    Science.gov (United States)

    Revuelta, Gonzalo J; Embry, Aaron; Elm, Jordan J; Gregory, Chris; Delambo, Amy; Kautz, Steve; Hinson, Vanessa K

    2015-01-01

    Freezing of gait (FoG) is a common and debilitating condition in Parkinson's disease (PD) associated with executive dysfunction. A subtype of FoG does not respond to dopaminergic therapy and may be related to noradrenergic deficiency. This pilot study explores the effects of atomoxetine on gait in PD patients with dopa-unresponsive FoG using a novel paradigm for objective gait assessment. Ten patients with PD and dopa-unresponsive FoG were enrolled in this eight-week open label pilot study. Assessments included an exploratory gait analysis protocol that quantified spatiotemporal parameters during straight-away walking and turning, while performing a dual task. Clinical, and subjective assessments of gait, quality of life, and safety were also administered. The primary outcome was a validated subjective assessment for FoG (FOG-Q). Atomoxetine was well tolerated, however, no significant change was observed in the primary outcome. The gait analysis protocol correlated well with clinical scales, but not with subjective assessments. DBS patients were more likely to increase gait velocity (p = 0.033), and improved in other clinical assessments. Objective gait analysis protocols assessing gait while dual tasking are feasible and useful for this patient population, and may be superior correlates of FoG severity than subjective measures. These findings can inform future trials in this population.

  3. Full Body Gait Analysis May Improve Diagnostic Discrimination Between Hereditary Spastic Paraplegia and Spastic Diplegia: A Preliminary Study

    Science.gov (United States)

    Bonnefoy-Mazure, A.; Turcot, K.; Kaelin, A.; De Coulon, G.; Armand, S.

    2013-01-01

    Hereditary spastic paraplegia (HSP) and spastic diplegia (SD) patients share a strong clinical resemblance. Thus, HSP patients are frequently misdiagnosed with a mild form of SD. Clinical gait analysis (CGA) has been highlighted as a possible tool to support the differential diagnosis of HSP and SD. Previous analysis has focused on the lower-body…

  4. Change in gait after high tibial osteotomy: A systematic review and meta-analysis.

    Science.gov (United States)

    Lee, Seung Hoon; Lee, O-Sung; Teo, Seow Hui; Lee, Yong Seuk

    2017-09-01

    We conducted a meta-analysis to analyze how high tibial osteotomy (HTO) changes gait and focused on the following questions: (1) How does HTO change basic gait variables? (2) How does HTO change the gait variables in the knee joint? Twelve articles were included in the final analysis. A total of 383 knees was evaluated. There were 237 open wedge (OW) and 143 closed wedge (CW) HTOs. There were 4 level II studies and 8 level III studies. All studies included gait analysis and compared pre- and postoperative values. One study compared CWHTO and unicompartmental knee arthroplasty (UKA), and another study compared CWHTO and OWHTO. Five studies compared gait variables with those of healthy controls. One study compared operated limb gait variables with those in the non-operated limb. Gait speed, stride length, knee adduction moment, and lateral thrust were major variables assessed in 2 or more studies. Walking speed increased and stride length was increased or similar after HTO compared to the preoperative value in basic gait variables. Knee adduction moment and lateral thrust were decreased after HTO compared to the preoperative knee joint gait variables. Change in co-contraction of the medial side muscle after surgery differed depending on the degree of frontal plane alignment. The relationship between change in knee adduction moment and change in mechanical axis angle was controversial. Based on our systematic review and meta-analysis, walking speed and stride length increased after HTO. Knee adduction moment and lateral thrust decreased after HTO compared to the preoperative values of gait variables in the knee joint. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality.

    Science.gov (United States)

    Kempen, Jiska C E; Doorenbosch, Caroline A M; Knol, Dirk L; de Groot, Vincent; Beckerman, Heleen

    2016-11-01

    Limited walking ability is an important problem for patients with multiple sclerosis. A better understanding of how gait impairments lead to limited walking ability may help to develop more targeted interventions. Although gait classifications are available in cerebral palsy and stroke, relevant knowledge in MS is scarce. The aims of this study were: (1) to identify distinctive gait patterns in patients with MS based on a combined evaluation of kinematics, gait features, and muscle activity during walking and (2) to determine the clinical relevance of these gait patterns. This was a cross-sectional study of 81 patients with MS of mild-to-moderate severity (Expanded Disability Status Scale [EDSS] median score=3.0, range=1.0-7.0) and an age range of 28 to 69 years. The patients participated in 2-dimensional video gait analysis, with concurrent measurement of surface electromyography and ground reaction forces. A score chart of 73 gait items was used to rate each gait analysis. A single rater performed the scoring. Latent class analysis was used to identify gait classes. Analysis of the 73 gait variables revealed that 9 variables could distinguish 3 clinically meaningful gait classes. The 9 variables were: (1) heel-rise in terminal stance, (2) push-off, (3) clearance in initial swing, (4) plantar-flexion position in mid-swing, (5) pelvic rotation, (6) arm-trunk movement, (7) activity of the gastrocnemius muscle in pre-swing, (8) M-wave, and (9) propulsive force. The EDSS score and gait speed worsened in ascending classes. Most participants had mild-to-moderate limitations in walking ability based on their EDSS scores, and the number of walkers who were severely limited was small. Based on a small set of 9 variables measured with 2-dimensional clinical gait analysis, patients with MS could be divided into 3 different gait classes. The gait variables are suggestive of insufficient ankle push-off. © 2016 American Physical Therapy Association.

  6. Single Sensor Gait Analysis to Detect Diabetic Peripheral Neuropathy: A Proof of Principle Study

    Directory of Open Access Journals (Sweden)

    Patrick Esser

    2018-01-01

    Full Text Available This study explored the potential utility of gait analysis using a single sensor unit (inertial measurement unit [IMU] as a simple tool to detect peripheral neuropathy in people with diabetes. Seventeen people (14 men aged 63±9 years (mean±SD with diabetic peripheral neuropathy performed a 10-m walk test instrumented with an IMU on the lower back. Compared to a reference healthy control data set (matched by gender, age, and body mass index both spatiotemporal and gait control variables were different between groups, with walking speed, step time, and SDa (gait control parameter demonstrating good discriminatory power (receiver operating characteristic area under the curve >0.8. These results provide a proof of principle of this relatively simple approach which, when applied in clinical practice, can detect a signal from those with known diabetes peripheral neuropathy. The technology has the potential to be used both routinely in the clinic and for tele-health applications. Further research should focus on investigating its efficacy as an early indicator of or effectiveness of the management of peripheral neuropathy. This could support the development of interventions to prevent complications such as foot ulceration or Charcot's foot.

  7. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait.

    Science.gov (United States)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Luc H; Ribbers, Gerard M

    2011-10-01

    To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Clinical experimental study. University Medical Centre. Nineteen stroke patients (12 males; mean age 55 years (standard deviation (SD) 10 years); mean time post onset 3.6 months (SD 1.4 months)) with a spastic paresis of the lower extremity. Functional mobility was assessed with the timed up and go test, walking speed and gait characteristics were measured with clinical gait analysis and performed with and without a verbal dual task. Patient satisfaction was determined with a questionnaire. Walking with the high orthopaedic shoe resulted in improved functional mobility (22%; pshoes. The dual task interfered with functional mobility during walking. The interference was equally big for normal shoes as for the orthopaedic shoe. Patients evaluated walking with the high orthopaedic shoe as an improvement (psafety, walking distance and walking speed. In the early recovery phase after stroke, when regaining walking ability, a temporary high orthopaedic shoe can improve hemiplegic gait, even with dual task interference. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations.

    Directory of Open Access Journals (Sweden)

    Vipul Lugade

    Full Text Available The use of motion analysis to assess balance is essential for determining the underlying mechanisms of falls during dynamic activities. Clinicians evaluate patients using clinical examinations of static balance control, gait performance, cognition, and neuromuscular ability. Mapping these data to measures of dynamic balance control, and the subsequent categorization and identification of community dwelling elderly fallers at risk of falls in a quick and inexpensive manner is needed. The purpose of this study was to demonstrate that given clinical measures, an artificial neural network (ANN could determine dynamic balance control, as defined by the interaction of the center of mass (CoM with the base of support (BoS, during gait. Fifty-six elderly adults were included in this study. Using a feed-forward neural network with back propagation, combinations of five functional domains, the number of hidden layers and error goals were evaluated to determine the best parameters to assess dynamic balance control. Functional domain input parameters included subject characteristics, clinical examinations, cognitive performance, muscle strength, and clinical balance performance. The use of these functional domains demonstrated the ability to quickly converge to a solution, with the network learning the mapping within 5 epochs, when using up to 30 hidden nodes and an error goal of 0.001. The ability to correctly identify the interaction of the CoM with BoS demonstrated correlation values up to 0.89 (P<.001. On average, using all clinical measures, the ANN was able to estimate the dynamic CoM to BoS distance to within 1 cm and BoS area to within 75 cm2. Our results demonstrated that an ANN could be trained to map clinical variables to biomechanical measures of gait balance control. A neural network could provide physicians and patients with a cost effective means to identify dynamic balance issues and possible risk of falls from routinely collected clinical

  9. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Science.gov (United States)

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  10. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  11. An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis

    Science.gov (United States)

    2013-03-01

    AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks

  12. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis.

    Science.gov (United States)

    Beauchet, Olivier; Annweiler, Cédric; Callisaya, Michele L; De Cock, Anne-Marie; Helbostad, Jorunn L; Kressig, Reto W; Srikanth, Velandai; Steinmetz, Jean-Paul; Blumen, Helena M; Verghese, Joe; Allali, Gilles

    2016-06-01

    Poor gait performance predicts risk of developing dementia. No structured critical evaluation has been conducted to study this association yet. The aim of this meta-analysis was to systematically examine the association of poor gait performance with incidence of dementia. An English and French Medline search was conducted in June 2015, with no limit of date, using the medical subject headings terms "Gait" OR "Gait Disorders, Neurologic" OR "Gait Apraxia" OR "Gait Ataxia" AND "Dementia" OR "Frontotemporal Dementia" OR "Dementia, Multi-Infarct" OR "Dementia, Vascular" OR "Alzheimer Disease" OR "Lewy Body Disease" OR "Frontotemporal Dementia With Motor Neuron Disease" (Supplementary Concept). Poor gait performance was defined by standardized tests of walking, and dementia was diagnosed according to international consensus criteria. Four etiologies of dementia were identified: any dementia, Alzheimer disease (AD), vascular dementia (VaD), and non-AD (ie, pooling VaD, mixed dementias, and other dementias). Fixed effects meta-analyses were performed on the estimates in order to generate summary values. Of the 796 identified abstracts, 12 (1.5%) were included in this systematic review and meta-analysis. Poor gait performance predicted dementia [pooled hazard ratio (HR) combined with relative risk and odds ratio = 1.53 with P analysis provides evidence that poor gait performance predicts dementia. This association depends on the type of dementia; poor gait performance is a stronger predictor of non-AD dementias than AD. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. Partial Body Weight-Supported Treadmill Training in Patients With Parkinson Disease: Impact on Gait and Clinical Manifestation.

    Science.gov (United States)

    Ganesan, Mohan; Sathyaprabha, Talakad N; Pal, Pramod Kumar; Gupta, Anupam

    2015-09-01

    To evaluate the effect of conventional gait training (CGT) and partial weight-supported treadmill training (PWSTT) on gait and clinical manifestation. Prospective experimental research design. Hospital. Patients with idiopathic Parkinson disease (PD) (N=60; mean age, 58.15±8.7y) on stable dosage of dopaminomimetic drugs were randomly assigned into the 3 following groups (20 patients in each group): (1) nonexercising PD group, (2) CGT group, and (3) PWSTT group. The interventions included in the study were CGT and PWSTT. The sessions of the CGT and PWSTT groups were given in patient's self-reported best on status after regular medications. The interventions were given for 30min/d, 4d/wk, for 4 weeks (16 sessions). Clinical severity was measured by the Unified Parkinson Disease Rating Scale (UPDRS) and its subscores. Gait was measured by 2 minutes of treadmill walking and the 10-m walk test. Outcome measures were evaluated in their best on status at baseline and after the second and fourth weeks. Four weeks of CGT and PWSTT gait training showed significant improvements of UPDRS scores, its subscores, and gait performance measures. Moreover, the effects of PWSTT were significantly better than CGT on most measures. PWSTT is a promising intervention tool to improve the clinical and gait outcome measures in patients with PD. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait: Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    Directory of Open Access Journals (Sweden)

    Valentina Agostini

    2017-10-01

    Full Text Available Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait based on magneto-inertial sensors, both in normal weight (NW and overweight/obese (OW subjects. The validation is performed against a reference multichannel recording system (STEP32, providing direct measurements of gait timings (through foot-switches and joint angles in the sagittal plane (through electrogoniometers. Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW. After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW and for the knee (by 4.1° for NW, and 1.8° for OW. More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW. NW and OW showed significant differences considering STEP32 (p = 0.0004, but not H-Gait (p = 0.06. In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min and a

  15. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review.

    Science.gov (United States)

    Wall, Anneli; Borg, Jörgen; Palmcrantz, Susanne

    2015-01-01

    The aim of this study was to review the literature on clinical applications of the Hybrid Assistive Limb system for gait training. A systematic literature search was conducted using Web of Science, PubMed, CINAHL and clinicaltrials.gov and additional search was made using reference lists in identified reports. Abstracts were screened, relevant articles were reviewed and subject to quality assessment. Out of 37 studies, 7 studies fulfilled inclusion criteria. Six studies were single group studies and 1 was an explorative randomized controlled trial. In total, these studies involved 140 participants of whom 118 completed the interventions and 107 used HAL for gait training. Five studies concerned gait training after stroke, 1 after spinal cord injury (SCI) and 1 study after stroke, SCI or other diseases affecting walking ability. Minor and transient side effects occurred but no serious adverse events were reported in the studies. Beneficial effects on gait function variables and independence in walking were observed. The accumulated findings demonstrate that the HAL system is feasible when used for gait training of patients with lower extremity paresis in a professional setting. Beneficial effects on gait function and independence in walking were observed but data do not allow conclusions. Further controlled studies are recommended.

  16. Gait analysis in demented subjects: Interests and perspectives

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2008-03-01

    Full Text Available Olivier Beauchet1, Gilles Allali2, Gilles Berrut3, Caroline Hommet4, Véronique Dubost5, Frédéric Assal21Department of Geriatrics, Angers University Hospital, France; 2Department of Neurology, Geneva University Hospital, France; 3Department of Geriatrics, Nantes University Hospital, France; 4Department of Internal Medicine and Geriatrics, Tours University Hospital, France; 5Department of Geriatrics, Dijon University Hospital, FranceAbstract: Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage.Keywords: gait, prediction of dementia, risk of falling, older adult

  17. General tensor discriminant analysis and gabor features for gait recognition.

    Science.gov (United States)

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine

  18. Gait in children with cerebral palsy : observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing scale

    NARCIS (Netherlands)

    Maathuis, KGB; van der Schans, CP; van Iperen, A; Rietman, HS; Geertzen, JHB

    2005-01-01

    The aim of this study was to test the inter- and intra-observer reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating

  19. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as record...

  20. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech

    2015-01-01

    Abstract The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical...... to good reliability with ICCs of 0.4–0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18...

  1. Single Sensor Gait Analysis to Detect Diabetic Peripheral Neuropathy: A Proof of Principle Study.

    Science.gov (United States)

    Esser, Patrick; Collett, Johnny; Maynard, Kevin; Steins, Dax; Hillier, Angela; Buckingham, Jodie; Tan, Garry D; King, Laurie; Dawes, Helen

    2018-02-01

    This study explored the potential utility of gait analysis using a single sensor unit (inertial measurement unit [IMU]) as a simple tool to detect peripheral neuropathy in people with diabetes. Seventeen people (14 men) aged 63±9 years (mean±SD) with diabetic peripheral neuropathy performed a 10-m walk test instrumented with an IMU on the lower back. Compared to a reference healthy control data set (matched by gender, age, and body mass index) both spatiotemporal and gait control variables were different between groups, with walking speed, step time, and SDa (gait control parameter) demonstrating good discriminatory power (receiver operating characteristic area under the curve >0.8). These results provide a proof of principle of this relatively simple approach which, when applied in clinical practice, can detect a signal from those with known diabetes peripheral neuropathy. The technology has the potential to be used both routinely in the clinic and for tele-health applications. Further research should focus on investigating its efficacy as an early indicator of or effectiveness of the management of peripheral neuropathy. This could support the development of interventions to prevent complications such as foot ulceration or Charcot's foot. Copyright © 2018 Korean Diabetes Association.

  2. Gait Analysis Using Computer Vision Based on Cloud Platform and Mobile Device

    Directory of Open Access Journals (Sweden)

    Mario Nieto-Hidalgo

    2018-01-01

    Full Text Available Frailty and senility are syndromes that affect elderly people. The ageing process involves a decay of cognitive and motor functions which often produce an impact on the quality of life of elderly people. Some studies have linked this deterioration of cognitive and motor function to gait patterns. Thus, gait analysis can be a powerful tool to assess frailty and senility syndromes. In this paper, we propose a vision-based gait analysis approach performed on a smartphone with cloud computing assistance. Gait sequences recorded by a smartphone camera are processed by the smartphone itself to obtain spatiotemporal features. These features are uploaded onto the cloud in order to analyse and compare them to a stored database to render a diagnostic. The feature extraction method presented can work with both frontal and sagittal gait sequences although the sagittal view provides a better classification since an accuracy of 95% can be obtained.

  3. Symmetry Analysis of Gait between Left and Right Limb Using Cross-Fuzzy Entropy

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-01-01

    Full Text Available The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn, which is a recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn. First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length. Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry analysis. Besides the statistical analysis, we also realized a support vector machine (SVM classifier to perform the classification of normal and abnormal gaits. The gait dataset consists of 15 patients with Parkinson’s disease (PD and 16 control (CO subjects. The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a p value of less than 10-5, and the best classification performance evaluated by a leave-one-out (LOO cross-validation method is an accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool for analyzing abnormal gaits.

  4. Gait analysis in anorexia and bulimia nervosa.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  5. Gait analysis, bone and muscle density assessment for patients undergoing total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Benedikt Magnússon

    2012-12-01

    Full Text Available Total hip arthroplasty (THA is performed with or without the use of bone cement. Facing the lack of reliable clinical guidelines on decision making whether a patient should receive THA with or without bone cement, a joint clinical and engineering approach is proposed here with the objective to assess patient recovery developing monitoring techniques based on gait analysis, measurements of bone mineral density and structural and functional changes of quadriceps muscles. A clinical trial was conducted with 36 volunteer patients that were undergoing THA surgery for the first time: 18 receiving cemented implant and 18 receiving non-cemented implant. The patients are scanned with Computer Tomographic (CT modality prior-, immediately- and 12 months post-surgery. The CT data are further processed to segment muscles and bones for calculating bone mineral density (BMD. Quadriceps muscle density Hounsfield (HU based value is calculated from the segmented file on healthy and operated leg before and after THA surgery. Furthermore clinical assessment is performed using gait analysis technologies such as a sensing carpet, wireless electrodes and video. Patients undergo these measurements prior-, 6 weeks post - and 52 weeks post-surgery. The preliminary results indicate computational tools and methods that are able to quantitatively analyze patient’s condition pre and post-surgery: The spatial parameters such as step length and stride length increase 6 weeks post op in the patient group receiving cemented implant while the angle in the toe in/out parameter decrease in both patient groups.

  6. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.

    Science.gov (United States)

    Barbareschi, Giulia; Richards, Rosie; Thornton, Matt; Carlson, Tom; Holloway, Catherine

    2015-01-01

    In recent years exoskeletons able to replicate human gait have begun to attract growing popularity for both assistive and rehabilitative purposes. Although wearable robots often need the use of external support in order to maintain stability, the REX exoskeleton by REX Bionics is able to self-balance through the whole cycle. However this statically balanced gait presents important differences with the dynamically balanced gait of human subjects. This paper will examine kinematic and kinetic differences between the gait analysis performed on a subject wearing the REX exoskeleton and human gait analysis data as presented in literature. We will also provide an insight on the impact that these differences can have for both rehabilitative and assistive applications.

  7. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Robert J Ellis

    Full Text Available A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson's disease (PD; however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application ("SmartMOVE" to address both needs.The accuracy of smartphone-based gait analysis (utilizing the smartphone's built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths was validated against two heel contact-based measurement devices: heel-mounted footswitch sensors (to capture step times and an instrumented pressure sensor mat (to capture step lengths. 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls yielded medium-to-large effect sizes (eta-squared values, and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues yielded small-to-medium effect sizes-while at the same time, device-related measurement error yielded small-to-negligible effect sizes.These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways, particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.

  9. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  10. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    Science.gov (United States)

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Upper limb movement analysis during gait in multiple sclerosis patients.

    Science.gov (United States)

    Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles

    2017-08-01

    Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic.

    Science.gov (United States)

    Kikkert, Lisette H J; de Groot, Maartje H; van Campen, Jos P; Beijnen, Jos H; Hortobágyi, Tibor; Vuillerme, Nicolas; Lamoth, Claudine C J

    2017-01-01

    Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, executive function), and (3) gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6 months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares-Discriminant Analysis (PLS-DA), with separate and combined analyses of the fall risk factors. PCA identified 'pace', 'variability', and 'coordination' as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients' fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.

  13. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic.

    Directory of Open Access Journals (Sweden)

    Lisette H J Kikkert

    Full Text Available Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers underwent extensive screening in three categories: (1 patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors (2 cognitive function (global cognition, memory, executive function, and (3 gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry. Falls were registered prospectively (mean follow-up 8.6 months and one year retrospectively. Principal Component Analysis (PCA on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares-Discriminant Analysis (PLS-DA, with separate and combined analyses of the fall risk factors. PCA identified 'pace', 'variability', and 'coordination' as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients' fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.

  14. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    Science.gov (United States)

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  15. Validity and repeatability of inertial measurement units for measuring gait parameters.

    Science.gov (United States)

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Computerized gait analysis in Legg Calvé Perthes disease--analysis of the frontal plane.

    Science.gov (United States)

    Westhoff, Bettina; Petermann, Andrea; Hirsch, Mark A; Willers, Reinhart; Krauspe, Rüdiger

    2006-10-01

    Current follow-up and outcome studies of Legg Calvé Perthes disease (LCPD) are based on subjective measures of function, clinical parameters and radiological changes [Herring JA, Kim HT, Browne RH. Legg-Calvé-Perthes disease. Part II: prospective multicenter study of the effect of treatment on outcome. J Bone Joint Surg 2004;86A:2121-34; Aksoy MC, Cankus MC, Alanay A, Yazici M, Caglar O, Alpaslan AM. Radiological outcome of proximal femoral varus osteotomy for the treatment of lateral pillar group-C. J Pediatr Orthop 2005;14 B:88-91; Kitakoji T, Hattori T, Kitoh H, Katho M, Ishiguro N. Which is a better method for Perthes' disease: femoral varus or Salter osteotomy? Clin Orthop 2005;430:163-170; Joseph B, Rao N, Mulpuri K, Varghese G, Nair S. How does femoral varus osteotomy alter the natural evolution of Perthes' disease. J Pediatr Orthop 2005;14B:10-5; Ishida A, Kuwajima SS, Laredo FJ, Milani C. Salter innominate osteotomy in the treatment of severe Legg-Calvé-Perthes disease: clinical and radiographic results in 32 patients (37 hips) at skeletal maturity. J Pediatr Orthop 2004;24:257-64.]. The objective of this study was to evaluate the frontal plane kinematics and the effect on hip joint loading on the affected side in children with a radiographic diagnosis of LCPD. Computerized, three-dimensional gait analysis was performed in 33 individuals aged > or =5 years (mean 8.0+/-2 years) with unilateral LCPD and no history of previous surgery to the hip or any disorder leading to gait abnormality. Frontal plane kinematics and kinetics were compared to a group of healthy children (n=30, mean age 8.1+/-1.2 years). Hip joint loading was estimated as a function of the hip abductor moment. Subjects with LCPD demonstrated two distinct frontal plane gait patterns, both deviating from normal. Type 1 (n=3) was characterized by a pelvic drop of the swinging limb, a trunk lean in relation to the pelvis towards the stance limb and hip adduction during stance phase and

  17. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H.

    2005-01-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported

  18. Artificial gait in complete spinal cord injured subjects: how to assess clinical performance

    Directory of Open Access Journals (Sweden)

    Karla Rocha Pithon

    2015-02-01

    Full Text Available Objective Adapt the 6 minutes walking test (6MWT to artificial gait in complete spinal cord injured (SCI patients aided by neuromuscular electrical stimulation. Method Nine male individuals with paraplegia (AIS A participated in this study. Lesion levels varied between T4 and T12 and time post injured from 4 to 13 years. Patients performed 6MWT 1 and 6MWT 2. They used neuromuscular electrical stimulation, and were aided by a walker. The differences between two 6MWT were assessed by using a paired t test. Multiple r-squared was also calculated. Results The 6MWT 1 and 6MWT 2 were not statistically different for heart rate, distance, mean speed and blood pressure. Multiple r-squared (r2 = 0.96 explained 96% of the variation in the distance walked. Conclusion The use of 6MWT in artificial gait towards assessing exercise walking capacity is reproducible and easy to apply. It can be used to assess SCI artificial gait clinical performance.

  19. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.

    Science.gov (United States)

    Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-06-01

    Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

    Directory of Open Access Journals (Sweden)

    Ilaria Mileti

    2018-03-01

    Full Text Available Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD. In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25 for three tested methods and good performance (0.25 < G < 0.70 for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.

  1. Reliability of diabetic patients' gait parameters in a challenging environment.

    Science.gov (United States)

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; de Bruin, E D

    2008-11-01

    Activities of daily life require us to move about in challenging environments and to walk on varied surfaces. Irregular terrain has been shown to influence gait parameters, especially in a population at risk for falling. A precise portable measurement system would permit objective gait analysis under such conditions. The aims of this study are to (a) investigate the reliability of gait parameters measured with the Physilog in diabetic patients walking on different surfaces (tar, grass, and stones); (b) identify the measurement error (precision); (c) identify the minimal clinical detectable change. 16 patients with Type 2 diabetes were measured twice within 8 days. After clinical examination patients walked, equipped with a Physilog, on the three aforementioned surfaces. ICC for each surface was excellent for within-visit analyses (>0.938). Inter-visit ICC's (0.753) were excellent except for the knee range parameter (>0.503). The coefficient of variation (CV) was lower than 5% for most of the parameters. Bland and Altman Plots, SEM and SDC showed precise values, distributed around zero for all surfaces. Good reliability of Physilog measurements on different surfaces suggests that Physilog could facilitate the study of diabetic patients' gait in conditions close to real-life situations. Gait parameters during complex locomotor activities (e.g. stair-climbing, curbs, slopes) have not yet been extensively investigated. Good reliability, small measurement error and values of minimal clinical detectable change recommend the utilization of Physilog for the evaluation of gait parameters in diabetic patients.

  2. A perceptual map for gait symmetry quantification and pathology detection.

    Science.gov (United States)

    Moevus, Antoine; Mignotte, Max; de Guise, Jacques A; Meunier, Jean

    2015-10-29

    The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way. We propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry. The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.

  3. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson's Disease Using Body Worn Sensors.

    Directory of Open Access Journals (Sweden)

    Hong Lei

    Full Text Available Gait disorder, a key contributor to fall and poor quality of life, represents a major therapeutic challenge in Parkinson's disease (PD. The efficacy of acupuncture for PD remains unclear, largely due to methodological flaws and lack of studies using objective outcome measures.To objectively assess the efficacy of electroacupuncture (EA for gait disorders using body-worn sensor technology in patients with PD.In this randomized pilot study, both the patients and assessors were masked. Fifteen PD patients were randomly assigned to an experimental group (n = 10 or to a control group (n = 5. Outcomes were assessed at baseline and after completion of three weekly EA treatments. Measurements included gait analysis during single-task habitual walking (STHW, dual-task habitual walking (DTHW, single-task fast walking (STFW, dual-task fast walking (DTFW. In addition, Unified Parkinson's Disease Rating Scale (UPDRS, SF-12 health survey, short Falls Efficacy Scale-International (FES-I, and visual analog scale (VAS for pain were utilized.All gait parameters were improved in the experimental group in response to EA treatment. After adjustment by age and BMI, the improvement achieved statistical significant level for gait speed under STHW, STFW, and DTFW (9%-19%, p0.110. The highest correlation between gait parameters and UPRDS scores at baseline was observed between gait speed during STFW and UPDRS II (r = -0.888, p = 0.004. The change in this gait parameter in response to active intervention was positively correlated with baseline UPDRS (r = 0.595, p = 0.057. Finally, comparison of responses to treatment between groups showed significant improvement, prominently in gait speed (effect size 0.32-1.16, p = 0.001.This study provides the objective proof of concept for potential benefits of non-pharmaceutical based EA therapy on enhancing gait in patients with PD.ClinicalTrials.gov NCT02556164.

  4. Gait variability: methods, modeling and meaning

    Directory of Open Access Journals (Sweden)

    Hausdorff Jeffrey M

    2005-07-01

    Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.

  5. Gait biomechanics in the era of data science.

    Science.gov (United States)

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder.

    Science.gov (United States)

    Eggleston, Jeffrey D; Harry, John R; Hickman, Robbin A; Dufek, Janet S

    2017-06-01

    Gait symmetry is utilized as an indicator of neurologic function. Healthy gait often exhibits minimal asymmetries, while pathological gait exhibits exaggerated asymmetries. The purpose of this study was to examine symmetry of mechanical gait parameters during over-ground walking in children with Autism Spectrum Disorder (ASD). Kinematic and kinetic data were obtained from 10 children (aged 5-12 years) with ASD. The Model Statistic procedure (α=0.05) was used to compare gait related parameters between limbs. Analysis revealed children with ASD exhibit significant lower extremity joint position and ground reaction force asymmetries throughout the gait cycle. The observed asymmetries were unique for each subject. These data do not support previous research relative to gait symmetry in children with ASD. Many individuals with ASD do not receive physical therapy interventions, however, precision medicine based interventions emphasizing lower extremity asymmetries may improve gait function and improve performance during activities of daily living. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of physiotherapy treatment on knee osteoarthritis gait data using principal component analysis.

    Science.gov (United States)

    Gaudreault, Nathaly; Mezghani, Neila; Turcot, Katia; Hagemeister, Nicola; Boivin, Karine; de Guise, Jacques A

    2011-03-01

    Interpreting gait data is challenging due to intersubject variability observed in the gait pattern of both normal and pathological populations. The objective of this study was to investigate the impact of using principal component analysis for grouping knee osteoarthritis (OA) patients' gait data in more homogeneous groups when studying the effect of a physiotherapy treatment. Three-dimensional (3D) knee kinematic and kinetic data were recorded during the gait of 29 participants diagnosed with knee OA before and after they received 12 weeks of physiotherapy treatment. Principal component analysis was applied to extract groups of knee flexion/extension, adduction/abduction and internal/external rotation angle and moment data. The treatment's effect on parameters of interest was assessed using paired t-tests performed before and after grouping the knee kinematic data. Increased quadriceps and hamstring strength was observed following treatment (Pphysiotherapy on gait mechanics of knee osteoarthritis patients may be masked or underestimated if kinematic data are not separated into more homogeneous groups when performing pre- and post-treatment comparisons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Gait analysis by high school students

    NARCIS (Netherlands)

    Heck, A.; van Dongen, C.

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of

  9. Normal human gait patterns in Peruvian individuals: an exploratory assessment using VICON motion capture system

    Science.gov (United States)

    Dongo, R.; Moscoso, M.; Callupe, R.; Pajaya, J.; Elías, D.

    2017-11-01

    Gait analysis is of clinical relevance for clinicians. However, normal gait patterns used in foreign literature could be different from local individuals. The aim of this study was to determine the normal gait patterns and parameters of Peruvian individuals in order to have a local referent for clinical assessments and making diagnosis and treatment Peruvian people with lower motor neuron injuries. A descriptive study with 34 subjects was conducted to assess their gait cycle. VICON® cameras were used to capture body movements. For the analyses, we calculated spatiotemporal gait parameters and average angles of displacement of the hip, knee, and ankle joints with their respective 95% confidence intervals. The results showed gait speed was 0.58m/s, cadence was 102.1steps/min, and the angular displacement of the hip, knee and ankle joints were all lower than those described in the literature. In the graphs, gait cycles were close to those reported in previous studies, but the parameters of speed, cadence and angles of displacements are lower than the ones shown in the literature. These results could be used as a better reference pattern in the clinical setting.

  10. Clinical implications of gait analysis in the rehabilitation of adult patients with "Prader-Willi" Syndrome: a cross-sectional comparative study ("Prader-Willi" Syndrome vs matched obese patients and healthy subjects

    Directory of Open Access Journals (Sweden)

    Baccalaro Gabriele

    2007-05-01

    Full Text Available Abstract Background Being severely overweight is a distinctive clinical feature of Prader-Willi Syndrome (PWS. PWS is a complex multisystem disorder, representing the most common form of genetic obesity. The aim of this study was the analysis of the gait pattern of adult subjects with PWS by using three-Dimensional Gait Analysis. The results were compared with those obtained in a group of obese patients and in a group of healthy subjects. Methods Cross-sectional, comparative study: 19 patients with PWS (11 males and 8 females, age: 18–40 years, BMI: 29.3–50.3 kg/m2; 14 obese matched patients (5 males and 9 females, age: 18–40 years, BMI: 34.3–45.2 kg/m2; 20 healthy subjects (10 males and 10 females, age: 21–41 years, BMI: 19.3–25.4 kg/m2. Kinematic and kinetic parameters during walking were assessed by an optoelectronic system and two force platforms. Results PWS adult patients walked slower, had a shorter stride length, a lower cadence and a longer stance phase compared with both matched obese, and healthy subjects. Obese matched patients showed spatio-temporal parameters significantly different from healthy subjects. Furthermore, Range Of Motion (ROM at knee and ankle, and plantaflexor activity of PWS patients were significantly different between obese and healthy subjects. Obese subjects revealed kinematic and kinetic data similar to healthy subjects. Conclusion PWS subjects had a gait pattern significantly different from obese patients. Despite that, both groups had a similar BMI. We suggest that PWS gait abnormalities may be related to abnormalities in the development of motor skills in childhood, due to precocious obesity. A tailored rehabilitation program in early childhood of PWS patients could prevent gait pattern changes.

  11. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.

    Science.gov (United States)

    Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M

    2011-09-01

    Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.

  12. Balance and Gait Represent Independent Domains of Mobility in Parkinson Disease

    Science.gov (United States)

    Horak, Fay B.; Carlson-Kuhta, Patricia; Nutt, John G.; Salarian, Arash

    2016-01-01

    Background The Instrumented Stand and Walk (ISAW) test, which includes 30 seconds of stance, step initiation, gait, and turning, results in many objective balance and gait metrics from body-worn inertial sensors. However, it is not clear which metrics provide independent information about mobility. Objective It was hypothesized that balance and gait represent several independent domains of mobility and that not all domains would be abnormal in individuals with Parkinson disease (PD) or would change with levodopa therapy. Design This was a cross-sectional study. Methods A factor analysis approach was used to identify independent measures of mobility extracted from the ISAW in 100 participants with PD and 21 control participants. First, a covariance analysis showed that postural sway measures were independent of gait measures. Then, the factor analysis revealed 6 independent factors (mobility domains: sway area, sway frequency, arm swing asymmetry, trunk motion during gait, gait speed, and cadence) that accounted for 87% of the variance of performance across participants. Results Sway area, gait speed, and trunk motion differed between the PD group in the off-levodopa state and the control group, but sway frequency (but not sway area) differed between the PD group in the off-levodopa state and the control group. Four of the 6 factors changed significantly with levodopa (off to on): sway area, sway frequency, trunk motion during gait, and cadence. When participants were on levodopa, the sway area increased compared with off levodopa, becoming more abnormal, whereas the other 3 significant metrics moved toward, but did not reach, the healthy control values. Limitations Exploratory factor analysis was limited to the PD population. Conclusions The different sensitivity various balance and gait domains to PD and to levodopa also support neural control of at least 6 independent mobility domains, each of which warrants clinical assessment for impairments in mobility. PMID

  13. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    Science.gov (United States)

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and

  14. Gait profile score and movement analysis profile in patients with Parkinson's disease during concurrent cognitive load

    Science.gov (United States)

    Speciali, Danielli S.; Oliveira, Elaine M.; Cardoso, Jefferson R.; Correa, João C. F.; Baker, Richard; Lucareli, Paulo R. G.

    2014-01-01

    Background: Gait disorders are common in individuals with Parkinson's Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (PGait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (Pgait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD. PMID:25054382

  15. The use of instrumented gait analysis for individually tailored interdisciplinary interventions in children with cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Pedersen, Niels Wisbech; Overgaard, Søren

    2015-01-01

    in gait following individually tailored interventions when IGA is used are superior to those following ‘care as usual’. Methods/Design A prospective, single blind, randomised, parallel group study will be conducted. Children aged 5 to 8 years with spastic CP, classified at Gross Motor Function...... Classification System levels I or II, will be included. The interventions under investigation are: 1) individually tailored interdisciplinary interventions based on the use of IGA, and 2) ‘care as usual’. The primary outcome is gait measured by the Gait Deviation Index. Secondary outcome measures are: walking......Abstract Background Children with cerebral palsy (CP) often have an altered gait. Orthopaedic surgery, spasticity management, physical therapy and orthotics are used to improve the gait. Interventions are individually tailored and are planned on the basis of clinical examinations and standardised...

  16. Flexed-knee gait in children with cerebral palsy.

    Science.gov (United States)

    Church, C; Ge, J; Hager, S; Haumont, T; Lennon, N; Niiler, T; Hulbert, R; Miller, F

    2018-04-01

    Aims The purpose of this study was to evaluate the long-term outcome of adolescents with cerebral palsy who have undergone single-event multilevel surgery for a flexed-knee gait, followed into young adulthood using 3D motion analysis. Patients and Methods A total of 59 young adults with spastic cerebral palsy, with a mean age of 26 years (sd 3), were enrolled into the study in which their gait was compared with an evaluation that had taken place a mean of 12 years (sd 2) previously. At their visits during adolescence, the children walked with excessive flexion of the knee at initial contact and surgical or therapeutic interventions were not controlled between visits. Results Based on the change in flexed-knee gait over approximately ten years, improvements were seen in increased Gait Deviation Index (p gait (p = 0.007) suggested a mild decline in function. Quality-of-life measures showed that these patients fell within normal limits compared with typical young adults in areas other than physical function. Conclusion While some small significant changes were noted, little clinically significant change was seen in function and gait, with gross motor function maintained between adolescence and young adulthood. Cite this article: Bone Joint J 2018;100-B:549-56.

  17. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. [Parkinson gait analysis using in-shoe plantar pressure measurements].

    Science.gov (United States)

    Pihet, D; Moretto, P; Defebvre, L; Thevenon, A

    2006-02-01

    The literature reports some studies describing the walking pattern of patients with Parkinson's disease, its deterioration with disease severity and the effects of various treatments. Other studies concerned the plantar pressure distribution when walking. The aim of this study was to validate the use of baropodometric measurements for gait analysis of parkinsonian patients at various stages of disease severity and in on and off phases. Fifteen normal control subjects and fifteen parkinsonian patients equipped with a plantar pressure measurement system performed walking tests. The parkinsonian patients performed the walking tests in off phase then in on phase. A clinical examination was performed to score the motor handicap on the UPDRS scale. Analysis of the plantar pressures of the parkinsonian subjects under various footprint areas detected significant baropodometric differences compared with controls, between groups with different UPDRS scores, and before and after L-Dopa treatment. Plantar pressures measurements allow a sufficiently fine discrimination for using it to detect parkinsonism and monitor patients with Parkinson's disease.

  19. Shotgun approaches to gait analysis : insights & limitations

    NARCIS (Netherlands)

    Kaptein, Ronald G.; Wezenberg, Daphne; IJmker, Trienke; Houdijk, Han; Beek, Peter J.; Lamoth, Claudine J. C.; Daffertshofer, Andreas

    2014-01-01

    Background: Identifying features for gait classification is a formidable problem. The number of candidate measures is legion. This calls for proper, objective criteria when ranking their relevance. Methods: Following a shotgun approach we determined a plenitude of kinematic and physiological gait

  20. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  1. An Ambulatory Method of Identifying Anterior Cruciate Ligament Reconstructed Gait Patterns

    Directory of Open Access Journals (Sweden)

    Matthew R. Patterson

    2014-01-01

    Full Text Available The use of inertial sensors to characterize pathological gait has traditionally been based on the calculation of temporal and spatial gait variables from inertial sensor data. This approach has proved successful in the identification of gait deviations in populations where substantial differences from normal gait patterns exist; such as in Parkinsonian gait. However, it is not currently clear if this approach could identify more subtle gait deviations, such as those associated with musculoskeletal injury. This study investigates whether additional analysis of inertial sensor data, based on quantification of gyroscope features of interest, would provide further discriminant capability in this regard. The tested cohort consisted of a group of anterior cruciate ligament reconstructed (ACL-R females and a group of non-injured female controls, each performed ten walking trials. Gait performance was measured simultaneously using inertial sensors and an optoelectronic marker based system. The ACL-R group displayed kinematic and kinetic deviations from the control group, but no temporal or spatial deviations. This study demonstrates that quantification of gyroscope features can successfully identify changes associated with ACL-R gait, which was not possible using spatial or temporal variables. This finding may also have a role in other clinical applications where small gait deviations exist.

  2. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: a controlled clinical trial.

    Science.gov (United States)

    Martínez-Amat, Antonio; Hita-Contreras, Fidel; Lomas-Vega, Rafael; Caballero-Martínez, Isabel; Alvarez, Pablo J; Martínez-López, Emilio

    2013-08-01

    The purpose of this study was to evaluate the effect of a 12-week-specific proprioceptive training program on postural stability, gait, balance, and fall prevention in adults older than 65 years. The present study was a controlled clinical trial. Forty-four community dwelling elderly subjects (61-90 years; mean age, 78.07 ± 5.7 years) divided into experimental (n = 20) and control (n = 24) groups. The participants performed the Berg balance test before and after the training program, and we assessed participants' gait, balance, and the risk of falling, using the Tinetti scale. Medial-lateral plane and anterior-posterior plane displacements of the center of pressure, Sway area, length and speed, and the Romberg quotient about surface, speed, and distance were calculated in static posturography analysis (EPS pressure platform) under 2 conditions: eyes open and eyes closed. After a first clinical evaluation, patients were submitted to 12 weeks proprioception training program, 2 sessions of 50 minutes every week. This program includes 6 exercises with the BOSU and Swiss ball as unstable training tools that were designed to program proprioceptive training. The training program improved postural balance of older adults in mediolateral plane with eyes open (p 0.05). After proprioception training, gait (Tinetti), and balance (Berg) test scores improved 14.66% and 11.47% respectively. These results show that 12 weeks proprioception training program in older adults is effective in postural stability, static, and dynamic balance and could lead to an improvement in gait and balance capacity, and to a decrease in the risk of falling in adults aged 65 years and older.

  3. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gait Analysis by Multi Video Sequence Analysis

    DEFF Research Database (Denmark)

    Jensen, Karsten; Juhl, Jens

    2009-01-01

    The project presented in this article aims to develop software so that close-range photogrammetry with sufficient accuracy can be used to point out the most frequent foot mal positions and monitor the effect of the traditional treatment. The project is carried out as a cooperation between...... and the calcaneus angle during gait. In the introductory phase of the project the task has been to select, purchase and draw up hardware, select and purchase software concerning video streaming and to develop special software concerning automated registration of the position of the foot during gait by Multi Video...

  5. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  6. [Gait, balance and independence rehabilitation program in elderly adults in a primary care unit].

    Science.gov (United States)

    Espinosa-Cuervo, Gisela; López-Roldán, Verónica Miriam; Escobar-Rodríguez, David Alvaro; Conde-Embarcadero, Margarita; Trejo-León, Gerardo; González-Carmona, Beatriz

    2013-01-01

    to evaluate the effect of a supervised rehabilitation program to improve gait, balance and independence in elderly patients attending a family medicine unit. we conducted a quasi-experimental study over a period of four weeks in a group of 72 patients older than 65 years. a supervised program regarding the risk factors for falling, and balance, gait, coordination and oculovestibular system, the modalities to be done two or three times a week in the primary care unit or at home. An analysis of both tests was performed by "up and go," Tinetti scale and the Katz index. "intention to treat" and "by protocol." mean age was 72 ± 5 years, 67.8% were female and 81.9% of the patients completed the program. A significant clinical improvement with statistical level were evident for gait and balance (p = 0.001), independence showed only clinical improvement (p = 0.083). The efficacy for periodicity (two or three times/week) and performance place showed same clinical improvement and statistical level for gait and balance (p = 0.001 to 0.003) and independence showed only clinical improvement (p = 0.317 to 0.991). an integral rehabilitation program improved gait, balance and clinical independence significantly. The supervised program is applicable and can be reproduced at primary care unit or home for geriatric care and preventive actions.

  7. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ghai S

    2017-12-01

    Full Text Available Shashank Ghai,1 Ishan Ghai,2 Alfred O. Effenberg1 1Institute for Sports Science, Leibniz University Hannover, Hannover, Germany; 2School of Life Sciences, Jacobs University, Bremen, Germany Abstract: Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge’s g=0.9, gait velocity (1.1, cadence (0.3, and stride length (0.5. This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to

  8. Use of the Gait Deviation Index for the Assessment of Gastrocnemius Fascia Lengthening in Children with Cerebral Palsy

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vimercati, Sara Laura; Albertini, Giorgio

    2011-01-01

    Gait analysis (GA) is widely used for clinical evaluations and it is recognized as a central element in the quantitative evaluation of gait, in the planning of treatments and in the pre vs. post intervention evaluations in children with Cerebral Palsy (CP). Otherwise, GA produces a large volume of data and there is the clinical need to provide…

  9. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Science.gov (United States)

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  10. Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis

    NARCIS (Netherlands)

    Reininga, Inge H. F.; Stevens, Martin; Wagenmakers, Robert; Bulstra, Sjoerd K.; Groothoff, Johan W.; Zijlstra, Wiebren

    2012-01-01

    Background: Compensatory trunk movements during gait, such as a Duchenne limp, are observed frequently in subjects with osteoarthritis of the hip, yet angular trunk movements are seldom included in clinical gait assessments. Hence, the objective of this study was to quantify compensatory trunk

  11. [A new continuous gait analysis system for ankle fracture aftercare].

    Science.gov (United States)

    Braun, B J; Veith, N T; Herath, S C; Hell, R; Rollmann, M; Orth, M; Holstein, J H; Pohlemann, T

    2018-04-01

    Correct aftercare following lower extremity fractures remains a controversial issue. Reliable, clinically applicable weight-bearing recommendations have not yet been defined. The aim of the current study was to establish a new gait analysis insole during physical therapy aftercare of ankle fractures to test patients' continuous, long-term compliance to partial weight-bearing restrictions and investigate whether patients can estimate their weight-bearing compliance. The postoperative gait of 14 patients after operative treatment of Weber B-type ankle fractures was monitored continuously for six weeks (OpenGO, Moticon GmbH, Munich). All patients were instructed and trained by physical therapists on how to maintain partial weight-bearing for this time. Discontinuous (three, six and twelve weeks) clinical (patient questionnaire, visual analogue pain score [VAS]) and radiographic controls were performed. Despite the set weight-bearing limits, individual ranges for overall weight-bearing (range 5-107% of the contralateral side) and patient activity (range 0-366 min/day) could be shown. A good correlation between weight-bearing and pain was seen (r s  = -0.68; p = <0.0001). Patients significantly underestimated their weight-bearing time over the set limit (2.3 ± 1.4 min/day vs. real: 12.6 ± 5.9 min/day; p < 0.01). Standardized aftercare protocols and repeated training alone cannot ensure compliance to postoperative partial weight-bearing. Patients unconsciously increased weight-bearing based on their pain level. This study shows that new, individual and possibly technology-assisted weight-bearing regimes are needed. The introduced measuring device is feasible to monitor and steer patient weight-bearing during future studies.

  12. Pre- and post-operative gait analysis for evaluation of neck pain in chronic whiplash

    Directory of Open Access Journals (Sweden)

    Ginsburg Glen M

    2009-07-01

    Full Text Available Abstract Introduction Chronic neck pain after whiplash is notoriously refractory to conservative treatment, and positive radiological findings to explain the symptoms are scarce. The apparent disproportionality between subjective complaints and objective findings is significant for the planning of treatment, impairment ratings, and judicial questions on causation. However, failure to identify a symptom's focal origin with routine imaging studies does not invalidate the symptom per se. It is therefore of a general interest both to develop effective therapeutic strategies in chronic whiplash, and to establish techniques for objectively evaluation of treatment outcomes. Methods Twelve patients with chronic neck pain after whiplash underwent pre- and postoperative computerized 3D gait analysis. Results Significant improvement was found in all gait parameters, cervical range-of-motion, and self reported pain (VAS. Conclusion Chronic neck pain is associated with abnormal cervical spine motion and gait patterns. 3D gait analysis is a useful instrument to assess the outcome of treatment for neck pain.

  13. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.

    Science.gov (United States)

    Ng, Maple F W; Tong, Raymond K Y; Li, Leonard S W

    2008-01-01

    This study aimed to assess the effectiveness of gait training using an electromechanical gait trainer with or without functional electrical stimulation for people with subacute stroke. This was a nonblinded randomized controlled trial with a 6-month follow-up. Fifty-four subjects were recruited within 6 weeks after stroke onset and were randomly assigned to 1 of 3 gait intervention groups: conventional overground gait training treatment (CT, n=21), electromechanical gait trainer (GT, n=17) and, electromechanical gait trainer with functional electrical stimulation (GT-FES, n=16). All subjects were to undergo an assigned intervention program comprising a 20-minute session every weekday for 4 weeks. The outcome measures were Functional Independence Measure, Barthel Index, Motricity Index leg subscale, Elderly Mobility Scale (EMS), Berg Balance Scale, Functional Ambulatory Category (FAC), and 5-meter walking speed test. Assessments were made at baseline, at the end of the 4-week intervention program, and 6 months after the program ended. By intention-to-treat and multivariate analysis, statistically significant differences showed up in EMS (Wilks' lambda=0.743, P=0.005), FAC (Wilks' lambda=0.744, P=0.005) and gait speed (Wilks' lambda=0.658, Pgait training that used an electromechanical gait trainer compared with conventional overground gait training. The training effect was sustained through to the 6-month follow-up after the intervention.

  14. Power considerations for the application of detrended fluctuation analysis in gait variability studies.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available The assessment of gait variability using stochastic signal processing techniques such as detrended fluctuation analysis (DFA has been shown to be a sensitive tool for evaluation of gait alterations due to aging and neuromuscular disease. However, previous studies have suggested that the application of DFA requires relatively long recordings (600 strides, which is difficult when working with clinical populations or older adults. In this paper we propose a model for predicting DFA variance in experimental data and conduct a Monte Carlo simulation to estimate the sample size and number of trials required to detect a change in DFA scaling exponent. We illustrate the model in a simulation to detect a difference of 0.1 (medium effect between two groups of subjects when using short gait time series (100 to 200 strides in the context of between- and within-subject designs. We assumed that the variance of DFA scaling exponent arises due to individual differences, time series length, and experimental error. Results showed that sample sizes required to achieve acceptable power of 80% are practically feasible, especially when using within-subject designs. For example, to detect a group difference in the DFA scaling exponent of 0.1, it would require either 25 subjects and 2 trials per subject or 12 subjects and 4 trials per subject using a within-subject design. We then compared plausibility of such power predictions to the empirically observed power from a study that required subjects to synchronize with a persistent fractal metronome. The results showed that the model adequately predicted the empirical pattern of results. Our power simulations could be used in conjunction with previous design guidelines in the literature when planning new gait variability experiments.

  15. New lower-limb gait asymmetry indices based on a depth camera.

    Science.gov (United States)

    Auvinet, Edouard; Multon, Franck; Meunier, Jean

    2015-02-24

    Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. The proposed longitudinal index distinguished asymmetrical gait (p indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis.

  16. Integrating computer aided radiography and plantar pressure measurements for complex gait analysis

    International Nuclear Information System (INIS)

    Gefen, A.; Megido-Ravid, M.; Itzchak, Y.; Arcan, M.

    1998-01-01

    Radiographic Fluoroscopy (DRF) and Contact Pressure Display (CPD). The CPD method uses a birefiingent integrated optical sandwich for contact stress analysis, e.g. plantar pressure distribution. The DRF method displays and electronically records skeletal motion using X-ray radiation, providing the exact bone and joint positions during gait. Integrating the two techniques, contribution of each segment to the HFS behavior may be studied by applying image processing and analysis techniques. The combined resulted data may be used not only to detect and diagnose gait pathologies but also as a base for development of advanced numerical models of the foot structure

  17. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  18. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  19. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    Science.gov (United States)

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Gait pattern recognition in cerebral palsy patients using neural network modelling

    International Nuclear Information System (INIS)

    Muhammad, J.; Gibbs, S.; Abboud, R.; Anand, S.

    2015-01-01

    Interpretation of gait data obtained from modern 3D gait analysis is a challenging and time consuming task. The aim of this study was to create neural network models which can recognise the gait patterns from pre- and post-treatment and the normal ones. Neural network is a method which works on the principle of learning from experience and then uses the obtained knowledge to predict the unknown. Methods: Twenty-eight patients with cerebral palsy were recruited as subjects whose gait was analysed in pre- and post-treatment. A group of twenty-six normal subjects also participated in this study as control group. All subjects gait was analysed using Vicon Nexus to obtain the gait parameters and kinetic and kinematic parameters of hip, knee and ankle joints in three planes of both limbs. The gait data was used as input to create neural network models. A total of approximately 300 trials were split into 70% and 30% to train and test the models, respectively. Different models were built using different parameters. The gait was categorised as three patterns, i.e., normal, pre- and post-treatments. Result: The results showed that the models using all parameters or using the joint angles and moments could predict the gait patterns with approximately 95% accuracy. Some of the models e.g., the models using joint power and moments, had lower rate in recognition of gait patterns with approximately 70-90% successful ratio. Conclusion: Neural network model can be used in clinical practice to recognise the gait pattern for cerebral palsy patients. (author)

  1. The Dominant-Subthalamic Nucleus Phenomenon in Bilateral Deep Brain Stimulation for Parkinson’s Disease: Evidence from a Gait Analysis Study

    Directory of Open Access Journals (Sweden)

    Mario Giorgio Rizzone

    2017-10-01

    Full Text Available BackgroundIt has been suggested that parkinsonian [Parkinson’s disease (PD] patients might have a “dominant” (DOM subthalamic nucleus (STN, whose unilateral electrical stimulation [deep brain stimulation (DBS] could lead to an improvement in PD symptoms similar to bilateral STN-DBS.ObjectivesSince disability in PD patients is often related to gait problems, in this study, we wanted to investigate in a group of patients bilaterally implanted for STN-DBS: (1 if it was possible to identify a subgroup of subjects with a dominant STN; (2 in the case, if the unilateral stimulation of the dominant STN was capable to improve gait abnormalities, as assessed by instrumented multifactorial gait analysis, similarly to what observed with bilateral stimulation.MethodsWe studied 10 PD patients with bilateral STN-DBS. A clinical evaluation and a kinematic, kinetic, and electromyographic (EMG analysis of overground walking were performed—off medication—in four conditions: without stimulation, with bilateral stimulation, with unilateral right or left STN-DBS. Through a hierarchical agglomerative cluster analysis based on motor Unified Parkinson’s Disease Rating Scale scores, it was possible to separate patients into two groups, based on the presence (six patients, DOM group or absence (four patients, NDOM group of a dominant STN.ResultsIn the DOM group, both bilateral and unilateral stimulation of the dominant STN significantly increased gait speed, stride length, range of motion of lower limb joints, and peaks of moment and power at the ankle joint; moreover, the EMG activation pattern of distal leg muscles was improved. The unilateral stimulation of the non-dominant STN did not produce any significant effect. In the NDOM group, only bilateral stimulation determined a significant improvement of gait parameters.ConclusionIn the DOM group, the effect of unilateral stimulation of the dominant STN determined an improvement of gait parameters similar to

  2. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people.

    Directory of Open Access Journals (Sweden)

    Anne-Marie De Cock

    Full Text Available Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear.Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients.The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length, swing time variability, normalised gait speed (corrected for leg length and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints.Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice

  3. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    Science.gov (United States)

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  4. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    Directory of Open Access Journals (Sweden)

    Edouard Auvinet

    2015-02-01

    Full Text Available Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™ output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001, while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis.

  5. Balance and Gait Impairment: Sensor-Based Assessment for Patients With Peripheral Neuropathy.

    Science.gov (United States)

    Campbell, Grace; Skubic, Marjorie A

    2018-06-01

    Individuals with peripheral neuropathy (PN) frequently experience balance and gait impairments that can lead to poor physical function, falls, and injury. Nurses are aware that patients with cancer experience balance and gait impairments but are unsure of optimal assessment and management strategies. This article reviews options for balance and gait assessment for patients diagnosed with cancer experiencing PN, describes advantages and limitations of the various options, and highlights innovative, clinically feasible technologies to improve clinical assessment and management. The literature was reviewed to identify and assess the gold standard quantitative measures for assessing balance and gait. Gold standard quantitative measures are burdensome for patients and not often used in clinical practice. Sensor-based technologies improve balance and gait assessment options by calculating precise impairment measures during performance of simple clinical tests at the point of care.

  6. Automated extraction and validation of children's gait parameters with the Kinect.

    Science.gov (United States)

    Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco

    2015-12-02

    Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.

  7. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  8. Multifractal Detrended Fluctuation Analysis of Human gait Diseases

    Directory of Open Access Journals (Sweden)

    Srimonti eDutta

    2013-10-01

    Full Text Available IIn this paper multifractal detrended fluctuation analysis is used to study the human gait time series for normal and diseased sets. It is observed that long range correlation is primarily responsible for the origin of multifractality. The study reveals that the degree of multifractality is more for normal set compared to diseased set. However the method fails to distinguish between the two diseased sets.

  9. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    Science.gov (United States)

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.

    Science.gov (United States)

    Hickey, Aodhán; Del Din, Silvia; Rochester, Lynn; Godfrey, Alan

    2017-01-01

    Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes in clinic and free-living environments, providing a more comprehensive overview of walking due to continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined the validity of wearables and associated algorithms for identifying and quantifying step counts and walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step and bout count validity found limited agreement due to variations in walking speed, changing terrain or task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy participants (20-33 years) wore two portable gait measurement systems; a wearable accelerometer on the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for 1 h on two separate occasions (24 h apart) during free-living activities. Step count and walking bouts were derived for both measurement systems and compared. For all participants during a total of almost 20 h of uncontrolled and unscripted free-living activity data, excellent relative (rho  ⩾  0.941) and absolute (ICC (2,1)   ⩾  0.975) agreement with no presence of bias were identified for step count compared to the camera (gold standard reference). Walking bout identification showed excellent relative (rho  ⩾  0.909) and absolute agreement (ICC (2,1)   ⩾  0.941) but demonstrated significant bias. The algorithm employed for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged uncontrolled free-living environments.

  11. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  12. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  13. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p gait trainer (p gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  14. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  15. Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis

    Directory of Open Access Journals (Sweden)

    Julius Hannink

    2017-08-01

    Full Text Available Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis.

  16. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    Science.gov (United States)

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  17. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-02-01

    Rhythmic auditory cues including music and metronome beats have been used, sometimes interchangeably, to improve disordered gait arising from a range of clinical conditions. There has been limited investigation into whether there are optimal cue types. Different cue types have produced inconsistent effects across groups which differed in both age and clinical condition. The possible effect of normal ageing on response to different cue types has not been reported for gait. The aim of this study was to determine the effects of both rhythmic music and metronome cues on gait spatiotemporal measures (including variability) in healthy older people. Twelve women and seven men (>65 years) walked on an instrumented walkway at comfortable pace and then in time to each of rhythmic music and metronome cues at comfortable pace stepping frequency. Music but not metronome cues produced a significant increase in group mean gait velocity of 4.6 cm/s, due mostly to a significant increase in group mean stride length of 3.1cm. Both cue types produced a significant but small increase in cadence of 1 step/min. Mean spatio-temporal variability was low at baseline and did not increase with either cue type suggesting cues did not disrupt gait timing. Study findings suggest music and metronome cues may not be used interchangeably and cue type as well as frequency should be considered when evaluating effects of rhythmic auditory cueing on gait. Further work is required to determine whether optimal cue types and frequencies to improve walking in different clinical groups can be identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences.

    Directory of Open Access Journals (Sweden)

    Gina Caplen

    Full Text Available This is the first time that gait characteristics of broiler (meat chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10 would be intermediate to those of lame broilers (n = 12 and jungle fowl (n = 10, tested at two ages: immature and adult. Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated

  19. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index.

    Science.gov (United States)

    Ming, Dong; Bai, Yanru; Liu, Xiuyun; Qi, Hongzhi; Cheng, Longlong; Wan, Baikun; Hu, Yong; Wong, Yatwa; Luk, Keith D K; Leong, John C Y

    2009-12-01

    The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patient's upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patient's walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.

  20. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index

    Science.gov (United States)

    Ming, Dong; Bai, Yanru; Liu, Xiuyun; Qi, Hongzhi; Cheng, Longlong; Wan, Baikun; Hu, Yong; Wong, Yatwa; Luk, Keith D. K.; Leong, John C. Y.

    2009-12-01

    The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patient's upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patient's walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.

  1. A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients.

    Science.gov (United States)

    Gholami, Farnood; Trojan, Daria A; Kovecses, Jozsef; Haddad, Wassim M; Gholami, Behnood

    2017-09-01

    Gait impairment is a prevalent and important difficulty for patients with multiple sclerosis (MS), a common neurological disorder. An easy to use tool to objectively evaluate gait in MS patients in a clinical setting can assist clinicians to perform an objective assessment. The overall objective of this study is to develop a framework to quantify gait abnormalities in MS patients using the Microsoft Kinect for the Windows sensor; an inexpensive, easy to use, portable camera. Specifically, we aim to evaluate its feasibility for utilization in a clinical setting, assess its reliability, evaluate the validity of gait indices obtained, and evaluate a novel set of gait indices based on the concept of dynamic time warping. In this study, ten ambulatory MS patients, and ten age and sex-matched normal controls were studied at one session in a clinical setting with gait assessment using a Kinect camera. The expanded disability status scale (EDSS) clinical ambulation score was calculated for the MS subjects, and patients completed the Multiple Sclerosis walking scale (MSWS). Based on this study, we established the potential feasibility of using a Microsoft Kinect camera in a clinical setting. Seven out of the eight gait indices obtained using the proposed method were reliable with intraclass correlation coefficients ranging from 0.61 to 0.99. All eight MS gait indices were significantly different from those of the controls (p-values less than 0.05). Finally, seven out of the eight MS gait indices were correlated with the objective and subjective gait measures (Pearson's correlation coefficients greater than 0.40). This study shows that the Kinect camera is an easy to use tool to assess gait in MS patients in a clinical setting.

  2. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study

    Directory of Open Access Journals (Sweden)

    Gutmanis Iris

    2009-09-01

    Full Text Available Abstract Background Reliability of quantitative gait assessment while dual-tasking (walking while doing a secondary task such as talking in people with cognitive impairment is unknown. Dual-tasking gait assessment is becoming highly important for mobility research with older adults since better reflects their performance in the basic activities of daily living. Our purpose was to establish the test-retest reliability of assessing quantitative gait variables using an electronic walkway in older adults with mild cognitive impairment (MCI under single and dual-task conditions. Methods The gait performance of 11 elderly individuals with MCI was evaluated using an electronic walkway (GAITRite® System in two sessions, one week apart. Six gait parameters (gait velocity, step length, stride length, step time, stride time, and double support time were assessed under two conditions: single-task (sG: usual walking and dual-task (dG: counting backwards from 100 while walking. Test-retest reliability was determined using intra-class correlation coefficient (ICC. Gait variability was measured using coefficient of variation (CoV. Results Eleven participants (average age = 76.6 years, SD = 7.3 were assessed. They were high functioning (Clinical Dementia Rating Score = 0.5 with a mean Mini-Mental Status Exam (MMSE score of 28 (SD = 1.56, and a mean Montreal Cognitive Assessment (MoCA score of 22.8 (SD = 1.23. Under dual-task conditions, mean gait velocity (GV decreased significantly (sGV = 119.11 ± 20.20 cm/s; dGV = 110.88 ± 19.76 cm/s; p = 0.005. Additionally, under dual-task conditions, higher gait variability was found on stride time, step time, and double support time. Test-retest reliability was high (ICC>0.85 for the six parameters evaluated under both conditions. Conclusion In older people with MCI, variability of time-related gait parameters increased with dual-tasking suggesting cognitive control of gait performance. Assessment of quantitative gait

  3. An automated procedure for identification of a person using gait analysis

    Directory of Open Access Journals (Sweden)

    Alena Galajdová

    2016-10-01

    Full Text Available Different biometric methods are available for identification purpose of a person. The most commonly used are fingerprints, but there are also other biometric methods such as voice, morphology of ears, structure of iris and so on. In some cases, it is required to identify a person according to his/her biomechanical parameters or even his/her gait pattern. Gait is an outstanding biometric behavioural characteristic that is not widely used yet for identification purposes because efficient and proven automated processes are not yet available. Several systems and gait pattern databases have been developed for rapid evaluation and processing of gait. This article describes an original automated evaluation procedure of gait pattern and identification of unique gait parameters for automatic identification purposes.

  4. Improved ankle push-off power following cheilectomy for hallux rigidus: a prospective gait analysis study.

    Science.gov (United States)

    Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W

    2012-06-01

    There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (ppush-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (ppush-off power.

  5. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking.

    Science.gov (United States)

    Al-Amri, Mohammad; Al Balushi, Hilal; Mashabi, Abdulrhman

    2017-12-01

    Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, gait performance over time.

  6. Combined gait disorder: a diagnostic challenge –a case report

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2017-02-01

    Full Text Available Gait disorders are a major cause of functional impairment and morbidity, especially in the elderly population. Prevalence of gait disorders is higher in persons over 60: is estimated to be around 15% at 60 years of age and more than 50% in people > 80 years. Most gait disorders are multifactorial and have both neurologic and non-neurologic components. Neurological gait abnormalities result from focal or diffuse lesions occurring in the neural pathways linking the cortical motor centers to the peripheral neuromuscular systems. Nonneurological gait abnormalities include gait limitations caused by musculoskeletal, cardiac, or respiratory diseases. Assessment of a gait abnormality should include history, clinical presentation and additional diagnostic tests. Finding the ethiology of a gait disorder could be a challenge for the practitioners in many cases, requiring interdisciplinary cooperation.

  7. Development of a novel virtual reality gait intervention.

    Science.gov (United States)

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A mechanized gait trainer for restoration of gait.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D

    2000-01-01

    The newly developed gait trainer allows wheel-chair-bound subjects the repetitive practice of a gait-like movement without overstressing therapists. The device simulates the phases of gait, supports the subjects according to their abilities, and controls the center of mass (CoM) in the vertical and horizontal directions. The patterns of sagittal lower limb joint kinematics and of muscle activation for a normal subject were similar when using the mechanized trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists were required to support treadmill walking. Gait movements on the trainer were highly symmetrical, impact free, and less spastic. The vertical displacement of the CoM was bi-phasic instead of mono-phasic during each gait cycle on the new device. Two cases of non-ambulatory patients, who regained their walking ability after 4 weeks of daily training on the gait trainer, are reported.

  9. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry

    Directory of Open Access Journals (Sweden)

    Cremer Gerald

    2011-01-01

    Full Text Available Abstract Background Falls in the elderly is nowadays a major concern because of their consequences on elderly general health and moral states. Moreover, the aging of the population and the increasing life expectancy make the prediction of falls more and more important. The analysis presented in this article makes a first step in this direction providing a way to analyze gait and classify hospitalized elderly fallers and non-faller. This tool, based on an accelerometer network and signal processing, gives objective informations about the gait and does not need any special gait laboratory as optical analysis do. The tool is also simple to use by a non expert and can therefore be widely used on a large set of patients. Method A population of 20 hospitalized elderlies was asked to execute several classical clinical tests evaluating their risk of falling. They were also asked if they experienced any fall in the last 12 months. The accelerations of the limbs were recorded during the clinical tests with an accelerometer network distributed on the body. A total of 67 features were extracted from the accelerometric signal recorded during a simple 25 m walking test at comfort speed. A feature selection algorithm was used to select those able to classify subjects at risk and not at risk for several classification algorithms types. Results The results showed that several classification algorithms were able to discriminate people from the two groups of interest: fallers and non-fallers hospitalized elderlies. The classification performances of the used algorithms were compared. Moreover a subset of the 67 features was considered to be significantly different between the two groups using a t-test. Conclusions This study gives a method to classify a population of hospitalized elderlies in two groups: at risk of falling or not at risk based on accelerometric data. This is a first step to design a risk of falling assessment system that could be used to provide

  10. Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements.

    Science.gov (United States)

    Marschollek, M; Nemitz, G; Gietzelt, M; Wolf, K H; Meyer Zu Schwabedissen, H; Haux, R

    2009-08-01

    Falls are among the predominant causes for morbidity and mortality in elderly persons and occur most often in geriatric clinics. Despite several studies that have identified parameters associated with elderly patients' fall risk, prediction models -- e.g., based on geriatric assessment data -- are currently not used on a regular basis. Furthermore, technical aids to objectively assess mobility-associated parameters are currently not used. To assess group differences in clinical as well as common geriatric assessment data and sensory gait measurements between fallers and non-fallers in a geriatric sample, and to derive and compare two prediction models based on assessment data alone (model #1) and added sensory measurement data (model #2). For a sample of n=110 geriatric in-patients (81 women, 29 men) the following fall risk-associated assessments were performed: Timed 'Up & Go' (TUG) test, STRATIFY score and Barthel index. During the TUG test the subjects wore a triaxial accelerometer, and sensory gait parameters were extracted from the data recorded. Group differences between fallers (n=26) and non-fallers (n=84) were compared using Student's t-test. Two classification tree prediction models were computed and compared. Significant differences between the two groups were found for the following parameters: time to complete the TUG test, transfer item (Barthel), recent falls (STRATIFY), pelvic sway while walking and step length. Prediction model #1 (using common assessment data only) showed a sensitivity of 38.5% and a specificity of 97.6%, prediction model #2 (assessment data plus sensory gait parameters) performed with 57.7% and 100%, respectively. Significant differences between fallers and non-fallers among geriatric in-patients can be detected for several assessment subscores as well as parameters recorded by simple accelerometric measurements during a common mobility test. Existing geriatric assessment data may be used for falls prediction on a regular basis

  11. Effects of obesity and chronic low back pain on gait

    OpenAIRE

    Cimolin, Veronica; Vismara, Luca; Galli, Manuela; Zaina, Fabio; Negrini, Stefano; Capodaglio, Paolo

    2011-01-01

    Abstract Background Obesity is often associated with low back pain (LBP). Despite empirical evidence that LBP induces gait abnormalities, there is a lack of quantitative analysis of the combined effect of obesity and LBP on gait. The aim of our study was to quantify the gait pattern of obese subjects with and without LBP and normal-mass controls by using Gait Analysis (GA), in order to investigate the cumulative effects of obesity and LBP on gait. Methods Eight obese females with chronic LBP ...

  12. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  13. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Montero-Odasso, Manuel M; Sarquis-Adamson, Yanina; Speechley, Mark; Borrie, Michael J; Hachinski, Vladimir C; Wells, Jennie; Riccio, Patricia M; Schapira, Marcelo; Sejdic, Ervin; Camicioli, Richard M; Bartha, Robert; McIlroy, William E; Muir-Hunter, Susan

    2017-07-01

    Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. To determine whether a dual-task gait test is associated with incident dementia in MCI. The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per 1000 person-years). The models remained robust after adjusting by baseline cognition except for dual-task gait cost when dichotomized. Dual

  14. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  15. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    Directory of Open Access Journals (Sweden)

    Laura Susana Vargas-Valencia

    2016-12-01

    Full Text Available This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  16. Clinical measures are feasible and sensitive to assess balance and gait capacities in older persons with mild to moderate Intellectual Disabilities

    NARCIS (Netherlands)

    Enkelaar, L.; Smulders, E.; Schrojenstein Lantman, H.M.J. van; Weerdesteijn, V.G.M.; Geurts, A.C.H.

    2013-01-01

    Mobility limitations are common in persons with Intellectual Disabilities (ID). Differences in balance and gait capacities between persons with ID and controls have mainly been demonstrated by instrumented assessments (e.g. posturography and gait analysis), which require sophisticated and expensive

  17. Gait Disorders In Patients After Polytrauma

    Directory of Open Access Journals (Sweden)

    Jakušonoka Ruta

    2015-04-01

    Full Text Available Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years, 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05. The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.

  18. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Muhammad Raheel Afzal

    2015-01-01

    Full Text Available Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR based insoles are used to detect ground contact and estimate stance time. A controller (Arduino provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device.

  19. Can biomechanical variables predict improvement in crouch gait?

    Science.gov (United States)

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  20. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy: Intra-rater reliability and agreement across two repeated sessions.

    Science.gov (United States)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech; Overgaard, Søren; Holsgaard-Larsen, Anders

    2015-07-01

    The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical practice. The aim of this study was to investigate the intra-rater reliability and agreement of summary measures of gait (GDI; GPS; and the Gait Variable Score (GVS) derived from the GPS). The intra-rater reliability and agreement were investigated across two repeated sessions in 18 children aged 5-12 years diagnosed with spastic CP. No systematic bias was observed between the sessions and no heteroscedasticity was observed in Bland-Altman plots. For the GDI and GPS, excellent reliability with intraclass correlation coefficient (ICC) values of 0.8-0.9 was found, while the GVS was found to have fair to good reliability with ICCs of 0.4-0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18.5%. For the logarithmically transformed GVS, we found a fair to large variation in SEM% from 7 to 29% and in SDC% from 18 to 81%. The GDI and GPS demonstrated excellent reliability and acceptable agreement proving that they can both be used in research and clinical practice. However, the observed large variability for some of the GVS requires cautious consideration when selecting outcome measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    Science.gov (United States)

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.

  2. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    Science.gov (United States)

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  4. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    Science.gov (United States)

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  5. Person identification by gait analysis and photogrammetry

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Vedel, Jens

    2005-01-01

    Surveillance images from a bank robbery were analyzed and compared with images of a suspect. Based on general bodily features, gait and anthropometric measurements, we were able to conclude that one of the perpetrators showed strong resemblance to the suspect. Both exhibited a gait characterized...... by hyperextension of the leg joints, and bodily measurements did not differ by more than 6 mm on average. The latter was quantified by photogrammetry: i.e., measuring by using images of the perpetrator as captured by surveillance cameras. Using the computer software Photomodeler Pro, synchronous images from...

  6. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    Science.gov (United States)

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  7. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  8. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  9. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    Science.gov (United States)

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    Science.gov (United States)

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.

  12. A method to standardize gait and balance variables for gait velocity.

    NARCIS (Netherlands)

    Iersel, M.B. van; Olde Rikkert, M.G.M.; Borm, G.F.

    2007-01-01

    Many gait and balance variables depend on gait velocity, which seriously hinders the interpretation of gait and balance data derived from walks at different velocities. However, as far as we know there is no widely accepted method to correct for effects of gait velocity on other gait and balance

  13. Two-dimensional PCA-based human gait identification

    Science.gov (United States)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  14. Balance and gait in older electroconvulsive therapy recipients: a pilot study

    Directory of Open Access Journals (Sweden)

    Plakiotis C

    2013-06-01

    Full Text Available Chris Plakiotis,1,2 Fay Barson,2 Bharathi Vengadasalam,3 Terry P Haines,4 Daniel W O'Connor1,2 1School of Psychology and Psychiatry, Monash University, Melbourne, VIC, Australia; 2MonashHealth, Melbourne, VIC, Australia; 3Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Allied Health Research Unit, Monash University and MonashHealth, Melbourne, VIC, Australia Background: Electroconvulsive therapy (ECT is commonly used to treat depression in older adults. Despite its efficacy in this regard, an associated increase in the risk of falls in this population is a downside of treatment. ECT research has focused on the incidence of falls, but its effect on balance and gait – intrinsic factors in instability and falls – has not been studied. Our aim was to examine changes in balance and gait among older adults before and after a single ECT session and explore the effect of patient-related and treatment factors on any changes found. Methods: Participants were 21 older adults requiring ECT for depression in public psychiatric services. Patients with clinically overt mobility problems (impairing test participation or increasing the risk of falls were excluded. Balance and gait testing 1 hour pre-ECT and 1, 2 and 3 hours post-ECT included: (1 steady standing test; (2 perturbation of standing balance by self-initiated movements; (3 perturbation of standing balance by an external perturbation; and (4 timed up and go test. Results: No deterioration in test performance was found, using one-way repeated measures analysis of variance. Conclusion: Balance and gait did not deteriorate immediately after ECT. Exclusion of participants with clinically overt mobility problems and falls being better attributable to factors unrelated to balance and gait (such as post-ECT confusion may account for our findings. This research does not repudiate the occurrence of ECT-related falls but calls into question the utility of introducing routine balance and gait

  15. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.

    Science.gov (United States)

    Bortole, Magdo; Venkatakrishnan, Anusha; Zhu, Fangshi; Moreno, Juan C; Francisco, Gerard E; Pons, Jose L; Contreras-Vidal, Jose L

    2015-06-17

    Stroke significantly affects thousands of individuals annually, leading to considerable physical impairment and functional disability. Gait is one of the most important activities of daily living affected in stroke survivors. Recent technological developments in powered robotics exoskeletons can create powerful adjunctive tools for rehabilitation and potentially accelerate functional recovery. Here, we present the development and evaluation of a novel lower limb robotic exoskeleton, namely H2 (Technaid S.L., Spain), for gait rehabilitation in stroke survivors. H2 has six actuated joints and is designed to allow intensive overground gait training. An assistive gait control algorithm was developed to create a force field along a desired trajectory, only applying torque when patients deviate from the prescribed movement pattern. The device was evaluated in 3 hemiparetic stroke patients across 4 weeks of training per individual (approximately 12 sessions). The study was approved by the Institutional Review Board at the University of Houston. The main objective of this initial pre-clinical study was to evaluate the safety and usability of the exoskeleton. A Likert scale was used to measure patient's perception about the easy of use of the device. Three stroke patients completed the study. The training was well tolerated and no adverse events occurred. Early findings demonstrate that H2 appears to be safe and easy to use in the participants of this study. The overground training environment employed as a means to enhance active patient engagement proved to be challenging and exciting for patients. These results are promising and encourage future rehabilitation training with a larger cohort of patients. The developed exoskeleton enables longitudinal overground training of walking in hemiparetic patients after stroke. The system is robust and safe when applied to assist a stroke patient performing an overground walking task. Such device opens the opportunity to study means

  16. Gait analysis after successful mobile bearing total ankle replacement.

    NARCIS (Netherlands)

    Doets, H.C.; van Middelkoop, M.; Houdijk, J.H.P.; Nelissen, R.G.; Veeger, H.E.J.

    2007-01-01

    Background: The effect of total ankle replacement on gait is not fully known in terms of joint kinematics, ground reaction force, and activity of the muscles of the lower leg. Methods: A comparative gait study was done in 10 patients after uneventful unilateral mobile-bearing total ankle replacement

  17. Effect of Cue Timing and Modality on Gait Initiation in Parkinson Disease With Freezing of Gait.

    Science.gov (United States)

    Lu, Chiahao; Amundsen Huffmaster, Sommer L; Tuite, Paul J; Vachon, Jacqueline M; MacKinnon, Colum D

    2017-07-01

    To examine the effects of cue timing, across 3 sensory modalities, on anticipatory postural adjustments (APAs) during gait initiation in people with Parkinson disease (PD). Observational study. Biomechanics research laboratory. Individuals with idiopathic PD (N=25; 11 with freezing of gait [FOG]) were studied in the off-medication state (12-h overnight withdrawal). Gait initiation was tested without cueing (self-initiated) and with 3 cue timing protocols: fixed delay (3s), random delay (4-12s), and countdown (3-2-1-go, 1-s intervals) across 3 sensory modalities (acoustic, visual, and vibrotactile). The incidence and spatiotemporal characteristics of APAs during gait initiation were analyzed, including vertical ground reaction forces and center of pressure. All cue timings and modalities increased the incidence and amplitude of APAs compared with self-initiated stepping. Acoustic and visual cues, but not vibrotactile stimulation, improved the timing of APAs. Fixed delay or countdown timing protocols were more effective at decreasing APA durations than random delay cues. Cue-evoked improvements in APA timing, but not amplitude, correlated with the level of impairment during self-initiated gait. Cues did not improve the late push-off phase in the FOG group. External cueing improves gait initiation in PD regardless of cue timing, modality, or clinical phenotype (with and without FOG). Acoustic or visual cueing with predictive timing provided the greatest improvements in gait initiation; therefore, these protocols may provide the best outcomes when applied by caregivers or devices. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Single-task and dual-task tandem gait test performance after concussion.

    Science.gov (United States)

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Directory of Open Access Journals (Sweden)

    Silvia Fantozzi

    Full Text Available Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23° and the ankle more dorsiflexed (≈ 9° at heel strike, and the hip was more flexed at toe-off (≈ 13° in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7° and showed a more inversed mean value (≈ 7°. The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered

  20. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  1. Kinematic measures for assessing gait stability in elderly individuals: a systematic review.

    Science.gov (United States)

    Hamacher, D; Singh, N B; Van Dieën, J H; Heller, M O; Taylor, W R

    2011-12-07

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot

  2. Surface peroneal nerve stimulation in lower limb hemiparesis : Effect on quantitative gait parameters

    NARCIS (Netherlands)

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas; Buurke, Jaap H.; Ijzerman, Maarten J.; Chae, John

    2015-01-01

    Objective: The objective of this study was to evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation vs. usual care via quantitative gait analysis. Design: This study is a randomized controlled clinical trial. Setting: The

  3. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-12-01

    Full Text Available Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.

  4. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    International Nuclear Information System (INIS)

    Munoz-Diosdado, A

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems

  5. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  6. 3D gait analysis with and without an orthopedic walking boot.

    Science.gov (United States)

    Gulgin, H; Hall, K; Luzadre, A; Kayfish, E

    2018-01-01

    Orthopedic walking boots have been widely used in place of traditional fiberglass casts for a variety of orthopedic injuries and post-surgical interventions. These walking boots create a leg length discrepancy (LLD). LLD has been shown to alter the kinematics and kinetics of gait and are associated with lumbar and lower limb conditions such as: foot over pronation, low back pain, scoliosis, and osteoarthritis of the hip and knee joints. Past gait analyses research with orthopedic boots is limited to findings on the ipsilateral limb. Thus, the purpose of the study was to examine bilateral gait kinematics & kinetics with and without a walking boot. Forty healthy participants (m=20, f=20, age 20.7±1.8 yrs., ht. 171.6±9.5cm, wt. 73.2±11.0kg, BMI 24.8±3.2) volunteered. An eight camera Vicon Motion Capture System with PIG model and two AMTI force plates were utilized to record the walking trial conditions: (1) bilateral tennis shoes (2) boot on right foot, tennis shoe on left foot (3) boot on right foot, barefoot on left foot. Data were processed in Nexus 2.2.3 and exported to Visual 3D for analysis. When wearing the boot, there were significant differences in most joint angles and moments, with larger effects on long limb. The walking boot alters the gait in the same way as those with existing LLD, putting them at risk for development of secondary knee, hip, and low back pain during treatment protocol. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gait analysis after total knee arthroplasty: comparison of pre and postoperative characteristics

    Directory of Open Access Journals (Sweden)

    ihsan senturk

    2017-03-01

    Conclusion: For the surgical realignment of the knee, the kinematic chain of the lower extremity must be considered, and gait analysis will be helpful in deciding the type of surgical treatment. [Cukurova Med J 2017; 42(1.000: 92-96

  8. A Wearable Gait Phase Detection System Based on Force Myography Techniques

    Directory of Open Access Journals (Sweden)

    Xianta Jiang

    2018-04-01

    Full Text Available (1 Background: Quantitative evaluation of gait parameters can provide useful information for constructing individuals’ gait profile, diagnosing gait abnormalities, and better planning of rehabilitation schemes to restore normal gait pattern. Objective determination of gait phases in a gait cycle is a key requirement in gait analysis applications; (2 Methods: In this study, the feasibility of using a force myography-based technique for a wearable gait phase detection system is explored. In this regard, a force myography band is developed and tested with nine participants walking on a treadmill. The collected force myography data are first examined sample-by-sample and classified into four phases using Linear Discriminant Analysis. The gait phase events are then detected from these classified samples using a set of supervisory rules; (3 Results: The results show that the force myography band can correctly detect more than 99.9% of gait phases with zero insertions and only four deletions over 12,965 gait phase segments. The average temporal error of gait phase detection is 55.2 ms, which translates into 2.1% error with respect to the corresponding labelled stride duration; (4 Conclusions: This proof-of-concept study demonstrates the feasibility of force myography techniques as viable solutions in developing wearable gait phase detection systems.

  9. Class Energy Image Analysis for Video Sensor-Based Gait Recognition: A Review

    Directory of Open Access Journals (Sweden)

    Zhuowen Lv

    2015-01-01

    Full Text Available Gait is a unique perceptible biometric feature at larger distances, and the gait representation approach plays a key role in a video sensor-based gait recognition system. Class Energy Image is one of the most important gait representation methods based on appearance, which has received lots of attentions. In this paper, we reviewed the expressions and meanings of various Class Energy Image approaches, and analyzed the information in the Class Energy Images. Furthermore, the effectiveness and robustness of these approaches were compared on the benchmark gait databases. We outlined the research challenges and provided promising future directions for the field. To the best of our knowledge, this is the first review that focuses on Class Energy Image. It can provide a useful reference in the literature of video sensor-based gait representation approach.

  10. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation

    NARCIS (Netherlands)

    Vrieling, Aline H.; van Keeken, Helco G.; Schoppen, Tanneke; Hof, At L.; Otten, Bert; Halbertsma, Jan P. K.; Postema, Klaas

    Objective: To describe the adjustments in gait characteristics of obstacle crossing, gait initiation and gait termination that occur in subjects with a recent lower limb amputation during the rehabilitation process. Design: Prospective and descriptive study. Subjects: Fourteen subjects with a recent

  11. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jianning Wu

    2015-01-01

    Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  12. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.

    Science.gov (United States)

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  13. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  14. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    Science.gov (United States)

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients.

  15. Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke.

    Science.gov (United States)

    Lennon, Sheila; Ashburn, Ann; Baxter, David

    The purpose of this study was to characterize the gait cycle of patients with hemiplegia before and after a period of outpatient physiotherapy based on the Bobath concept. Nine patients, at least 6 weeks post stroke and recently discharged from a stroke unit, were measured before and after a period of outpatient physiotherapy (mean duration = 17.4 weeks). Therapy was documented using a treatment checklist for each patient. The primary outcome measures were a number of gait variables related to the therapists' treatment hypothesis, recorded during the gait cycle using the CODA motion analysis system. Other secondary outcome measures were the Motor Assessment Scale, Modified Ashworth Scale, subtests of the Sodring Motor Evaluation Scale, the Step test, a 10-m walk test, the Barthel Index and the London Handicap Score. Recovery of more normal gait patterns in the gait cycle (using motion analysis) did not occur. Significant changes in temporal parameters (loading response, single support time) for both legs, in one kinematic (dorsiflexion during stance) and one kinetic variable on the unaffected side (hip flexor moment), and most of the clinical measures of impairment, activity and participation (with the exception of the Modified Ashworth Scale and the 10-m walk) were noted. Study findings did not support the hypothesis that the Bobath approach restored more normal movement patterns to the gait cycle. Further research is required to investigate the treatment techniques that are effective at improving walking ability in people after stroke.

  16. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.

    Science.gov (United States)

    Louie, Dennis R; Eng, Janice J

    2016-06-08

    Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke

  17. Gait Recognition Based on Outermost Contour

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2011-10-01

    Full Text Available Gait recognition aims to identify people by the way they walk. In this paper, a simple but e ective gait recognition method based on Outermost Contour is proposed. For each gait image sequence, an adaptive silhouette extraction algorithm is firstly used to segment the frames of the sequence and a series of postprocessing is applied to obtain the normalized silhouette images with less noise. Then a novel feature extraction method based on Outermost Contour is performed. Principal Component Analysis (PCA is adopted to reduce the dimensionality of the distance signals derived from the Outermost Contours of silhouette images. Then Multiple Discriminant Analysis (MDA is used to optimize the separability of gait features belonging to di erent classes. Nearest Neighbor (NN classifier and Nearest Neighbor classifier with respect to class Exemplars (ENN are used to classify the final feature vectors produced by MDA. In order to verify the e ectiveness and robustness of our feature extraction algorithm, we also use two other classifiers: Backpropagation Neural Network (BPNN and Support Vector Machine (SVM for recognition. Experimental results on a gait database of 100 people show that the accuracy of using MDA, BPNN and SVM can achieve 97.67%, 94.33% and 94.67%, respectively.

  18. Validation of the Brazilian version of the Clinical Gait and Balance Scale and comparison with the Berg Balance Scale

    Directory of Open Access Journals (Sweden)

    Jussara Almeida Oliveira Baggio

    2013-09-01

    Full Text Available Objective To validate the Clinical Gait and Balance Scale (GABS for a Brazilian population of patients with Parkinson's disease (PD and to compare it to the Berg Balance Scale (BBS. Methods One hundred and seven PD patients were evaluated by shortened UPDRS motor scale (sUPDRSm, Hoehn and Yahr (HY, Schwab and England scale (SE, Falls Efficacy Scale International (FES-I, Freezing of Gait Questionnaire (FOG-Q, BBS and GABS. Results The internal consistency of the GABS was 0.94, the intra-rater and inter-rater reliability were 0.94 and 0.98 respectively. The area under the receiver operating characteristic (ROC curve was 0.72, with a sensitivity of 0.75 and specificity of 0.6, to discriminate patients with a history of falls in the last twelve months, for a cut-off score of 13 points. Conclusions Our study shows that the Brazilian version of the GABS is a reliable and valid instrument to assess gait and balance in PD.

  19. [Three-dimensional gait analysis of patients with osteonecrosis of femoral head before and after treatments with vascularized greater trochanter bone flap].

    Science.gov (United States)

    Cui, Daping; Zhao, Dewei

    2011-03-01

    To provide the objective basis for the evaluation of the operative results of vascularized greater trochanter bone flap in treating osteonecrosis of the femoral head (ONFH) by three-dimensional gait analysis. Between March 2006 and March 2007, 35 patients with ONFH were treated with vascularized greater trochanter bone flap, and gait analysis was made by using three-dimensional gait analysis system before operation and at 1, 2 years after operation. There were 23 males and 12 females, aged 21-52 years (mean, 35.2 years), including 8 cases of steroid-induced, 7 cases of traumatic, 6 cases of alcoholic, and 14 cases of idiopathic ONFH. The left side was involved in 15 cases, and right side in 20 cases. According to Association Research Circulation Osseous (ARCO) classification, all patients were diagnosed as having femoral-head necrosis at stage III. Preoperative Harris hip functional score (HHS) was 56.2 +/- 5.6. The disease duration was 1.5-18.6 years (mean, 5.2 years). All incisions healed at stage I without early postoperative complications of deep vein thrombosis and infections of incision. Thirty-five patients were followed up 2-3 years with an average of 2.5 years. At 2 years after operation, the HHS score was 85.8 +/- 4.1, showing significant difference when compared with the preoperative score (t = 23.200, P = 0.000). Before operation, patients showed a hip muscles gait, short gait, reduce pain gait, and the pathological gaits significantly improved at 1 year after operation. At 1 year and 2 years after operation, step frequency, pace, step length and hip flexion, hip extension, knee flexion, ankle flexion were significantly improved (P petronas wave appeared at swing phase; the preoperative situation was three normal phase waves. These results suggest that three-dimensional gait analysis before and after vascularized greater trochanter for ONFH can evaluate precisely hip vitodynamics variation.

  20. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Objective impairments of gait and balance in adults living with HIV-1 infection: a systematic review and meta-analysis of observational studies.

    Science.gov (United States)

    Berner, Karina; Morris, Linzette; Baumeister, Jochen; Louw, Quinette

    2017-08-01

    Gait and balance deficits are reported in adults with HIV infection and are associated with reduced quality of life. Current research suggests an increased fall-incidence in this population, with fall rates among middle-aged adults with HIV approximating that in seronegative elderly populations. Gait and postural balance rely on a complex interaction of the motor system, sensory control, and cognitive function. However, due to disease progression and complications related to ongoing inflammation, these systems may be compromised in people with HIV. Consequently, locomotor impairments may result that can contribute to higher-than-expected fall rates. The aim of this review was to synthesize the evidence regarding objective gait and balance impairments in adults with HIV, and to emphasize those which could contribute to increased fall risk. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An electronic search of published observational studies was conducted in March 2016. Methodological quality was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Narrative synthesis of gait and balance outcomes was performed, and meta-analyses where possible. Seventeen studies were included, with fair to low methodological quality. All studies used clinical tests for gait-assessment. Gait outcomes assessed were speed, initiation-time and cadence. No studies assessed kinetics or kinematics. Balance was assessed using both instrumented and clinical tests. Outcomes were mainly related to center of pressure, postural reflex latencies, and timed clinical tests. There is some agreement that adults with HIV walk slower and have increased center of pressure excursions and -long loop postural reflex latencies, particularly under challenging conditions. Gait and balance impairments exist in people with HIV, resembling fall-associated parameters in the elderly. Impairments are

  2. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    OpenAIRE

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of...

  3. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  4. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  5. History of cannabis use is associated with altered gait.

    Science.gov (United States)

    Pearson-Dennett, Verity; Todd, Gabrielle; Wilcox, Robert A; Vogel, Adam P; White, Jason M; Thewlis, Dominic

    2017-09-01

    Despite evidence that cannabinoid receptors are located in movement-related brain regions (e.g., basal ganglia, cerebral cortex, and cerebellum), and that chronic cannabis use is associated with structural and functional brain changes, little is known about the long-term effect of cannabis use on human movement. The aim of the current study was to investigate balance and walking gait in adults with a history of cannabis use. We hypothesised that cannabis use is associated with subtle changes in gait and balance that are insufficient in magnitude for detection in a clinical setting. Cannabis users (n=22, 24±6years) and non-drug using controls (n=22, 25±8years) completed screening tests, a gait and balance test (with a motion capture system and in-built force platforms), and a clinical neurological examination of movement. Compared to controls, cannabis users exhibited significantly greater peak angular velocity of the knee (396±30 versus 426±50°/second, P=0.039), greater peak elbow flexion (53±12 versus 57±7°, P=0.038) and elbow range of motion (33±13 versus 36±10°, P=0.044), and reduced shoulder flexion (41±19 versus 26±16°, P=0.007) during walking gait. However, balance and neurological parameters did not significantly differ between the groups. The results suggest that history of cannabis use is associated with long-lasting changes in open-chain elements of walking gait, but the magnitude of change is not clinically detectable. Further research is required to investigate if the subtle gait changes observed in this population become more apparent with aging and increased cannabis use. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Analysis of gait using a treadmill and a Time-of-flight camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    We present a system that analyzes human gait using a treadmill and a Time-of-flight camera. The camera provides spatial data with local intensity measures of the scene, and data are collected over several gait cycles. These data are then used to model and analyze the gait. For each frame...

  7. Boosting Discriminant Learners for Gait Recognition Using MPCA Features

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2009-01-01

    Full Text Available This paper proposes a boosted linear discriminant analysis (LDA solution on features extracted by the multilinear principal component analysis (MPCA to enhance gait recognition performance. Three-dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature selection. These feature vectors are then fed into an LDA-style booster, where several regularized and weakened LDA learners work together to produce a strong learner through a novel feature weighting and sampling process. The LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for classification. The experimental results on the NIST/USF “Gait Challenge” data-sets show that the proposed solution has successfully improved the gait recognition performance and outperformed several state-of-the-art gait recognition algorithms.

  8. Comparison of the Classifier Oriented Gait Score and the Gait Profile Score based on imitated gait impairments.

    Science.gov (United States)

    Christian, Josef; Kröll, Josef; Schwameder, Hermann

    2017-06-01

    Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Wearable System for Gait Training in Subjects with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Filippo Casamassima

    2014-03-01

    Full Text Available In this paper, a system for gait training and rehabilitation for Parkinson’s disease (PD patients in a daily life setting is presented. It is based on a wearable architecture aimed at the provision of real-time auditory feedback. Recent studies have, in fact, shown that PD patients can receive benefit from a motor therapy based on auditory cueing and feedback, as happens in traditional rehabilitation contexts with verbal instructions given by clinical operators. To this extent, a system based on a wireless body sensor network and a smartphone has been developed. The system enables real-time extraction of gait spatio-temporal features and their comparison with a patient’s reference walking parameters captured in the lab under clinical operator supervision. Feedback is returned to the user in form of vocal messages, encouraging the user to keep her/his walking behavior or to correct it. This paper describes the overall concept, the proposed usage scenario and the parameters estimated for the gait analysis. It also presents, in detail, the hardware-software architecture of the system and the evaluation of system reliability by testing it on a few subjects.

  10. GAIT ANALYSIS IN GIANT ANTEATER (MYRMECOPHAGA TRIDACTYLA) WITH THE USE OF A PRESSURE-SENSITIVE WALKWAY.

    Science.gov (United States)

    de Faria, Luís Guilherme; Rahal, Sheila Canevese; dos Reis Mesquita, Luciane; Agostinho, Felipe Stefan; Kano, Washington Takashi; Teixeira, Carlos Roberto; Monteiro, Frederico Ozanan Barros

    2015-06-01

    The aim of this study was to evaluate the kinetic and temporospatial parameters of clinically healthy juvenile giant anteaters (Myrmecophaga tridactyla) by using a pressure-sensing walkway. Three free-ranging clinically healthy giant anteaters (M. tridactyla), two males and one female, aged 5-7 mo, were used. There was no statistically significant difference between the right and left sides for the kinetic and temporospatial parameters for both forelimbs and hind limbs. Although the gait velocity was similar for all giant anteaters, the stride frequency was higher in the smaller anteaters. The difference in stride frequency is associated with body size, which also influenced other temporospatial parameters. The percentage of body distribution was higher on the forelimbs than the hind limbs. The contact surface and trajectory of the force of the forepaws differed from the hind paws. In conclusion, the anteaters have gait peculiarities associated with the anatomical differences between forelimbs and hind limbs.

  11. Kinematic gait analyses in healthy Golden Retrievers

    OpenAIRE

    Silva, Gabriela C.A.; Cardoso, Mariana Trés; Gaiad, Thais P.; Brolio, Marina P.; Oliveira, Vanessa C.; Assis Neto, Antonio; Martins, Daniele S.; Ambrósio, Carlos E.

    2014-01-01

    Kinematic analysis relates to the relative movement between rigid bodies and finds application in gait analysis and other body movements, interpretation of their data when there is change, determines the choice of treatment to be instituted. The objective of this study was to standardize the march of Dog Golden Retriever Healthy to assist in the diagnosis and treatment of musculoskeletal disorders. We used a kinematic analysis system to analyse the gait of seven dogs Golden Retriever, female,...

  12. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Booth, Adam T C; Buizer, Annemieke I; Meyns, Pieter; Oude Lansink, Irene L B; Steenbrink, Frans; van der Krogt, Marjolein M

    2018-03-07

    The aim of this systematic review was to investigate the effects of functional gait training on walking ability in children and young adults with cerebral palsy (CP). The review was conducted using standardized methodology, searching four electronic databases (PubMed, Embase, CINAHL, Web of Science) for relevant literature published between January 1980 and January 2017. Included studies involved training with a focus on actively practising the task of walking as an intervention while reporting outcome measures relating to walking ability. Forty-one studies were identified, with 11 randomized controlled trials included. There is strong evidence that functional gait training results in clinically important benefits for children and young adults with CP, with a therapeutic goal of improved walking speed. Functional gait training was found to have a moderate positive effect on walking speed over standard physical therapy (effect size 0.79, p=0.04). Further, there is weaker yet relatively consistent evidence that functional gait training can also benefit walking endurance and gait-related gross motor function. There is promising evidence that functional gait training is a safe, feasible, and effective intervention to target improved walking ability in children and young adults with CP. The addition of virtual reality and biofeedback can increase patient engagement and magnify effects. Functional gait training is a safe, feasible, and effective intervention to improve walking ability. Functional gait training shows larger positive effects on walking speed than standard physical therapy. Walking endurance and gait-related gross motor function can also benefit from functional gait training. Addition of virtual reality and biofeedback shows promise to increase engagement and improve outcomes. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  13. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    Science.gov (United States)

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  14. Office management of gait disorders in the elderly.

    Science.gov (United States)

    Lam, Robert

    2011-07-01

    To provide family physicians with an approach to office management of gait disorders in the elderly. Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific "cautious" gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders. Family physicians will find it helpful to classify gait

  15. Comparative gait analysis between children with autism and age-matched controls: analysis with temporal-spatial and foot pressure variables

    OpenAIRE

    Lim, Bee-Oh; O?Sullivan, David; Choi, Bum-Gwon; Kim, Mi-Young

    2016-01-01

    [Purpose] The purpose of this study was to investigate the gait pattern of children with autism by using a gait analysis system. [Subjects] Thirty children were selected for this study: 15 with autism (age, 11.2 ? 2.8?years; weight, 48.1 ? 14.1?kg; height, 1.51 ? 0.11 m) and 15 healthy age-matched controls (age, 11.0 ? 2.9?years; weight, 43.6 ? 10?kg; height, 1.51 ? 0.011 m). [Methods] All participants walked three times on the GAITRite? system while their plantar pressure was being recorded....

  16. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  17. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    Science.gov (United States)

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  18. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor

    Directory of Open Access Journals (Sweden)

    Bhargava Teja Nukala

    2016-11-01

    Full Text Available Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI tests while wearing the custom wireless gait analysis sensor (WGAS. The small WGAS includes a tri-axial accelerometer integrated circuit (IC, two gyroscopes ICs and a Texas Instruments (TI MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN, support vector machine (SVM, k-nearest neighbors (KNN and binary decision trees (BDT, based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected.

  19. Gait and Cognition: A Complementary Approach to Understanding Brain Function and the Risk of Falling

    Science.gov (United States)

    Montero-Odasso, Manuel; Verghese, Joe; Beauchet, Olivier; Hausdorff, Jeffrey M.

    2012-01-01

    Until recently, clinicians and researchers have performed gait assessments and cognitive assessments separately when evaluating older adults. Increasing evidence from clinical practice, epidemiological studies, and clinical trials shows that gait and cognition are inter-related in older adults. Quantifiable alterations in gait among older adults are associated with falls, dementia, and disability. At the same time, emerging evidence indicates that early disturbances in cognitive processes such as attention, executive function, and working memory are associated with slower gait and gait instability during single and dual-task testing, and that these cognitive disturbances assist in the prediction of future mobility loss, falls, and progression to dementia. This paper reviews the importance of the gait-cognition inter-relationship in aging and presents evidence that gait assessments can provide a window into the understanding of cognitive function and dysfunctions, and fall risk in older people in clinical practice. To this end, the benefits of dual-task gait assessments (e.g., walking while performing an attention-demanding task) as a marker of fall risk are summarized. Further, we also present a potential complementary approach for reducing the risk of falls by improving certain aspects of cognition through both non-pharmacological and pharmacological treatments. Untangling the relationship between early gait disturbances and early cognitive changes may be helpful for identifying older adults at higher risk of experiencing mobility decline, falls and the progression to dementia. PMID:23110433

  20. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  1. Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Camille J. Shanahan

    2018-02-01

    Full Text Available Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS. Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways and wearable (pressure and inertial sensors biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.

  2. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  3. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.

    Science.gov (United States)

    Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B

    2001-01-01

    Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.

  4. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    Science.gov (United States)

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The interest of gait markers in the identification of subgroups among fibromyalgia patients.

    Science.gov (United States)

    Auvinet, Bernard; Chaleil, Denis; Cabane, Jean; Dumolard, Anne; Hatron, Pierre; Juvin, Robert; Lanteri-Minet, Michel; Mainguy, Yves; Negre-Pages, Laurence; Pillard, Fabien; Riviere, Daniel; Maugars, Yves-Michel

    2011-11-11

    Fibromyalgia (FM) is a heterogeneous syndrome and its classification into subgroups calls for broad-based discussion. FM subgrouping, which aims to adapt treatment according to different subgroups, relies in part, on psychological and cognitive dysfunctions. Since motor control of gait is closely related to cognitive function, we hypothesized that gait markers could be of interest in the identification of FM patients' subgroups. This controlled study aimed at characterizing gait disorders in FM, and subgrouping FM patients according to gait markers such as stride frequency (SF), stride regularity (SR), and cranio-caudal power (CCP) which measures kinesia. A multicentre, observational open trial enrolled patients with primary FM (44.1 ± 8.1 y), and matched controls (44.1 ± 7.3 y). Outcome measurements and gait analyses were available for 52 pairs. A 3-step statistical analysis was carried out. A preliminary single blind analysis using k-means cluster was performed as an initial validation of gait markers. Then in order to quantify FM patients according to psychometric and gait variables an open descriptive analysis comparing patients and controls were made, and correlations between gait variables and main outcomes were calculated. Finally using cluster analysis, we described subgroups for each gait variable and looked for significant differences in self-reported assessments. SF was the most discriminating gait variable (73% of patients and controls). SF, SR, and CCP were different between patients and controls. There was a non-significant association between SF, FIQ and physical components from Short-Form 36 (p = 0.06). SR was correlated to FIQ (p = 0.01) and catastrophizing (p = 0.05) while CCP was correlated to pain (p = 0.01). The SF cluster identified 3 subgroups with a particular one characterized by normal SF, low pain, high activity and hyperkinesia. The SR cluster identified 2 distinct subgroups: the one with a reduced SR was distinguished by high FIQ

  6. The interest of gait markers in the identification of subgroups among fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Auvinet Bernard

    2011-11-01

    Full Text Available Abstract Background Fibromyalgia (FM is a heterogeneous syndrome and its classification into subgroups calls for broad-based discussion. FM subgrouping, which aims to adapt treatment according to different subgroups, relies in part, on psychological and cognitive dysfunctions. Since motor control of gait is closely related to cognitive function, we hypothesized that gait markers could be of interest in the identification of FM patients' subgroups. This controlled study aimed at characterizing gait disorders in FM, and subgrouping FM patients according to gait markers such as stride frequency (SF, stride regularity (SR, and cranio-caudal power (CCP which measures kinesia. Methods A multicentre, observational open trial enrolled patients with primary FM (44.1 ± 8.1 y, and matched controls (44.1 ± 7.3 y. Outcome measurements and gait analyses were available for 52 pairs. A 3-step statistical analysis was carried out. A preliminary single blind analysis using k-means cluster was performed as an initial validation of gait markers. Then in order to quantify FM patients according to psychometric and gait variables an open descriptive analysis comparing patients and controls were made, and correlations between gait variables and main outcomes were calculated. Finally using cluster analysis, we described subgroups for each gait variable and looked for significant differences in self-reported assessments. Results SF was the most discriminating gait variable (73% of patients and controls. SF, SR, and CCP were different between patients and controls. There was a non-significant association between SF, FIQ and physical components from Short-Form 36 (p = 0.06. SR was correlated to FIQ (p = 0.01 and catastrophizing (p = 0.05 while CCP was correlated to pain (p = 0.01. The SF cluster identified 3 subgroups with a particular one characterized by normal SF, low pain, high activity and hyperkinesia. The SR cluster identified 2 distinct subgroups: the one with a

  7. The interest of gait markers in the identification of subgroups among fibromyalgia patients

    Science.gov (United States)

    2011-01-01

    Background Fibromyalgia (FM) is a heterogeneous syndrome and its classification into subgroups calls for broad-based discussion. FM subgrouping, which aims to adapt treatment according to different subgroups, relies in part, on psychological and cognitive dysfunctions. Since motor control of gait is closely related to cognitive function, we hypothesized that gait markers could be of interest in the identification of FM patients' subgroups. This controlled study aimed at characterizing gait disorders in FM, and subgrouping FM patients according to gait markers such as stride frequency (SF), stride regularity (SR), and cranio-caudal power (CCP) which measures kinesia. Methods A multicentre, observational open trial enrolled patients with primary FM (44.1 ± 8.1 y), and matched controls (44.1 ± 7.3 y). Outcome measurements and gait analyses were available for 52 pairs. A 3-step statistical analysis was carried out. A preliminary single blind analysis using k-means cluster was performed as an initial validation of gait markers. Then in order to quantify FM patients according to psychometric and gait variables an open descriptive analysis comparing patients and controls were made, and correlations between gait variables and main outcomes were calculated. Finally using cluster analysis, we described subgroups for each gait variable and looked for significant differences in self-reported assessments. Results SF was the most discriminating gait variable (73% of patients and controls). SF, SR, and CCP were different between patients and controls. There was a non-significant association between SF, FIQ and physical components from Short-Form 36 (p = 0.06). SR was correlated to FIQ (p = 0.01) and catastrophizing (p = 0.05) while CCP was correlated to pain (p = 0.01). The SF cluster identified 3 subgroups with a particular one characterized by normal SF, low pain, high activity and hyperkinesia. The SR cluster identified 2 distinct subgroups: the one with a reduced SR was

  8. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  9. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    Science.gov (United States)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  10. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.

  11. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Lucas; Ribbers, Gerard M

    2011-01-01

    OBJECTIVE: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. DESIGN: Clinical experimental

  12. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M.; Mulder, Mascha C. Borgerhoff; Horemans, Herwin L.; van der Woude, Luc H.; Ribbers, Gerard M.

    2011-01-01

    Objective: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Design: Clinical experimental

  13. Plantar Pressure During Gait in Pregnant Women.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipel, Véronique

    2016-11-01

    During pregnancy, physical and hormonal modifications occur. Morphologic alterations of the feet are found. These observations can induce alterations in plantar pressure. This study sought to investigate plantar pressures during gait in the last 4 months of pregnancy and in the postpartum period. A comparison with nulliparous women was conducted to investigate plantar pressure modifications during pregnancy. Fifty-eight women in the last 4 months of pregnancy, nine postpartum women, and 23 healthy nonpregnant women (control group) performed gait trials on an electronic walkway at preferred speeds. The results for the three groups were compared using analysis of variance. During pregnancy, peak pressure and contact area decreased for the forefoot and rearfoot. These parameters increased significantly for the midfoot. The gait strategy seemed to be lateralization of gait with an increased contact area of the lateral midfoot and both reduced pressure and a later peak time on the medial forefoot. In the postpartum group, footprint parameters were modified compared with the pregnant group, indicating a trend toward partial return to control values, although differences persisted between the postpartum and control groups. Pregnant women had altered plantar pressures during gait. These findings could define a specific pattern of gait footprints in late pregnancy because plantar pressures had characteristics that could maintain a stable and safe gait.

  14. Improving Sensitivity to Detect Mild Cognitive Impairment: Cognitive Load Dual-Task Gait Speed Assessment.

    Science.gov (United States)

    MacAulay, Rebecca K; Wagner, Mark T; Szeles, Dana; Milano, Nicholas J

    2017-07-01

    Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, pscognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).

  15. Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio

    2010-01-01

    The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…

  16. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  17. Gait Characteristics in Adolescents With Multiple Sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior; Menascu, Shay

    2017-03-01

    Multiple sclerosis is a progressive autoimmune disease of the central nervous system. A presentation of multiple sclerosis before age18 years has traditionally been thought to be rare. However, during the past decade, more cases have been reported. We examined gait characteristics in 24 adolescents with multiple sclerosis (12 girls, 12 boys). Mean disease duration was 20.4 (S.D. = 24.9) months and mean age was 15.5 (S.D. = 1.1) years. The mean expanded disability status scale score was 1.7 (S.D. = 0.7) indicating minimal disability. Outcomes were compared with gait and the gait variability index value of healthy age-matched adolescents. Adolescents with multiple sclerosis walked slower with a wider base of support compared with age-matched healthy control subjects. Moreover, the gait variability index was lower in the multiple sclerosis group compared with the values in the healthy adolescents: 85.4 (S.D. = 8.1) versus 96.5 (S.D. = 7.4). We present gait parameters of adolescents with multiple sclerosis. From a clinical standpoint, our data could improve management of walking dysfunction in this relatively young population. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    Science.gov (United States)

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  19. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    Science.gov (United States)

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  20. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    Science.gov (United States)

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  1. Analysis of Gait Pattern to Recognize the Human Activities

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    2014-09-01

    Full Text Available Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer interaction and video retrieval. The challenges are due to variations in motion, recording settings and gait differences. Here we propose an approach to recognize the human activities through gait. Activity recognition through Gait is the process of identifying an activity by the manner in which they walk. The identification of human activities in a video, such as a person is walking, running, jumping, jogging etc are important activities in video surveillance. We contribute the use of Model based approach for activity recognition with the help of movement of legs only. Experimental results suggest that our method are able to recognize the human activities with a good accuracy rate and robust to shadows present in the videos.

  2. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gema Chamorro-Moriana

    2018-01-01

    Full Text Available This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%, orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  3. Gait analysis and functional outcome in patients after Lisfranc injury treatment.

    Science.gov (United States)

    van Hoeve, S; Stollenwerck, G; Willems, P; Witlox, M A; Meijer, K; Poeze, M

    2017-07-18

    Lisfranc injuries involve any bony or ligamentous disruption of the tarsometatarsal joint. Outcome results after treatment are mainly evaluated using patient-reported outcome measures (PROM), physical examination and radiographic findings. Less is known about the kinematics during gait. Nineteen patients (19 feet) treated for Lisfranc injury were recruited. Patients with conservative treatment and surgical treatment consisting of open reduction and internal fixation (ORIF) or primary arthrodesis were included. PROM, radiographic findings and gait analysis using the Oxford Foot Model (OFM) were analysed. Results were compared with twenty-one healthy subjects (31 feet). Multivariable logistic regression was used to determine factors influencing outcome. Patients treated for Lisfranc injury had a significantly lower walking speed than healthy subjects (Ppush-off phase (ppush-off phase (β=0.707, p=0.001), stability (β=0.423, p=0.028) and BMI (β=-0.727 p=push-off phase and fracture stability. Copyright © 2017. Published by Elsevier Ltd.

  4. Gait disorders in patients with fibromyalgia.

    Science.gov (United States)

    Auvinet, Bernard; Bileckot, Richard; Alix, Anne-Sophie; Chaleil, Denis; Barrey, Eric

    2006-10-01

    The objective of this study was to compare gait in patients with fibromyalgia and in matched controls. Measurements must be obtained in patients with fibromyalgia, as the evaluation scales for this disorder are semi-quantitative. We used a patented gait analysis system (Locometrix Centaure Metrix, France) developed by the French National Institute for Agricultural Research. Relaxed walking was evaluated in 14 women (mean age 50+/-5 years; mean height 162+/-5 cm; and mean body weight 68+/-13 kg) meeting American College of Rheumatology criteria for fibromyalgia and in 14 controls matched on sex, age, height, and body weight. Gait during stable walking was severely altered in the patients. Walking speed was significantly diminished (Pfibromyalgia.

  5. Kinematic and kinetic analysis of the knee joint before and after a PCL retaining total knee replacement during gait and single step ascent.

    Science.gov (United States)

    Apostolopoulos, Alexandros; Lallos, Stergios; Mastrokalos, Dimitrios; Michos, Ioannis; Darras, Nikolaos; Tzomaki, Magda; Efstathopoulos, Nikolaos

    2011-01-01

    The objective of this study was to capture and analyze the kinetics and kinematics and determine the functional performance of the osteoarthritic knee after a posterior cruciate ligament (PCL) retaining total knee arthroplasty. Kinematic and kinetic gait analysis of level walking was performed in 20 subjects (12 female and 8 male) with knee ostoarthritis. These patients were free of any neurological diseases that could affect their normal gait. Mean age was 69.6 ± 6.6 years; mean height was 157.6 cm ± 7.6 cm; and mean weight was 77.2 ± 12.1 kg. Full body gait analyses were performed using the BIOKIN 3D motion analysis system before and 9 months after total knee arthroplasty procedures. Single-step ascending kinetic analyses and plantar pressure distribution analyses were also performed for all subjects. International Knee Society Scores (IKSSs) were also assessed pre- and postoperatively. Significant increases were noted postoperatively in average cadence (preoperative mean = 99.26, postoperative mean = 110.5; p knee adduction moment were also reported postoperatively. All patients showed a significant improvement of knee kinetics and kinematics after a PCL retaining total knee arthroplasty. Significant differences were found in the cadence, step length, stride length, and walk velocity postoperatively. IKSSs also significantly improved. Further research is warranted to determine the clinical relevance of these findings.

  6. Gait and electromyographic analysis of patients recovering after limb-saving surgery

    NARCIS (Netherlands)

    De Visser, E; Mulder, T; Schreuder, HWB; Veth, RPH; Duysens, J

    2000-01-01

    Objective. Control of gait after limb-saving surgery. Design. Case series study. Background. At the moment little is known about adaptations in patients' gait after limb-saving surgery. Methods. Nineteen patients who underwent limb-saving surgery at least 1 yr earlier and 10 normal subjects were

  7. Continuous Gait Velocity Analysis Using Ambient Sensors in a Smart Home

    NARCIS (Netherlands)

    Nait Aicha, A.; Englebienne, G.; Kröse, B.; De Ruyter, B.; Kameas, A.; Chatzimisios, P.; Mavrommati, I.

    2015-01-01

    We present a method for measuring gait velocity using data from an existing ambient sensor network. Gait velocity is an important predictor of fall risk and functional health. In contrast to other approaches that use specific sensors or sensor configurations our method imposes no constraints on the

  8. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes.

    Science.gov (United States)

    Austin, Daniel; Hayes, Tamara L; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given.

  9. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes

    NARCIS (Netherlands)

    Kosse, Nienke; Vuillerme, Nicolas; Hortobagyi, Tibor; Lamoth, Claude

    Introduction Normative data of how natural aging affects gait can serve as a frame of reference for changes in gait dynamics due to pathologies. Therefore, the present study aims (1) to identify gait variables sensitive to age-related changes in gait over the adult life span using the iPod and (2)

  10. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients.

    Science.gov (United States)

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-08-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.

  11. Effect of balneotherapy on temporospatial gait characteristics of patients with osteoarthritis of the knee.

    Science.gov (United States)

    Kiliçoğlu, Onder; Dönmez, Arif; Karagülle, Zeki; Erdoğan, Nergis; Akalan, Ekin; Temelli, Yener

    2010-04-01

    Effects of balneotherapy on gait properties of patients with osteoarthritis of the knee were investigated prospectively. A total of 30 patients with knee osteoarthritis received balneotherapy consisting of two daily thermomineral water baths for 2 weeks. Patients were evaluated using gait analysis and clinical scores, both within 2 weeks, before and after spa treatment. Patients were walking faster in their control analyses (0.81 +/- 0.21 to 0.89 +/- 0.19 m/s; P = 0.017), with a shorter mean stance time (63.0 +/- 3.3 to 61.8 +/- 2.5% stride; P = 0.007), an increased cadence (96 +/- 13.1 to 100 +/- 11.9 steps/min; P = 0.094) and stride length (996 +/- 174 to 1,058 +/- 142 mm; P = 0.017). Balneotherapy also resulted in a significant decrease in Lequesne knee osteoarthritis index (12.1 +/- 3.7 to 10.0 +/- 3.3 points; P = 0.003), VAS for pain (58 +/- 25 to 33 +/- 15; P = 0.0001), VAS for patients' (56 +/- 24 to 29 +/- 19; P Balneotherapy has positive effects on gait properties and clinical health quality parameters of patients with knee osteoarthritis in short-term evaluations.

  12. A flexible wearable sensor for knee flexion assessment during gait.

    Science.gov (United States)

    Papi, Enrica; Bo, Yen Nee; McGregor, Alison H

    2018-05-01

    Gait analysis plays an important role in the diagnosis and management of patients with movement disorders but it is usually performed within a laboratory. Recently interest has shifted towards the possibility of conducting gait assessments in everyday environments thus facilitating long-term monitoring. This is possible by using wearable technologies rather than laboratory based equipment. This study aims to validate a novel wearable sensor system's ability to measure peak knee sagittal angles during gait. The proposed system comprises a flexible conductive polymer unit interfaced with a wireless acquisition node attached over the knee on a pair of leggings. Sixteen healthy volunteers participated to two gait assessments on separate occasions. Data was simultaneously collected from the novel sensor and a gold standard 10 camera motion capture system. The relationship between sensor signal and reference knee flexion angles was defined for each subject to allow the transformation of sensor voltage outputs to angular measures (degrees). The knee peak flexion angle from the sensor and reference system were compared by means of root mean square error (RMSE), absolute error, Bland-Altman plots and intra-class correlation coefficients (ICCs) to assess test-retest reliability. Comparisons of knee peak flexion angles calculated from the sensor and gold standard yielded an absolute error of 0.35(±2.9°) and RMSE of 1.2(±0.4)°. Good agreement was found between the two systems with the majority of data lying within the limits of agreement. The sensor demonstrated high test-retest reliability (ICCs>0.8). These results show the ability of the sensor to monitor knee peak sagittal angles with small margins of error and in agreement with the gold standard system. The sensor has potential to be used in clinical settings as a discreet, unobtrusive wearable device allowing for long-term gait analysis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Characterization of gait in female patients with moderate to severe hallux valgus deformity.

    Science.gov (United States)

    Chopra, S; Moerenhout, K; Crevoisier, X

    2015-07-01

    Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-operative patient prognosis and rehabilitation. The study included 26 feet with moderate to severe hallux valgus deformity and 30 feet with no sign of hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR) and inertial sensors (Physilog) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon rank sum, Phallux valgus group compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to best describe the altered gait in hallux valgus deformity (r(2)=0.71) as well as showed good correlation with clinical scores. Our results, and nine listed parameters, could serve as benchmark for characterization of hallux valgus and objective evaluation of treatment efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women

    Directory of Open Access Journals (Sweden)

    Hsu Chun

    2010-05-01

    Full Text Available Abstract Background Improved usual gait speed predicts substantial reduction in mortality. A better understanding of the modifiable factors that are independently associated with improved gait speed would ensure that intervention strategies are developed based on a valid theoretical framework. Thus, we examined the independent association of change in executive functions and change in falls-related self-efficacy with improved gait speed among community-dwelling senior women. Methods A secondary analysis of the 135 senior women aged 65 to 75 years old who completed a 12-month randomized controlled trial of resistance training. Usual gait speed was assessed using a 4-meter walk. Three executive processes were assessed by standard neuropsychological tests: 1 set shifting; 2 working memory; and 3 selective attention and response inhibition. A linear regression model was constructed to determine the independent association of change in executive functions and falls-related self-efficacy with change in gait speed. Results Improved selective attention and conflict resolution, and falls-related self-efficacy, were independently associated with improved gait speed after accounting for age, global cognition, baseline gait speed, and change in quadriceps strength. The total variance explained was 24%. Conclusions Interventions that target executive functions and falls-related self-efficacy, in addition to physical functions, to improve gait speed may be more efficacious than those that do not. Trial Registration ClinicalTrials.gov Identifier: NCT00426881

  15. Effect of arm swing strategy on local dynamic stability of human gait.

    Science.gov (United States)

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Intensive gait training in toddlers with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Anna Herskind

    2016-07-01

    Full Text Available Background: Reduced muscle growth may be involved in the development of contractures in children with cerebral palsy (CP. Here, we report data from a pilot study of intensive gait training in CP toddlers. Methods: Five children with CP aged 8-30 months performed activity-based gait training for one hour/day, five days/week for three consecutive months. Included children were diagnosed with spastic CP, had a Gross Motor Function Classification System (GMFCS score of I–II, and were not epileptic. All children wore pedometers during training. Before and after the training period, kinematic and qualitative gait analysis, clinical and objective evaluation of spasticity, Gross Motor Function Measure-66 (GMFM-66, and ultrasound of the affected medial gastrocnemius (MG muscle were performed. Two children were also tested before and after three months of receiving only standard care (SC. Results: On average 1410 steps/session were logged during 63 days of training. More steps were achieved at home than at a central facility. During training, MG muscle volume increased significantly, while it decreased for SC children. Gait improved qualitatively in all children, and GMFM-66 score improved in four of the five children. Similar improvements were seen among the SC children. Two children had pathologically increased muscle stiffness prior to training, which was reduced during training. Reflex stiffness was unchanged in all five children. Conclusions: This pilot study suggests that intensive gait training may increase muscle volume, improve walking skills and reduce passive muscle stiffness in toddlers with CP.

  17. Kinematic Analysis of Gait in the Second and Third Trimesters of Pregnancy

    Directory of Open Access Journals (Sweden)

    Marco Branco

    2013-01-01

    Full Text Available The kinematic analysis of gait during pregnancy provides more information about the anatomical changes and contributes to exercise and rehabilitation prescription. The purposes were to quantify the lower limb kinematics of gait and to compare it between the second and third trimesters of pregnancy and with a control group. A three-dimensional analysis was performed in twenty-two pregnant women and twelve nonpregnant. Repeated Measures and Manova tests were performed for comparisons between trimesters and between pregnant and controls. The walking speed, stride width, right-/left-step time, cycle time and time of support, and flight phases remain unchanged between trimesters and between pregnant and controls. Stride and right-/left-step lengths decreased between trimesters. Double limb support time increased between trimesters, and it increased when compared with controls. Joint kinematics showed a significant decrease of right-hip extension and adduction during stance phase between trimesters and when compared with controls. Also, an increase in left-knee flexion and a decrease in right-ankle plantarflexion were found between trimesters. The results suggested that pregnant women need to maintain greater stability of body and to become more efficient in locomotion. Further data from the beginning of pregnancy anthropometric data may contribute to the analysis.

  18. Influence of different degrees of bilateral emulated contractures at the triceps surae on gait kinematics: The difference between gastrocnemius and soleus.

    Science.gov (United States)

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2017-10-01

    Ankle plantarflexion contracture results from a permanent shortening of the muscle-tendon complex. It often leads to gait alterations. The objective of this study was to compare the kinematic adaptations of different degrees of contractures and between isolated bilateral gastrocnemius and soleus emulated contractures using an exoskeleton. Eight combinations of contractures were emulated bilaterally on 10 asymptomatic participants using an exoskeleton that was able to emulate different degrees of contracture of gastrocnemius (biarticular muscle) and soleus (monoarticular muscle), corresponding at 0°, 10°, 20°, and 30° ankle plantarflexion contracture (knee-flexed and knee-extended). Range of motion was limited by ropes attached for soleus on heel and below the knee and for gastrocnemius on heel and above the knee. A gait analysis session was performed to evaluate the effect of these different emulated contractures on the Gait Profile Score, walking speed and gait kinematics. Gastrocnemius and soleus contractures influence gait kinematics, with an increase of the Gait Profile Score. Significant differences were found in the kinematics of the ankles, knees and hips. Contractures of soleus cause a more important decrease in the range of motion at the ankle than the same degree of gastrocnemius contractures. Gastrocnemius contractures cause greater knee flexion (during the stance phase) and hip flexion (during all the gait cycle) than the same level of soleus contractures. These results can support the interpretation of the Clinical Gait Analysis data by providing a better understanding of the effect of isolate contracture of soleus and gastrocnemius on gait kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of children's shoes on gait: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Burns Joshua

    2011-01-01

    Full Text Available Abstract Background The effect of footwear on the gait of children is poorly understood. This systematic review synthesises the evidence of the biomechanical effects of shoes on children during walking and running. Methods Study inclusion criteria were: barefoot and shod conditions; healthy children aged ≤ 16 years; sample size of n > 1. Novelty footwear was excluded. Studies were located by online database-searching, hand-searching and contact with experts. Two authors selected studies and assessed study methodology using the Quality Index. Meta-analysis of continuous variables for homogeneous studies was undertaken using the inverse variance approach. Significance level was set at P 2. Where I2 > 25%, a random-effects model analysis was used and where I2 Results Eleven studies were included. Sample size ranged from 4-898. Median Quality Index was 20/32 (range 11-27. Five studies randomised shoe order, six studies standardised footwear. Shod walking increased: velocity, step length, step time, base of support, double-support time, stance time, time to toe-off, sagittal tibia-rearfoot range of motion (ROM, sagittal tibia-foot ROM, ankle max-plantarflexion, Ankle ROM, foot lift to max-plantarflexion, 'subtalar' rotation ROM, knee sagittal ROM and tibialis anterior activity. Shod walking decreased: cadence, single-support time, ankle max-dorsiflexion, ankle at foot-lift, hallux ROM, arch length change, foot torsion, forefoot supination, forefoot width and midfoot ROM in all planes. Shod running decreased: long axis maximum tibial-acceleration, shock-wave transmission as a ratio of maximum tibial-acceleration, ankle plantarflexion at foot strike, knee angular velocity and tibial swing velocity. No variables increased during shod running. Conclusions Shoes affect the gait of children. With shoes, children walk faster by taking longer steps with greater ankle and knee motion and increased tibialis anterior activity. Shoes reduce foot motion and

  20. Gait Recognition Using Wearable Motion Recording Sensors

    Directory of Open Access Journals (Sweden)

    Davrondzhon Gafurov

    2009-01-01

    Full Text Available This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  1. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.

    Science.gov (United States)

    Tanabe, Shigeo; Koyama, Soichiro; Saitoh, Eiichi; Hirano, Satoshi; Yatsuya, Kanan; Tsunoda, Tetsuya; Katoh, Masaki; Gotoh, Takeshi; Furumoto, Ayako

    2017-01-01

    Patients with tetraplegia can achieve independent gait with lateral-type powered exoskeletons; it is unclear whether medial-type powered exoskeletons allow for this. To investigate gait training with a medial-type powered exoskeleton wearable power-assist locomotor (WPAL) in an individual with incomplete cervical (C5) and complete thoracic (T12) spinal cord injury (SCI). The 60-session program was investigated retrospectively using medical records. Upon completion, gait performance was examined using three-dimensional motion analyses and surface electromyography (EMG) of the upper limbs. The subject achieved independent gait with WPAL and a walker in 12 sessions. He continuously extended his right elbow; his left elbow periodically flexed/extended. His pelvic inclination was larger than the trunk inclination during single-leg stance. EMG activity was increased in the left deltoid muscles during ipsilateral foot-contact. The right anterior and medial deltoid muscle EMG activity increased just after foot-off for each leg, as did the right biceps activity. Continuous activity was observed in the left triceps throughout the gait cycle; activity was unclear in the right triceps. These results suggest the importance of upper limb residual motor function, and may be useful in extending the range of clinical applications for robotic gait rehabilitation in patients with SCI.

  2. Functional influence of botulinum neurotoxin type A treatment (Xeomin® of multifocal upper and lower limb spasticity on chronic hemiparetic gait

    Directory of Open Access Journals (Sweden)

    Maurizio Falso

    2012-05-01

    Full Text Available This report describes the modification of hemiplegic shoulder pain and walking velocity through injections of Xeomin®, a new botulinum neurotoxin type A formulation, in a 67-year-old woman with chronic residual left hemiparesis and hemiparetic gait attributable to stroke. Clinical evaluation included upper and lower limb spasticity, upper and lower limb pain, trunk control, upper and lower limb motricity index, visual gait analysis, and gait velocity. Assessments were performed before, 1 week after, and 1 month after treatment. Improvement was observed in all clinical parameters assessed. Amelioration of spasticity of the upper and lower limbs and shoulder pain was observed after 1 month. Trunk postural attitude and paraxial muscle recruitment recovered. No adverse events were observed and the patient shows significant improvement of functional impairment derived from chronic spasticity after treatment with Xeomin®. We also provide a simple and useful protocol for clinical evaluation of the treatment.

  3. Spatial-temporal parameters of gait in women with fibromyalgia.

    Science.gov (United States)

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  4. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    Science.gov (United States)

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  5. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review.

    Science.gov (United States)

    Khamis, Sam; Carmeli, Eli

    2017-09-01

    Controversy still exists as to the clinical significance of leg length discrepancy (LLD) in spite of the fact that further evidence has been emerging regarding the relationship between several clinical conditions and LLD. The objectives of our study were to review the available research with regard to LLD as a cause of clinically significant gait deviations, to determine if there is a relationship between the magnitude of LLD and the presence of gait deviations and to identify the most common gait deviations associated with LLD. In line with the PRISMA guidelines, a literature search was carried out throughout the Medline, CINAHL and EMBASE databases. Twelve articles met the predetermined inclusion criteria and were included in the review. Quality assessment using the Methodological Index for Non-Randomized Studies (MINORS) scale was completed for all included studies. Two main methodologies were found in 4 studies evaluating gait asymmetry in patients or healthy participants with anatomic LLD and 8 studies evaluating gait deviations while simulating LLD by employing artificial lifts of 1-5cm on healthy subjects. A significant relationship was found between anatomic LLD and gait deviation. Evidence suggests that gait deviations may occur with discrepancies of >1cm, with greater impact seen as the discrepancy increases. Compensatory strategies were found to occur in both the shorter and longer limb, throughout the lower limb. As the discrepancy increases, more compensatory strategies occur. Sagittal plane deviations seem to be the most effective deviations, although, frontal plane compensations also occur in the pelvis, hip and foot. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors

    International Nuclear Information System (INIS)

    Palermo, E; Patanè, F; Cappa, P; Rossi, S

    2014-01-01

    Magnetic inertial measurement unit systems (MIMU) offer the potential to perform joint kinematics evaluation as an alternative to optoelectronic systems (OS). Several studies have reported the effect of indoor magnetic field disturbances on the MIMU's heading output, even though the overall effect on the evaluation of lower limb joint kinematics is not yet fully explored. The aim of the study is to assess the influence of indoor magnetic field distortion on gait analysis trials conducted with a commercial MIMU system. A healthy adult performed gait analysis sessions both indoors and outdoors. Data collected indoors were post-processed with and without a heading correction methodology performed with OS at the start of the gait trial. The performance of the MIMU system is characterized in terms of indices, based on the mean value of lower limb joint angles and the associated ROM, quantifying the system repeatability. We find that the effects of magnetic field distortion, such as the one we experienced in our lab, were limited to the transverse plane of each joint and to the frontal plane of the ankle. Sagittal plane values, instead, showed sufficient repeatability moving from outdoors to indoors. Our findings provide indications to clinicians on MIMU performance in the measurement of lower limb kinematics. (paper)

  7. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  8. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of Robot Assisted Gait Training in Progressive Supranuclear Palsy (PSP: a preliminary report.

    Directory of Open Access Journals (Sweden)

    Patrizio eSale

    2014-04-01

    Full Text Available Background and Purpose: Progressive supranuclear palsy (PSP is a rare neurodegenerative disease clinically characterized by prominent axial extrapyramidal motor symptoms with frequent falls. Over the last years the introduction of robotic technologies to recover lower limb function has been greatly employed in the rehabilitative practice. This observational trial is aimed at investigating the feasibility, the effectiveness and the efficacy of end-effector robot training in people with PSP.Method: Pilot observational trial.Participants: Five cognitively intact participants with PSP and gait disorders.Interventions: Patients were submitted to a rehabilitative program of robot-assisted walking sessions for 45 minutes, 5 times a week for 4 weeks.Main outcome measures: The spatiotemporal parameters at the beginning (T0 and at the end of treatment (T1 were recorded by a gait analysis laboratory.Results: Robot training was feasible, acceptable and safe and all participants completed the prescribed training sessions. All patients showed an improvement in the gait index (Mean velocity, Cadence, Step length and Step width (T0 versus T1.Conclusions: Robot training is a feasible and safe form of rehabilitation for cognitively intact people with PSP. This innovative approach can contribute to improve lower limb motor recovery. The focus on gait recovery is another quality that makes this research important for clinical practice. On the whole, the simplicity of treatment, the lack of side effects and the positive results in the patients support the recommendation to extend the trials of this treatment. Further investigation regarding the effectiveness of robot training in time is necessary.Trial registration: ClinicalTrials.gov NCT01668407.

  10. Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity

    NARCIS (Netherlands)

    Beijersbergen, Chantal M. I.; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobagyi, Tibor

    Introduction: Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower

  11. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study.

    Science.gov (United States)

    Werner, C; Von Frankenberg, S; Treig, T; Konrad, M; Hesse, S

    2002-12-01

    The purpose of this study was to compare treadmill and electromechanical gait trainer therapy in subacute, nonambulatory stroke survivors. The gait trainer was designed to provide nonambulatory subjects the repetitive practice of a gait-like movement without overexerting therapists. This was a randomized, controlled study with a crossover design following an A-B-A versus a B-A-B pattern. A consisted of 2 weeks of gait trainer therapy, and B consisted of 2 weeks of treadmill therapy. Thirty nonambulatory hemiparetic patients, 4 to 12 weeks after stroke, were randomly assigned to 1 of the 2 groups receiving locomotor therapy every workday for 15 to 20 minutes for 6 weeks. Weekly gait ability (functional ambulation category [FAC]), gait velocity, and the required physical assistance during both kinds of locomotor therapy were the primary outcome measures, and other motor functions (Rivermead motor assessment score) and ankle spasticity (modified Ashworth score) were the secondary outcome measures. Follow-up occurred 6 months later. The groups did not differ at study onset with respect to the clinical characteristics and effector variables. During treatment, the FAC, gait velocity, and Rivermead scores improved in both groups, and ankle spasticity did not change. Median FAC level was 4 (3 to 4) in group A compared with 3 (2 to 3) in group B at the end of treatment (P=0.018), but the difference at 6-month follow up was not significant. The therapeutic effort was less on the gait trainer, with 1 instead of 2 therapists assisting the patient at study onset. All but seven patients preferred the gait trainer. The newly developed gait trainer was at least as effective as treadmill therapy with partial body weight support while requiring less input from the therapist. Further studies are warranted.

  12. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Science.gov (United States)

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  13. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.

    Science.gov (United States)

    Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano

    2017-10-01

    The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Is gait variability reliable in older adults and Parkinson's disease? Towards an optimal testing protocol.

    Science.gov (United States)

    Galna, Brook; Lord, Sue; Rochester, Lynn

    2013-04-01

    Despite the widespread use of gait variability in research and clinical studies, testing protocols designed to optimise its reliability have not been established. This study evaluates the impact of testing protocol and pathology on the reliability of gait variability. To (i) estimate the reliability of gait variability during continuous and intermittent walking protocols in older adults and people with Parkinson's disease (PD), (ii) determine optimal number of steps for acceptable levels of reliability of gait variability and (iii) provide sample size estimates for use in clinical trials. Gait variability was measured twice, one week apart, in 27 older adults and 25 PD participants. Participants walked at their preferred pace during: (i) a continuous 2 min walk and (ii) 3 intermittent walks over a 12 m walkway. Gait variability was calculated as the within-person standard deviation for step velocity, length and width, and step, stance and swing duration. Reliability of gait variability ranged from poor to excellent (intra class correlations .041-.860; relative limits of agreement 34-89%). Gait variability was more reliable during continuous walks. Control and PD participants demonstrated similar reliability. Increasing the number of steps improved reliability, with most improvement seen across the first 30 steps. In this study, we identified testing protocols that improve the reliability of measuring gait variability. We recommend using a continuous walking protocol and to collect no fewer than 30 steps. Early PD does not appear to impact negatively on the reliability of gait variability. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M

    2016-03-01

    To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; pGait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model.

    Science.gov (United States)

    Żuk, Magdalena; Pezowicz, Celina

    2015-01-01

    Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.

  17. Gait and its assessment in psychiatry

    OpenAIRE

    Sanders, Richard D.; Gillig, Paulette Marie

    2010-01-01

    Gait reflects all levels of nervous system function. In psychiatry, gait disturbances reflecting cortical and subcortical dysfunction are often seen. Observing spontaneous gait, sometimes augmented by a few brief tests, can be highly informative. The authors briefly review the neuroanatomy of gait, review gait abnormalities seen in psychiatric and neurologic disorders, and describe the assessment of gait.

  18. Automated health alerts from Kinect-based in-home gait measurements.

    Science.gov (United States)

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  19. Virtual sensory feedback for gait improvement in neurological patients

    Directory of Open Access Journals (Sweden)

    Yoram eBaram

    2013-10-01

    Full Text Available We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient’s own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinson’s patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  20. Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease.

    Science.gov (United States)

    Okuno, Ryuhei; Fujimoto, Satoshi; Akazawa, Jun; Yokoe, Masaru; Sakoda, Saburo; Akazawa, Kenzo

    2008-01-01

    Spatial temporal plantar pressure patterns measured with sheet-shaped pressure sensor were investigated to extract features of gait in Parkinson's disease. Both six subjects of Parkinson's disease (PD) and elderly fourteen normal control subjects were asked to execute usual walking on the pressure sensor sheets. Candidate features were step length, step time, gait velocity and transition of center of pressure to foot axis direction. The step length and gait velocity were smaller in PD subjects than those in normal subjects. Time of step cycle in three PD subjects were longer than that in normal subjects while the times of other PD subjects were similar to those of control subjects. The length from heel contact to toe off within one footprint was small in the subjects with short step length. Such possibility was indicated that Parkinson's disease in gait could be separated from normal subjects by these features.

  1. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm.

    Science.gov (United States)

    Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin

    2016-10-01

    Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.

  2. Assessment of gait in toddlers with normal motor development and in hemiplegic children with mild motor impairment: a validity study

    Directory of Open Access Journals (Sweden)

    Priscilla R. P. Figueiredo

    2013-08-01

    Full Text Available BACKGROUND: The optimization of gait performance is an important goal in the rehabilitation of children with cerebral palsy (CP who present a prognosis associated with locomotion. Gait analysis using videos captured by digital cameras requires validation. OBJECTIVE: To evaluate the validity of a method that involves the analysis of videos captured using a digital camera for quantifying the temporal parameters of gait in toddlers with normal motor development and children with CP. METHOD: Eleven toddlers with normal motor development and eight children with spastic hemiplegia who were able to walk without assistive devices were asked to walk through a space contained in the visual field of two instruments: a digital camera and a three-dimensional motion analysis system, Qualisys Pro-Reflex. The duration of the stance and swing phases of gait and of the entire gait cycle were calculated by analyzing videos captured by a digital camera and compared to those obtained by Qualisys Pro-Reflex, which is considered a highly accurate system. RESULTS: The Intraclass Correlation Coefficient (ICC demonstrated excellent agreement (ICC>0.90 between the two procedures for all measurements, except for the swing phase of the normal toddlers (ICC=0.35. The standard error of measurement was less than 0.02 seconds for all measures. CONCLUSIONS: The results reveal similarities between the two instruments, suggesting that digital cameras can be valid instruments for quantifying two temporal parameters of gait. This congruence is of clinical and scientific relevance and validates the use of digital cameras as a resource for helping the assessment and documentation of the therapeutic effects of interventions targeted at the gait of children with CP.

  3. Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor.

    Science.gov (United States)

    Nakamura, Akihiro; Funaya, Hiroyuki; Uezono, Naohiro; Nakashima, Kinichi; Ishida, Yasumasa; Suzuki, Tomohiro; Wakana, Shigeharu; Shibata, Tomohiro

    2015-11-01

    Three-dimensional (3D) open-field gait analysis of mice is an essential procedure in genetic and nerve regeneration research. Existing gait analysis systems are generally expensive and may interfere with the natural behaviors of mice because of optical markers and transparent floors. In contrast, the proposed system captures the subjects shape from beneath using a low-cost infrared depth sensor (Microsoft Kinect) and an opaque infrared pass filter. This means that we can track footprints and 3D paw-tip positions without optical markers or a transparent floor, thereby preventing any behavioral changes. Our experimental results suggest with healthy mice that they are more active on opaque floors and spend more time in the center of the open-field, when compared with transparent floors. The proposed system detected footprints with a comparable performance to existing systems, and precisely tracked the 3D paw-tip positions in the depth image coordinates. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining.

    Science.gov (United States)

    Clark, Ross A; Pua, Yong-Hao; Bryant, Adam L; Hunt, Michael A

    2013-09-01

    Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (Psystem for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Gait speed as a measure of functional status in COPD patients

    Directory of Open Access Journals (Sweden)

    Karpman C

    2014-11-01

    Full Text Available Craig Karpman, Roberto Benzo Mindful Breathing Laboratory, Mayo Clinic, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA Abstract: Chronic obstructive pulmonary disease (COPD is a disease associated with dyspnea, fatigue, and exercise intolerance. The degree of functional debility and level of exercise capacity greatly influences quality of life and mortality in patients with COPD, and the measures of exercise capacity are to be an integral part of patient assessment but often not feasible in routine daily practice, resulting in likely suboptimal care. There is a need for simple ways to identify functional decline in the clinical setting in order to guide resources to preventive interventions or proper care, including palliative care. Gait speed, or measuring how long it takes for a patient to walk a short distance, takes very little time and space, and can serve as a candidate measure of physical function in COPD. Gait speed has been shown to be an indicator of disability, health care utilization, and survival in older adults. It is a simple, reliable, and feasible measure to perform in the clinic and has been promoted as the next vital sign, providing insight into patients' functional capacity. Gait speed is mainly determined by exercise capacity but reflects global well-being as it captures many of the multisystemic effects of disease severity in COPD rather than pulmonary impairment alone. It is an excellent screening measure for exercise capacity and frailty; in COPD, the usual gait speed (4-m course with rolling start has been very accurate in identifying clinically relevant benchmarks of the 6-minute walk test, poor (<350 m and very poor (<200 m 6-minute walk test distances. A specific cut-off point of 0.8 m⋅s-1 had a positive predictive value of 69% and negative predictive value of 98% in predicting very poor exercise capacity. The increasing evidence on gait speed is promising as a simple test that can inform the

  6. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  7. Influence of Body Mass Index on Sagittal Knee Range of Motion and Gait Speed Recovery 1-Year After Total Knee Arthroplasty.

    Science.gov (United States)

    Bonnefoy-Mazure, Alice; Martz, Pierre; Armand, Stéphane; Sagawa, Yoshimasa; Suva, Domizio; Turcot, Katia; Miozzari, Hermes H; Lübbeke, Anne

    2017-08-01

    The purpose of this prospective study was to investigate the influence of body mass index (BMI) on gait parameters preoperatively and 1 year after total knee arthroplasty (TKA). Seventy-nine patients were evaluated before and 1 year after TKA using clinical gait analysis. The gait velocity, the knee range of motion (ROM) during gait, their gains (difference between baseline and 1 year after TKA), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), quality of life, and patient satisfaction were assessed. Nonobese (BMI gait speed and ROM gains. Adjustment was performed for gender, age, and WOMAC pain improvement. At baseline, gait velocity and knee ROM were significantly lower in obese compared with those in the nonobese patients (0.99 ± 0.27 m/s vs 1.11 ± 0.18 m/s; effect size, 0.53; P = .021; and ROM, 41.33° ± 9.6° vs 46.05° ± 8.39°; effect size, 0.52; P = .022). Univariate and multivariate linear regressions did not show any significant relation between gait speed gain or knee ROM gain and BMI. At baseline, obese patients were more symptomatic than nonobese (WOMAC pain: 36.1 ± 14.0 vs 50.4 ± 16.9; effect size, 0.9; P < .001), and their improvement was significantly higher (WOMAC pain gain, 44.5 vs 32.3; effect size, 0.59; P = .011). These findings show that all patients improved biomechanically and clinically, regardless of their BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, H.P.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson’s disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  9. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  10. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  11. A mechanized gait trainer for restoring gait in nonambulatory subjects.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Werner, C; Bardeleben, A

    2000-09-01

    To construct an advanced mechanized gait trainer to enable patients the repetitive practice of a gaitlike movement without overstraining therapists. DEVICE: Prototype gait trainer that simulates the phases of gait (by generating a ratio of 40% to 60% between swing and stance phases), supports the subjects according to their ability (lifts the foot during swing phase), and controls the center of mass in the vertical and horizontal directions. Two nonambulatory, hemiparetic patients who regained their walking ability after 4 weeks of daily training on the gait trainer, a 55-year-old woman and a 62-year-old man, both of whom had a first-time ischemic stroke. Four weeks of training, five times a week, each session 20 minutes long. Functional ambulation category (FAC, levels 0-5) to assess gait ability and ground level walking velocity. Rivermead motor assessment score (RMAS, 0-13) to assess gross motor function. Patient 1: At the end of treatment, she was able to walk independently on level ground with use of a walking stick. Her walking velocity had improved from .29m/sec to .59m/sec. Her RMAS score increased from 4 to 10, meaning she could walk at least 40 meters outside, pick up objects from floor, and climb stairs independently. Patient 2: At end of 4-week training, he could walk independently on even surfaces (FAC level 4), using an ankle-foot orthosis and a walking stick. His walking velocity improved from .14m/sec to .63m/sec. His RMAS increased from 3 to 10. The gait trainer enabled severely affected patients the repetitive practice of a gaitlike movement. Future studies may elucidate its value in gait rehabilitation of nonambulatory subjects.

  12. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  13. Balance control during gait initiation: State-of-the-art and research perspectives.

    Science.gov (United States)

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-11-18

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.

  14. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson's Disease: Toward Clinical and at Home Use.

    Science.gov (United States)

    Del Din, Silvia; Godfrey, Alan; Rochester, Lynn

    2016-05-01

    Measurement of gait is becoming important as a tool to identify disease and disease progression, yet to date its application is limited largely to specialist centers. Wearable devices enables gait to be measured in naturalistic environments, however questions remain regarding validity. Previous research suggests that when compared with a laboratory reference, measurement accuracy is acceptable for mean but not variability or asymmetry gait characteristics. Some fundamental reasons for this have been presented, (e.g., synchronization, different sampling frequencies) but to date this has not been systematically examined. The aims of this study were to: 1) quantify a comprehensive range of gait characteristics measured using a single triaxial accelerometer-based monitor; 2) examine outcomes and monitor performance in measuring gait in older adults and those with Parkinson's disease (PD); and 3) carry out a detailed comparison with those derived from an instrumented walkway to account for any discrepancies. Fourteen gait characteristics were quantified in 30 people with incident PD and 30 healthy age-matched controls. Of the 14 gait characteristics compared, agreement between instruments was excellent for four (ICCs 0.913-0.983); moderate for four (ICCs 0.508-0.766); and poor for six characteristics (ICCs 0.637-0.370). Further analysis revealed that differences reflect an increased sensitivity of accelerometry to detect motion, rather than measurement error. This is most likely because accelerometry measures gait as a continuous activity rather than discrete footfall events, per instrumented tools. The increased sensitivity shown for these characteristics will be of particular interest to researchers keen to interpret "real-world" gait data. In conclusion, use of a body-worn monitor is recommended for the measurement of gait but is likely to yield more sensitive data for asymmetry and variability features.

  15. Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length.

    Science.gov (United States)

    Del Din, Silvia; Godfrey, Alan; Galna, Brook; Lord, Sue; Rochester, Lynn

    2016-05-12

    Gait is emerging as a powerful diagnostic and prognostic tool, and as a surrogate marker of disease progression for Parkinson's disease (PD). Accelerometer-based body worn monitors (BWMs) facilitate the measurement of gait in clinical environments. Moreover they have the potential to provide a more accurate reflection of gait in the home during habitual behaviours. Emerging research suggests that measurement of gait using BWMs is feasible but this has not been investigated in depth. The aims of this study were to explore (i) the impact of environment and (ii) ambulatory bout (AB) length on gait characteristics for discriminating between people with PD and age-matched controls. Fourteen clinically relevant gait characteristics organised in five domains (pace, variability, rhythm, asymmetry, postural control) were quantified using laboratory based and free-living data collected over 7 days using a BWM placed on the lower back in 47 PD participants and 50 controls. Free-living data showed that both groups walked with decreased pace and increased variability, rhythm and asymmetry compared to walking in the laboratory setting. Four of the 14 gait characteristics measured in free-living conditions were significantly different between controls and people with PD compared to two measured in the laboratory. Between group differences depended on bout length and were more apparent during longer ABs. ABs ≤ 10s did not discriminate between groups. Medium to long ABs highlighted between-group significant differences for pace, rhythm and asymmetry. Longer ABs should therefore be taken into account when evaluating gait characteristics in free-living conditions. This study provides encouraging results to support the use of a single BWM for free-living gait evaluation in people with PD with potential for research and clinical application.

  16. [Experimental research of gaits based on young plantar pressure test].

    Science.gov (United States)

    Meng, Qingyun; Tan, Shili; Yu, Hongliu; Shen, Lixing; Zhuang, Jianhai; Wang, Jinwu

    2014-10-01

    The present paper is to study the center line of the plantar pressure of normal young people, and to find the relation between center line of the plantar pressure and gait stability and balance. The paper gives the testing principle and calculating methods for geometric center of plantar pressure distribution and the center of pressure due to the techniques of footprint frame. The calculating formulas in both x direction and y direction are also deduced in the paper. In the experiments carried out in our laboratory, the gait parameters of 131 young subjects walking as usual speed were acquired, and 14 young subjects of the total were specially analyzed. We then provided reference data for the walking gait database of young people, including time parameters, space parameters and plantar pressure parameters. We also obtained the line of geometry center and pressure center under the foot. We found that the differences existed in normal people's geometric center line and the pressure center line. The center of pressure trajectory revealed foot movement stability. The length and lateral changes of the center line of the plantar pressure could be applied to analysis of the plantar pressure of all kinds of people. The results in this paper are useful in clinical foot disease diagnosis and evaluation of surgical effect.

  17. Analysis of gait in rats with olivocerebellar lesions and ability of the nicotinic acetylcholine receptor agonist varenicline to attenuate impairments.

    Science.gov (United States)

    Lambert, C S; Philpot, R M; Engberg, M E; Johns, B E; Wecker, L

    2015-09-15

    Studies have demonstrated that administration of the neuronal nicotinic receptor agonist varenicline to rats with olivocerebellar lesions attenuates balance deficits on a rotorod and balance beam, but the effects of this drug on gait deficits have not been investigated. To accomplish this, male Sprague-Dawley rats were trained to walk on a motorized treadmill at 25 and 35 cm/s and baseline performance determined; both temporal and spatial gait parameters were analyzed. A principal component analysis (PCA) was used to identify the key components of gait, and the cumulative gait index (CGI) was calculated, representing deviations from prototypical gait patterns. Subsequently, animals either remained as non-lesioned controls or received injections of 3-acetylpyridine (3-AP)/nicotinamide to destroy the climbing fibers innervating Purkinje cells. The gait of the non-lesioned group was assessed weekly to monitor changes in the normal population, while the gait of the lesioned group was assessed 1 week following 3-AP administration, and weekly following the daily administration of saline or varenicline (0.3, 1.0, or 3.0mg free base/kg) for 2 weeks. Non-lesioned animals exhibited a 60-70% increased CGI over time due to increases in temporal gait measures, whereas lesioned animals exhibited a nearly 3-fold increased CGI as a consequence of increases in spatial measures. Following 2 weeks of treatment with the highest dose of varenicline (3.0mg free base/kg), the swing duration of lesioned animals normalized, and stride duration, stride length and step angle in this population did not differ from the non-lesioned population. Thus, varenicline enabled animals to compensate for their impairments and rectify the timing of the gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    Science.gov (United States)

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  19. Effect of arm cycling on gait of children with hemiplegic cerebral palsy

    African Journals Online (AJOL)

    The study group received arm cycling in addition to gait training exercise, while the control group received gait training exercises only. Three dimensional (3D) motion analysis was used before and after the training program to evaluate the angular displacements of shoulder, elbow, hip, knee, and ankle joints during gait sub ...

  20. Gait performance of children and adolescents with sensorineural hearing loss.

    Science.gov (United States)

    Melo, Renato de Souza

    2017-09-01

    Several studies have demonstrated that children with sensorineural hearing loss (SNHL) may exhibit balance disorders, which can compromise the gait performance of this population. Compare the gait performance of normal hearing (NH) children and those with SNHL, considering the sex and age range of the sample, and analyze gait performance according to degrees of hearing loss and etiological factors in the latter group. This is a cross-sectional study that assessed 96 students, 48 NH and 48 with SNHL, aged between 7 and 18 years. The Brazilian version of the Dynamic Gait Index (DGI) was used to analyze gait and the Mann-Whitney test for statistical analysis. The group with SNHL obtained lower average gait performance compared to NH subjects (p=0.000). This was also observed when the children were grouped by sex female and male (p=0.000). The same difference occurred when the children were stratified by age group: 7-18 years (p=0.000). The group with severe and profound hearing loss exhibited worse gait performance than those with mild and moderate loss (p=0.048) and children with prematurity as an etiological factor demonstrated the worst gait performance. The children with SNHL showed worse gait performance compared to NH of the same sex and age group. Those with severe and profound hearing loss and prematurity as an etiological factor demonstrated the worst gait performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  2. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; Crespo, Marcos José; Braidot, Ariel Andrés

    2011-01-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  3. Effects of progressive backward body weight suppoted treadmill training on gait ability in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Kim, Kyung Hun; Lee, Kyoung Bo; Bae, Young-Hyeon; Fong, Shirley S M; Lee, Suk Min

    2017-10-23

    A stroke patient with hemiplegic gait is generally described as being slow and asymmetric. Body weight-supported treadmill training and backward gait training are recent additions to therapeutic gait trainings that may help improve gait in stroke patient with hemiplegic gait. Therefore, we examined the effect of progressive backward body weight-supported treadmill training on gait in chronic stroke patients with hemiplegic gait. Thirty subjects were divided to the experimental and control groups. The experimental group consisted of 15 patients and underwent progressive backward body weight-supported treadmill training. The control group consisted of 15 patients and underwent general treadmill gait training five times per week, for a total of four weeks. The OptoGait was used to analyze gait kinematics, and the dynamic gait index (DGI) and results of the 6-minute walk test were used as the clinical evaluation indicators. A follow-up test was carried out four weeks later to examine persistence of exercise effects. The experimental group showed statistically significant results in all dependent variables week four compared to the control group. However, until the eighth week, only the dependent variables, of affected step length (ASL), stride length (SL), and DGI differed significantly between the two groups. This study verified that progressive bodyweight-supported treadmill training had a positive influence on the temporospatial characteristics of gait and clinical gait evaluation index in chronic stroke patients.

  4. Implementation An image processing technique for video motion analysis during the gait cycle canine

    Science.gov (United States)

    López, G.; Hernández, J. O.

    2017-01-01

    Nowadays the analyses of human movement, more specifically of the gait have ceased to be a priority for our species. Technological advances and implementations engineering have joined to obtain data and information regarding the gait cycle in another animal species. The aim of this paper is to analyze the canine gait in order to get results that describe the behavior of the limbs during the gait cycle. The research was performed by: 1. Dog training, where it is developed the step of adaptation and trust; 2. Filming gait cycle; 3. Data acquisition, in order to obtain values that describe the motion cycle canine and 4. Results, obtaining the kinematics variables involved in the march. Which are essential to determine the behavior of the limbs, as well as for the development of prosthetic or orthotic. This project was carried out with conventional equipment and using computational tools easily accessible.

  5. Gait variability measurements in lumbar spinal stenosis patients: part B. Preoperative versus postoperative gait variability

    International Nuclear Information System (INIS)

    Papadakis, N C; Christakis, D G; Tzagarakis, G N; Chlouverakis, G I; Kampanis, N A; Stergiopoulos, K N; Katonis, P G

    2009-01-01

    The objective of this study was to assess the gait variability of lumbar spinal stenosis (LSS) patients and to evaluate its postoperative progression. The hypothesis was that LSS patients' preoperative gait variability in the frequency domain was higher than the corresponding postoperative. A tri-axial accelerometer sensor was used for the gait measurement and a spectral differential entropy algorithm was used to measure the gait variability. Twelve subjects with LSS were measured before and after surgery. Preoperative measurements were performed 2 days before surgery. Postoperative measurements were performed 6 and 12 months after surgery. Preoperative gait variability was higher than the corresponding postoperative. Also, in most cases, gait variability appeared to decrease throughout the year

  6. Effects of Three Types of Exercise Interventions on Healthy Old Adults' Gait Speed : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs

    2015-01-01

    Background Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose Our objective was to determine the effects of strength, power, coordination,

  7. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  8. Quantifying gait quality in patients with large-head and conventional total hip arthroplasty

    DEFF Research Database (Denmark)

    Jensen, Carsten; Penny, Jeannette Østergaard; Nielsen, Dennis Brandborg

    2015-01-01

    We used the Gait Deviation Index (GDI) as method to compare preoperative to postoperative gait changes after uncemented 50mm(median) large-head and 28/32mmtotal hip arthroplasty (THA). We also identified predictors of improvements in GDI. Gait analysis and patient-reported (WOMAC) datawere record...

  9. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    Science.gov (United States)

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  10. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Sakurai, Ryota; Montero-Odasso, Manuel

    2017-11-09

    The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke.

    Science.gov (United States)

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-05-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.

  12. How doing a dynamical analysis of gait movement may provide information about Autism

    Science.gov (United States)

    Wu, D.; Torres, E.; Nguyen, J.; Mistry, S.; Whyatt, C.; Kalampratsidou, V.; Kolevzon, A.; Jose, J.

    Individuals with Autism Spectrum Disorder (ASD) are known to have deficits in language and social skills. They also have deficits on how they move. Why individuals get ASD? It is not generally known. There is, however, one particular group of children with a SHANK3 gene deficiency (Phelan-McDermid Syndrome (PMDS)) that present symptoms similar to ASD. We have been searching for universal mechanism in ASD going beyond the usual heterogeneous ASD symptoms. We studied motions in gaits for both PMDS patients and idiopathic ASD. We have examined their motions continuously at milliseconds time scale, away from naked eye detection. Gait is a complex process, requiring a complex integration and coordination of different joints' motions. Significant information about the development and/or deficits in the sensory system is hidden in our gaits. We discovered that the speed smoothness in feet motion during gaits is a critical feature that provides a significant distinction between subjects with ASD and typical controls. The differences in appearance of the speed fluctuations suggested a different coordination mechanism in subjects with disorders. Our work provides a very important feature in gait motion that has significant physiological information.

  13. Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity.

    Science.gov (United States)

    Beijersbergen, Chantal M I; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobágyi, Tibor

    2017-01-01

    Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower extremity muscle power and gait kinematics. As part of the Potsdam Gait Study, participants started with 10 wk of power training followed by 10 wk of detraining (n = 16), and participants started with a 10-wk control period followed by 10 wk of power training (n = 16). We measured gait kinematics (stride characteristic and joint kinematics) and isokinetic power of the ankle plantarflexor (20°·s, 40°·s, and 60°·s) and knee extensor and flexor (60°·s, 120°·s, and 180°·s) muscles at weeks 0, 10, and 20. Power training improved isokinetic muscle power by ~30% (P ≤ 0.001) and fast (5.9%, P kinematics did not correlate with increases in fast gait velocity. The mechanisms that increased fast gait velocity involved higher cadence (r = 0.86, P ≤ 0.001) rather than longer strides (r = 0.49, P = 0.066). Detraining did not reverse the training-induced increases in muscle power and fast gait velocity. Because increases in muscle power and modifications in joint kinematics did not correlate with increases in fast gait velocity, kinematic mechanisms seem to play a minor role in improving healthy old adults' fast gait velocity after power training.

  14. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women.

    Science.gov (United States)

    Bird, Marie-Louise; El Haber, Natalie; Batchelor, Frances; Hill, Keith; Wark, John D

    2018-01-01

    Vitamin D status and parathyroid hormone (PTH) levels influence the risk of accidental falls in older people, but the mechanisms underlying this effect remain unclear. Investigate the relationship between circulating PTH and 25 hydroxyvitamin D (25-OHD) levels and clinical tests of gait stability and balance as physical fall risk factors. We hypothesized that high levels of PTH and low 25-OHD levels would be significantly associated with gait stability and decreased balance performance. Observational cohort study. Australian community. 119 healthy, ambulatory female twin adults aged 47-80 years residing in Victoria, Australia. Serum PTH and 25-OHD levels with clinical tests of gait stability [double support duration (DSD)] and dynamic balance (Step Test). Associations were investigated by regression analysis and by comparing groups divided by tertiles of PTH (4.9pmol/L) and 25-OHD (75 nmol/L) using analysis of variance. Serum PTH was associated positively with DSD, with an increase of 10.6-15.7% when the mid and highest PTH tertiles were compared to the lowest tertile (p <0.025) when 25-OHD was included in the regression analysis. 25-OHD was significantly associated with DSD (greater by 10.6-11.1% when lowest and mid-tertiles compared with the highest 25-OHD tertile) (p <0.025) and dynamic balance (better performance by 12.6% in the highest compared with the lowest 25OHD tertile) (p <0.025). These findings reveal an important new relationship between parathyroid hormone and gait stability parameters and add to understanding of the role of 25-OHD in motor control of gait and dynamic balance in community-dwelling women across a wide age span. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Practicalities of Assessing Freezing of Gait

    NARCIS (Netherlands)

    Barthel, C.; Mallia, E.; Debu, B.; Bloem, B.R.; Ferraye, M.U.

    2016-01-01

    BACKGROUND: Freezing of gait (FOG) is a mysterious, complex and debilitating phenomenon in Parkinson's disease. Adequate assessment is a pre-requisite for managing FOG, as well as for assigning participants in FOG research. The episodic nature of FOG, as well as its multiple clinical expressions

  16. Effectiveness of Circuit-Based Exercises on Gait Speed, Balance, and Functional Mobility in People Affected by Stroke: A Meta-Analysis.

    Science.gov (United States)

    Bonini-Rocha, Ana Clara; de Andrade, Anderson Lúcio Souza; Moraes, André Marques; Gomide Matheus, Liana Barbaresco; Diniz, Leonardo Rios; Martins, Wagner Rodrigues

    2018-04-01

    Several interventions have been proposed to rehabilitate patients with neurologic dysfunctions due to stroke. However, the effectiveness of circuit-based exercises according to its actual definition, ie, an overall program to improve strength, stamina, balance or functioning, was not provided. To examine the effectiveness of circuit-based exercise in the treatment of people affected by stroke. A search through PubMed, Embase, Cochrane Library, and Physiotherapy Evidence Database databases was performed to identify controlled clinical trials without language or date restriction. The overall mean difference with 95% confidence interval was calculated for all outcomes. Two independent reviewers assessed the risk of bias. Eleven studies met the inclusion criteria, and 8 presented suitable data to perform a meta-analysis. Quantitative analysis showed that circuit-based exercise was more effective than conventional intervention on gait speed (mean difference of 0.11 m/s) and circuit-based exercise was not significantly more effective than conventional intervention on balance and functional mobility. Our results demonstrated that circuit-based exercise presents better effects on gait when compared with conventional intervention and that its effects on balance and functional mobility were not better than conventional interventions. I. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Carvalho, Igor; Pinto, Sérgio Medeiros; Chagas, Daniel das Virgens; Praxedes Dos Santos, Jomilto Luiz; de Sousa Oliveira, Tainá; Batista, Luiz Alberto

    2017-11-01

    To identify the effects of robotic gait training practices in individuals with cerebral palsy. The search was performed in the following electronic databases: PubMed, Embase, Medline (OvidSP), Cochrane Database of Systematic Reviews, Web of Science, Scopus, Compendex, IEEE Xplore, ScienceDirect, Academic Search Premier, and Physiotherapy Evidence Database. Studies were included if they fulfilled the following criteria: (1) they investigated the effects of robotic gait training, (2) they involved patients with cerebral palsy, and (3) they enrolled patients classified between levels I and IV using the Gross Motor Function Classification System. The information was extracted from the selected articles using the descriptive-analytical method. The Critical Review Form for Quantitative Studies was used to quantitate the presence of critical components in the articles. To perform the meta-analysis, the effects of the intervention were quantified by effect size (Cohen d). Of the 133 identified studies, 10 met the inclusion criteria. The meta-analysis showed positive effects on gait speed (.21 [-.09, .51]), endurance (.21 [-.06, .49]), and gross motor function in dimension D (.18 [-.10, .45]) and dimension E (0.12 [-.15, .40]). The results obtained suggest that this training benefits people with cerebral palsy, specifically by increasing walking speed and endurance and improving gross motor function. For future studies, we suggest investigating device configuration parameters and conducting a large number of randomized controlled trials with larger sample sizes and individuals with homogeneous impairment. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Comparison of three physical therapy interventions with an emphasis on the gait of individuals with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Maria Eduarda Brandão Bueno

    Full Text Available Abstract Introduction: Gait impairments are one of the earliest signs reported by patients with Parkinson’s disease (PD and cause an increased number of falls and decreased quality of life among these patients. Objective: To compare the effectiveness of three physical therapy interventions using Rhythmic Cues (RC, Swiss Ball (SB and Dual Task (DT, with an emphasis on gait treatment (step and stride length, duration and velocity, in individuals with PD. Methods: Quasi-randomized clinical trial addressing a sample composed of 45 individuals assigned to three groups. The individuals were assessed before and after the intervention protocol using the following: Modified Hoehn and Yahr Scale (HY, Unified Parkinson’s Disease Rating Scale (UPDRS, Footprint analysis, Video Gait analysis, and Timed Up and Go Test (TUG. The groups were homogeneous concerning age, HY and UPDRS. Statistical analysis was performed using SPSS, version 20.0. Results: Statistically significant differences were found in all the variables analyzed in the RC and SB groups when compared in the pre- and post-intervention. With the exception of the TUG variable, the DT group presented statistically significant differences in all the remaining variables. Conclusion: The three interventions were effective for the outcomes under study, but the SB group presented the greatest magnitude of change (effect size, while the RC group presented the greatest improvement in the temporal gait variables (duration and velocity and TUG.

  19. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  20. Proposal for a Mini Wireless Force Platform for Human Gait Analysis

    Directory of Open Access Journals (Sweden)

    Giovani PIFFER

    2011-12-01

    Full Text Available This paper aims to develop a mini wireless force platform placed in the shoe sole for analysis of human gait. The platform consists of a machined aluminum mechanical structure fixed into a sole, whose sensors are electrical resistance strain gages strategically cemented at the points of greatest deformation of the structure. The strain gages are configured as a ½ Wheatstone bridge connected to an amplifier for output signals and filtered by a signal conditioner. The signals are conditioned using a data acquisition board in conjunction with a graphical interface developed in LabVIEW. The static and dynamic behavior of the eight load cells was evaluated. Calibration at static pressures has shown that the eight load cells are linear within the usage range from 0 kgf to 45 kgf. The dynamic response has determined that the first vibration mode is around 1 kHz, indicating that the load cells have no resonance during the test. Three subjects carried out gait tests to examine the range of force platform use, and these tests demonstrated that the signals obtained are consistent with the classical references in this area.

  1. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  2. Multi-scale complexity analysis of muscle coactivation during gait in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Wen eTao

    2015-07-01

    Full Text Available The objective of this study is to characterize complexity of lower-extremity muscle coactivation and coordination during gait in children with cerebral palsy (CP, children with typical development (TD and healthy adults, by applying recently developed multivariate multi-scale entropy (MMSE analysis to surface EMG signals. Eleven CP children (CP group, eight TD children and seven healthy adults (consider as an entire control group were asked to walk while surface EMG signals were collected from 5 thigh muscles and 3 lower leg muscles on each leg (16 EMG channels in total. The 16-channel surface EMG data, recorded during a series of consecutive gait cycles, were simultaneously processed by multivariate empirical mode decomposition (MEMD, to generate fully aligned data scales for subsequent MMSE analysis. In order to conduct extensive examination of muscle coactivation complexity using the MEMD-enhanced MMSE, 14 data analysis schemes were designed by varying partial muscle combinations and time durations of data segments. Both TD children and healthy adults showed almost consistent MMSE curves over multiple scales for all the 14 schemes, without any significant difference (p > 0.09. However, quite diversity in MMSE curve was observed in the CP group when compared with those in the control group. There appears to be diverse neuropathological processes in CP that may affect dynamical complexity of muscle coactivation and coordination during gait. The abnormal complexity patterns emerging in CP group can be attributed to different factors such as motor control impairments, loss of muscle couplings, and spasticity or paralysis in individual muscles. All these findings expand our knowledge of neuropathology of CP from a novel point of view of muscle co-activation complexity, also indicating the potential to derive a quantitative index for assessing muscle activation characteristics as well as motor function in CP.

  3. Using the Oxford Foot Model to determine the association between objective measures of foot function and results of the AOFAS Ankle-Hindfoot Scale and the Foot Function Index: a prospective gait analysis study in Germany.

    Science.gov (United States)

    Kostuj, Tanja; Stief, Felix; Hartmann, Kirsten Anna; Schaper, Katharina; Arabmotlagh, Mohammad; Baums, Mike H; Meurer, Andrea; Krummenauer, Frank; Lieske, Sebastian

    2018-04-05

    After cross-cultural adaption for the German translation of the Ankle-Hindfoot Scale of the American Orthopaedic Foot and Ankle Society (AOFAS-AHS) and agreement analysis with the Foot Function Index (FFI-D), the following gait analysis study using the Oxford Foot Model (OFM) was carried out to show which of the two scores better correlates with objective gait dysfunction. Results of the AOFAS-AHS and FFI-D, as well as data from three-dimensional gait analysis were collected from 20 patients with mild to severe ankle and hindfoot pathologies.Kinematic and kinetic gait data were correlated with the results of the total AOFAS scale and FFI-D as well as the results of those items representing hindfoot function in the AOFAS-AHS assessment. With respect to the foot disorders in our patients (osteoarthritis and prearthritic conditions), we correlated the total range of motion (ROM) in the ankle and subtalar joints as identified by the OFM with values identified during clinical examination 'translated' into score values. Furthermore, reduced walking speed, reduced step length and reduced maximum ankle power generation during push-off were taken into account and correlated to gait abnormalities described in the scores. An analysis of correlations with CIs between the FFI-D and the AOFAS-AHS items and the gait parameters was performed by means of the Jonckheere-Terpstra test; furthermore, exploratory factor analysis was applied to identify common information structures and thereby redundancy in the FFI-D and the AOFAS-AHS items. Objective findings for hindfoot disorders, namely a reduced ROM, in the ankle and subtalar joints, respectively, as well as reduced ankle power generation during push-off, showed a better correlation with the AOFAS-AHS total score-as well as AOFAS-AHS items representing ROM in the ankle, subtalar joints and gait function-compared with the FFI-D score.Factor analysis, however, could not identify FFI-D items consistently related to these three

  4. Brain SPECT analysis by 3D-SSP and clinical features of Parkinson's disease

    International Nuclear Information System (INIS)

    Mito, Yasunori; Yoshida, Kazuto; Makino, Kenichi; Yabe, Ichiro; Kikuchi, Seiji; Sasaki, Hidenao; Tashiro, Kunio

    2006-01-01

    The aim of the present study is to investigate the association of symptoms in Parkinson's disease (PD) with cerebral perfusion on single photon emission computed tomography (SPECT). The clinical features of PD were compared with SPECT images of the brain obtained by three-dimensional stereotactic surface projection (3D-SSP) analysis. Thirty-eight patients who had PD without dementia (17 men and 21 women with a mean age of 68.6±4.7 years) were enrolled in this study. Their symptoms were rated using the unified parkinson's disease rating scale (UPDRS). Within a week, all patients were examined by SPECT with I-123, and reconstructed images were analyzed with 3D-SSP using an image-analysis software, iSSP ver. 3.5. Data on brain surface perfusion extracted by 3D-SSP analysis were compared between the PD patients and the normal control group. The same comparisons were made for subgroups of PD patients with severe symptoms, such as tremor, gait disturbance, bradykinesia, and the UPDRS motor score. Cerebral perfusion was decreased at the anterior cingulate cortex and occipital lobe of the PD patients compared with the normal controls. In the subgroups with severe gait disturbance and severe bradykinesia, additional hypoperfusion was seen at the lateral frontal association and lateral temporal association and the medial frontal gyrus, and by the pixel-by-pixel comparison, perfusion was significantly decreased (p<0.05) at the medial frontal gyrus and anterior cingulate cortex compared with the normal control group. In PD patients, severe gait disturbance and bradykinesia may be correlated with hypoperfusion of the medial aspect of the frontal lobe. This suggests that functional disturbance of the supplementary motor area and other parts of the frontal lobe are involved in the development of gait disturbance and bradykinesia in PD. (author)

  5. To pace or not to pace: a pilot study of four- and five-gaited Icelandic horses homozygous for the DMRT3 'Gait Keeper' mutation.

    Science.gov (United States)

    Jäderkvist Fegraeus, K; Hirschberg, I; Árnason, T; Andersson, L; Velie, B D; Andersson, L S; Lindgren, G

    2017-12-01

    The Icelandic horse is a breed known mainly for its ability to perform the ambling four-beat gait 'tölt' and the lateral two-beat gait pace. The natural ability of the breed to perform these alternative gaits is highly desired by breeders. Therefore, the discovery that a nonsense mutation (C>A) in the DMRT3 gene was the main genetic factor for horses' ability to perform gaits in addition to walk, trot and canter was of great interest. Although several studies have demonstrated that homozygosity for the DMRT3 mutation is important for the ability to pace, only about 70% of the homozygous mutant (AA) Icelandic horses are reported to pace. The aim of the study was to genetically compare four- and five-gaited (i.e. horses with and without the ability to pace) AA Icelandic horses by performing a genome-wide association (GWA) analysis. All horses (n = 55) were genotyped on the 670K Axiom Equine Genotyping Array, and a GWA analysis was performed using the genabel package in r. No SNP demonstrated genome-wide significance, implying that the ability to pace goes beyond the presence of a single gene variant. Despite its limitations, the current study provides additional information regarding the genetic complexity of pacing ability in horses. However, to fully understand the genetic differences between four- and five-gaited AA horses, additional studies with larger sample materials and consistent phenotyping are needed. © 2017 Stichting International Foundation for Animal Genetics.

  6. Gait Deviations in Children with Autism Spectrum Disorders: A Review

    Directory of Open Access Journals (Sweden)

    Deirdre Kindregan

    2015-01-01

    Full Text Available In recent years, it has become clear that children with autism spectrum disorders (ASDs have difficulty with gross motor function and coordination, factors which influence gait. Knowledge of gait abnormalities may be useful for assessment and treatment planning. This paper reviews the literature assessing gait deviations in children with ASD. Five online databases were searched using keywords “gait” and “autism,” and 11 studies were found which examined gait in childhood ASD. Children with ASD tend to augment their walking stability with a reduced stride length, increased step width and therefore wider base of support, and increased time in the stance phase. Children with ASD have reduced range of motion at the ankle and knee during gait, with increased hip flexion. Decreased peak hip flexor and ankle plantar flexor moments in children with ASD may imply weakness around these joints, which is further exhibited by a reduction in ground reaction forces at toe-off in children with ASD. Children with ASD have altered gait patterns to healthy controls, widened base of support, and reduced range of motion. Several studies refer to cerebellar and basal ganglia involvement as the patterns described suggest alterations in those areas of the brain. Further research should compare children with ASD to other clinical groups to improve assessment and treatment planning.

  7. Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients.

    Science.gov (United States)

    Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh

    2017-07-01

    This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.

  8. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  9. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.

    Science.gov (United States)

    Kim, Ha Yong; Kim, Kap Jung; Yang, Dae Suk; Jeung, Sang Wook; Choi, Han Gyeol; Choy, Won Sik

    2015-09-01

    The purpose of this study was to evaluate the screw-home movement at the tibiofemoral joint during normal gait by utilizing the 3-dimensional motion capture technique. Fifteen young males and fifteen young females (total 60 knee joints) who had no history of musculoskeletal disease or a particular gait problem were included in this study. Two more markers were attached to the subject in addition to the Helen-Hayes marker set. Thus, two virtual planes, femoral coronal plane (P f ) and tibial coronal plane (P t ), were created by Skeletal Builder software. This study measured the 3-dimensional knee joint movement in the sagittal, coronal, and transverse planes of these two virtual planes (P f and P t ) during normal gait. With respect to kinematics and kinetics, both males and females showed normal adult gait patterns, and the mean difference in the temporal gait parameters was not statistically significant (p > 0.05). In the transverse plane, the screw-home movement occurred as expected during the pre-swing phase and the late-swing phase at an angle of about 17°. However, the tibia rotated externally with respect to the femur, rather than internally, while the knee joint started to flex during the loading response (paradoxical screw-home movement), and the angle was 6°. Paradoxical screw-home movement may be an important mechanism that provides stability to the knee joint during the remaining stance phase. Obtaining the kinematic values of the knee joint during gait can be useful in diagnosing and treating the pathological knee joints.

  10. Prognostic factors in metastatic spinal cord compression: a prospective study using multivariate analysis of variables influencing survival and gait function in 153 patients

    International Nuclear Information System (INIS)

    Helweg-Larsen, Susanne; Soerensen, Per Soelberg; Kreiner, Svend

    2000-01-01

    Purpose: Based on a very large patient cohort followed prospectively for at least a year or until death, we analyzed the prognostic significance of various clinical and radiological variables on posttreatment ambulatory function and survival. Methods and Materials: During a 3((1)/(2))-year period we prospectively included 153 consecutive patients with a diagnosis of spinal cord compression due to metastatic disease. The patients were followed with regular neurological examinations by the same neurologist for a minimum period of 11 months or until death. The prognostic significance of five variables on gait function and survival time after treatment was analyzed. Results: The type of the primary tumor had a direct influence on the interval between the diagnosis of the primary malignancy and the occurrence of spinal cord compression (p < 0.0005), and on the ambulatory function at time of diagnosis (p = 0.016). There was a clear correlation between the degree of myelographic blockage and gait function (p = 0.000) and between gait function and sensory disturbances (p = 0.000). The final gait was dependent on the gait function at time of diagnosis (p < 0.0005). Survival time after diagnosis depended directly on the time from primary tumor diagnosis until spinal cord compression (p = 0.002), on the ambulatory function at the time of diagnosis (p = 0.018), and on the ambulatory function after treatment. Conclusions: The pretreatment ambulatory function is the main determinant for posttreatment gait function. Survival time is rather short, especially in nonambulatory patients, and can only be improved by restoration of gait function in nonambulatory patients by immediate treatment

  11. Repeatability of the Oxford Foot Model for Kinematic Gait Analysis of the Foot and Ankle

    NARCIS (Netherlands)

    van Hoeve, S.; Vos, J.; Weijers, P.; Verbruggen, J.; Willems, P.; Poeze, M.; Meijer, K.

    2015-01-01

    INTRODUCTION: Kinematic gait analysis via the multi-segmental Oxford foot model (OFM) may be a valuable addition to the biomechanical examination of the foot and ankle. The aim of this study is to assess the repeatability of the OFM in healthy subjects. METHODS: Nine healthy subjects, without a

  12. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch

    NARCIS (Netherlands)

    Kosse, Nienke M.; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J. C.

    2015-01-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study

  13. [Calf circumference and its association with gait speed in elderly participants at Peruvian Naval Medical Center].

    Science.gov (United States)

    Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando

    2015-01-01

    To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.

  14. Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    Science.gov (United States)

    Peurala, Sinikka H; Titianova, Ekaterina B; Mateev, Plamen; Pitkänen, Kauko; Sivenius, Juhani; Tarkka, Ina M

    2005-01-01

    To assess the effects of rehabilitation in thirty-seven ambulatory patients with chronic stroke during three weeks in-patient rehabilitation period. In the intervention group, each patient received 75 min physiotherapy daily every workday including 20 minutes in the electromechanical gait trainer with body-weight support (BWS). In the control group, each patient participated in 45 min conventional physiotherapy daily. Motor ability was assessed with the first five items of the Modified Motor Assessment Scale (MMAS1-5) and ten meters walking speed. Spatio-temporal gait characteristics were recorded with an electrical walkway. The MMAS1-5 (pgait characteristics improved only in the intervention group, as seen in increased Functional Ambulation Profile score (p=0.023), velocity (p=0.023), the step lengths (affected side, p=0.011, non-affected side p=0.040), the stride lengths (p=0.018, p=0.006) and decreased step-time differential (p=0.043). Furthermore, all gait characteristics and other motor abilities remained in the discharge level at the six months in the intervention group. It appears that BWS training gives a long-lasting benefit in gait qualities even in chronic stroke patients.

  15. The effects of aquatic trunk exercise on gait and muscle activity in stroke patients: a randomized controlled pilot study.

    Science.gov (United States)

    Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-11-01

    [Purpose] The purpose of this study was to investigate the relationship between muscle activity and gait function following aquatic trunk exercise in hemiplegic stroke patients. [Subjects and Methods] This study's participants included thirteen hemiplegic patients (ten males and three females). The aquatic therapy consisted of administering concentrative aquatic therapy for four weeks in a therapeutic pool. Gait parameters were measured using a gait analysis system adjusted to each subject's comfortable walking speed. Electromyographic signals were measured for the rectus abdominis, external abdominal oblique, transversus abdominis/internal-abdominal oblique, and erector spine of each patients. [Results] The pre- and post-training performances of the transversus abdominis/internal-abdominal oblique were compared statistically. There was no statistical difference between the patients' pre- and post-training values of maximal voluntary isometric contraction of the rectus abdominis, but the external abdominal oblique values tended to improve. Furthermore, gait factors improved significantly in terms of walking speeds, walking cycles, affected-side stance phases, affected-stride lengths, and stance-phase symmetry indices, respectively. [Conclusion] These results suggest that the trunk exercise during aquatic therapy may in part contribute to clinically relevant improvements in muscle activities and gait parameters.

  16. Gait Recognition and Walking Exercise Intensity Estimation

    Directory of Open Access Journals (Sweden)

    Bor-Shing Lin

    2014-04-01

    Full Text Available Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients’ exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude. Furthermore, empirical mode decomposition (EMD was used to filter the noise of patients’ attitude to acquire the Fourier transform energy spectrum. Linear discriminant analysis was then applied to this energy spectrum for training and recognition. When the gait or motion was recognized, the walking exercise intensity was estimated. In addition, this study addressed the correlation between inertia and exercise intensity by using the residual function of the EMD and quadratic approximation to filter the effect of the baseline drift integral of the acceleration sensor. The increase in the determination coefficient of the regression equation from 0.55 to 0.81 proved that the accuracy of the method for estimating walking exercise intensity proposed by Kurihara was improved in this study.

  17. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  18. Effect of Duration of Disease on Gait Parameters in Parkinson’s Patients

    Directory of Open Access Journals (Sweden)

    Aygün Özşahin

    2007-04-01

    Full Text Available OBJECTIVE: Posture and gait disturbances are major components which cause functional disability in Parkinson’s disease (PD. Three dimensional gait and motion analysis systems provide quantitative data of gait. OBJECTIVES: The aim of this study is to correlate between duration of disease and gait parameters of Parkinson patients during the on-phase. METHODS: We investigated temporospatial and kinematics variables of gait in 23 subjects with PD as measured in the on-phase of their medication cycle using motion analysis. We evaluated the correlation between all gait parameters and Gait and Balance Scale (GABS, unified Parkinson’s disease rating scale (UPDRS total-motor scores, Hoehn&Yahr (H&Y stages and duration of the disease. RESULTS: We found positive correlation between cadance and duration of disease. Patients had negative correlation between stride time and duration of disease. And also there was positive correlation between UPDRS total score and duration of disease. CONCLUSION: Increasing of cadance and decreasing of stride time exhibited by PD subjects is a compensatory mechanism for the difficulty in regulating stride lenght. It was reported that stride lenght control mediate by basal ganglia. Scaling of lower limb amplitude during locomotion can be controlled by higher levels of the Central Nervous System. Patients tend to increase pelvic rotation to keep their center of mass stabilised because of shortness of stride lenght. We thought that reduction pelvic and hip ROMs in coronal plane are impaired muscles of leg in the swing phase. These findings possibly indicate that shortness of stride lenght with the progression of disease is related to cortical centers. Three dimentional analysis systems provide detailed gait examination in PD patients to assess of progression and efficacy for therapies. Also, this method will guide us to explain physiopathologic mechanisms of PD

  19. Gait Rather Than Cognition Predicts Decline in Specific Cognitive Domains in Early Parkinson's Disease.

    Science.gov (United States)

    Morris, Rosie; Lord, Sue; Lawson, Rachael A; Coleman, Shirley; Galna, Brook; Duncan, Gordon W; Khoo, Tien K; Yarnall, Alison J; Burn, David J; Rochester, Lynn

    2017-11-09

    Dementia is significant in Parkinson's disease (PD) with personal and socioeconomic impact. Early identification of risk is of upmost importance to optimize management. Gait precedes and predicts cognitive decline and dementia in older adults. We aimed to evaluate gait characteristics as predictors of cognitive decline in newly diagnosed PD. One hundred and nineteen participants recruited at diagnosis were assessed at baseline, 18 and 36 months. Baseline gait was characterized by variables that mapped to five domains: pace, rhythm, variability, asymmetry, and postural control. Cognitive assessment included attention, fluctuating attention, executive function, visual memory, and visuospatial function. Mixed-effects models tested independent gait predictors of cognitive decline. Gait characteristics of pace, variability, and postural control predicted decline in fluctuating attention and visual memory, whereas baseline neuropsychological assessment performance did not predict decline. This provides novel evidence for gait as a clinical biomarker for PD cognitive decline in early disease. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

  20. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    Science.gov (United States)

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  1. The immediate effects of a novel auditory and proprioceptive training device on gait after stroke.

    Science.gov (United States)

    Johnson, Eric G; Lohman, Everett B; Rendon, Abel; Dobariya, Ektaben G; Ramani, Shubhada S; Mayer, Lissie E

    2011-07-01

    This case report describes the immediate effects of a new rehabilitation tool on gait in a chronic stroke patient. Specifically, we measured step length symmetry and gait velocity in a 47 year-old male stroke patient who was currently receiving outpatient physical therapy. Objective gait measurements were taken using the GAITRite before, during, and after a 5 minute training session. Step length symmetry improved 26% during the first minute of training, 71% by the fifth minute of training, and 72% after a 5 minute rest period post-training. Gait velocity increased by 5.5% after 5 minutes of training. Clinical research is warranted to validate this new training tool as a useful adjunctive rehabilitation activity for improving spatial and temporal aspects of gait after stroke.

  2. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  3. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...

  4. LSTM for diagnosis of neurodegenerative diseases using gait data

    Science.gov (United States)

    Zhao, Aite; Qi, Lin; Li, Jie; Dong, Junyu; Yu, Hui

    2018-04-01

    Neurodegenerative diseases (NDs) usually cause gait disorders and postural disorders, which provides an important basis for NDs diagnosis. By observing and analyzing these clinical manifestations, medical specialists finally give diagnostic results to the patient, which is inefficient and can be easily affected by doctors' subjectivity. In this paper, we propose a two-layer Long Short-Term Memory (LSTM) model to learn the gait patterns exhibited in the three NDs. The model was trained and tested using temporal data that was recorded by force-sensitive resistors including time series, such as stride interval and swing interval. Our proposed method outperforms other methods in literature in accordance with accuracy of the predicted diagnostic result. Our approach aims at providing the quantitative assessment so that to indicate the diagnosis and treatment of these neurodegenerative diseases in clinic

  5. Gait alterations in the UAE population with and without diabetic complications using both traditional and entropy measures.

    Science.gov (United States)

    Khalaf, Kinda; Al-Angari, Haitham M; Khandoker, Ahsan H; Lee, Sungmun; Almahmeed, Wael; Al Safar, Habiba S; Jelinek, Herbert F

    2017-10-01

    Diabetic foot, one of the most common and debilitating manifestations of type 2 diabetes mellitus (T2DM), is the leading cause of worldwide non-traumatic lower extremity amputations. Diabetics who are at risk of ulceration are currently mainly identified by a thorough clinical examination of the feet, which typically does not show clear symptoms during the early stages of disease progression. In this study, we used a non-linear dynamics tool, gait entropy (GaitEN), in addition to traditional linear gait analysis methods, to investigate gait alterations amongst diabetic patients with combinations of three types of T2DM related complications: retinopathy, diabetic peripheral neuropathy (DPN) and nephropathy. Peak plantar pressure (PPP) was not significantly different in the group with DPN as compared to the control group (diabetics with no complications, CONT) in the forefoot region (DPN: mean±SD: 396±69.4kPa, CONT: 409±68.9kPa), although it was significantly lower in the heel region (DPN: mean±SD: 285±43.1.4kPa, CONT: 295±61.8kPa). On the other hand, gait entropy was significantly lower for the DPN compared to CONT group (DPN: 0.95±0.34, CONT: 1.03±0.28, pentropy was maintained when neuropathy was combined with either retinopathy or nephropathy. For the group with all three complications (ALL-C), the entropy was higher than CONT (ALL-C: 1.07±0.26). This may indicate an intrinsic sensorimotor feedback mechanism for the DPN patients to regulate their gait. However, this feedback gets weaker as patients develop multiple complications. Further analysis with longer walking time and different speeds is needed to verify the entropy results. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gait Disturbances as Specific Predictive Markers of the First Fall Onset in Elderly People: A Two-Year Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste eMignardot

    2014-02-01

    Full Text Available Falls are common in the elderly, and potentially result in injury and disability. Thus, preventing falls as soon as possible in older adults is a public health priority, yet there is no specific marker that is predictive of the first fall onset. We hypothesized that gait features should be the most relevant variables for predicting the first fall. Clinical baseline characteristics (e.g., gender, cognitive function were assessed in 259 home-dwelling people aged 66 to 75 that had never fallen. Likewise, global kinetic behavior of gait was recorded from 22 variables in 1036 walking tests with an accelerometric gait analysis system. Afterward, monthly telephone monitoring reported the date of the first fall over 24 months. A principal components analysis was used to assess the relationship between gait variables and fall status in four groups: non-fallers, fallers from 0 to 6 months, fallers from 6 to 12 months and fallers from 12 to 24 months. The association of significant principal components (PC with an increased risk of first fall was then evaluated using the area under the Receiver Operator Characteristic Curve (ROC. No effect of clinical confounding variables was shown as a function of groups. An eigenvalue decomposition of the correlation matrix identified a large statistical PC1 (termed Global kinetics of gait pattern, which accounted for 36.7% of total variance. Principal component loadings also revealed a PC2 (12.6% of total variance, related to the Global gait regularity. Subsequent ANOVAs showed that only PC1 discriminated the fall status during the first 6 months, while PC2 discriminated the first fall onset between 6 and 12 months. After one year, any PC was associated with falls. These results were bolstered by the ROC analyses, showing good predictive models of the first fall during the first six months or from 6 to 12 months.Overall, these findings suggest that the performance of a standardized walking test at least once a year

  7. Gait Complexity and Regularity Are Differently Modulated by Treadmill Walking in Parkinson's Disease and Healthy Population

    Directory of Open Access Journals (Sweden)

    Thibault Warlop

    2018-02-01

    Full Text Available Variability raises considerable interest as a promising and sensitive marker of dysfunction in physiology, in particular in neurosciences. Both internally (e.g., pathology and/or externally (e.g., environment generated perturbations and the neuro-mechanical responses to them contribute to the fluctuating dynamics of locomotion. Defective internal gait control in Parkinson's disease (PD, resulting in typical timing gait disorders, is characterized by the breakdown of the temporal organization of stride duration variability. Influence of external cue on gait pattern could be detrimental or advantageous depending on situations (healthy or pathological gait pattern, respectively. As well as being an interesting rehabilitative approach in PD, treadmills are usually implemented in laboratory settings to perform instrumented gait analysis including gait variability assessment. However, possibly acting as an external pacemaker, treadmill could modulate the temporal organization of gait variability of PD patients which could invalidate any gait variability assessment. This study aimed to investigate the immediate influence of treadmill walking (TW on the temporal organization of stride duration variability in PD and healthy population. Here, we analyzed the gait pattern of 20 PD patients and 15 healthy age-matched subjects walking on overground and on a motorized-treadmill (randomized order at a self-selected speed. The temporal organization and regularity of time series of walking were assessed on 512 consecutive strides and assessed by the application of non-linear mathematical methods (i.e., the detrended fluctuation analysis and power spectral density; and sample entropy, for the temporal organization and regularity of gait variability, respectively. A more temporally organized and regular gait pattern seems to emerge from TW in PD while no influence was observed on healthy gait pattern. Treadmill could afford the necessary framework to regulate gait

  8. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain.

    Science.gov (United States)

    Hicks, Gregory E; Sions, J Megan; Coyle, Peter C; Pohlig, Ryan T

    2017-06-01

    Previous studies in older adults have identified that chronic low back pain (CLBP) is associated with slower gait speed. Given that slower gait speed is a predictor of greater morbidity and mortality among older adults, it is important to understand the underlying spatiotemporal characteristics of gait among older adults with CLBP. The purposes of this study were to determine (1) if there are differences in spatiotemporal parameters of gait between older adults with and without CLBP during self-selected and fast walking and (2) whether any of these gait characteristics are correlated with performance of a challenging walking task, e.g. stair negotiation. Spatiotemporal characteristics of gait were evaluated using a computerized walkway in 54 community-dwelling older adults with CLBP and 54 age- and sex-matched healthy controls. Older adults with CLBP walked slower than their pain-free peers during self-selected and fast walking. After controlling for body mass index and gait speed, step width was significantly greater in the CLBP group during the fast walking condition. Within the CLBP group, step width and double limb support time are significantly correlated with stair ascent/descent times. From a clinical perspective, these gait characteristics, which may be indicative of balance performance, may need to be addressed to improve overall gait speed, as well as stair-climbing performance. Future longitudinal studies confirming our findings are needed, as well as investigations focused on developing interventions to improve gait speed and decrease subsequent risk of mobility decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson's disease patients.

    Science.gov (United States)

    Samotus, Olivia; Parrent, Andrew; Jog, Mandar

    2018-02-14

    Benefits of dopaminergic therapy and deep brain stimulation are limited and unpredictable for axial symptoms in Parkinson's disease. Dorsal spinal cord stimulation may be a new therapeutic approach. The objective of this study was to investigate the therapeutic effect of spinal cord stimulation on gait including freezing of gait in advanced PD patients. Five male PD participants with significant gait disturbances and freezing of gait underwent midthoracic spinal cord stimulation. Spinal cord stimulation combinations (200-500 μs/30-130 Hz) at suprathreshold intensity were tested over a 1- to 4-month period, and the effects of spinal cord stimulation were studied 6 months after spinal cord stimulation surgery. Protokinetics Walkway measured gait parameters. Z scores per gait variable established each participant's best spinal cord stimulation setting. Timed sit-to-stand and automated freezing-of-gait detection using foot pressures were analyzed. Freezing of Gait Questionnaire (FOG-Q), UPDRS motor items, and activities-specific balance confidence scale were completed at each study visit. Spinal cord stimulation setting combinations of 300-400 μs/30-130 Hz provided gait improvements. Although on-medication/on-stimulation at 6 months, mean step length, stride velocity, and sit-to-stand improved by 38.8%, 42.3%, and 50.3%, respectively, mean UPDRS, Freezing of Gait Questionnaire, and activities-specific balance confidence scale scores improved by 33.5%, 26.8%, and 71.4%, respectively. The mean number of freezing-of-gait episodes reduced significantly from 16 presurgery to 0 at 6 months while patients were on levodopa and off stimulation. By using objective measures to detect dynamic gait characteristics, the therapeutic potential of spinal cord stimulation was optimized to each participant's characteristics. This pilot study demonstrated the safety and significant therapeutic outcome of spinal cord stimulation in advanced PD patients, and thus a larger and longer

  10. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. First clinical results with the new innovative robotic gait trainer LOPES

    NARCIS (Netherlands)

    Nikamp-Simons, Corien Diana Maria; van Asseldonk, Edwin H.F.; Folkersma, Marjanne; van den Hoek, Joelle; Postma, Martijn; Buurke, Jaap

    2009-01-01

    The results of five chronic stroke patients in a first explorative training study using the new robotic device LOPES are presented. Conclusions Positive effects of gait training in LOPES were found in four out of five subjects. Future study will focus on including larger sample sizes and introducing

  12. The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis.

    Science.gov (United States)

    O'Connell, Megan; Farrokhi, Shawn; Fitzgerald, G Kelley

    2016-01-01

    The association between high mechanical knee joint loading during gait with onset and progression of knee osteoarthritis has been extensively studied. However, less attention has been given to risk factors related to increased pain during gait. The purpose of this study was to evaluate knee joint moments and clinical characteristics that may be associated with gait-related knee pain in patients with knee osteoarthritis. Sixty-seven participants with knee osteoarthritis were stratified into three groups of no pain (n=18), mild pain (n=27), or moderate/severe pain (n=22) based on their self-reported symptoms during gait. All participants underwent three-dimensional gait analysis. Quadriceps strength, knee extension range of motion, radiographic knee alignment and self-reported measures of global pain and function were also quantified. The moderate/severe pain group demonstrated worse global pain (Pknee flexion moments during the midstance phase of gait compared to the no pain group (P=0.02). Additionally, the moderate/severe pain group demonstrated greater varus knee malalignment (P=0.009), which was associated with higher weight acceptance peak knee adduction moments (P=0.003) and worse global pain (P=0.003) and physical function scores (P=0.006). Greater knee flexion moment is present during the midstance phase of gait in patients with knee osteoarthritis and moderate/severe pain during gait. Additionally, greater varus malalignment may be a sign of increased global knee joint dysfunction that can influence many activities of daily living beyond gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  14. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  15. Ergonomics, anthropometrics, and kinetic evaluation of gait: A case study

    OpenAIRE

    Lima, Rosa; Fontes, Liliana Magalhães Campos; Arezes, P.; Carvalho, Miguel

    2015-01-01

    This study aimed to develop appropriate changes in a pair of shoes in order to improve the gait of an individual selected for this case study. This analysis took into account ergonomic aspects, namely those relating to the individual’s anthropometrics. Gait analysis was done with the adapted footwear both before and after intervention.A conventional X-ray was performed, which revealed a 29-mm left lower limb shortening and possible foot adduction. The anthropometric assessment confir...

  16. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.

    Science.gov (United States)

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan

    2011-01-01

    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients. © 2011 IEEE

  17. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Directory of Open Access Journals (Sweden)

    James Gardiner

    Full Text Available Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  18. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Science.gov (United States)

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  19. Kinematic analysis of subtalar eversion during gait in women with fibromyalgia.

    Science.gov (United States)

    Silva, Ana Paula; Chagas, Daniel das Virgens; Cavaliere, Maria Lúcia; Pinto, Sérgio; de Oliveira Barbosa, José Silvio; Batista, Luiz Alberto

    2016-08-01

    To analyse the subtalar eversion range of motion during walking in women with fibromyalgia. Twenty women diagnosed with fibromyalgia were directed to walk barefoot at comfortable and self-paced speed on a 7m walkway. Subtalar eversion range of motion was measured using the difference between the maximum and minimum values of subtalar eversion in stance phase. A range of motion between 4°-6° was considered as reference values for subtalar eversion during gait. Descriptive statistics were performed. In both right and left lower limb analysis of subtalar eversion range of motion, five women showed joint hypomobility, and twelve showed hypermobility. Only one patient performed unaltered subtalar eversion range of motion in both lower limbs. Both joints expressed high variability, and there were no significant differences between the right and left sides. The findings suggest that biomechanical function of the subtalar joint eversion during the loading response phase of gait in women with fibromyalgia, by excessive rigidity or complacency joint, tends to be impaired. This finding suggests that the indication of walking as an auxiliary strategy in the treatment of women with fibromyalgia should be preceded by thorough examination of the mechanical conditions of the subtalar joint of the patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults

    NARCIS (Netherlands)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-01-01

    BACKGROUND: Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. RESEARCH QUESTION: We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults.

  1. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    Science.gov (United States)

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The immediate effects of a novel auditory and proprioceptive training device on gait after stroke

    Directory of Open Access Journals (Sweden)

    Eric G. Johnson

    2011-07-01

    Full Text Available This case report describes the immediate effects of a new rehabilitation tool on gait in a chronic stroke patient. Specifically, we measured step length symmetry and gait velocity in a 47 year-old male stroke patient who was currently receiving outpatient physical therapy. Objective gait measurements were taken using the GAITRite before, during, and after a 5 minute training session. Step length symmetry improved 26% during the first minute of training, 71% by the fifth minute of training, and 72% after a 5 minute rest period post-training. Gait velocity increased by 5.5% after 5 minutes of training. Clinical research is warranted to validate this new training tool as a useful adjunctive rehabilitation activity for improving spatial and temporal aspects of gait after stroke.

  3. Is Freezing of Gait in Parkinson's Disease a Result of Multiple Gait Impairments? Implications for Treatment

    Science.gov (United States)

    Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.

    2012-01-01

    Several gait impairments have been associated with freezing of gait (FOG) in patients with Parkinson's disease (PD). These include deteriorations in rhythm control, gait symmetry, bilateral coordination of gait, dynamic postural control and step scaling. We suggest that these seemingly independent gait features may have mutual interactions which, during certain circumstances, jointly drive the predisposed locomotion system into a FOG episode. This new theoretical framework is illustrated by the evaluation of the potential relationships between the so-called “sequence effect”, that is, impairments in step scaling, and gait asymmetry just prior to FOG. We further discuss what factors influence gait control to maintain functional gait. “Triggers”, for example, such as attention shifts or trajectory transitions, may precede FOG. We propose distinct categories of interventions and describe examples of existing work that support this idea: (a) interventions which aim to maintain a good level of locomotion control especially with respect to aspects related to FOG; (b) those that aim at avoiding FOG “triggers”; and (c) those that merely aim to escape from FOG once it occurs. The proposed theoretical framework sets the stage for testable hypotheses regarding the mechanisms that lead to FOG and may also lead to new treatment ideas. PMID:22288021

  4. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  5. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  6. Effects of obesity and chronic low back pain on gait

    Directory of Open Access Journals (Sweden)

    Galli Manuela

    2011-09-01

    Full Text Available Abstract Background Obesity is often associated with low back pain (LBP. Despite empirical evidence that LBP induces gait abnormalities, there is a lack of quantitative analysis of the combined effect of obesity and LBP on gait. The aim of our study was to quantify the gait pattern of obese subjects with and without LBP and normal-mass controls by using Gait Analysis (GA, in order to investigate the cumulative effects of obesity and LBP on gait. Methods Eight obese females with chronic LBP (OLG; age: 40.5 ± 10.1 years; BMI: 42.39 ± 5.47 Kg/m2, 10 obese females (OG; age: 33.6 ± 5.2 years; BMI: 39.26 ± 2.39 Kg/m2 and 10 healthy female subjects (CG; age: 33.4 ± 9.6 years; BMI: 22.8 ± 3.2 Kg/m2, were enrolled in this study and assessed with video recording and GA. Results and Discussion OLG showed longer stance duration and shorter step length when compared to OG and CG. They also had a low pelvis and hip ROM on the frontal plane, a low knee flexion in the swing phase and knee range of motion, a low dorsiflexion in stance and swing as compared to OG. No statistically significant differences were found in ankle power generation at push-off between OLG and OG, which appeared lower if compared to CG. At hip level, both OLG and OG exhibited high power generation levels during stance, with OLG showing the highest values. Conclusions Our results demonstrated that the association of obesity and LBP affects more the gait pattern than obesity alone. OLG were in fact characterised by an altered knee and ankle strategy during gait as compared to OG and CG. These elements may help optimizing rehabilitation planning and treatment in these patients.

  7. Measuring medial longitudinal arch deformation during gait. A reliability study

    DEFF Research Database (Denmark)

    Bencke, Jesper; Christiansen, Ditte; Jensen, Anne Kathrine Bendrup

    2012-01-01

    during gait and to compare this method with a static measure and a 2D dynamic method. Fifty-two feet (26 healthy male participants) were tested twice 4-9 days apart in a biomechanical gait analysis laboratory using a 3D three-marker foot model, a 2D video-based model for the measurement of MLAD during...

  8. [Do you measure gait speed in your daily clinical practice? A review].

    Science.gov (United States)

    Inzitari, Marco; Calle, Alicia; Esteve, Anna; Casas, Álvaro; Torrents, Núria; Martínez, Nicolás

    Gait speed (GS), measured at usual pace, is an easy, quick, reliable, non-expensive and informative measurement. With a standard chronometer, like those that currently found in mobile phones, and with two marks on the floor, trained health professionals obtain a more objective and quick measurement compared with many geriatric scales used in daily practice. GS is one of the pillars of the frailty phenotype, and is closely related to sarcopenia. It is a powerful marker of falls incidence, disability and death, mostly useful in the screening of older adults that live in the community. In recent years, the evidence is reinforcing the usefulness of GS in acute care and post-surgical patients. Its use in patients with cognitive impairment is suggested, due to the strong link between cognitive and physical function. Although GS meets the criteria for a good geriatric screening tool, it is not much used in clinical practice. Why? This review has different aims: (i)disentangling the relationship between GS and frailty; (ii)reviewing the protocols to measure GS and the reference values; (iii)reviewing the evidence in different clinical groups (older adults with frailty, with cognitive impairment, with cancer or other pathologies), and in different settings (community, acute care, rehabilitation), and (iv)speculating about the reasons for its poor use in clinical practice and about the gaps to be filled. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. [Subjective Gait Stability in the Elderly].

    Science.gov (United States)

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  10. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  11. Gait patterns in Prader-Willi and Down syndrome patients

    Directory of Open Access Journals (Sweden)

    Albertini Giorgio

    2010-06-01

    Full Text Available Abstract Background Prader-Willi (PWS and Down Syndrome (DS are two genetic disorders characterised by some common clinical and functional features. A quantitative description and comparison of their patterns would contribute to a deeper understanding of the determinants of motor disability in these two syndromes. The aim of this study was to measure gait pattern in PWS and DS in order to provide data for developing evidence-based deficit-specific or common rehabilitation strategies. Methods 19 PWS patients (17.7-40 yr and 21 DS patients (18-39 yr were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of normal-weight controls (Control Group: CG; 33.4 + 9.6 yr. Results and Discussion The results show that PWS and DS are characterised by different gait strategies. Spatio-temporal parameters indicated a cautious, abnormal gait in both groups, but DS walked with a less stable strategy than PWS. As for kinematics, DS showed a significantly reduced hip and knee flexion, especially at initial contact and ankle range of motion than PWS. DS were characterised by lower ranges of motion (p Conclusions Our data show that DS walk with a less physiological gait pattern than PWS. Based on our results, PWS and DS patients need targeted rehabilitation and exercise prescription. Common to both groups is the aim to improve hypotonia, muscle strength and motor control during gait. In DS, improving pelvis and hip range of motion should represent a major specific goal to optimize gait pattern.

  12. Temporal and Spatial Characterization of Gait Pattern in Rodents as an Animal model of Cerebrovascular Lesion

    Directory of Open Access Journals (Sweden)

    Jaison D Cucarián

    2017-09-01

    Full Text Available Animal experimentation is crucial for the advance in the understanding of pathophysiological mechanisms and their application on both clinical diagnosis and neuro-rehabilitation. Particularly, rodent brain lesion is commonly used in the modeling of locomotor, somatosensory and cognitive symptoms. The automated rodent gait analysis has been proposed as a tool for studying locomotor and sensory abilities and its use includes the identification of functional alterations, structural adaptations as well as neuro-rehabilitation mechanisms. From that standpoint, the effectiveness of many therapeutic intervention (i.e. physical exercises has been documented in rodents and humans. The translation from experimental data to clinical conditions requires the continuous collaboration and feedback between researchers and health clinicians looking for the selection of the best rehabilitation protocols obtained from animal research. Here we will show some locomotor alterations, the traditional methods used to assess motor dysfunction and gait abnormalities in rodent models with stroke. The aim of this review is to show some motor deficiencies and some methods used to establish gait disturbances in rodents with cerebrovascular lesion. The review included the search of defined terms (MeSH in PychINFO, Medline and Web of Science, between January 2000 and January 2017. Qualitative and narrative reports, dissertations, end course works and conference resumes were discarded. The review focuses on some clinical signs, their effects on rodent locomotor activity, some methodologies used to create lesion and to study motor function, some assessment methods and some translational aspects.

  13. Preliminary Results for a Monocular Marker-Free Gait Measurement System

    Directory of Open Access Journals (Sweden)

    Jane Courtney

    2006-01-01

    Full Text Available This paper presents results from a novel monocular marker-free gait measurement system. The system was designed for physical and occupational therapists to monitor the progress of patients through therapy. It is based on a novel human motion capturemethod derived from model-based tracking. Testing is performed on two monocular, sagittal-view, sample gait videos – one with both the environment and the subject’s appearance and movement restricted and one in a natural environment with unrestrictedclothing and motion. Results of the modelling, tracking and analysis stages are presented along with standard gait graphs and parameters.

  14. Fall-related gait characteristics on the treadmill and in daily life.

    Science.gov (United States)

    Rispens, Sietse M; Van Dieën, Jaap H; Van Schooten, Kimberley S; Cofré Lizama, L Eduardo; Daffertshofer, Andreas; Beek, Peter J; Pijnappels, Mirjam

    2016-02-02

    Body-worn sensors allow assessment of gait characteristics that are predictive of fall risk, both when measured during treadmill walking and in daily life. The present study aimed to assess differences as well as associations between fall-related gait characteristics measured on a treadmill and in daily life. In a cross-sectional study, trunk accelerations of 18 older adults (72.3 ± 4.5 years) were recorded during walking on a treadmill (Dynaport Hybrid sensor) and during daily life (Dynaport MoveMonitor). A comprehensive set of 32 fall-risk-related gait characteristics was estimated and compared between both settings. For 25 gait characteristics, a systematic difference between treadmill and daily-life measurements was found. Gait was more variable, less symmetric, and less stable during daily life. Fourteen characteristics showed a significant correlation between treadmill and daily-life measurements, including stride time and regularity (0.48  0.25). Gait characteristics revealed less stable, less symmetric, and more variable gait during daily life than on a treadmill, yet about half of the characteristics were significantly correlated between conditions. These results suggest that daily-life gait analysis is sensitive to static personal factors (i.e., physical and cognitive capacity) as well as dynamic situational factors (i.e., behavior and environment), which may both represent determinants of fall risk.

  15. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration

    Science.gov (United States)

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-01-01

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727

  16. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  17. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  18. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  19. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    OpenAIRE

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved signifi...

  20. Early Detection of Amyotrophic Lateral Sclerosis (ALS using the Gait Motor Signal Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Behzad Abedi

    2016-06-01

    Full Text Available Abstract Background: ALS is a progressive neuro-muscular disease, which is characterized by motor neuron loss in the Central Nervous System (CNS and Peripheral Nervous System (PNS. Up to now, no accurate clinical method for diagnosis of the disease have been provided. In most cases, ALS patients are unable to walk normally due to abnormalities in the nervous system. For this reason, one of the most appropriate methods in the diagnosis of ALS from other neurological diseases or from healthy volunteers is the gait motor signal analysis. Materials and Methods: In this study, gait signals available in Physionet database have been used. The database consists of 13 patients with ALS (ALS1, ALS2, …, ALS13 and 16 normal subjects (CO1, CO2, …, CO16. The patients participating in this study had no history of any psychiatric disorders and did not use any assistive device for walking, like wheelchair. The power spectrum of stride, swing, and stance of normal subjects and patients was computed for both left and right legs. To provide appropriate inputs for the classifier, the frequency band of the power spectrum of all signals was divided into eight equal parts. The area of all regions was computed. Three frequency band of the lower range of power spectra selected as inputs of the classifier. Results: In this study, power spectra, as frequency attributes, were used to explore probable differences of time series in both patients and healthy subjects. Conclusion: Artificial Neural Network was used to classify normal and ALS groups with the accuracy of 83% for the test data set. It seems that the present algorithm can be used in discriminating patients from normal subjects in the early stages of the disease.

  1. Outcomes following kinesthetic feedback for gait training in a direct access environment: a case report on social wellness in relation to gait impairment.

    Science.gov (United States)

    Blievernicht, Jessica; Sullivan, Kate; Erickson, Mark R

    2012-05-01

    The purpose of this case report was to describe the outcomes following the use of kinesthetic feedback as a primary intervention strategy for gait training. The plan of care for this 22-year-old female addressed the patient's social wellness goal of "walking more normally," using motor learning principles. At initial examination, the patient demonstrated asymmetries for gait kinematics between the left and right lower extremity (analyzed using video motion analysis), pattern of force distribution at the foot, and activation of specific lower extremity muscles (as measured by surface electromyography). Interventions for this patient consisted of neuromuscular and body awareness training, with an emphasis on kinesthetic feedback. Weekly sessions lasted 30-60 minutes over 4 weeks. The patient was prescribed a home program of walking 30-60 minutes three times/week at a comfortable pace while concentrating on gait correction through kinesthetic awareness of specific deviations. Following intervention, the patient's gait improved across all objective measures. She reported receiving positive comments from others regarding improved gait and a twofold increase in her walking confidence. Outcomes support a broadened scope of practice that incorporates previously unreported integration of a patient's social wellness goals into patient management.

  2. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis.

    OpenAIRE

    Veerbeek, J.M.; Koolstra, M.; Ket, J.C.F.; Wegen, van, E.E.H.; Kwakkel, G.

    2011-01-01

    BACKGROUND AND PURPOSE-: The purpose of this study was to determine the effects of augmented exercise therapy on gait, gait-related activities, and (basic and extended) activities of daily living within the first 6 months poststroke. METHODS-: A systematic literature search in electronic databases from 1990 until October 2010 was performed. Randomized controlled trials were included in which the experimental group spent augmented time in lower-limb exercise therapy compared with the control g...

  3. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    Science.gov (United States)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improved gait after repetitive locomotor training in children with cerebral palsy.

    Science.gov (United States)

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  5. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  6. Gait, mobility, and falls in older people

    OpenAIRE

    Gschwind, Yves Josef

    2012-01-01

    My doctoral thesis contributes to the understanding of gait, mobility, and falls in older people. All presented projects investigated the most prominent and sensitive markers for fall-related gait changes, that is gait velocity and gait variability. Based on the measurement of these spatio-temporal gait parameters, particularly when using a change-sensitive dual task paradigm, it is possible to make conclusions regarding walking, balance, activities of daily living, and falls in o...

  7. Early presentation of gait impairment in Wolfram Syndrome

    Directory of Open Access Journals (Sweden)

    Pickett Kristen A

    2012-12-01

    Full Text Available Abstract Background Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD individuals may be detectable across the course of the disease. Methods Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Results Across all tasks, individuals with WFS walked slower (p = 0.03, took shorter (p ≤ 0.001 and wider (p ≤ 0.001 steps and spent a greater proportion of the gait cycle in double support (p = 0.03 compared to TD individuals. Cadence did not differ between groups (p = 0.62. Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045 and dual task forward walking (rs= 0.720, p = 0.006 tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001. Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03 and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03. Conclusions Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits

  8. Early presentation of gait impairment in Wolfram Syndrome.

    Science.gov (United States)

    Pickett, Kristen A; Duncan, Ryan P; Hoekel, James; Marshall, Bess; Hershey, Tamara; Earhart, Gammon M

    2012-12-08

    Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease. Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Across all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider (p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs = 0.564, p = 0.045) and dual task forward walking (rs = 0.720, p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001). Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = -0.59, p = 0.03) and percent of gait cycle in double support during backward walking (rs = -0.64, p = 0.03). Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated with WFS, and may be a reflection of early cerebellar and

  9. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    2003-01-01

    This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's

  10. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0.

    Science.gov (United States)

    Galea, Mary P; Cofré Lizama, L Eduardo; Butzkueven, Helmut; Kilpatrick, Trevor J

    2017-01-01

    It is not currently known whether gait and balance measures are responsive to deterioration of motor function in multiple sclerosis (MS) patients with low EDSS scores (≤3.0). The aim of this study was to quantify MS-related gait and balance deterioration over a 12-month period. Thirty-eight participants with MS (33 female, mean age: 41.1 ± 8.3 years), mean time since diagnosis 2.2 ± 4.1 years, EDSS score ≤3.0 and without clinical evidence of gait deterioration, were recruited. Participants performed walking trials and Functional and Lateral Reach Tests. Kinematics of the ankle and knee, and electromyography of the tibialis anterior and medial gastrocnemius muscles were also measured. Three participants reported relapses with worsening EDSS scores and 4 non-relapsing participants had worse EDSS scores at 12 months. There were significant decreases in mean gait speed, stride length and balance scores, and a significant increase in double support. Marked changes in ankle kinematics, with decreased medial gastrocnemius activity were observed. Gait and balance performance of non-disabled RRMS participants may progressively decline, even in the absence of both acute clinical relapse and change in clinical status measured by the EDSS.

  11. Impact of Dual Task on Parkinson's Disease, Stroke and Ataxia Patients' Gait: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Michelly Arjona Maciel

    2014-01-01

    Full Text Available Introduction: Performing dual task for neurological patients is complex and it can be influenced by the localization of the neurological lesion. Objective: Comparing the impact of dual task on gait in patients with Parkinson's disease, stroke and ataxia. Method: Subjects with Parkinson's disease (PD in initial phase, stroke and ataxia, with independent gait, were evaluated while doing simple gait, with cognitive, motor and cognitive-motor gait demand, assessing average speed and number of steps. Results: Ataxia and stroke patients, compared with PD, showed an increase in the number of steps and decrease the average speed on the march with cognitive demand. Subjects with PD performed better on tasks when compared to others. Conclusion: In this study the impact of dual task was lower in Parkinson's disease patients.

  12. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults

    Science.gov (United States)

    Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn

    2013-01-01

    In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. An excellent agreement with intra-class correlation coefficients of 0.99 and repeatability coefficients between 0.7% and 6.6% was found for walking speed, step time and step length given the limitation of frame rate and voxel resolution. The system was further tested with 10 seniors in a scripted scenario representing everyday activities in an unstructured environment. The system results demonstrate the capability of being used as a daily gait assessment tool for fall risk assessment and other medical applications. Furthermore, we found that residents displayed different gait patterns during their clinical GAITRite tests compared to the realistic scenario, namely a mean increase of 21% in walking speed, a mean decrease of 12% in step time, and a mean increase of 6% in step length. These findings provide support for continuous gait assessment in the home for capturing habitual gait. PMID:24235111

  13. Changes in spatiotemporal gait parameters following intravenous immunoglobulin treatment for chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Vo, Mary L; Chin, Russell L; Miranda, Caroline; Latov, Norman

    2017-10-01

    Gait impairment is a common presenting symptom in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, gait parameters have not previously been evaluated in detail as potential independent outcome measures. We prospectively measured changes in spatiotemporal gait parameters of 20 patients with CIDP at baseline and following treatment with intravenous immunoglobulin (IVIG), using GAITRite® a computerized walkway system with embedded sensors. Overall, study patients showed significant improvements in gait velocity, cadence, stride length, double support time, stance phase, and swing phase following IVIG treatment. Mean changes in velocity, stance phase, and swing phase, exhibited the greatest statistical significance among the subgroup that exhibited clinically meaningful improvement in Inflammatory Neuropathy Cause and Treatment disability score, Medical Research Council sum score, and grip strength. Assessment of gait parameters, in particular velocity, step phase and swing phase, is a potentially sensitive outcome measure for evaluating treatment response in CIDP. Muscle Nerve 56: 732-736, 2017. © 2017 Wiley Periodicals, Inc.

  14. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    modules to train individuals to distinguish gait deviations (trunk motion and lower-limb motion). Each of these modules help trainers improve their...AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool PRINCIPAL INVESTIGATOR: Dr. Karim Abdel-Malek CONTRACTING...study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities

  15. Gait analysis of the lower limb in patients with rheumatoid arthritis: A systematic review

    NARCIS (Netherlands)

    Baan, H.; Dubbeldam, Rosemary; Nene, Anand; van de Laar, Mart A F J

    2012-01-01

    Introduction In rheumatoid arthritis (RA), signs and symptoms of feet and ankle are common. To evaluate the dynamic function of feet and ankles, namely walking, a variety of gait studies have been published. In this systematic review, we provide a systematic overview of the available gait studies in

  16. A DATA-MINING BASED METHOD FOR THE GAIT PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Marcelo Rudek

    2015-12-01

    Full Text Available The paper presents a method developed for the gait classification based on the analysis of the trajectory of the pressure centres (CoP extracted from the contact points of the feet with the ground during walking. The data acquirement is performed ba means of a walkway with embedded tactile sensors. The proposed method includes capturing procedures, standardization of data, creation of an organized repository (data warehouse, and development of a process mining. A graphical analysis is applied to looking at the footprint signature patterns. The aim is to obtain a visual interpretation of the grouping by situating it into the normal walking patterns or deviations associated with an individual way of walking. The method consists of data classification automation which divides them into healthy and non-healthy subjects in order to assist in rehabilitation treatments for the people with related mobility problems.

  17. Cognitive motor intervention for gait and balance in Parkinson's disease: systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Xue-Qiang; Pi, Yan-Ling; Chen, Bing-Lin; Wang, Ru; Li, Xin; Chen, Pei-Jie

    2016-02-01

    We performed a systematic review and meta-analysis to assess the effect of cognitive motor intervention (CMI) on gait and balance in Parkinson's disease. PubMed, Embase, Cochrane Library, CINAHL, Web of Science, PEDro, and China Biology Medicine disc. We included randomized controlled trials (RCTs) and non RCTs. Two reviewers independently evaluated articles for eligibility and quality and serially abstracted data. A standardized mean difference ± standard error and 95% confidence interval (CI) was calculated for each study using Hedge's g to quantify the treatment effect. Nine trials with 181 subjects, four randomized controlled trials, and five single group intervention studies were included. The pooling revealed that cognitive motor intervention can improve gait speed (Hedge's g = 0.643 ± 0.191; 95% CI: 0.269 to 1.017, P = 0.001), stride time (Hedge's g = -0.536 ± 0.167; 95% CI: -0.862 to -0.209, P = 0.001), Berg Balance Scale (Hedge's g = 0.783 ± 0.289; 95% CI: 0.218 to 1.349, P = 0.007), Unipedal Stance Test (Hedge's g = 0.440 ± 0.189; 95% CI: 0.07 to 0.81, P =0.02). The systematic review demonstrates that cognitive motor intervention is effective for gait and balance in Parkinson's disease. However, the paper is limited by the quality of the included trials. © The Author(s) 2015.

  18. Relation of Stump Length with Various Gait Parameters in Trans-tibial Amputee

    Directory of Open Access Journals (Sweden)

    Koyel Majumdar

    2008-07-01

    Full Text Available The purpose of this paper is evaluating the impact of stump length of unilateral below knee amputees (BKA on different gait parameters. Nine unilateral BKA were chosen and divided into three groups comprising patients with short, medium, and long stump length. Each of them underwent gait analysis test by Computer Dynography (CDG system to measure the gait parameters. It was found that the ground reaction force is higher in the patients with medium stump length whereas the velocity, step length both for the prosthetic and sound limb and cadence were high in longer stump length. Statistical analysis shows a significant difference (p<0.05 between the gait parameters of BKA with medium and longer stump length. The patients with longer stump length were more efficient than medium and short stump patients as they consumed comparatively lesser energy while walking with self-selected velocity and conventional (Solid ankle cushioned heel SACH foot.

  19. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    Science.gov (United States)

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee.

    Science.gov (United States)

    Nishino, Katsutoshi; Omori, Go; Koga, Yoshio; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji; Tanaka, Masaei; Arakawa, Masaaki

    2015-07-01

    We recently developed a new method for three-dimensional evaluation of mechanical factors affecting knee joint in order to help identify factors that contribute to the progression of knee osteoarthritis (KOA). This study aimed to verify the clinical validity of our method by evaluating knee joint dynamics during gait. Subjects were 41 individuals (14 normal knees; 8 mild KOAs; 19 severe KOAs). The positions of skin markers attached to the body were captured during gait, and bi-planar X-ray images of the lower extremities were obtained in standing position. The positional relationship between the markers and femorotibial bones was determined from the X-ray images. Combining this relationship with gait capture allowed for the estimation of relative movement between femorotibial bones. We also calculated the point of intersection of loading axis of knee on the tibial proximal surface (LAK point) to analyze knee joint dynamics. Knee flexion range in subjects with severe KOA during gait was significantly smaller than that in those with normal knees (p=0.011), and knee adduction in those with severe KOA was significantly larger than in those with mild KOA (p<0.000). LAK point was locally loaded on the medial compartment of the tibial surface as KOA progressed, with LAK point of subjects with severe KOA rapidly shifting medially during loading response. Local loading and medial shear force were applied to the tibial surface during stance phase as medial KOA progressed. Our findings suggest that our method is useful for the quantitative evaluation of mechanical factors that affect KOA progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits

    Science.gov (United States)

    Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi

    2018-01-01

    Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory

  2. Associations of vitamin D deficiency with postoperative gait and mortality among patients with fractures of the proximal femur

    Directory of Open Access Journals (Sweden)

    David Nicoletti Gumieiro

    2015-04-01

    Full Text Available OBJECTIVE: To assess whether serum vitamin D concentration is associated with gait status and mortality among patients with fractures of the proximal femur, six months after suffering the fracture.METHODS: Consecutive patients aged ≥65 years with fractures of the proximal femur, who were admitted to the orthopedics and traumatology ward of our service between January and December 2011, were prospectively evaluated. Clinical, radiological, epidemiological and laboratory analyses were performed, including vitamin D. The patients underwent surgery and were followed up as outpatients, with return visits 15, 30, 60 and 180 days after discharge, at which the outcomes of gait and mortality were evaluated.RESULTS: Eighty-eight patients were evaluated. Two of them were excluded because they presented oncological fractures. Thus, 86 patients of mean age 80.2 ± 7.3 years were studied. In relation to serum vitamin D, the mean was 27.8 ± 14.5 ng/mL, and 33.7% of the patients presented deficiency of this vitamin. In relation to gait, univariate and multivariate logistic regression showed that vitamin D deficiency was not associated with gait recovery, even after adjustment for gender, age and type of fracture (OR: 1.463; 95% CI: 0.524-4.088; p = 0.469. Regarding mortality, Cox regression analysis showed that vitamin D deficiency was not related to its occurrence within six months, even in multivariate analysis (HR: 0.627; 95% CI: 0.180-2.191; p = 0.465.CONCLUSION: Serum vitamin D concentration was not related to gait status and/or mortality among patients with fractures of the proximal femur, six months after suffering the fracture.

  3. [Effects of cognitive state on balance disturbances and gait disorders in institutionalised elderly].

    Science.gov (United States)

    Díaz-Pelegrina, Ana; Cabrera-Martos, Irene; López-Torres, Isabel; Rodríguez-Torres, Janet; Valenza, Marie Carmen

    2016-01-01

    Ageing has been linked to a high prevalence of cognitive impairment, which, in turn, has been related to balance disturbances and gait disorders. The aim of this study was to identify whether there are differences between subjects with and without cognitive impairment regarding the quality of gait and balance. An observational study was conducted on institutionalised people older than 65 years (n=82). Gait and balance was evaluated after the assessment of cognitive impairment using the Mini-Mental State Examination (MMSE). Single and dual tests were used including, the 6-minute walking, stride length, and gait speed. Timed Up and Go tests were also used to evaluate balance. The participants were divided into three groups: 28 subjects in the group without cognitive impairment (MMSE≥27), 29 subjects with mild (27Gait assessment showed significant between-groups differences in all the variables (P<.05). The variables assessing balance also showed significantly worse values in those groups with cognitive impairment. The severity of cognitive impairment is related to impaired balance and gait, thus the clinical monitoring of these variables in population at risk is needed. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    Directory of Open Access Journals (Sweden)

    Hiraoka Koichi

    2014-10-01

    Full Text Available The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the start tone, the condition of initiating gait with the non-preferred leg indicated by the start tone, and the condition of initiating gait with the leg spontaneously chosen. These findings fail to support the view that the process of choosing the initial swing leg affects APA during gait initiation. The lateral displacement of the center of pressure in the period in which shifting the center of pressure to the initial swing phase before initiating gait with the left leg indicated by the external cue was significantly larger than that when initiating gait with the right leg indicated by the external cue, and significantly larger than that when initiating gait with the leg spontaneously chosen. Weight shift to the initial swing side during APA during gait initiation was found to be asymmetrical when choosing the leg in response to an external cue

  5. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.

    Science.gov (United States)

    Scivoletto, Giorgio; Ivanenko, Yuri; Morganti, Barbara; Grasso, Renato; Zago, Mirka; Lacquaniti, Francesco; Ditunno, John; Molinari, Marco

    2007-01-01

    Recent data on spinal cord plasticity after spinal cord injury (SCI) were reviewed to analyze the influence of training on the neurophysiological organization of locomotor spinal circuits in SCI patients. In particular, the authors studied the relationship between central pattern generators (CPGs) and motor neuron pool activation during gait. An analysis of the relations between locomotor recovery and compensatory mechanisms focuses on the hierarchical organization of gait parameters and allows characterizing kinematic parameters that are highly stable during different gait conditions and in recovered gait after SCI. The importance of training characteristics and the use of robotic/automated devices in gait recovery is analyzed and discussed. The role of CPG in defining kinematic gait parameters is summarized, and spatio-temporal maps of EMG activity during gait are used to clarify the role of CPG plasticity in sustaining gait recovery.

  7. Confronting hip resurfacing and big femoral head replacement gait analysis

    Directory of Open Access Journals (Sweden)

    Panagiotis K. Karampinas

    2014-03-01

    Full Text Available Improved hip kinematics and bone preservation have been reported after resurfacing total hip replacement (THRS. On the other hand, hip kinematics with standard total hip replacement (THR is optimized with large diameter femoral heads (BFH-THR. The purpose of this study is to evaluate the functional outcomes of THRS and BFH-THR and correlate these results to bone preservation or the large femoral heads. Thirty-one patients were included in the study. Gait speed, postural balance, proprioception and overall performance. Our results demonstrated a non-statistically significant improvement in gait, postural balance and proprioception in the THRS confronting to BFH-THR group. THRS provide identical outcomes to traditional BFH-THR. The THRS choice as bone preserving procedure in younger patients is still to be evaluated.

  8. Tic-induced gait dysfunction.

    NARCIS (Netherlands)

    Fasano, A.; Ruzicka, E.; Bloem, B.R.

    2012-01-01

    BACKGROUND: Many neurological disorders impair gait, but only a few of them are episodic or paroxysmal, the most important ones being freezing of gait and paroxysmal dyskinesias. METHODS: We describe 4 patients with tic disorders (3 with Tourette syndrome, and 1 with a tic disorder secondary to

  9. Effects of novel tubing gait on neuromuscular imbalance in cerebral palsy.

    Science.gov (United States)

    Shin, Yoon Kyum; Lee, Dong Ryul; Kim, Do Hyun; Lee, Jae Jin; You, Sung Joshua Hyun; Yi, Chung Hwi; Jeon, Hye Seon

    2014-01-01

    Gait impairments from a neuromuscular imbalance are crucial issues in cerebral palsy. The purpose of our study was to compare the effects of the assistive tubing gait (ATG) and assistive-resistive tubing gait (ARTG) on improving the vasti and hamstring muscle imbalance during the initial contact to mid-stance phases in individuals with spastic diplegic cerebral palsy (CP). Fourteen age-matched individuals including seven normal individuals (11.7 years) and seven individuals with CP (12.9 years) were recruited. All participants underwent electromyography (EMG) measurement of the unilateral vasti and hamstring muscle activity during the three gait training conditions of no-tubing gait (NTG), ATG, and ARTG. A statistical one-way repeated-measure analysis of variance (ANOVA) was used to determine differences in the vasti and hamstring activity, the vasti/hamstring ratio, and the knee joint angle across the three gait training conditions for each group. The initial vasti and hamstring muscle imbalance in CP was significantly improved by applying the ARTG compared with the ATG. The vasti/hamstring ratio during the ARTG was compatible with the ratio value obtained from the NTG of normal individuals. The knee joint angle in CP was not improved in this short-term intervention. The ARTG proportionately increased the vasti activation and reciprocally inhibited the hamstring activity, subsequently improving the neuromuscular imbalance associated with the flexed-knee gait in individuals with spastic diplegic CP.

  10. Neuromorphic walking gait control.

    Science.gov (United States)

    Still, Susanne; Hepp, Klaus; Douglas, Rodney J

    2006-03-01

    We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.

  11. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients

    NARCIS (Netherlands)

    Ekkelenkamp, R.; Veneman, J.F.; van der Kooij, Herman

    2005-01-01

    LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic

  12. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial.

    Science.gov (United States)

    Collange Grecco, Luanda André; de Almeida Carvalho Duarte, Natália; Mendonça, Mariana E; Galli, Manuela; Fregni, Felipe; Oliveira, Claudia Santos

    2015-12-01

    To compare the effects of anodal vs. sham transcranial direct current stimulation combined with virtual reality training for improving gait in children with cerebral palsy. A pilot, randomized, controlled, double-blind, clinical trial. Rehabilitation clinics. A total of 20 children with diparesis owing to cerebral palsy. The experimental group received anodal stimulation and the control group received sham stimulation over the primary motor cortex during virtual reality training. All patients underwent the same training programme involving a virtual reality (10 sessions). Evaluations were performed before and after the intervention as well as at the one-month follow-up and involved gait analysis, the Gross Motor Function Measure, the Pediatric Evaluation Disability Inventory and the determination of motor evoked potentials. The experimental group had a better performance regarding gait velocity (experimental group: 0.63 ±0.17 to 0.85 ±0.11 m/s; control group: 0.73 ±0.15 to 0.61 ±0.15 m/s), cadence (experimental group: 97.4 ±14.1 to 116.8 ±8.7 steps/minute; control group: 92.6 ±10.4 to 99.7 ±9.7 steps/minute), gross motor function (dimension D experimental group: 59.7 ±12.8 to 74.9 ±13.8; control group: 58.9 ±10.4 to 69.4 ±9.3; dimension E experimental group: 59.0 ±10.9 to 79.1 ±8.5; control group: 60.3 ±10.1 to 67.4 ±11.4) and independent mobility (experimental group: 34.3 ±5.9 to 43.8 ±75.3; control group: 34.4 ±8.3 to 37.7 ±7.7). Moreover, transcranial direct current stimulation led to a significant increase in motor evoked potential (experimental group: 1.4 ±0.7 to 2.6 ±0.4; control group: 1.3 ±0.6 to 1.6 ±0.4). These preliminary findings support the hypothesis that anodal transcranial direct current stimulation combined with virtual reality training could be a useful tool for improving gait in children with cerebral palsy. © The Author(s) 2015.

  13. Effects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Marlieke Scholten

    2017-10-01

    Full Text Available Conventional subthalamic deep brain stimulation for Parkinson’s disease (PD presumably modulates the spatial component of gait. However, temporal dysregulation of gait is one of the factors that is tightly associated with freezing of gait (FOG. Temporal locomotor integration may be modulated differentially at distinct levels of the basal ganglia. Owing to its specific descending brainstem projections, stimulation of the substantia nigra pars reticulata (SNr area might modulate spatial and temporal parameters of gait differentially compared to standard subthalamic nucleus (STN stimulation. Here, we aimed to characterize the differential effect of STN or SNr stimulation on kinematic gait parameters. We analyzed biomechanical parameters during unconstrained over ground walking in 12 PD patients with subthalamic deep brain stimulation and FOG. Patients performed walking in three therapeutic conditions: (i Off stimulation, (ii STN stimulation (alone, and (iii SNr stimulation (alone. SNr stimulation was achieved by stimulating the most caudal contact of the electrode. We recorded gait using three sensors (each containing a tri-axial accelerometer, gyroscope, and magnetometer attached on both left and right ankle, and to the lumbar spine. STN stimulation improved both the spatial features (stride length, stride length variability and the temporal parameters of gait. SNr stimulation improved temporal parameters of gait (swing time asymmetry. Correlation analysis suggested that patients with more medial localization of the SNr contact associated with a stronger regularization of gait. These results suggest that SNr stimulation might support temporal regularization of gait integration.

  14. Validation of simplified centre of mass models during gait in individuals with chronic stroke.

    Science.gov (United States)

    Huntley, Andrew H; Schinkel-Ivy, Alison; Aqui, Anthony; Mansfield, Avril

    2017-10-01

    The feasibility of using a multiple segment (full-body) kinematic model in clinical gait assessment is difficult when considering obstacles such as time and cost constraints. While simplified gait models have been explored in healthy individuals, no such work to date has been conducted in a stroke population. The aim of this study was to quantify the errors of simplified kinematic models for chronic stroke gait assessment. Sixteen individuals with chronic stroke (>6months), outfitted with full body kinematic markers, performed a series of gait trials. Three centre of mass models were computed: (i) 13-segment whole-body model, (ii) 3 segment head-trunk-pelvis model, and (iii) 1 segment pelvis model. Root mean squared error differences were compared between models, along with correlations to measures of stroke severity. Error differences revealed that, while both models were similar in the mediolateral direction, the head-trunk-pelvis model had less error in the anteroposterior direction and the pelvis model had less error in the vertical direction. There was some evidence that the head-trunk-pelvis model error is influenced in the mediolateral direction for individuals with more severe strokes, as a few significant correlations were observed between the head-trunk-pelvis model and measures of stroke severity. These findings demonstrate the utility and robustness of the pelvis model for clinical gait assessment in individuals with chronic stroke. Low error in the mediolateral and vertical directions is especially important when considering potential stability analyses during gait for this population, as lateral stability has been previously linked to fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Using gastrocnemius sEMG and plasma α-synuclein for the prediction of freezing of gait in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Wang

    Full Text Available Freezing of gait (FOG is a complicated gait disturbance in Parkinson's disease (PD and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS and Freezing of gait questionnaire (FOG-Q. Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG and without FOG (PD-FOG, based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups.

  16. Measuring the effect of treatment on gait quality in children with cerebral palsy – a retrospective study

    DEFF Research Database (Denmark)

    Larsen, Anders Holsgaard; Skov Sørensen, Rasmus; Jensen, Carsten

    and subsequently, as a follow-up. Thus, the effect of treatment on gait quality in children with CP may be quantified. Purpose of study: In a retrospective study we investigated the effect of treatment on gait quality (measured by GDI) in children with CP. Materials and Methods: Data from children (...Background: Gait Deviation Index (GDI) describes the overall gait quality and summarizes it into a single score based upon three- dimensional gait analysis (3DGA). In the Region of Southern Denmark, children with cerebral palsy (CP) are referred to 3DGA if surgical intervention is considered......) diagnosed with CP and referred to 3DGA (either as a diagnostic instrument or for the purpose of follow- up) was extracted from a local database for the year 2012. The GDI score was calculated for each child and limb and used for further analysis. Results: 29 children with follow-up analysis were referred...

  17. Gait recognition based on integral outline

    Science.gov (United States)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  18. Changes of gait pattern in children with Charcot-Marie-Tooth disease type 1A: a 18 months follow-up study.

    Science.gov (United States)

    Ferrarin, Maurizio; Lencioni, Tiziana; Rabuffetti, Marco; Moroni, Isabella; Pagliano, Emanuela; Pareyson, Davide

    2013-07-02

    In a previous study we identified 3 different gait patterns in a group of children with CMT1A disease: Normal-like (NL), Foot-drop (FD), Foot-drop and Push-off Deficit (FD&POD). Goal of the present study was to perform a follow-up evaluation of the same group of patients to analyze possible changes of gait features in relation to disease progression or specific therapy. Nineteen children with CMT1A were evaluated clinically (CMT-Examination Score and Overall Neuropathy Limitation Scale) and through gait analysis 18.2±1.5 months after a baseline evaluation. Meanwhile, 3 of them had foot surgery. Fifteen out of the 16 non-operated patients significantly changed at least one of the two parameters associated to primary signs (FD and/or POD). Eleven participants worsened at least one parameter and 9 improved one parameter. CMTES significantly worsened for the group of non-operated patients. However, there was no change in CMTES score in 4 patients and in ONLS score in 11. At subgroup level, participants originally belonging to NL group showed a trend towards a foot-drop deficit (-15%, ns); FD and FD&POD subgroups did not change their primary signs, although significant changes were identified individually. All 3 patients operated have improved push-off and proximal joint patterns during walking. Clinical scores did not change within any sub-group. Subtle changes occurring in 1.5 year in gait features of CMT1A children can be instrumentally identified. Such changes show a large inter-subject variability, with some patients even improving their walking pattern. There is anecdotal evidence that foot surgery may improve the push-off phase of gait.

  19. Motor coordination during gait after anterior cruciate ligament injury: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2013-08-01

    Full Text Available To investigate the state of art about motor coordination during gait in patients with anterior cruciate ligament (ACL injury. Searches were carried out, limited from 1980 to 2010, in various databases with keywords related to motor coordination, gait and ACL injury. From the analysis of titles and applying the inclusion/exclusion criteria 24 studies were initially selected and, after reading the abstract, eight studies remained in the final analysis. ACL deficient patients tend to have a more rigid and less variable gait, while injured patients with ACL reconstruction have less rigid and more variable gait with respect to healthy individuals. The overall results suggest the existence of differences in motor coordination between the segments with intact and those with injured knee, regardless of ligament reconstruction. ACL injured patients present aspects related to the impairment of the capability to adapt the gait pattern to different environmental conditions, possibly leading to premature knee degeneration. However, the techniques used for biomechanical gait data processing are limited with respect to obtaining information that leads to the development of intervention strategies aimed at the rehabilitation of that injury, since it is not possible to identify the location within the gait cycle where the differences could be explained.

  20. Somatosensory inputs by application of KinesioTaping: Effects on spasticity, balance, and gait in chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Federica eTamburella

    2014-05-01

    Full Text Available Introduction: Leg paralysis, spasticity, reduced inter limb coordination and impaired balance are considered the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI. In the last years KinesioTaping (KT application has been proposed for enhancing sensory inputs, decreasing spasticity via proprioception feedback and relieving abnormal muscle tension. No studies addressed KT technique on SCI subjects: our goal was to analyze effects of ankle joint KT application on spasticity, balance and gait. Material and Methods: A randomized cross-over case control design was used to compare KT and conventional non-elastic silk tape (ST application’s effects in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G muscles’ spasticity , balance and gait impairments. Treatment: 48 hours of either KT or ST treatment was followed after 1 week interval by a reverse protocol. Patient treated with KT were subjected to 48 hours of ST treatment and viceversa. Single Y-stripe of Cure©tape (KT and ST were applied to S and G with 0% stretch. Before and after 48 hours of KT and ST application, clinical data of range of motion (ROM, spasticity, clonus, pain, balance and gait were collected. Stabilometric platform assessment of Centre of Pressure (COP movements, bi-dimensional gait analysis and electromyograpich (EMG activity of S, G, Tibialis Anterior and Extensor Hallicus Lungus muscles were also collected. Results: Only After KT treatment significant effects on spasticity, clonus and COP movements, kinematic gait parameters and EMG activities were recorded. Comparison between KT and ST improvements pointed out significant differences for ROM, spasticity, clonus, pain, COP parameters and most of all kinematic gait data. Discussion: KT short term application reduces spasticity and pain and improves balance and gait performances in chronic incomplete SCI subjects.

  1. Robot-Crawler: Statically Balanced Gaits

    Directory of Open Access Journals (Sweden)

    S. Parasuraman

    2012-12-01

    Full Text Available This paper presents a new statically balanced walking technique for a robot-crawler. The gait design and the control of the robot crawler aim to achieve stability while walking. This statically balanced gait has to be designed in a different fashion to a wheeled robot, as there are discrete changes in the support of the robot when its legs are lifted or placed on the ground. The stability of the robot depends on how the legs are positioned relative to the body and also on the sequence and timing with which the legs are lifted and placed. In order to reduce the risk of stability loss while walking, a measure for the robot stability (so-called stability margin is typically used in the gait and motion planning. In this paper different biological behaviours of four-legged animals are studied and mapped on a quad-legrobot-crawler. Experiments were carried out on the forward walking gaits of lizards and horses. Based on these results, the stability margins of different gaits are discussed and compared.

  2. Equine Assisted Therapy and Changes in Gait for a Young Adult Female with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Katherine J. Coffey

    2015-10-01

    Full Text Available The purpose of this study was to examine the effects of equine assisted therapy on selected gait parameters in a person with Down syndrome. One female participant with Down syndrome completed two therapeutic horseback riding programs, each consisting of six riding sessions. Specific gait characteristics were analyzed with a trend analysis of the data by examining the means of the different variables. The trend analysis revealed a difference in stride length as well as hip and knee angle. These results indicate that over the course of the two therapeutic horseback riding programs, changes in gait occurred. Therefore, therapeutic horseback riding may have the potential to benefit gait characteristics and stability in young adult females with Down syndrome; however, further research is warranted.

  3. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.

    Science.gov (United States)

    Cao, Jinghui; Xie, Sheng Quan; Das, Raj; Zhu, Guo L

    2014-12-01

    A large number of gait rehabilitation robots, together with a variety of control strategies, have been developed and evaluated during the last decade. Initially, control strategies applied to rehabilitation robots were adapted from those applied to traditional industrial robots. However, these strategies cannot optimise effectiveness of gait rehabilitation. As a result, researchers have been investigating control strategies tailored for the needs of rehabilitation. Among these control strategies, assisted-as-needed (AAN) control is one of the most popular research topics in this field. AAN training strategies have gained the theoretical and practical evidence based backup from motor learning principles and clinical studies. Various approaches to AAN training have been proposed and investigated by research groups all around the world. This article presents a review on control algorithms of gait rehabilitation robots to summarise related knowledge and investigate potential trends of development. There are existing review papers on control strategies of rehabilitation robots. The review by Marchal-Crespo and Reinkensmeyer (2009) had a broad cover of control strategies of all kinds of rehabilitation robots. Hussain et al. (2011) had specifically focused on treadmill gait training robots and covered a limited number of control implementations on them. This review article encompasses more detailed information on control strategies for robot assisted gait rehabilitation, but is not limited to treadmill based training. It also investigates the potential to further develop assist-as-needed gait training based on assessments of patients' ability. In this paper, control strategies are generally divided into the trajectory tracking control and AAN control. The review covers these two basic categories, as well as other control algorithm and technologies derived from them, such as biofeedback control. Assessments on human gait ability are also included to investigate how to

  4. A Full-Body Layered Deformable Model for Automatic Model-Based Gait Recognition

    Science.gov (United States)

    Lu, Haiping; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    2007-12-01

    This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations). There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the automatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the estimated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs, the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can serve as an analysis tool for studying factors affecting the gait under various conditions.

  5. Longitudinal relationships among posturography and gait measures in multiple sclerosis.

    Science.gov (United States)

    Fritz, Nora E; Newsome, Scott D; Eloyan, Ani; Marasigan, Rhul Evans R; Calabresi, Peter A; Zackowski, Kathleen M

    2015-05-19

    Gait and balance dysfunction frequently occurs early in the multiple sclerosis (MS) disease course. Hence, we sought to determine the longitudinal relationships among quantitative measures of gait and balance in individuals with MS. Fifty-seven ambulatory individuals with MS (28 relapsing-remitting, 29 progressive) were evaluated using posturography, quantitative sensorimotor and gait measures, and overall MS disability with the Expanded Disability Status Scale at each session. Our cohort's age was 45.8 ± 10.4 years (mean ± SD), follow-up time 32.8 ± 15.4 months, median Expanded Disability Status Scale score 3.5, and 56% were women. Poorer performance on balance measures was related to slower walking velocity. Two posturography measures, the anterior-posterior sway and sway during static eyes open, feet apart conditions, were significant contributors to walk velocity over time (approximate R(2) = 0.95), such that poorer performance on the posturography measures was related to slower walking velocity. Similarly, the anterior-posterior sway and sway during static eyes closed, feet together conditions were also significant contributors to the Timed 25-Foot Walk performance over time (approximate R(2) = 0.83). This longitudinal cohort study establishes a strong relationship between clinical gait measures and posturography. The data show that increases in static posturography and reductions in dynamic posturography are associated with a decline in walk velocity and Timed 25-Foot Walk performance over time. Furthermore, longitudinal balance measures predict future walking performance. Quantitative walking and balance measures are important additions to clinical testing to explore longitudinal change and understand fall risk in this progressive disease population. © 2015 American Academy of Neurology.

  6. Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis

    Directory of Open Access Journals (Sweden)

    Tura Andrea

    2012-02-01

    Full Text Available Abstract Background Symmetry and regularity of gait are essential outcomes of gait retraining programs, especially in lower-limb amputees. This study aims presenting an algorithm to automatically compute symmetry and regularity indices, and assessing the minimum number of strides for appropriate evaluation of gait symmetry and regularity through autocorrelation of acceleration signals. Methods Ten transfemoral amputees (AMP and ten control subjects (CTRL were studied. Subjects wore an accelerometer and were asked to walk for 70 m at their natural speed (twice. Reference values of step and stride regularity indices (Ad1 and Ad2 were obtained by autocorrelation analysis of the vertical and antero-posterior acceleration signals, excluding initial and final strides. The Ad1 and Ad2 coefficients were then computed at different stages by analyzing increasing portions of the signals (considering both the signals cleaned by initial and final strides, and the whole signals. At each stage, the difference between Ad1 and Ad2 values and the corresponding reference values were compared with the minimum detectable difference, MDD, of the index. If that difference was less than MDD, it was assumed that the portion of signal used in the analysis was of sufficient length to allow reliable estimation of the autocorrelation coefficient. Results All Ad1 and Ad2 indices were lower in AMP than in CTRL (P Conclusions Without the need to identify and eliminate the phases of gait initiation and termination, twenty strides can provide a reasonable amount of information to reliably estimate gait regularity in transfemoral amputees.

  7. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P

    2007-01-01

    Full Text Available The principal objectives of arthroplasty are relief of pain and enhancement of range of motion. Currently, postoperative pain and functional capacity are assessed largely on the basis of subjective evaluation scores. Because of the lack of control inherent in this method it is often difficult to interpret data presented by different observers in the critical evaluation of surgical method, new components and modes of rehabilitation. Gait analysis is a rapid, simple and reliable method to assess functional outcome. This study was undertaken in an effort to evaluate the gait characteristics of patients who underwent arthroplasty, using an Ultraflex gait analyzer. Materials and Methods: The study was based on the assessment of gait and weight-bearing pattern of both hips in patients who underwent total hip replacement and its comparison with an age and sex-matched control group. Twenty subjects of total arthroplasty group having unilateral involvement, operated by posterior approach at our institution with a minimum six-month postoperative period were selected. Control group was age and sex-matched, randomly selected from the general population. Gait analysis was done using Ultraflex gait analyzer. Gait parameters and vertical ground reaction forces assessment was done by measuring the gait cycle properties, step time parameters and VGRF variables. Data of affected limb was compared with unaffected limb as well as control group to assess the weight-bearing pattern. Statistical analysis was done by′t′ test. Results: Frequency is reduced and gait cycle duration increased in total arthroplasty group as compared with control. Step time parameters including Step time, Stance time and Single support time are significantly reduced ( P value < .05 while Double support time and Single swing time are significantly increased ( P value < .05 in the THR group. Forces over each sensor are increased more on the unaffected limb of the THR group as compared to

  8. Biomechanics of normal and pathological gait: implications for understanding human locomotor control.

    Science.gov (United States)

    Winter, D A

    1989-12-01

    The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.

  9. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E

    2018-01-01

    Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.

  10. Exercises to Improve Gait Abnormalities

    Science.gov (United States)

    ... Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner of how a ...

  11. Comparing electro- and mechano-myographic muscle activation patterns in self-paced pediatric gait.

    Science.gov (United States)

    Plewa, Katherine; Samadani, Ali; Chau, Tom

    2017-10-01

    Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study

    Directory of Open Access Journals (Sweden)

    van Lummel Rob C

    2011-05-01

    Full Text Available Abstract Background Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. Methods Twelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA, and aspects of the bilateral coordination of gait (BCG were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI, a combination of accuracy and consistency of the phase generation. Results Group differences (p Conclusions In ambulatory post-stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients.

  13. Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study

    Science.gov (United States)

    2011-01-01

    Background Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. Methods Twelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA), and aspects of the bilateral coordination of gait (BCG) were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI), a combination of accuracy and consistency of the phase generation. Results Group differences (p stroke patients (r = 0.94; p stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients. PMID:21545703

  14. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment

    NARCIS (Netherlands)

    Kikkert, Lisette H. J. C.; Vuillerme, Nicolas; van Campen, Jos P.; Appels, Bregje A.; Hortobagyi, Tibor; Lamoth, Claudine J.

    2017-01-01

    Background: A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect

  15. Stride dynamics, gait variability and prospective falls risk in active community dwelling older women.

    Science.gov (United States)

    Paterson, Kade; Hill, Keith; Lythgo, Noel

    2011-02-01

    Measures of walking instability such as stride dynamics and gait variability have been shown to identify future fallers in older adult populations with gait limitations or mobility disorders. This study investigated whether measures of walking instability can predict future fallers (over a prospective 12 month period) in a group of healthy and active older women. Ninety-seven healthy active women aged between 55 and 90 years walked for 7 min around a continuous walking circuit. Gait data recorded by a GAITRite(®) walkway and foot-mounted accelerometers were used to calculate measures of stride dynamics and gait variability. The participant's physical function and balance were assessed. Fall incidence was monitored over the following 12 months. Inter-limb differences (p≤0.04) in stride dynamics were found for fallers (one or more falls) aged over 70 years, and multiple fallers (two or more falls) aged over 55 years, but not in non-fallers or a combined group of single and non-fallers. No group differences were found in the measures of physical function, balance or gait, including variability. Additionally, no gait variable predicted falls. Reduced coordination of inter-limb dynamics was found in active healthy older fallers and multiple fallers despite no difference in other measures of intrinsic falls risk. Evaluating inter-limb dynamics may be a clinically sensitive technique to detect early gait instability and falls risk in high functioning older adults, prior to change in other measures of physical function, balance and gait. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The Effect of Two Different Cognitive Tests on Gait Parameters during Dual Tasks in Healthy Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Magdalena Hagner-Derengowska

    2016-01-01

    Full Text Available Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis. Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79. For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I while walking only (single task, (II walking while performing a simultaneous simple cognitive task (SCT (dual task, and (III walking while performing a simultaneous complex cognitive task (CCT (dual task. Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed. Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7% and right (by 7% foot gait cycle, shortening of the length of steps made with the right extremity (by 4%, reduction of speed of swings made with the left (by 11% and right (by 8% extremity, and reduction in gait speed (by 6%. Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task.

  17. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    OpenAIRE

    Hiraoka, Koichi; Hatanaka, Ryota; Nikaido, Yasutaka; Jono, Yasutomo; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta

    2014-01-01

    The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA) during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the...

  18. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  19. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    Science.gov (United States)

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  20. Gait of dairy cows on floors with different slipperiness.

    Science.gov (United States)

    Telezhenko, E; Magnusson, M; Bergsten, C

    2017-08-01

    This study assessed the slip resistance of different types of solid flooring in cattle housing using a range of technical tests and gait analysis. Dynamic and static coefficient of friction, skid resistance, and abrasiveness were tested on concrete flooring with a smooth finish, a grooved pattern, or a tamped pattern, acid-resistant mastic asphalt, soft rubber mats, and a worn slatted concrete floor. Coefficients of friction and skid resistance were tested under clean and slurry-soiled conditions. Linear kinematic variables were assessed in 40 cows with trackway measurements after the cows passed over the floors in a straight walk. All gait variables were assessed as deviations from those obtained on the slatted concrete floor, which was used as a baseline. The coefficient of friction tests divided the floors into 3 categories: concrete flooring, which had a low coefficient of friction (0.29-0.41); mastic asphalt flooring, which had medium values (0.38-0.45); and rubber mats, which had high values (0.49-0.57). The highest abrasion (g/10 m) was on the asphalt flooring (4.48), and the concrete flooring with a tamped pattern had significantly higher abrasiveness (2.77) than the other concrete floors (1.26-1.60). Lowest values on the skid-resistance tests (dry/wet) were for smooth concrete (79/35) and mastic asphalt (65/47), especially with a slurry layer on the surface. Gait analysis mainly differentiated floors with higher friction and abrasion by longer strides and better tracking. Step asymmetry was lower on floors with high skid-resistance values. The most secure cow gait, in almost every aspect, was observed on soft rubber mats. Relationships between gait variables and physical floor characteristics ranged from average to weak (partial correlations 0.54-0.16). Thus, none of the physical characteristics alone was informative enough to characterize slip resistance. With reference to gait analysis, the abrasiveness of the hard surfaces was more informative than the

  1. Design and development of a prototype platform for gait analysis

    Science.gov (United States)

    Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.

    2017-04-01

    The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.

  2. Comprehensive non-dimensional normalization of gait data.

    Science.gov (United States)

    Pinzone, Ornella; Schwartz, Michael H; Baker, Richard

    2016-02-01

    Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (pnormalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gait in ageing and associated dementias; its relationship with cognition

    NARCIS (Netherlands)

    Scherder, Erik; Eggermont, Laura; Swaab, Dick; van Heuvelen, Marieke; Kamsma, Yvo; de Greef, Mathieu; van Wijck, Ruud; Mulder, Theo

    2007-01-01

    The focus of this review is on the close relationship between gait and cognition in ageing and associated dementias. This close relationship is supported by epidemiological studies, clinical studies of older people with and without dementia that focused on the intensity of the physical activity,

  4. Comparison of trunk activity during gait initiation and walking in humans.

    Directory of Open Access Journals (Sweden)

    Jean-Charles Ceccato

    Full Text Available To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.

  5. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment.

    Science.gov (United States)

    Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Appels, Bregje A; Hortobágyi, Tibor; Lamoth, Claudine J C

    2017-08-15

    A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect gait, results from healthy old adults cannot easily be extrapolated to geriatric patients. Hence, we (1) quantified gait outcomes based on dynamical systems theory, and (2) determined their discriminative power in three groups: healthy old adults, geriatric patients with- and geriatric patients without cognitive impairment. For the present cross-sectional study, 25 healthy old adults recruited from community (65 ± 5.5 years), and 70 geriatric patients with (n = 39) and without (n = 31) cognitive impairment from the geriatric dayclinic of the MC Slotervaart hospital in Amsterdam (80 ± 6.6 years) were included. Participants walked for 3 min during single- and dual-tasking at self-selected speed while 3D trunk accelerations were registered with an IPod touch G4. We quantified 23 gait outcomes that reflect multiple gait aspects. A multivariate model was built using Partial Least Square- Discriminant Analysis (PLS-DA) that best modelled participant group from gait outcomes. For single-task walking, the PLS-DA model consisted of 4 Latent Variables that explained 63 and 41% of the variance in gait outcomes and group, respectively. Outcomes related to speed, regularity, predictability, and stability of trunk accelerations revealed with the highest discriminative power (VIP > 1). A high proportion of healthy old adults (96 and 93% for single- and dual-task, respectively) was correctly classified based on the gait outcomes. The discrimination of geriatric patients with and without cognitive impairment was poor, with 57% (single-task) and 64% (dual-task) of the patients misclassified. While geriatric patients vs. healthy old adults walked slower, and less regular, predictable, and

  6. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    Science.gov (United States)

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  7. Mini Nutritional Assessment predicts gait status and mortality 6 months after hip fracture.

    Science.gov (United States)

    Gumieiro, David N; Rafacho, Bruna P M; Gonçalves, Andrea F; Tanni, Suzana E; Azevedo, Paula S; Sakane, Daniel T; Carneiro, Carlos A S; Gaspardo, David; Zornoff, Leonardo A M; Pereira, Gilberto J C; Paiva, Sergio A R; Minicucci, Marcos F

    2013-05-01

    The aim of the present study was to evaluate the Mini Nutritional Assessment (MNA), the Nutritional Risk Screening (NRS) 2002 and the American Society of Anesthesiologists Physical Status Score (ASA) as predictors of gait status and mortality 6 months after hip fracture. A total of eighty-eight consecutive patients over the age of 65 years with hip fracture admitted to an orthopaedic unit were prospectively evaluated. Within the first 72 h of admission, each patient's characteristics were recorded, and the MNA, the NRS 2002 and the ASA were performed. Gait status and mortality were evaluated 6 months after hip fracture. Of the total patients, two were excluded because of pathological fractures. The remaining eighty-six patients (aged 80·2 (sd 7·3) years) were studied. Among these patients 76·7 % were female, 69·8 % walked with or without support and 12·8 % died 6 months after the fracture. In a multivariate analysis, only the MNA was associated with gait status 6 months after hip fracture (OR 0·773, 95 % CI 0·663, 0·901; P= 0·001). In the Cox regression model, only the MNA was associated with mortality 6 months after hip fracture (hazard ratio 0·869, 95 % CI 0·757, 0·998; P= 0·04). In conclusion, the MNA best predicts gait status and mortality 6 months after hip fracture. These results suggest that the MNA should be included in the clinical stratification of patients with hip fracture to identify and treat malnutrition in order to improve the outcomes.

  8. Increased Anterior Pelvic Angle Characterizes the Gait of Children with Attention Deficit/Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Naruse, Hiroaki; Fujisawa, Takashi X; Yatsuga, Chiho; Kubota, Masafumi; Matsuo, Hideaki; Takiguchi, Shinichiro; Shimada, Seiichiro; Imai, Yuto; Hiratani, Michio; Kosaka, Hirotaka; Tomoda, Akemi

    2017-01-01

    Children with attention deficit/hyperactivity disorder (ADHD) frequently have motor problems. Previous studies have reported that the characteristic gait in children with ADHD is immature and that subjects demonstrate higher levels of variability in gait characteristics for the lower extremities than healthy controls. However, little is known about body movement during gait in children with ADHD. The purpose of this study was to identify the characteristic body movements associated with ADHD symptoms in children with ADHD. Using a three-dimensional motion analysis system, we compared gait variables in boys with ADHD (n = 19; mean age, 9.58 years) and boys with typical development (TD) (n = 21; mean age, 10.71 years) to determine the specific gait characteristics related to ADHD symptoms. We assessed spatiotemporal gait variables (i.e. speed, stride length, and cadence), and kinematic gait variables (i.e. angle of pelvis, hip, knee, and ankle) to measure body movement when walking at a self-selected pace. In comparison with the TD group, the ADHD group demonstrated significantly higher values in cadence (t = 3.33, p = 0.002) and anterior pelvic angle (t = 3.08, p = 0.004). In multiple regression analysis, anterior pelvic angle was associated with the ADHD rating scale hyperactive/impulsive scores (β = 0.62, t = 2.58, p = 0.025), but not other psychiatric symptoms in the ADHD group. Our results suggest that anterior pelvic angle represents a specific gait variable related to ADHD symptoms. Our kinematic findings could have potential implications for evaluating the body movement in boys with ADHD.

  9. The effect of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation.

    Science.gov (United States)

    Miller, Carol A; Williams, Jennifer E; Durham, Katey L; Hom, Selena C; Smith, Julie L

    2017-10-01

    Many individuals with lower limb loss report concern with walking ability after completing structured traditional rehabilitation. The purpose of this study was to explore the impact of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Repeated measures. The supervised exercise program was offered biweekly for 6 weeks. The GAITRite System by CIR Systems, Inc., the Figure-of-8 Walk Test, and Activity-specific Balance Confidence Scale were used to measure clinical outcomes pre- and post-intervention. In total, 16 participants with lower limb amputation (mean age: 50.8 years) completed the study. A multivariate, repeated measures analysis of variance indicated a statistically significant effect of training across six clinical outcome measures ( F(6, 10) = 4.514, p = .018). Moderate effect sizes were found for the Figure-of-8 Walk Test ( η 2 = .586), Activity-specific Balance Confidence Scale ( η 2 = .504), and gait velocity at comfortable walking speed ( η 2 = .574). The average increase in gait speed was clinically meaningful at .14 m/s. The supervised community-based exercise program implemented in this study was designed to address specific functional needs for individuals with lower limb loss. Each participant experienced clinically meaningful improvements in balance, balance confidence, and walking ability. Clinical relevance The provision of a supervised community-based exercise program, after traditional rehabilitation, provides opportunity to offer a continuum of care that may enhance prosthetic functional ability and active participation in the community for individuals with lower limb amputation.

  10. The value of 'positive' clinical signs for weakness, sensory and gait disorders in conversion disorder: a systematic and narrative review.

    Science.gov (United States)

    Daum, Corinna; Hubschmid, Monica; Aybek, Selma

    2014-02-01

    Experts in the field of conversion disorder have suggested for the upcoming DSM-V edition to put less weight on the associated psychological factors and to emphasise the role of clinical findings. Indeed, a critical step in reaching a diagnosis of conversion disorder is careful bedside neurological examination, aimed at excluding organic signs and identifying 'positive' signs suggestive of a functional disorder. These positive signs are well known to all trained neurologists but their validity is still not established. The aim of this study is to provide current evidence regarding their sensitivity and specificity. We conducted a systematic search on motor, sensory and gait functional signs in Embase, Medline, PsycINfo from 1965 to June 2012. Studies in English, German or French reporting objective data on more than 10 participants in a controlled design were included in a systematic review. Other relevant signs are discussed in a narrative review. Eleven controlled studies (out of 147 eligible articles) describing 14 signs (7 motor, 5 sensory, 2 gait) reported low sensitivity of 8-100% but high specificity of 92-100%. Studies were evidence class III, only two had a blinded design and none reported on inter-rater reliability of the signs. Clinical signs for functional neurological symptoms are numerous but only 14 have been validated; overall they have low sensitivity but high specificity and their use should thus be recommended, especially with the introduction of the new DSM-V criteria.

  11. The dual task effect on gait in adults with intellectual disabilities: is it predictive for falls?

    Science.gov (United States)

    Oppewal, Alyt; Hilgenkamp, Thessa I M

    2017-09-03

    Falling is an important health issue in adults with intellectual disabilities. Their cognitive and motor limitations may result in difficulties with dual tasking (walking and talking), which increases fall risk. Therefore, we assessed the dual task effect on gait in adults with intellectual disabilities, if this dual task effect is predictive for falls, and if this is more predictive than regular walking. Gait characteristics of 31 adults with intellectual disabilities without Down syndrome were assessed with the GAITRite at comfortable speed and during dual tasking (conversation). Falls were collected over a three-month follow-up period. During dual tasking, participants walked slower, with a lower cadence, increased stride time, and shorter stride lengths. They spend less time in swing and single support phase than at comfortable speed. Also swing and single support time became more variable. The dual task effect and walking at comfortable speed were not predictive for falls, although medium effect sizes were found. Dual tasking affects gait in adults with intellectual disabilities. This is an important finding for safe community participation, and must be considered while interacting with adults with intellectual disabilities during daily activities. Possible negative consequences of distractors should be kept in mind. More research is needed to better understand the predictive value of gait for falls. Implications for Rehabilitation Having a conversation while walking affects the gait pattern of adults with intellectual disabilities, possible negative consequences of distractors should be kept in mind. The dual task effect on the width of the gait pattern and stride time variability had the largest effect sizes with future falls, this potential relationship should be kept in mind in clinical practice. The dual task effect on gait is important to consider with regard to safe community participation. Future studies are needed to better understand the predictive

  12. A longitudinal study on dual-tasking effects on gait: cognitive change predicts gait variance in the elderly.

    Directory of Open Access Journals (Sweden)

    Rebecca K MacAulay

    Full Text Available Neuropsychological abilities have found to explain a large proportion of variance in objective measures of walking gait that predict both dementia and falling within the elderly. However, to this date there has been little research on the interplay between changes in these neuropsychological processes and walking gait overtime. To our knowledge, the present study is the first to investigate intra-individual changes in neurocognitive test performance and gait step time at two-time points across a one-year span. Neuropsychological test scores from 440 elderly individuals deemed cognitively normal at Year One were analyzed via repeated measures t-tests to assess for decline in cognitive performance at Year Two. 34 of these 440 individuals neuropsychological test performance significantly declined at Year Two; whereas the "non-decliners" displayed improved memory, working memory, attention/processing speed test performance. Neuropsychological test scores were also submitted to factor analysis at both time points for data reduction purposes and to assess the factor stability overtime. Results at Year One yielded a three-factor solution: Language/Memory, Executive Attention/Processing Speed, and Working Memory. Year Two's test scores also generated a three-factor solution (Working Memory, Language/Executive Attention/Processing Speed, and Memory. Notably, language measures loaded on Executive Attention/Processing Speed rather than on the Memory factor at Year Two. Hierarchal multiple regression revealed that both Executive Attention/Processing Speed and sex significantly predicted variance in dual task step time at both time points. Remarkably, in the "decliners", the magnitude of the contribution of the neuropsychological characteristics to gait variance significantly increased at Year Two. In summary, this study provides longitudinal evidence of the dynamic relationship between intra-individual cognitive change and its influence on dual task gait

  13. The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies.

    Science.gov (United States)

    Schweizer, Katrin; Romkes, Jacqueline; Brunner, Reinald

    2013-09-01

    This study provides an overview on the association between premature plantarflexor muscle activity (PPF), muscle strength, and equinus gait in patients with various pathologies. The purpose was to evaluate whether muscular weakness and biomechanical alterations are aetiological factors for PPF during walking, independent of the underlying pathology. In a retrospective design, 716 patients from our clinical database with 46 different pathologies (orthopaedic and neurologic) were evaluated. Gait analysis data of the patients included kinematics, kinetics, electromyographic activity (EMG) data, and manual muscle strength testing. All patients were clustered three times. First, patients were grouped according to their primary pathology. Second, all patients were again clustered, this time according to their impaired joints. Third, groups of patients with normal EMG or PPF, and equinus or normal foot contact were formed to evaluate the association between PPF and equinus gait. The patient groups derived by the first two cluster methods were further subdivided into patients with normal or reduced muscle strength. Additionally, the phi correlation coefficient was calculated between PPF and equinus gait. Independent of the clustering, PPF was present in all patient groups. Weak patients revealed PPF more frequently. The correlations of PPF and equinus gait were lower than expected, due to patients with normal EMG during loading response and equinus. These patients, however, showed higher gastrocnemius activity prior to foot strike together with lower peak tibialis anterior muscle activity in loading response. Patients with PPF and a normal foot contact possibly apply the plantarflexion-knee extension couple during loading response. While increased gastrocnemius activity around foot strike seems essential for equinus gait, premature gastrocnemius activity does not necessarily produce an equinus gait. We conclude that premature gastrocnemius activity is strongly associated

  14. Gait Recognition Using Image Self-Similarity

    Directory of Open Access Journals (Sweden)

    Chiraz BenAbdelkader

    2004-04-01

    Full Text Available Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Performance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for a data set of 54 people.

  15. Flexible Piezoelectric Sensor-Based Gait Recognition

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2018-02-01

    Full Text Available Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  16. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy.

    Science.gov (United States)

    Teixeira, Fernando Borge; Ramalho Júnior, Amancio; Morais Filho, Mauro César de; Speciali, Danielli Souza; Kawamura, Catia Miyuki; Lopes, José Augusto Fernandes; Blumetti, Francesco Camara

    2018-01-01

    Objective To evaluate the correlation between physical examination data concerning hip rotation and tibial torsion with transverse plane kinematics in children with cerebral palsy; and to determine which time points and events of the gait cycle present higher correlation with physical examination findings. Methods A total of 195 children with cerebral palsy seen at two gait laboratories from 2008 and 2016 were included in this study. Physical examination measurements included internal hip rotation, external hip rotation, mid-point hip rotation and the transmalleolar axis angle. Six kinematic parameters were selected for each segment to assess hip rotation and shank-based foot rotation. Correlations between physical examination and kinematic measures were analyzed by Spearman correlation coefficients, and a significance level of 5% was considered. Results Comparing physical examination measurements of hip rotation and hip kinematics, we found moderate to strong correlations for all variables (pphysical examination and hip rotation kinematics (rho range: 0.48-0.61). Moderate correlations were also found between the transmalleolar axis angle measurement on physical examination and foot rotation kinematics (rho range 0.44-0.56; p<0.001). Conclusion These findings may have clinical implications in the assessment and management of transverse plane gait deviations in children with cerebral palsy.

  17. Effects of using the nintendo wii fit plus platform in the sensorimotor training of gait disorders in Parkinson's disease.

    Science.gov (United States)

    Gonçalves, Giovanna Barros; Leite, Marco Antônio A; Orsini, Marco; Pereira, João Santos

    2014-01-17

    The use of the Nintendo Wii has been considered a good alternative in the motor rehabilitation of individuals with Parkinson's disease (PD), requiring simultaneous interaction to develop strategies for physical, visual, auditory, cognitive, psychological and social activities in the performing of virtual activities, resulting in improvement in functional performance and gait. The aim of this study was to analyze the effect of virtual sensorimotor activity on gait disorders in people with PD. Fifteen subjects with a clinical diagnosis of PD were submitted to the Unified Parkinson's Disease Rating Scale (UPDRS III), Schwab and England Activities of Daily Living Scale (SE), Functional Independence Measure (FIM), and biomechanical gait analysis using digital images taken with a video camera before and after the treatment program. The activities with the Nintendo Wii virtual platform were standardized into three categories: aerobics, balance and Wii plus exercises. Participants carried out separate virtual exercises for 40 min, twice a week, for a total of 14 sessions. The program improved sensorimotor performance in PD gait, with an increase in stride length and gait speed, in addition to a reduction in motor impairment, especially in items of rigidity and flexibility of the lower limbs evaluated by UPDRS III, and greater functional independence, as evidenced in the SE and FIM scales. Improvements in items related to locomotion and stair climbing were also observed. The training was effective in motor recovery in chronic neurodegenerative diseases, showing improvement in motor performance and functional independence in individuals with PD.

  18. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael

    2018-01-01

    Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was

  19. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  20. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    Science.gov (United States)

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.