WorldWideScience

Sample records for clinical decision support

  1. Clinical Decision Support (CDS) Inventory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Clinical Decision Support (CDS) Inventory contains descriptions of past and present CDS projects across the Federal Government. It includes Federal projects,...

  2. Decision support for clinical laboratory capacity planning.

    Science.gov (United States)

    van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M

    1995-01-01

    The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.

  3. Clinical Productivity System - A Decision Support Model

    CERN Document Server

    Bennett, Casey C

    2012-01-01

    Purpose: This goal of this study was to evaluate the effects of a data-driven clinical productivity system that leverages Electronic Health Record (EHR) data to provide productivity decision support functionality in a real-world clinical setting. The system was implemented for a large behavioral health care provider seeing over 75,000 distinct clients a year. Design/methodology/approach: The key metric in this system is a "VPU", which simultaneously optimizes multiple aspects of clinical care. The resulting mathematical value of clinical productivity was hypothesized to tightly link the organization's performance to its expectations and, through transparency and decision support tools at the clinician level, affect significant changes in productivity, quality, and consistency relative to traditional models of clinical productivity. Findings: In only 3 months, every single variable integrated into the VPU system showed significant improvement, including a 30% rise in revenue, 10% rise in clinical percentage, a...

  4. Clinical Decision Support in Pediatric Care

    NARCIS (Netherlands)

    J. Roukema (Jolt)

    2006-01-01

    textabstractThe overall aim of the studies described in this thesis was to investigate and optimize the diagnostic process of (febrile) children presenting to the hospital emergency department (ed), and to study aspects of this process as a base for clinical decision support systems. We discussed

  5. A discussion of clinical decision support services.

    Science.gov (United States)

    Booker, Corenthian Corey J; Andrews, Paige N

    2013-09-01

    The software known as Clinical Decision Support Services (CDSS) has emerged as a buzzword from the explosion of information systems within health care. CDSS is installed within a practice to provide resources and tools to support the utilization of patient data in the provider decision-making process. Additional applications of CDSS include streamlining administrative duties and assisting in cost control. This paper examines the details of CDSS design and implementation to analyze strengths, weaknesses, and feasibility of CDSS for practices of varying sizes and objectives.

  6. Clinical decision support system in dental implantology

    OpenAIRE

    Alexandra Polášková; Jitka Feberová; Taťjána Dostálová; Pavel Kříž; Michaela Seydlová

    2013-01-01

    Implantology is rapidly developing interdisciplinary field providing enormous amounts of data to be classified, evaluated and interpreted. The analysis of clinical data remains a big challenge, because each new system has specific requirements. The aim of study was prepare specific tool for treatment planning. Decision support system is built on Expert system. It is interactive software which provides clinical recommendations and treatment planning. Expert systems are knowledge-based computer...

  7. Clinical decision support system in dental implantology

    Directory of Open Access Journals (Sweden)

    Alexandra Polášková

    2013-06-01

    Full Text Available Implantology is rapidly developing interdisciplinary field providing enormous amounts of data to be classified, evaluated and interpreted. The analysis of clinical data remains a big challenge, because each new system has specific requirements. The aim of study was prepare specific tool for treatment planning. Decision support system is built on Expert system. It is interactive software which provides clinical recommendations and treatment planning. Expert systems are knowledge-based computer programs designed to provide assistance in diagnosis and treatment planning. These systems are used for health care (dentistry, medicine, pharmacy etc.. The application contained the medical history analysis to obtaining information useful in formulating a diagnosis and providing implant insertion and prosthetic reconstruction to the patient; the diagnostic examination of dental implant procedure; implant positioning diagnosis – 3-D measurement; diagnostic information for treatment planning; treatment plan in the form of objective measurement of implant placement that helps surgeon and prosthodontics. The decision algorithm implemented by programming language is used. Core of program is an expert knowledge programming like a decision tree. The analysis of the decision-making process for implant treatment in general practice is prepared and analyzed.

  8. Clinical Decision Support Systems: A Useful Tool in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Kolostoumpis G.

    2012-01-01

    Full Text Available The possibility of supporting in decision – making shows an increase in recent years. Based on mathematic simulation tools, knowledge databases, processing methods, medical data and methods, artificial intelligence for coding of the available knowledge and for resolving complex problems arising into clinical practice. Aim: the aim of this review is to present the development of new methods and modern services, in clinical practice and the emergence in their implementation. Data and methods: the methodology that was followed included research of articles that referred to health sector and modern technologies, at the electronic data bases “pubmed” and “medline”. Results: Is a useful tool for medical experts using characteristics and medical data used by the doctors. Constitute innovation for the medical community, and ensure the support of clinical decisions with an overall way by providing a comprehensive solution in the light of the integration of computational decision support systems into clinical practice. Conclusions: Decision Support Systems contribute to improving the quality of health services with simultaneous impoundment of costs (i.e. avoid medical errors

  9. Clinical decision support tools: analysis of online drug information databases

    OpenAIRE

    Seamon Matthew J; Polen Hyla H; Marsh Wallace A; Clauson Kevin A; Ortiz Blanca I

    2007-01-01

    Abstract Background Online drug information databases are used to assist in enhancing clinical decision support. However, the choice of which online database to consult, purchase or subscribe to is likely made based on subjective elements such as history of use, familiarity, or availability during professional training. The purpose of this study was to evaluate clinical decision support tools for drug information by systematically comparing the most commonly used online drug information datab...

  10. Virtual medical record implementation for enhancing clinical decision support.

    Science.gov (United States)

    Gomoi, Valentin-Sergiu; Dragu, Daniel; Stoicu-Tivadar, Vasile

    2012-01-01

    Development of clinical decision support systems (CDS) is a process which highly depends on the local databases, this resulting in low interoperability. To increase the interoperability of CDS a standard representation of clinical information is needed. The paper suggests a CDS architecture which integrates several HL7 standards and the new vMR (virtual Medical Record). The clinical information for the CDS systems (the vMR) is represented with Topic Maps technology. Beside the implementation of the vMR, the architecture integrates: a Data Manager, an interface, a decision making system (based on Egadss), a retrieving data module. Conclusions are issued.

  11. Semantic Interoperability in Clinical Decision Support Systems: A Systematic Review.

    Science.gov (United States)

    Marco-Ruiz, Luis; Bellika, Johan Gustav

    2015-01-01

    The interoperability of Clinical Decision Support (CDS) systems with other health information systems has become one of the main limitations to their broad adoption. Semantic interoperability must be granted in order to share CDS modules across different health information systems. Currently, numerous standards for different purposes are available to enable the interoperability of CDS systems. We performed a literature review to identify and provide an overview of the available standards that enable CDS interoperability in the areas of clinical information, decision logic, terminology, and web service interfaces.

  12. Clinical Decision Support for Vascular Disease in Community Family Practice

    Science.gov (United States)

    Keshavjee, K; Holbrook, AM; Lau, E; Esporlas-Jewer, I; Troyan, S

    2006-01-01

    The COMPETE III Vascular Disease Tracker (C3VT) is a personalized, Web-based, clinical decision support tool that provides patients and physicians access to a patient’s 16 individual vascular risk markers, specific advice for each marker and links to best practices in vascular disease management. It utilizes the chronic care model1 so that physicians can better manage patients with chronic diseases. Over 1100 patients have been enrolled into the COMPETE III study to date.

  13. Improving the implementation of clinical decision support systems.

    Science.gov (United States)

    Rüping, Stefan; Anguita, Alberto; Bucur, Anca; Cirstea, Traian Cristian; Jacobs, Björn; Torge, Antje

    2013-01-01

    Clinical decision support (CDS) systems promise to improve the quality of clinical care by helping physicians to make better, more informed decisions efficiently. However, the design and testing of CDS systems for practical medical use is cumbersome. It has been recognized that this may easily lead to a problematic mismatch between the developers' idea of the system and requirements from clinical practice. In this paper, we will present an approach to reduce the complexity of constructing a CDS system. The approach is based on an ontological annotation of data resources, which improves standardization and the semantic processing of data. This, in turn, allows to use data mining tools to automatically create hypotheses for CDS models, which reduces the manual workload in the creation of a new model. The approach is implemented in the context of EU research project p-medicine. A proof of concept implementation on data from an existing Leukemia study is presented.

  14. Bayesian networks for clinical decision support : a rational approach to dynamic decision-making under uncertainty

    NARCIS (Netherlands)

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed

  15. Clinical decision support tools: analysis of online drug information databases

    Directory of Open Access Journals (Sweden)

    Seamon Matthew J

    2007-03-01

    Full Text Available Abstract Background Online drug information databases are used to assist in enhancing clinical decision support. However, the choice of which online database to consult, purchase or subscribe to is likely made based on subjective elements such as history of use, familiarity, or availability during professional training. The purpose of this study was to evaluate clinical decision support tools for drug information by systematically comparing the most commonly used online drug information databases. Methods Five commercially available and two freely available online drug information databases were evaluated according to scope (presence or absence of answer, completeness (the comprehensiveness of the answers, and ease of use. Additionally, a composite score integrating all three criteria was utilized. Fifteen weighted categories comprised of 158 questions were used to conduct the analysis. Descriptive statistics and Chi-square were used to summarize the evaluation components and make comparisons between databases. Scheffe's multiple comparison procedure was used to determine statistically different scope and completeness scores. The composite score was subjected to sensitivity analysis to investigate the effect of the choice of percentages for scope and completeness. Results The rankings for the databases from highest to lowest, based on composite scores were Clinical Pharmacology, Micromedex, Lexi-Comp Online, Facts & Comparisons 4.0, Epocrates Online Premium, RxList.com, and Epocrates Online Free. Differences in scope produced three statistical groupings with Group 1 (best performers being: Clinical Pharmacology, Micromedex, Facts & Comparisons 4.0, Lexi-Comp Online, Group 2: Epocrates Premium and RxList.com and Group 3: Epocrates Free (p Conclusion Online drug information databases, which belong to clinical decision support, vary in their ability to answer questions across a range of categories.

  16. Clinical decision support systems: data quality management and governance.

    Science.gov (United States)

    Liaw, Siaw-Teng

    2013-01-01

    This chapter examines data quality management (DQM) and information governance (IG) of electronic decision support (EDS) systems so that they are safe and fit for use by clinicians and patients and their carers. This is consistent with the ISO definition of data quality as being fit for purpose. The scope of DQM & IG should range from data creation and collection in clinical settings, through cleaning and, where obtained from multiple sources, linkage, storage, use by the EDS logic engine and algorithms, knowledge base and guidance provided, to curation and presentation. It must also include protocols and mechanisms to monitor the safety of EDS, which will feedback into DQM & IG activities. Ultimately, DQM & IG must be integrated across the data cycle to ensure that the EDS systems provide guidance that leads to safe and effective clinical decisions and care.

  17. Clinical decision support for physician order-entry: design challenges.

    Science.gov (United States)

    Broverman, C A; Clyman, J I; Schlesinger, J M; Want, E

    1996-01-01

    We report on a joint development effort between ALLTEL Information Services Health Care Division and IBM Worldwide Healthcare Industry to demonstrate concurrent clinical decision support using Arden Syntax at order-entry time. The goal of the partnership is to build a high performance CDS toolkit that may be easily customized for multiple health care enterprises. Our work uses and promotes open technologies and health care standards while building a generalizable interface to a legacy patient-care system and clinical database. This paper identifies four areas of design challenges and solutions unique to a concurrent order-entry environment: the clinical information model, the currency of the patient virtual chart, the granularity of event triggers and rule evaluation context, and performance.

  18. System-agnostic clinical decision support services: benefits and challenges for scalable decision support.

    Science.gov (United States)

    Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F

    2010-01-01

    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors' formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors' experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems.

  19. Clinical Decision Support Knowledge Management: Strategies for Success.

    Science.gov (United States)

    Khalifa, Mohamed; Alswailem, Osama

    2015-01-01

    Clinical Decision Support Systems have been shown to increase quality of care, patient safety, improve adherence to guidelines for prevention and treatment, and avoid medication errors. Such systems depend mainly on two types of content; the clinical information related to patients and the medical knowledge related to the specialty that informs the system rules and alerts. At King Faisal Specialist Hospital and Research Center, Saudi Arabia, the Health Information Technology Affairs worked on identifying best strategies and recommendations for successful CDSS knowledge management. A review of literature was conducted to identify main areas of challenges and factors of success. A qualitative survey was used over six months' duration to collect opinions, experiences and suggestions from both IT and healthcare professionals. Recommendations were categorized into ten main topics that should be addressed during the development and implementation of CDSS knowledge management tools in the hospital.

  20. Clinical decision support for perioperative information management systems.

    Science.gov (United States)

    Wanderer, Jonathan P; Ehrenfeld, Jesse M

    2013-12-01

    Clinical decision support (CDS) systems are being used to optimize the increasingly complex care that our health care system delivers. These systems have become increasingly important in the delivery of perioperative care for patients undergoing cardiac, thoracic, and vascular procedures. The adoption of perioperative information management systems (PIMS) has allowed these technologies to enter the operating room and support the clinical work flow of anesthesiologists and operational processes. Constructing effective CDS systems necessitates an understanding of operative work flow and technical considerations as well as achieving integration with existing information systems. In this review, we describe published examples of CDS for PIMS, including support for cardiopulmonary bypass separation physiological alarms, β-blocker guideline adherence, enhanced revenue capture for arterial line placement, and detection of hemodynamic monitoring gaps. Although these and other areas are amenable to CDS systems, the challenges of latency and data reliability represent fundamental limitations on the potential application of these tools to specific types of clinical issues. Ultimately, we expect that CDS will remain an important tool in our efforts to optimize the quality of care delivered.

  1. Exploration Clinical Decision Support System: Medical Data Architecture

    Science.gov (United States)

    Lindsey, Tony; Shetye, Sandeep; Shaw, Tianna (Editor)

    2016-01-01

    The Exploration Clinical Decision Support (ECDS) System project is intended to enhance the Exploration Medical Capability (ExMC) Element for extended duration, deep-space mission planning in HRP. A major development guideline is the Risk of "Adverse Health Outcomes & Decrements in Performance due to Limitations of In-flight Medical Conditions". ECDS attempts to mitigate that Risk by providing crew-specific health information, actionable insight, crew guidance and advice based on computational algorithmic analysis. The availability of inflight health diagnostic computational methods has been identified as an essential capability for human exploration missions. Inflight electronic health data sources are often heterogeneous, and thus may be isolated or not examined as an aggregate whole. The ECDS System objective provides both a data architecture that collects and manages disparate health data, and an active knowledge system that analyzes health evidence to deliver case-specific advice. A single, cohesive space-ready decision support capability that considers all exploration clinical measurements is not commercially available at present. Hence, this Task is a newly coordinated development effort by which ECDS and its supporting data infrastructure will demonstrate the feasibility of intelligent data mining and predictive modeling as a biomedical diagnostic support mechanism on manned exploration missions. The initial step towards ground and flight demonstrations has been the research and development of both image and clinical text-based computer-aided patient diagnosis. Human anatomical images displaying abnormal/pathological features have been annotated using controlled terminology templates, marked-up, and then stored in compliance with the AIM standard. These images have been filtered and disease characterized based on machine learning of semantic and quantitative feature vectors. The next phase will evaluate disease treatment response via quantitative linear

  2. Creating and sharing clinical decision support content with Web 2.0: Issues and examples.

    Science.gov (United States)

    Wright, Adam; Bates, David W; Middleton, Blackford; Hongsermeier, Tonya; Kashyap, Vipul; Thomas, Sean M; Sittig, Dean F

    2009-04-01

    Clinical decision support is a powerful tool for improving healthcare quality and patient safety. However, developing a comprehensive package of decision support interventions is costly and difficult. If used well, Web 2.0 methods may make it easier and less costly to develop decision support. Web 2.0 is characterized by online communities, open sharing, interactivity and collaboration. Although most previous attempts at sharing clinical decision support content have worked outside of the Web 2.0 framework, several initiatives are beginning to use Web 2.0 to share and collaborate on decision support content. We present case studies of three efforts: the Clinfowiki, a world-accessible wiki for developing decision support content; Partners Healthcare eRooms, web-based tools for developing decision support within a single organization; and Epic Systems Corporation's Community Library, a repository for sharing decision support content for customers of a single clinical system vendor. We evaluate the potential of Web 2.0 technologies to enable collaborative development and sharing of clinical decision support systems through the lens of three case studies; analyzing technical, legal and organizational issues for developers, consumers and organizers of clinical decision support content in Web 2.0. We believe the case for Web 2.0 as a tool for collaborating on clinical decision support content appears strong, particularly for collaborative content development within an organization.

  3. A generic concept for the development of model-guided clinical decision support systems

    Directory of Open Access Journals (Sweden)

    Denecke Kerstin

    2015-09-01

    Full Text Available Disease development and progression are very complex processes which make clinical decision making non-trivial. On the one hand, examination results that are stored in multiple formats and data types in clinical information systems need to be considered. Beyond, biological or molecular-biological processes can influence clinical decision making. So far, biological knowledge and patient data is separated from each other. This complicates inclusion of all relevant knowledge and information into the decision making. In this paper, we describe a concept of model-based decision support that links knowledge about biological processes, treatment decisions and clinical data. It consists of three models: 1 a biological model, 2 a decision model encompassing medical knowledge about the treatment workflow and decision parameters, and 3 a patient data model generated from clinical data. Requirements and future steps for realizing the concept will be presented and it will be shown how the concept can support the clinical decision making.

  4. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  5. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  6. Encounter Decision Aid vs. Clinical Decision Support or Usual Care to Support Patient-Centered Treatment Decisions in Osteoporosis: The Osteoporosis Choice Randomized Trial II.

    Directory of Open Access Journals (Sweden)

    Annie LeBlanc

    Full Text Available Osteoporosis Choice, an encounter decision aid, can engage patients and clinicians in shared decision making about osteoporosis treatment. Its effectiveness compared to the routine provision to clinicians of the patient's estimated risk of fracture using the FRAX calculator is unknown.Patient-level, randomized, three-arm trial enrolling women over 50 with osteopenia or osteoporosis eligible for treatment with bisphosphonates, where the use of Osteoporosis Choice was compared to FRAX only and to usual care to determine impact on patient knowledge, decisional conflict, involvement in the decision-making process, decision to start and adherence to bisphosphonates.We enrolled 79 women in the three arms. Because FRAX estimation alone and usual care produced similar results, we grouped them for analysis. Compared to these, use of Osteoporosis Choice increased patient knowledge (median score 6 vs. 4, p = .01, improved understanding of fracture risk and risk reduction with bisphosphonates (p = .01 and p<.0001, respectively, had no effect on decision conflict, and increased patient engagement in the decision making process (OPTION scores 57% vs. 43%, p = .001. Encounters with the decision aid were 0.8 minutes longer (range: 33 minutes shorter to 3.0 minutes longer. There were twice as many patients receiving and filling prescriptions in the decision aid arm (83% vs. 40%, p = .07; medication adherence at 6 months was no different across arms.Supporting both patients and clinicians during the clinical encounter with the Osteoporosis Choice decision aid efficiently improves treatment decision making when compared to usual care with or without clinical decision support with FRAX results.clinical trials.gov NCT00949611.

  7. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    Directory of Open Access Journals (Sweden)

    Oberg Ryan

    2011-04-01

    Full Text Available Abstract Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language process definition language (XPDL. The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent. We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We

  8. Pregnancy outcomes in Ghana : Relavance of clinical decision making support tools for frontline providers of care

    NARCIS (Netherlands)

    Amoakoh-Coleman, M.

    2016-01-01

    Ghana’s slow progress towards attaining millennium development goal 5 has been associated with gaps in quality of care, particularly quality of clinical decision making for clients. This thesis reviews the relevance and effect of clinical decision making support tools on pregnancy outcomes. Relevanc

  9. Engineering of a Clinical Decision Support Framework for the Point of Care Use

    OpenAIRE

    Wilk, Szymon; Michalowski, Wojtek; O’Sullivan, Dympna; Farion, Ken; Matwin, Stan

    2008-01-01

    Computerized decision support for use at the point of care has to be comprehensive. It means that clinical information stored in electronic health records needs to be integrated with various forms of clinical knowledge (elicited from experts, discovered from data or summarized in systematic reviews of clinical trials). In order to provide such comprehensive support we created the MET-A3Support framework for constructing clinical applications aimed at various medical conditions. We employed th...

  10. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success

    Science.gov (United States)

    Kawamoto, Kensaku; Houlihan, Caitlin A; Balas, E Andrew; Lobach, David F

    2005-01-01

    Objective To identify features of clinical decision support systems critical for improving clinical practice. Design Systematic review of randomised controlled trials. Data sources Literature searches via Medline, CINAHL, and the Cochrane Controlled Trials Register up to 2003; and searches of reference lists of included studies and relevant reviews. Study selection Studies had to evaluate the ability of decision support systems to improve clinical practice. Data extraction Studies were assessed for statistically and clinically significant improvement in clinical practice and for the presence of 15 decision support system features whose importance had been repeatedly suggested in the literature. Results Seventy studies were included. Decision support systems significantly improved clinical practice in 68% of trials. Univariate analyses revealed that, for five of the system features, interventions possessing the feature were significantly more likely to improve clinical practice than interventions lacking the feature. Multiple logistic regression analysis identified four features as independent predictors of improved clinical practice: automatic provision of decision support as part of clinician workflow (P < 0.00001), provision of recommendations rather than just assessments (P = 0.0187), provision of decision support at the time and location of decision making (P = 0.0263), and computer based decision support (P = 0.0294). Of 32 systems possessing all four features, 30 (94%) significantly improved clinical practice. Furthermore, direct experimental justification was found for providing periodic performance feedback, sharing recommendations with patients, and requesting documentation of reasons for not following recommendations. Conclusions Several features were closely correlated with decision support systems' ability to improve patient care significantly. Clinicians and other stakeholders should implement clinical decision support systems that incorporate these

  11. Extracting clinical information to support medical decision based on standards.

    Science.gov (United States)

    Gomoi, Valentin; Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara; Stoicu-Tivadar, Vasile

    2011-01-01

    The paper presents a method connecting medical databases to a medical decision system, and describes a service created to extract the necessary information that is transferred based on standards. The medical decision can be improved based on many inputs from different medical locations. The developed solution is described for a concrete case concerning the management for chronic pelvic pain, based on the information retrieved from diverse healthcare databases.

  12. Quantitative ultrasound texture analysis for clinical decision making support

    Science.gov (United States)

    Wu, Jie Ying; Beland, Michael; Konrad, Joseph; Tuomi, Adam; Glidden, David; Grand, David; Merck, Derek

    2015-03-01

    We propose a general ultrasound (US) texture-analysis and machine-learning framework for detecting the presence of disease that is suitable for clinical application across clinicians, disease types, devices, and operators. Its stages are image selection, image filtering, ROI selection, feature parameterization, and classification. Each stage is modular and can be replaced with alternate methods. Thus, this framework is adaptable to a wide range of tasks. Our two preliminary clinical targets are hepatic steatosis and adenomyosis diagnosis. For steatosis, we collected US images from 288 patients and their pathology-determined values of steatosis (%) from biopsies. Two radiologists independently reviewed all images and identified the region of interest (ROI) most representative of the hepatic echotexture for each patient. To parameterize the images into comparable quantities, we filter the US images at multiple scales for various texture responses. For each response, we collect a histogram of pixel features within the ROI, and parameterize it as a Gaussian function using its mean, standard deviation, kurtosis, and skew to create a 36-feature vector. Our algorithm uses a support vector machine (SVM) for classification. Using a threshold of 10%, we achieved 72.81% overall accuracy, 76.18% sensitivity, and 65.96% specificity in identifying steatosis with leave-ten-out cross-validation (p<0.0001). Extending this framework to adenomyosis, we identified 38 patients with MR-confirmed findings of adenomyosis and previous US studies and 50 controls. A single rater picked the best US-image and ROI for each case. Using the same processing pipeline, we obtained 76.14% accuracy, 86.00% sensitivity, and 63.16% specificity with leave-one-out cross-validation (p<0.0001).

  13. Population-based clinical decision support: a clinical and economic evaluation.

    Science.gov (United States)

    Eisenstein, Eric L; Anstrom, Kevin J; Edwards, Rex; Willis, Janese M; Simo, Jessica; Lobach, David F

    2012-01-01

    Governments are investing in health information technologies (HIT) to improve care quality and reduce medical costs. However, evidence of these benefits is limited. We conducted a randomized trial of three clinical decision support (CDS) interventions in 20,180 patients: email to care managers (n=3329), reports to primary care administrators (n=3368), letters to patients (n=3401), and controls (10,082). At 7-month follow-up, the letters to patients group had greater use of outpatient services and higher outpatient and total medical costs; whereas, the other groups had no change in clinical events or medical costs. As our CDS interventions were associated with no change or an increase in medical costs, it appears that investments in HIT without consideration for organizational context may not be sufficient to achieve improvements in clinical and economic outcomes.

  14. Factors Predicting Oncology Care Providers' Behavioral Intention to Adopt Clinical Decision Support Systems

    Science.gov (United States)

    Wolfenden, Andrew

    2012-01-01

    The purpose of this quantitative correlation study was to examine the predictors of user behavioral intention on the decision of oncology care providers to adopt or reject the clinical decision support system. The Unified Theory of Acceptance and Use of Technology (UTAUT) formed the foundation of the research model and survey instrument. The…

  15. Information management to enable personalized medicine: stakeholder roles in building clinical decision support

    Directory of Open Access Journals (Sweden)

    Brinner Kristin M

    2009-10-01

    Full Text Available Abstract Background Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Discussion Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures, and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. Summary This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In

  16. Framework for securing personal health data in clinical decision support systems.

    Science.gov (United States)

    Sandell, Protik

    2007-01-01

    If appropriate security mechanisms aren't in place, individuals and groups can get unauthorized access to personal health data residing in clinical decision support systems (CDSS). These concerns are well founded; there has been a dramatic increase in reports of security incidents. The paper provides a framework for securing personal health data in CDSS. The framework breaks down CDSS into data gathering, data management and data delivery functions. It then provides the vulnerabilities that can occur in clinical decision support activities and the measures that need to be taken to protect the data. The framework is applied to protect the confidentiality, integrity and availability of personal health data in a decision support system. Using the framework, project managers and architects can assess the potential risk of unauthorized data access in their decision support system. Moreover they can design systems and procedures to effectively secure personal health data.

  17. Implementing an integrative multi-agent clinical decision support system with open source software.

    Science.gov (United States)

    Sayyad Shirabad, Jelber; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken

    2012-02-01

    Clinical decision making is a complex multi-stage process. Decision support can play an important role at each stage of this process. At present, the majority of clinical decision support systems have been focused on supporting only certain stages. In this paper we present the design and implementation of MET3-a prototype multi-agent system providing an integrative decision support that spans over the entire decision making process. The system helps physicians with data collection, diagnosis formulation, treatment planning and finding supporting evidence. MET3 integrates with external hospital information systems via HL7 messages and runs on various computing platforms available at the point of care (e.g., tablet computers, mobile phones). Building MET3 required sophisticated and reliable software technologies. In the past decade the open source software movement has produced mature, stable, industrial strength software systems with a large user base. Therefore, one of the decisions that should be considered before developing or acquiring a decision support system is whether or not one could use open source technologies instead of proprietary ones. We believe MET3 shows that the answer to this question is positive.

  18. Computer Decision Support to Improve Autism Screening and Care in Community Pediatric Clinics

    Science.gov (United States)

    Bauer, Nerissa S.; Sturm, Lynne A.; Carroll, Aaron E.; Downs, Stephen M.

    2013-01-01

    An autism module was added to an existing computer decision support system (CDSS) to facilitate adherence to recommended guidelines for screening for autism spectrum disorders in primary care pediatric clinics. User satisfaction was assessed by survey and informal feedback at monthly meetings between clinical staff and the software team. To assess…

  19. Atigeo at TREC 2014 Clinical Decision Support Task

    Science.gov (United States)

    2014-11-01

    configurable suite of natural language processing ( NLP ) compo- nents, to compute a relevance score for each article and topic. We describe our ensemble...approach, the strategies and tools we use to create labeled data to support this approach, the components in our IR / NLP pipeline, and our results on...Indri/Lemur5 – and includes several text processing and natural lan- guage processing ( NLP ) modules, such as negation tagging, age grouping, and

  20. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  1. Potential Role of Methylation Marker in Glioma Supporting Clinical Decisions

    Directory of Open Access Journals (Sweden)

    Krzysztof Roszkowski

    2016-11-01

    Full Text Available The IDH1/2 gene mutations, ATRX loss/mutation, 1p/19q status, and MGMT promoter methylation are increasingly used as prognostic or predictive biomarkers of gliomas. However, the effect of their combination on radiation therapy outcome is discussable. Previously, we demonstrated that the IDH1 c.G395A; p.R132H mutation was associated with longer survival in grade II astrocytoma and GBM (Glioblastoma. Here we analyzed the MGMT promoter methylation status in patients with a known mutation status in codon 132 of IDH1, followed by clinical and genetic data analysis based on the two statuses. After a subtotal tumor resection, the patients were treated using IMRT (Intensity-Modulated Radiation Therapy with 6 MeV photons. The total dose was: 54 Gy for astrocytoma II, 60 Gy for astrocytoma III, 60 Gy for glioblastoma, 2 Gy per day, with 24 h intervals, five days per week. The patients with MGMT promoter methylation and IDH1 somatic mutation (OS = 40 months had a better prognosis than those with MGMT methylation alone (OS = 18 months. In patients with astrocytoma anaplasticum (n = 7 with the IDH1 p.R132H mutation and hypermethylated MGMT, the prognosis was particularly favorable (median OS = 47 months. In patients with astrocytoma II meeting the above criteria, the prognosis was also better than in those not meeting those criteria. The IDH1 mutation appears more relevant for the prognosis than MGMT methylation. The IDH1 p.R132H mutation combined with MGMT hypermethylation seems to be the most advantageous for treatment success. Patients not meeting those criteria may require more aggressive treatments.

  2. Potential Role of Methylation Marker in Glioma Supporting Clinical Decisions

    Science.gov (United States)

    Roszkowski, Krzysztof; Furtak, Jacek; Zurawski, Bogdan; Szylberg, Tadeusz; Lewandowska, Marzena A.

    2016-01-01

    The IDH1/2 gene mutations, ATRX loss/mutation, 1p/19q status, and MGMT promoter methylation are increasingly used as prognostic or predictive biomarkers of gliomas. However, the effect of their combination on radiation therapy outcome is discussable. Previously, we demonstrated that the IDH1 c.G395A; p.R132H mutation was associated with longer survival in grade II astrocytoma and GBM (Glioblastoma). Here we analyzed the MGMT promoter methylation status in patients with a known mutation status in codon 132 of IDH1, followed by clinical and genetic data analysis based on the two statuses. After a subtotal tumor resection, the patients were treated using IMRT (Intensity-Modulated Radiation Therapy) with 6 MeV photons. The total dose was: 54 Gy for astrocytoma II, 60 Gy for astrocytoma III, 60 Gy for glioblastoma, 2 Gy per day, with 24 h intervals, five days per week. The patients with MGMT promoter methylation and IDH1 somatic mutation (OS = 40 months) had a better prognosis than those with MGMT methylation alone (OS = 18 months). In patients with astrocytoma anaplasticum (n = 7) with the IDH1 p.R132H mutation and hypermethylated MGMT, the prognosis was particularly favorable (median OS = 47 months). In patients with astrocytoma II meeting the above criteria, the prognosis was also better than in those not meeting those criteria. The IDH1 mutation appears more relevant for the prognosis than MGMT methylation. The IDH1 p.R132H mutation combined with MGMT hypermethylation seems to be the most advantageous for treatment success. Patients not meeting those criteria may require more aggressive treatments. PMID:27834917

  3. Evaluation of a novel electronic genetic screening and clinical decision support tool in prenatal clinical settings.

    Science.gov (United States)

    Edelman, Emily A; Lin, Bruce K; Doksum, Teresa; Drohan, Brian; Edelson, Vaughn; Dolan, Siobhan M; Hughes, Kevin; O'Leary, James; Vasquez, Lisa; Copeland, Sara; Galvin, Shelley L; DeGroat, Nicole; Pardanani, Setul; Gregory Feero, W; Adams, Claire; Jones, Renee; Scott, Joan

    2014-07-01

    "The Pregnancy and Health Profile" (PHP) is a free prenatal genetic screening and clinical decision support (CDS) software tool for prenatal providers. PHP collects family health history (FHH) during intake and provides point-of-care risk assessment for providers and education for patients. This pilot study evaluated patient and provider responses to PHP and effects of using PHP in practice. PHP was implemented in four clinics. Surveys assessed provider confidence and knowledge and patient and provider satisfaction with PHP. Data on the implementation process were obtained through semi-structured interviews with administrators. Quantitative survey data were analyzed using Chi square test, Fisher's exact test, paired t tests, and multivariate logistic regression. Open-ended survey questions and interviews were analyzed using qualitative thematic analysis. Of the 83% (513/618) of patients that provided feedback, 97% felt PHP was easy to use and 98% easy to understand. Thirty percent (21/71) of participating physicians completed both pre- and post-implementation feedback surveys [13 obstetricians (OBs) and 8 family medicine physicians (FPs)]. Confidence in managing genetic risks significantly improved for OBs on 2/6 measures (p values ≤0.001) but not for FPs. Physician knowledge did not significantly change. Providers reported value in added patient engagement and reported mixed feedback about the CDS report. We identified key steps, resources, and staff support required to implement PHP in a clinical setting. To our knowledge, this study is the first to report on the integration of patient-completed, electronically captured and CDS-enabled FHH software into primary prenatal practice. PHP is acceptable to patients and providers. Key to successful implementation in the future will be customization options and interoperability with electronic health records.

  4. Nature and frequency of drug therapy alerts generated by clinical decision support in community pharmacy

    NARCIS (Netherlands)

    Heringa, Mette; Floor-Schreudering, Annemieke; Tromp, P. Chris; de Smet, Peter A G M; Bouvy, Marcel L.

    2016-01-01

    Purpose: The purpose of this study is to investigate the nature, frequency, and determinants of drug therapy alerts generated by a clinical decision support system (CDSS) in community pharmacy in order to propose CDSS improvement strategies. Methods: This is a retrospective analysis of dispensed dru

  5. Doing the right things and doing things right : inpatient drug surveillance assisted by clinical decision support

    NARCIS (Netherlands)

    Helmons, Pieter J.; Suijkerbuijk, Bas O.; Nannan Panday, Prashant V.; Kosterink, Jos G. W.

    2015-01-01

    Increased budget constraints and a continuous focus on improved quality require an efficient inpatient drug surveillance process. We describe a hospital-wide drug surveillance strategy consisting of a multidisciplinary evaluation of drug surveillance activities and using clinical decision support to

  6. Evaluating the Effectiveness of Nurse-Focused Computerized Clinical Decision Support on Urinary Catheter Practice Guidelines

    Science.gov (United States)

    Lang, Robin Lynn Neal

    2012-01-01

    A growing national emphasis has been placed on health information technology (HIT) with robust computerized clinical decision support (CCDS) integration into health care delivery. Catheter-associated urinary tract infection is the most frequent health care-associated infection in the United States and is associated with high cost, high volumes and…

  7. Improving Emergency Department Triage Classification with Computerized Clinical Decision Support at a Pediatric Hospital

    Science.gov (United States)

    Kunisch, Joseph Martin

    2012-01-01

    Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…

  8. Clinical-decision support based on medical literature: A complex network approach

    Science.gov (United States)

    Jiang, Jingchi; Zheng, Jichuan; Zhao, Chao; Su, Jia; Guan, Yi; Yu, Qiubin

    2016-10-01

    In making clinical decisions, clinicians often review medical literature to ensure the reliability of diagnosis, test, and treatment because the medical literature can answer clinical questions and assist clinicians making clinical decisions. Therefore, finding the appropriate literature is a critical problem for clinical-decision support (CDS). First, the present study employs search engines to retrieve relevant literature about patient records. However, the result of the traditional method is usually unsatisfactory. To improve the relevance of the retrieval result, a medical literature network (MLN) based on these retrieved papers is constructed. Then, we show that this MLN has small-world and scale-free properties of a complex network. According to the structural characteristics of the MLN, we adopt two methods to further identify the potential relevant literature in addition to the retrieved literature. By integrating these potential papers into the MLN, a more comprehensive MLN is built to answer the question of actual patient records. Furthermore, we propose a re-ranking model to sort all papers by relevance. We experimentally find that the re-ranking model can improve the normalized discounted cumulative gain of the results. As participants of the Text Retrieval Conference 2015, our clinical-decision method based on the MLN also yields higher scores than the medians in most topics and achieves the best scores for topics: #11 and #12. These research results indicate that our study can be used to effectively assist clinicians in making clinical decisions, and the MLN can facilitate the investigation of CDS.

  9. Building a normative decision support system for clinical and operational risk management in hemodialysis.

    Science.gov (United States)

    Cornalba, Chiara; Bellazzi, Roberto G; Bellazzi, Riccardo

    2008-09-01

    This paper describes the design and implementation of a decision support system for risk management in hemodialysis (HD) departments. The proposed system exploits a domain ontology to formalize the problem as a Bayesian network. It also relies on a software tool, able to automatically collect HD data, to learn the network conditional probabilities. By merging prior knowledge and the available data, the system allows to estimate risk profiles both for patients and HD departments. The risk management process is completed by an influence diagram that enables scenario analysis to choose the optimal decisions that mitigate a patient's risk. The methods and design of the decision support tool are described in detail, and the derived decision model is presented. Examples and case studies are also shown. The tool is one of the few examples of normative system explicitly conceived to manage operational and clinical risks in health care environments.

  10. A legal framework to enable sharing of Clinical Decision Support knowledge and services across institutional boundaries.

    Science.gov (United States)

    Hongsermeier, Tonya; Maviglia, Saverio; Tsurikova, Lana; Bogaty, Dan; Rocha, Roberto A; Goldberg, Howard; Meltzer, Seth; Middleton, Blackford

    2011-01-01

    The goal of the CDS Consortium (CDSC) is to assess, define, demonstrate, and evaluate best practices for knowledge management and clinical decision support in healthcare information technology at scale - across multiple ambulatory care settings and Electronic Health Record technology platforms. In the course of the CDSC research effort, it became evident that a sound legal foundation was required for knowledge sharing and clinical decision support services in order to address data sharing, intellectual property, accountability, and liability concerns. This paper outlines the framework utilized for developing agreements in support of sharing, accessing, and publishing content via the CDSC Knowledge Management Portal as well as an agreement in support of deployment and consumption of CDSC developed web services in the context of a research project under IRB oversight.

  11. Mobile clinical decision support systems and applications: a literature and commercial review.

    Science.gov (United States)

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; López-Coronado, Miguel; Sainz-de-Abajo, Beatriz; Robles, Montserrat; García-Gómez, Juan Miguel

    2014-01-01

    The latest advances in eHealth and mHealth have propitiated the rapidly creation and expansion of mobile applications for health care. One of these types of applications are the clinical decision support systems, which nowadays are being implemented in mobile apps to facilitate the access to health care professionals in their daily clinical decisions. The aim of this paper is twofold. Firstly, to make a review of the current systems available in the literature and in commercial stores. Secondly, to analyze a sample of applications in order to obtain some conclusions and recommendations. Two reviews have been done: a literature review on Scopus, IEEE Xplore, Web of Knowledge and PubMed and a commercial review on Google play and the App Store. Five applications from each review have been selected to develop an in-depth analysis and to obtain more information about the mobile clinical decision support systems. Ninety-two relevant papers and 192 commercial apps were found. Forty-four papers were focused only on mobile clinical decision support systems. One hundred seventy-one apps were available on Google play and 21 on the App Store. The apps are designed for general medicine and 37 different specialties, with some features common in all of them despite of the different medical fields objective. The number of mobile clinical decision support applications and their inclusion in clinical practices has risen in the last years. However, developers must be careful with their interface or the easiness of use, which can impoverish the experience of the users.

  12. Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support

    OpenAIRE

    Casey Lynnette Overby; Angelika Ludtke Erwin; Abul-Husn, Noura S.; Ellis, Stephen B; Scott, Stuart A.; Aniwaa Owusu Obeng; Kannry, Joseph L.; George Hripcsak; Bottinger, Erwin P.; Omri Gottesman

    2014-01-01

    This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes ...

  13. Clinical Decision Support for Whole Genome Sequence Information Leveraging a Service-Oriented Architecture: a Prototype

    Science.gov (United States)

    Welch, Brandon M.; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time. PMID:25954430

  14. A service oriented approach for guidelines-based clinical decision support using BPMN.

    Science.gov (United States)

    Rodriguez-Loya, Salvador; Aziz, Ayesha; Chatwin, Chris

    2014-01-01

    Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS).

  15. Multi-site evaluation of a clinical decision support system for radiation therapy

    Science.gov (United States)

    Deshpande, Ruchi; DeMarco, John; Kessel, Kerstin; Liu, Brent J.

    2016-03-01

    We have developed an imaging informatics based decision support system that learns from retrospective treatment plans to provide recommendations for healthy tissue sparing to prospective incoming patients. This system incorporates a model of best practices from previous cases, specific to tumor anatomy. Ultimately, our hope is to improve clinical workflow efficiency, patient outcomes and to increase clinician confidence in decision-making. The success of such a system depends greatly on the training dataset, which in this case, is the knowledge base that the data-mining algorithm employs. The size and heterogeneity of the database is essential for good performance. Since most institutions employ standard protocols and practices for treatment planning, the diversity of this database can be greatly increased by including data from different institutions. This work presents the results of incorporating cross-country, multi-institutional data into our decision support system for evaluation and testing.

  16. Integrating complex business processes for knowledge-driven clinical decision support systems.

    Science.gov (United States)

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  17. What We Can Learn from Amazon for Clinical Decision Support Systems.

    Science.gov (United States)

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  18. Implementing Genomic Clinical Decision Support for Drug‐Based Precision Medicine

    Science.gov (United States)

    Formea, CM; Hoffman, JM; Matey, E; Peterson, JF; Boyce, RD

    2017-01-01

    The explosive growth of patient‐specific genomic information relevant to drug therapy will continue to be a defining characteristic of biomedical research. To implement drug‐based personalized medicine (PM) for patients, clinicians need actionable information incorporated into electronic health records (EHRs). New clinical decision support (CDS) methods and informatics infrastructure are required in order to comprehensively integrate, interpret, deliver, and apply the full range of genomic data for each patient.1 PMID:28109071

  19. Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.

    Science.gov (United States)

    Koller, Walter; de Bruin, Jeroen S; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2015-01-01

    By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written with extensive use of fuzzy sets and fuzzy logic, allowing the inherent un-sharpness of clinical terms and the inherent uncertainty of clinical conclusions to be a part of Moni's output. Thus, linguistic as well as propositional uncertainty became a part of Moni, which can now report retrospectively on HAIs according to traditional crisp HAI surveillance definitions, as well as support clinical bedside work by more complex crisp and fuzzy alerts and reminders. This improved approach can bridge the gap between classical retrospective surveillance of HAIs and ongoing prospective clinical-decision-oriented HAI support.

  20. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review

    Directory of Open Access Journals (Sweden)

    Wu Helen W

    2012-08-01

    Full Text Available Abstract Background Greater use of computerized decision support (DS systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS. Methods Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1 provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2 involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Results Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective; allowing for contingent adaptations; and facilitating

  1. A programmable rules engine to provide clinical decision support using HTML forms.

    Science.gov (United States)

    Heusinkveld, J; Geissbuhler, A; Sheshelidze, D; Miller, R

    1999-01-01

    The authors have developed a simple method for specifying rules to be applied to information on HTML forms. This approach allows clinical experts, who lack the programming expertise needed to write CGI scripts, to construct and maintain domain-specific knowledge and ordering capabilities within WizOrder, the order-entry and decision support system used at Vanderbilt Hospital. The clinical knowledge base maintainers use HTML editors to create forms and spreadsheet programs for rule entry. A test environment has been developed which uses Netscape to display forms; the production environment displays forms using an embedded browser.

  2. Intraoperative Clinical Decision Support for Anesthesia: A Narrative Review of Available Systems.

    Science.gov (United States)

    Nair, Bala G; Gabel, Eilon; Hofer, Ira; Schwid, Howard A; Cannesson, Maxime

    2017-02-01

    With increasing adoption of anesthesia information management systems (AIMS), there is growing interest in utilizing AIMS data for intraoperative clinical decision support (CDS). CDS for anesthesia has the potential for improving quality of care, patient safety, billing, and compliance. Intraoperative CDS can range from passive and post hoc systems to active real-time systems that can detect ongoing clinical issues and deviations from best practice care. Real-time CDS holds the most promise because real-time alerts and guidance can drive provider behavior toward evidence-based standardized care during the ongoing case. In this review, we describe the different types of intraoperative CDS systems with specific emphasis on real-time systems. The technical considerations in developing and implementing real-time CDS are systematically covered. This includes the functional modules of a CDS system, development and execution of decision rules, and modalities to alert anesthesia providers concerning clinical issues. We also describe the regulatory aspects that affect development, implementation, and use of intraoperative CDS. Methods and measures to assess the effectiveness of intraoperative CDS are discussed. Last, we outline areas of future development of intraoperative CDS, particularly the possibility of providing predictive and prescriptive decision support.

  3. Implementation of a clinical decision support system using a service model: results of a feasibility study.

    Science.gov (United States)

    Borbolla, Damian; Otero, Carlos; Lobach, David F; Kawamoto, Kensaku; Gomez Saldaño, Ana M; Staccia, Gustavo; Lopez, Gastón; Figar, Silvana; Luna, Daniel; Bernaldo de Quiros, Fernan Gonzalez

    2010-01-01

    Numerous studies have shown that the quality of health care is inadequate, and healthcare organizations are increasingly turning to clinical decision support systems (CDSS) to address this problem. In implementing CDSS, a highly promising architectural approach is the use of decision support services. However, there are few reported examples of successful implementations of operational CDSS using this approach. Here, we describe how Hospital Italiano de Buenos Aires evaluated the feasibility of using the SEBASTIAN clinical decision support Web service to implement a CDSS integrated with its electronic medical record system. The feasibility study consisted of three stages: first, end-user acceptability testing of the proposed CDSS through focus groups; second, the design and implementation of the system through integration of SEBASTIAN and the authoring of new rules; and finally, validation of system performance and accuracy. Through this study, we found that it is feasible to implement CDSS using a service-based approach. The CDSS is now under evaluation in a randomized controlled trial. The processes and lessons learned from this initiative are discussed.

  4. Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support

    Directory of Open Access Journals (Sweden)

    Casey Lynnette Overby

    2014-02-01

    Full Text Available This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS, prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx. We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII. The survey also includes items to measure physicians’ characteristics (awareness, experience, and perceived usefulness, attitudes about personal genome testing (PGT services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS. The majority were residency program trainees (~88%. Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions.

  5. Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support.

    Science.gov (United States)

    Overby, Casey Lynnette; Erwin, Angelika Ludtke; Abul-Husn, Noura S; Ellis, Stephen B; Scott, Stuart A; Obeng, Aniwaa Owusu; Kannry, Joseph L; Hripcsak, George; Bottinger, Erwin P; Gottesman, Omri

    2014-02-27

    This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes items to measure physicians' characteristics (awareness, experience, and perceived usefulness), attitudes about personal genome testing (PGT) services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS). The majority were residency program trainees (~88%). Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions.

  6. Constructing Clinical Decision Support Systems for Adverse Drug Event Prevention: A Knowledge-based Approach.

    Science.gov (United States)

    Koutkias, Vassilis; Kilintzis, Vassilis; Stalidis, George; Lazou, Katerina; Collyda, Chrysa; Chazard, Emmanuel; McNair, Peter; Beuscart, Regis; Maglaveras, Nicos

    2010-11-13

    A knowledge-based approach is proposed that is employed for the construction of a framework suitable for the management and effective use of knowledge on Adverse Drug Event (ADE) prevention. The framework has as its core part a Knowledge Base (KB) comprised of rule-based knowledge sources, that is accompanied by the necessary inference and query mechanisms to provide healthcare professionals and patients with decision support services in clinical practice, in terms of alerts and recommendations on preventable ADEs. The relevant Knowledge Based System (KBS) is developed in the context of the EU-funded research project PSIP (Patient Safety through Intelligent Procedures in Medication). In the current paper, we present the foundations of the framework, its knowledge model and KB structure, as well as recent progress as regards the population of the KB, the implementation of the KBS, and results on the KBS verification in decision support operation.

  7. EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect

    CERN Document Server

    Bennett, Casey; Selove, Rebecca

    2012-01-01

    Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data - the challenge is turning that data into useful information. Furthermore, EHRs are increasingly likely to include data relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses to treatment over time. Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient treatment response. Multiple models were constructed using predictor variables derived from clinical, financial and geographic data. Results: For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change in clinical condition. Based on modeling of various clinical indicators at baseline, the high...

  8. A study of diverse clinical decision support rule authoring environments and requirements for integration

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2012-11-01

    Full Text Available Abstract Background Efficient rule authoring tools are critical to allow clinical Knowledge Engineers (KEs, Software Engineers (SEs, and Subject Matter Experts (SMEs to convert medical knowledge into machine executable clinical decision support rules. The goal of this analysis was to identify the critical success factors and challenges of a fully functioning Rule Authoring Environment (RAE in order to define requirements for a scalable, comprehensive tool to manage enterprise level rules. Methods The authors evaluated RAEs in active use across Partners Healthcare, including enterprise wide, ambulatory only, and system specific tools, with a focus on rule editors for reminder and medication rules. We conducted meetings with users of these RAEs to discuss their general experience and perceived advantages and limitations of these tools. Results While the overall rule authoring process is similar across the 10 separate RAEs, the system capabilities and architecture vary widely. Most current RAEs limit the ability of the clinical decision support (CDS interventions to be standardized, sharable, interoperable, and extensible. No existing system meets all requirements defined by knowledge management users. Conclusions A successful, scalable, integrated rule authoring environment will need to support a number of key requirements and functions in the areas of knowledge representation, metadata, terminology, authoring collaboration, user interface, integration with electronic health record (EHR systems, testing, and reporting.

  9. Cancer Multidisciplinary Team Meetings: Evidence, Challenges, and the Role of Clinical Decision Support Technology

    Directory of Open Access Journals (Sweden)

    Vivek Patkar

    2011-01-01

    Full Text Available Multidisciplinary team (MDT model in cancer care was introduced and endorsed to ensure that care delivery is consistent with the best available evidence. Over the last few years, regular MDT meetings have become a standard practice in oncology and gained the status of the key decision-making forum for patient management. Despite the fact that cancer MDT meetings are well accepted by clinicians, concerns are raised over the paucity of good-quality evidence on their overall impact. There are also concerns over lack of the appropriate support for this important but overburdened decision-making platform. The growing acceptance by clinical community of the health information technology in recent years has created new opportunities and possibilities of using advanced clinical decision support (CDS systems to realise full potential of cancer MDT meetings. In this paper, we present targeted summary of the available evidence on the impact of cancer MDT meetings, discuss the reported challenges, and explore the role that a CDS technology could play in addressing some of these challenges.

  10. Computerized clinical decision support systems for chronic disease management: A decision-maker-researcher partnership systematic review

    Directory of Open Access Journals (Sweden)

    Navarro Tamara

    2011-08-01

    Full Text Available Abstract Background The use of computerized clinical decision support systems (CCDSSs may improve chronic disease management, which requires recurrent visits to multiple health professionals, ongoing disease and treatment monitoring, and patient behavior modification. The objective of this review was to determine if CCDSSs improve the processes of chronic care (such as diagnosis, treatment, and monitoring of disease and associated patient outcomes (such as effects on biomarkers and clinical exacerbations. Methods We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for potentially eligible articles published up to January 2010. We included randomized controlled trials that compared the use of CCDSSs to usual practice or non-CCDSS controls. Trials were eligible if at least one component of the CCDSS was designed to support chronic disease management. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of relevant outcomes. Results Of 55 included trials, 87% (n = 48 measured system impact on the process of care and 52% (n = 25 of those demonstrated statistically significant improvements. Sixty-five percent (36/55 of trials measured impact on, typically, non-major (surrogate patient outcomes, and 31% (n = 11 of those demonstrated benefits. Factors of interest to decision makers, such as cost, user satisfaction, system interface and feature sets, unique design and deployment characteristics, and effects on user workflow were rarely investigated or reported. Conclusions A small majority (just over half of CCDSSs improved care processes in chronic disease management and some improved patient health. Policy makers, healthcare administrators, and practitioners should be aware that the evidence of CCDSS effectiveness is limited, especially with respect to the small number and size of studies

  11. Performance of online drug information databases as clinical decision support tools in infectious disease medication management.

    Science.gov (United States)

    Polen, Hyla H; Zapantis, Antonia; Clauson, Kevin A; Clauson, Kevin Alan; Jebrock, Jennifer; Paris, Mark

    2008-11-06

    Infectious disease (ID) medication management is complex and clinical decision support tools (CDSTs) can provide valuable assistance. This study evaluated scope and completeness of ID drug information found in online databases by evaluating their ability to answer 147 question/answer pairs. Scope scores produced highest rankings (%) for: Micromedex (82.3), Lexi-Comp/American Hospital Formulary Service (81.0), and Medscape Drug Reference (81.0); lowest includes: Epocrates Online Premium (47.0), Johns Hopkins ABX Guide (45.6), and PEPID PDC (40.8).

  12. Four Principles for User Interface Design of Computerised Clinical Decision Support Systems

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    Abstract.  The paper presents results from design of a user interface for a Computerised Clinical Decision Support System (CSSS). The ambition has been to design Human-Computer Interaction that can minimise medication errors. Through an iterative design process a digital prototype for prescription...... emphasises a focus on how users interact with the system, a focus on how information is provided by the system, and four principles of interaction. The four principles for design of user interfaces for CDSS are summarised as four A’s: All in one, At a glance, At hand and Attention. It is recommended that all...

  13. Mobile Clinical Decision Support Systems in Our Hands - Great Potential but also a Concern.

    Science.gov (United States)

    Masic, Izet; Begic, Edin

    2016-01-01

    Due to the powerful computer resources as well as the availability of today's mobile devices, a special field of mobile systems for clinical decision support in medicine has been developed. The benefits of these applications (systems) are: availability of necessary hardware (mobile phones, tablets and phablets are widespread, and can be purchased at a relatively affordable price), availability of mobile applications (free or for a "small" amount of money) and also mobile applications are tailored for easy use and save time of clinicians in their daily work. In these systems lies a huge potential, and certainly a great economic benefit, so this issue must be approached multidisciplinary.

  14. Implementing clinical decision support for primary care professionals – the process

    DEFF Research Database (Denmark)

    Kortteisto, Tiina; Komulainen, Jorma; Kunnamo, Ilkka

    2012-01-01

    We describe the process of putting into practice a computer-based clinical decision support (eCDS) service integrated in the electronic patient record, and the actual use of eCDS after one year in a primary care organization with 48 health care professionals. Multiple methods were used to support...... the implementation. The actual use was measured by means of a questionnaire and statistical data. The implementation process consisted of three successive training rounds and lasted for 18 months. After 12 months the reported actual use of the eCDS functions was diverse. The study indicates that successful...... implementation of eCDS requires time and repeated supportive input. Primary care professionals need time and training for adapting eCDS in their daily routine. In addition, the eCDS content should be tailored to fulfil different professionals’ information needs in primary care practice....

  15. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    Science.gov (United States)

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  16. Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Directory of Open Access Journals (Sweden)

    Clark Michael E

    2010-04-01

    Full Text Available Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR, and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The

  17. A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties

    Directory of Open Access Journals (Sweden)

    Timbie Justin W

    2012-09-01

    Full Text Available Abstract Background The U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis. Design We developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as “CDS opportunities,” might impact each performance gap and the extent to which each CDS opportunity is compatible with

  18. Identifying best practices for clinical decision support and knowledge management in the field.

    Science.gov (United States)

    Ash, Joan S; Sittig, Dean F; Dykstra, Richard; Wright, Adam; McMullen, Carmit; Richardson, Joshua; Middleton, Blackford

    2010-01-01

    To investigate best practices for implementing and managing clinical decision support (CDS) in community hospitals and ambulatory settings, we carried out a series of ethnographic studies to gather information from nine diverse organizations. Using the Rapid Assessment Process methodology, we conducted surveys, interviews, and observations over a period of two years in eight different geographic regions of the U.S.A. We first utilized a template organizing method for an expedited analysis of the data, followed by a deeper and more time consuming interpretive approach. We identified five major categories of best practices that require careful consideration while carrying out the planning, implementation, and knowledge management processes related to CDS. As more health care organizations implement clinical systems such as computerized provider order entry with CDS, descriptions of lessons learned by CDS pioneers can provide valuable guidance so that CDS can have optimal impact on health care quality.

  19. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    Science.gov (United States)

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.

  20. Ontology-Based Clinical Decision Support System for Predicting High-Risk Pregnant Woman

    Directory of Open Access Journals (Sweden)

    Umar Manzoor

    2015-12-01

    Full Text Available According to Pakistan Medical and Dental Council (PMDC, Pakistan is facing a shortage of approximately 182,000 medical doctors. Due to the shortage of doctors; a large number of lives are in danger especially pregnant woman. A large number of pregnant women die every year due to pregnancy complications, and usually the reason behind their death is that the complications are not timely handled. In this paper, we proposed ontology-based clinical decision support system that diagnoses high-risk pregnant women and refer them to the qualified medical doctors for timely treatment. The Ontology of the proposed system is built automatically and enhanced afterward using doctor’s feedback. The proposed framework has been tested on a large number of test cases; experimental results are satisfactory and support the implementation of the solution.

  1. Recommended practices for computerized clinical decision support and knowledge management in community settings: a qualitative study

    Directory of Open Access Journals (Sweden)

    Ash Joan S

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to identify recommended practices for computerized clinical decision support (CDS development and implementation and for knowledge management (KM processes in ambulatory clinics and community hospitals using commercial or locally developed systems in the U.S. Methods Guided by the Multiple Perspectives Framework, the authors conducted ethnographic field studies at two community hospitals and five ambulatory clinic organizations across the U.S. Using a Rapid Assessment Process, a multidisciplinary research team: gathered preliminary assessment data; conducted on-site interviews, observations, and field surveys; analyzed data using both template and grounded methods; and developed universal themes. A panel of experts produced recommended practices. Results The team identified ten themes related to CDS and KM. These include: 1 workflow; 2 knowledge management; 3 data as a foundation for CDS; 4 user computer interaction; 5 measurement and metrics; 6 governance; 7 translation for collaboration; 8 the meaning of CDS; 9 roles of special, essential people; and 10 communication, training, and support. Experts developed recommendations about each theme. The original Multiple Perspectives framework was modified to make explicit a new theoretical construct, that of Translational Interaction. Conclusions These ten themes represent areas that need attention if a clinic or community hospital plans to implement and successfully utilize CDS. In addition, they have implications for workforce education, research, and national-level policy development. The Translational Interaction construct could guide future applied informatics research endeavors.

  2. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    Science.gov (United States)

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  3. A clinical decision support system with an integrated EMR for diagnosis of peripheral neuropathy.

    Science.gov (United States)

    Kunhimangalam, Reeda; Ovallath, Sujith; Joseph, Paul K

    2014-04-01

    The prevalence of peripheral neuropathy in general population is ever increasing. The diagnosis and classification of peripheral neuropathies is often difficult as it involves careful clinical and electro-diagnostic examination by an expert neurologist. In developing countries a large percentage of the disease remains undiagnosed due to lack of adequate number of experts. In this study a novel clinical decision support system has been developed using a fuzzy expert system. The study was done to provide a solution to the demand of systems that can improve health care by accurate diagnosis in limited time, in the absence of specialists. It employs a graphical user interface and a fuzzy logic controller with rule viewer for identification of the type of peripheral neuropathy. An integrated medical records database is also developed for the storage and retrieval of the data. The system consists of 24 input fields, which includes the clinical values of the diagnostic test and the clinical symptoms. The output field is the disease diagnosis, whether it is Motor (Demyelinating/Axonopathy) neuropathy, sensory (Demyelinating/Axonopathy) neuropathy, mixed type or a normal case. The results obtained were compared with the expert's opinion and the system showed 93.27 % accuracy. The study aims at showing that Fuzzy Expert Systems may prove useful in providing diagnostic and predictive medical opinions. It enables the clinicians to arrive at a better diagnosis as it keeps the expert knowledge in an intelligent system to be used efficiently and effectively.

  4. Decision support basics

    CERN Document Server

    Power, Daniel J

    2009-01-01

    This book is targeted to busy managers and MBA students who need to grasp the basics of computerized decision support. Some of the topics covered include: What is a DSS? What do managers need to know about computerized decision support? And how can managers identify opportunities to create innovative DSS? Overall the book addresses 35 fundamental questions that are relevant to understanding computerized decision support.

  5. Service oriented architecture for clinical decision support: a systematic review and future directions.

    Science.gov (United States)

    Loya, Salvador Rodriguez; Kawamoto, Kensaku; Chatwin, Chris; Huser, Vojtech

    2014-12-01

    The use of a service-oriented architecture (SOA) has been identified as a promising approach for improving health care by facilitating reliable clinical decision support (CDS). A review of the literature through October 2013 identified 44 articles on this topic. The review suggests that SOA related technologies such as Business Process Model and Notation (BPMN) and Service Component Architecture (SCA) have not been generally adopted to impact health IT systems' performance for better care solutions. Additionally, technologies such as Enterprise Service Bus (ESB) and architectural approaches like Service Choreography have not been generally exploited among researchers and developers. Based on the experience of other industries and our observation of the evolution of SOA, we found that the greater use of these approaches have the potential to significantly impact SOA implementations for CDS.

  6. Randomized Trial of Population-Based Clinical Decision Support to Facilitate Care Transitions.

    Science.gov (United States)

    Eisenstein, Eric L; Willis, Janese M; Edwards, Rex; Anstrom, Kevin J; Kawamoto, Kensaku; Fiol, Guilherme Del; Johnson, Fred S; Lobach, David F

    2017-01-01

    Medicaid beneficiaries in 6 North Carolina counties were randomly assigned to 1 of 3 clinical decision support (CDS) care transition strategies: (1) usual care (Control), (2) CDS messaging to patients and their medical homes (Reports), or (3) CDS messaging to patients, their medical homes, and their care managers (Reports+). We included 7146 Medicaid patients and evaluated transitions from specialist visit, ER and hospital encounters back to the patient's medical home. Patients enrolled in Medicare and Medicaid were not eligible. The number of care manager contacts was greater for patients in the Reports+ Group than in the Control Group. However, there were no treatment-related differences in emergency department (ED) encounter rates, or in the secondary outcomes of outpatient and hospital encounter rates and medical costs. Study monitors found study intervention documentation in approximately 60% of patient charts. These results highlight the importance of effectively integrating information interventions into healthcare delivery workflow systems.

  7. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility.

    Science.gov (United States)

    Marcos, Mar; Maldonado, Jose A; Martínez-Salvador, Begoña; Boscá, Diego; Robles, Montserrat

    2013-08-01

    Clinical decision-support systems (CDSSs) comprise systems as diverse as sophisticated platforms to store and manage clinical data, tools to alert clinicians of problematic situations, or decision-making tools to assist clinicians. Irrespective of the kind of decision-support task CDSSs should be smoothly integrated within the clinical information system, interacting with other components, in particular with the electronic health record (EHR). However, despite decades of developments, most CDSSs lack interoperability features. We deal with the interoperability problem of CDSSs and EHRs by exploiting the dual-model methodology. This methodology distinguishes a reference model and archetypes. A reference model is represented by a stable and small object-oriented model that describes the generic properties of health record information. For their part, archetypes are reusable and domain-specific definitions of clinical concepts in the form of structured and constrained combinations of the entities of the reference model. We rely on archetypes to make the CDSS compatible with EHRs from different institutions. Concretely, we use archetypes for modelling the clinical concepts that the CDSS requires, in conjunction with a series of knowledge-intensive mappings relating the archetypes to the data sources (EHR and/or other archetypes) they depend on. We introduce a comprehensive approach, including a set of tools as well as methodological guidelines, to deal with the interoperability of CDSSs and EHRs based on archetypes. Archetypes are used to build a conceptual layer of the kind of a virtual health record (VHR) over the EHR whose contents need to be integrated and used in the CDSS, associating them with structural and terminology-based semantics. Subsequently, the archetypes are mapped to the EHR by means of an expressive mapping language and specific-purpose tools. We also describe a case study where the tools and methodology have been employed in a CDSS to support

  8. Using clinical decision support as a means of implementing a universal postpartum depression screening program.

    Science.gov (United States)

    Loudon, Holly; Nentin, Farida; Silverman, Michael E

    2016-06-01

    A major barrier to the diagnosis of postpartum depression (PPD) includes symptom detection. The lack of awareness and understanding of PPD among new mothers, the variability in clinical presentation, and the various diagnostic strategies can increase this further. The purpose of this study was to test the feasibility of adding clinical decision support (CDS) to the electronic health record (EHR) as a means of implementing a universal standardized PPD screening program within a large, at high risk, population. All women returning to the Mount Sinai Hospital OB/GYN Ambulatory Practice for postpartum care between 2010 and 2013 were presented with the Edinburgh Postnatal Depression Scale (EPDS) in response to a CDS "hard stop" built into the EHR. Of the 2102 women who presented for postpartum care, 2092 women (99.5 %) were screened for PPD in response to a CDS hard stop module. Screens were missing on ten records (0.5 %) secondary to refusal, language barrier, or lack of clarity in the EHR. Technology is becoming increasingly important in addressing the challenges faced by health care providers. While the identification of PPD has become the recent focus of public health concerns secondary to the significant social burden, numerous barriers to screening still exist within the clinical setting. The utility of adding CDS in the form of a hard stop, requiring clinicians to enter a standardized PPD mood assessment score to the patient EHR, offers a sufficient way to address a primary barrier to PPD symptom identification at the practitioner level.

  9. [The added value of information summaries supporting clinical decisions at the point-of-care.

    Science.gov (United States)

    Banzi, Rita; González-Lorenzo, Marien; Kwag, Koren Hyogene; Bonovas, Stefanos; Moja, Lorenzo

    2016-11-01

    Evidence-based healthcare requires the integration of the best research evidence with clinical expertise and patients' values. International publishers are developing evidence-based information services and resources designed to overcome the difficulties in retrieving, assessing and updating medical information as well as to facilitate a rapid access to valid clinical knowledge. Point-of-care information summaries are defined as web-based medical compendia that are specifically designed to deliver pre-digested, rapidly accessible, comprehensive, and periodically updated information to health care providers. Their validity must be assessed against marketing claims that they are evidence-based. We periodically evaluate the content development processes of several international point-of-care information summaries. The number of these products has increased along with their quality. The last analysis done in 2014 identified 26 products and found that three of them (Best Practice, Dynamed e Uptodate) scored the highest across all evaluated dimensions (volume, quality of the editorial process and evidence-based methodology). Point-of-care information summaries as stand-alone products or integrated with other systems, are gaining ground to support clinical decisions. The choice of one product over another depends both on the properties of the service and the preference of users. However, even the most innovative information system must rely on transparent and valid contents. Individuals and institutions should regularly assess the value of point-of-care summaries as their quality changes rapidly over time.

  10. Electronic clinical decision support systems attitudes and barriers to use in the oncology setting.

    LENUS (Irish Health Repository)

    Collins, I M

    2012-03-02

    BACKGROUND: There is little evidence regarding attitudes to clinical decision support systems (CDSS) in oncology. AIMS: We examined the current usage, awareness, and concerns of Irish medical oncologists and oncology pharmacists in this area. METHODS: A questionnaire was sent to 27 medical oncologists and 34 oncology pharmacists, identified through professional interest groups. Respondents ranked concerns regarding their use of a CDSS on a scale from 1 to 4, with 4 being most important. RESULTS: Overall, 67% (41\\/61) responded, 48% (13\\/27) of oncologists and 82% (28\\/34) of pharmacists surveyed. Concerns included "difficulty defining complex clinical situations with a set of rules" (mean ± SD) (3.2 ± 0.9), "ensuring evidence base is up to date and relevant" (3.2 ± 0.9) and "lack of clinically relevant suggestions" (2.9 ± 0.9). Ninety-three percent reported using a CDSS but 54% were unaware of this. CONCLUSION: While there are benefits to using a CDSS, concerns must be addressed through user education. This may be a starting point for a user-centred design approach to the development of future local systems through a consultative process.

  11. Clinical Information System Services and Capabilities Desired for Scalable, Standards-Based, Service-oriented Decision Support: Consensus Assessment of the Health Level 7 Clinical Decision Support Work Group

    Science.gov (United States)

    Kawamoto, Kensaku; Jacobs, Jason; Welch, Brandon M.; Huser, Vojtech; Paterno, Marilyn D.; Del Fiol, Guilherme; Shields, David; Strasberg, Howard R.; Haug, Peter J.; Liu, Zhijing; Jenders, Robert A.; Rowed, David W.; Chertcoff, Daryl; Fehre, Karsten; Adlassnig, Klaus-Peter; Curtis, A. Clayton

    2012-01-01

    A standards-based, service-oriented architecture for clinical decision support (CDS) has the potential to significantly enhance CDS scalability and robustness. To enable such a CDS architecture, the Health Level 7 CDS Work Group reviewed the literature, hosted multi-stakeholder discussions, and consulted domain experts to identify and prioritize the services and capabilities required from clinical information systems (CISs) to enable service-oriented CDS. In addition, relevant available standards were identified. Through this process, ten CIS services and eight CIS capabilities were identified as being important for enabling scalable, service-oriented CDS. In particular, through a survey of 46 domain experts, five services and capabilities were identified as being especially critical: 1) the use of standard information models and terminologies; 2) the ability to leverage a Decision Support Service (DSS); 3) support for a clinical data query service; 4) support for an event subscription and notification service; and 5) support for a user communication service. PMID:23304315

  12. Clinical information system services and capabilities desired for scalable, standards-based, service-oriented decision support: consensus assessment of the Health Level 7 clinical decision support Work Group.

    Science.gov (United States)

    Kawamoto, Kensaku; Jacobs, Jason; Welch, Brandon M; Huser, Vojtech; Paterno, Marilyn D; Del Fiol, Guilherme; Shields, David; Strasberg, Howard R; Haug, Peter J; Liu, Zhijing; Jenders, Robert A; Rowed, David W; Chertcoff, Daryl; Fehre, Karsten; Adlassnig, Klaus-Peter; Curtis, A Clayton

    2012-01-01

    A standards-based, service-oriented architecture for clinical decision support (CDS) has the potential to significantly enhance CDS scalability and robustness. To enable such a CDS architecture, the Health Level 7 CDS Work Group reviewed the literature, hosted multi-stakeholder discussions, and consulted domain experts to identify and prioritize the services and capabilities required from clinical information systems (CISs) to enable service-oriented CDS. In addition, relevant available standards were identified. Through this process, ten CIS services and eight CIS capabilities were identified as being important for enabling scalable, service-oriented CDS. In particular, through a survey of 46 domain experts, five services and capabilities were identified as being especially critical: 1) the use of standard information models and terminologies; 2) the ability to leverage a Decision Support Service (DSS); 3) support for a clinical data query service; 4) support for an event subscription and notification service; and 5) support for a user communication service.

  13. Evaluating acceptance and user experience of a guideline-based clinical decision support system execution platform.

    Science.gov (United States)

    Buenestado, David; Elorz, Javier; Pérez-Yarza, Eduardo G; Iruetaguena, Ander; Segundo, Unai; Barrena, Raúl; Pikatza, Juan M

    2013-04-01

    This study aims to determine what the initial disposition of physicians towards the use of Clinical Decision Support Systems (CDSS) based on Computerised Clinical Guidelines and Protocols (CCGP) is; and whether their prolonged utilisation has a positive effect on their intention to adopt them in the future. For a period of 3 months, 8 volunteer paediatricians monitored each up to 10 asthmatic patients using two CCGPs deployed in the-GuidesMed CDSS. A Technology Acceptance Model (TAM) questionnaire was supplied to them before and after using the system. Results from both questionnaires are analysed searching for significant improvements in opinion between them. An additional survey was performed to analyse the usability of the system. It was found that initial disposition of physicians towards e-GuidesMed is good. Improvement between the pre and post iterations of the TAM questionnaire has been found to be statistically significant. Nonetheless, slightly lower values in the Compatibility and Habit variables show that participants perceive possible difficulties to integrate e-GuidesMed into their daily routine. The variable Facilitators shows the highest correlation with the Intention to Use. Usability of the system has also been rated very high and, in this regard, no fundamental flaw has been detected. Initial views towards e-GuidesMed are positive, and become reinforced after continued utilisation of the system. In order to achieve an effective implementation, it becomes essential to facilitate conditions to integrate the system into the physician's daily routine.

  14. Clinical Decision Support for the Classification of Diabetic Retinopathy: A Comparison of Manual and Automated Results.

    Science.gov (United States)

    Mitsch, Christoph; Fehre, Karsten; Prager, Sonja; Scholda, Christoph; Kriechbaum, Katharina; Wrba, Thomas; Schmidt-Erfurth, Ursula

    2016-01-01

    The management of diabetic retinopathy, a frequent ophthalmological manifestation of diabetes mellitus, consists of regular examinations and a standardized, manual classification of disease severity, which is used to recommend re-examination intervals. To evaluate the feasibility and safety of implementing automated, guideline-based diabetic retinopathy (DR) grading into clinical routine by applying established clinical decision support (CDS) technology. We compared manual with automated classification that was generated using medical documentation and an Arden server with a specific medical logic module. Of 7169 included eyes, 47% (n=3373) showed inter-method classification agreement, specifically 29.4% in mild DR, 38.3% in moderate DR, 27.6% in severe DR, and 65.7% in proliferative DR. We demonstrate that the implementation of a CDS system for automated disease severity classification in diabetic retinopathy is feasible but also that, due to the highly individual nature of medical documentation, certain important criteria for the used electronic health record system need to be met in order to achieve reliable results.

  15. Formative Evaluation of Clinician Experience with Integrating Family History-Based Clinical Decision Support into Clinical Practice

    Directory of Open Access Journals (Sweden)

    Megan Doerr

    2014-03-01

    Full Text Available Family health history is a leading predictor of disease risk. Nonetheless, it is underutilized to guide care and, therefore, is ripe for health information technology intervention. To fill the family health history practice gap, Cleveland Clinic has developed a family health history collection and clinical decision support tool, MyFamily. This report describes the impact and process of implementing MyFamily into primary care, cancer survivorship and cancer genetics clinics. Ten providers participated in semi-structured interviews that were analyzed to identify opportunities for process improvement. Participants universally noted positive effects on patient care, including increases in quality, personalization of care and patient engagement. The impact on clinical workflow varied by practice setting, with differences observed in the ease of integration and the use of specific report elements. Tension between the length of the report and desired detail was appreciated. Barriers and facilitators to the process of implementation were noted, dominated by the theme of increased integration with the electronic medical record. These results fed real-time improvement cycles to reinforce clinician use. This model will be applied in future institutional efforts to integrate clinical genomic applications into practice and may be useful for other institutions considering the implementation of tools for personalizing medical management.

  16. Design, Implementation, Use, and Preliminary Evaluation of an UMLS-Enabled Terminology Web Service for Clinical Decision Support

    Science.gov (United States)

    Kawamoto, Kensaku; Lobach, David F.

    2006-01-01

    To facilitate the provision of clinical decision support (CDS), the Unified Medical Language System (UMLS) was leveraged to implement a terminology Web service. Supported functions include inter-vocabulary translation and the identification of concepts subsumed by a parent concept. Currently, the service is being used to aid the specification of clinical concepts within CDS knowledge modules. Insights gained from this process are discussed, including the limitations of using the UMLS to fulfill CDS terminology needs. PMID:17238598

  17. Clinical Decision Support Tools for Selecting Interventions for Patients with Disabling Musculoskeletal Disorders: A Scoping Review.

    Science.gov (United States)

    Gross, Douglas P; Armijo-Olivo, Susan; Shaw, William S; Williams-Whitt, Kelly; Shaw, Nicola T; Hartvigsen, Jan; Qin, Ziling; Ha, Christine; Woodhouse, Linda J; Steenstra, Ivan A

    2016-09-01

    Purpose We aimed to identify and inventory clinical decision support (CDS) tools for helping front-line staff select interventions for patients with musculoskeletal (MSK) disorders. Methods We used Arksey and O'Malley's scoping review framework which progresses through five stages: (1) identifying the research question; (2) identifying relevant studies; (3) selecting studies for analysis; (4) charting the data; and (5) collating, summarizing and reporting results. We considered computer-based, and other available tools, such as algorithms, care pathways, rules and models. Since this research crosses multiple disciplines, we searched health care, computing science and business databases. Results Our search resulted in 4605 manuscripts. Titles and abstracts were screened for relevance. The reliability of the screening process was high with an average percentage of agreement of 92.3 %. Of the located articles, 123 were considered relevant. Within this literature, there were 43 CDS tools located. These were classified into 3 main areas: computer-based tools/questionnaires (n = 8, 19 %), treatment algorithms/models (n = 14, 33 %), and clinical prediction rules/classification systems (n = 21, 49 %). Each of these areas and the associated evidence are described. The state of evidentiary support for CDS tools is still preliminary and lacks external validation, head-to-head comparisons, or evidence of generalizability across different populations and settings. Conclusions CDS tools, especially those employing rapidly advancing computer technologies, are under development and of potential interest to health care providers, case management organizations and funders of care. Based on the results of this scoping review, we conclude that these tools, models and systems should be subjected to further validation before they can be recommended for large-scale implementation for managing patients with MSK disorders.

  18. Standards for scalable clinical decision support: need, current and emerging standards, gaps, and proposal for progress.

    Science.gov (United States)

    Kawamoto, Kensaku; Del Fiol, Guilherme; Lobach, David F; Jenders, Robert A

    2010-01-01

    Despite their potential to significantly improve health care, advanced clinical decision support (CDS) capabilities are not widely available in the clinical setting. An important reason for this limited availability of CDS capabilities is the application-specific and institution-specific nature of most current CDS implementations. Thus, a critical need for enabling CDS capabilities on a much larger scale is the development and adoption of standards that enable current and emerging CDS resources to be more effectively leveraged across multiple applications and care settings. Standards required for such effective scaling of CDS include (i) standard terminologies and information models to represent and communicate about health care data; (ii) standard approaches to representing clinical knowledge in both human-readable and machine-executable formats; and (iii) standard approaches for leveraging these knowledge resources to provide CDS capabilities across various applications and care settings. A number of standards do exist or are under development to meet these needs. However, many gaps and challenges remain, including the excessive complexity of many standards; the limited availability of easily accessible knowledge resources implemented using standard approaches; and the lack of tooling and other practical resources to enable the efficient adoption of existing standards. Thus, the future development and widespread adoption of current CDS standards will depend critically on the availability of tooling, knowledge bases, and other resources that make the adoption of CDS standards not only the right approach to take, but the cost-effective path to follow given the alternative of using a traditional, ad hoc approach to implementing CDS.

  19. Formative assessment and design of a complex clinical decision support tool for pulmonary embolism.

    Science.gov (United States)

    Khan, Sundas; McCullagh, Lauren; Press, Anne; Kharche, Manish; Schachter, Andy; Pardo, Salvatore; McGinn, Thomas

    2016-02-01

    Electronic health record (EHR)-based clinical decision support (CDS) tools are rolled out with the urgency to meet federal requirements without time for usability testing and refinement of the user interface. As part of a larger project to design, develop and integrate a pulmonary embolism CDS tool for emergency physicians, we conducted a formative assessment to determine providers' level of interest and input on designs and content. This was a study to conduct a formative assessment of emergency medicine (EM) physicians that included focus groups and key informant interviews. The focus of this study was twofold, to determine the general attitude towards CDS tool integration and the ideal integration point into the clinical workflow. To accomplish this, we first approached EM physicians in a focus group, then, during key informant interviews, we presented workflow designs and gave a scenario to help the providers visualise how the CDS tool works. Participants were asked questions regarding the trigger location, trigger words, integration into their workflow, perceived utility and heuristic of the tool. Results from the participants' survey responses to trigger location, perceived utility and efficiency, indicated that the providers felt the tool would be more of a hindrance than an aid. However, some providers commented that they had not had exposure to CDS tools but had used online calculators, and thought the tools would be helpful at the point-of-care if integrated into the EHR. Furthermore, there was a preference for an order entry wireframe. This study highlights several factors to consider when designing CDS tools: (1) formative assessment of EHR functionality and clinical environment workflow, (2) focus groups and key informative interviews to incorporate providers' perceptions of CDS and workflow integration and/or (3) the demonstration of proposed workflows through wireframes to help providers visualise design concepts.

  20. Cost-effectiveness of clinical decision support system in improving maternal health care in Ghana.

    Directory of Open Access Journals (Sweden)

    Maxwell Ayindenaba Dalaba

    Full Text Available This paper investigated the cost-effectiveness of a computer-assisted Clinical Decision Support System (CDSS in the identification of maternal complications in Ghana.A cost-effectiveness analysis was performed in a before- and after-intervention study. Analysis was conducted from the provider's perspective. The intervention area was the Kassena- Nankana district where computer-assisted CDSS was used by midwives in maternal care in six selected health centres. Six selected health centers in the Builsa district served as the non-intervention group, where the normal Ghana Health Service activities were being carried out.Computer-assisted CDSS increased the detection of pregnancy complications during antenatal care (ANC in the intervention health centres (before-intervention = 9 /1,000 ANC attendance; after-intervention = 12/1,000 ANC attendance; P-value = 0.010. In the intervention health centres, there was a decrease in the number of complications during labour by 1.1%, though the difference was not statistically significant (before-intervention =107/1,000 labour clients; after-intervention = 96/1,000 labour clients; P-value = 0.305. Also, at the intervention health centres, the average cost per pregnancy complication detected during ANC (cost -effectiveness ratio decreased from US$17,017.58 (before-intervention to US$15,207.5 (after-intervention. Incremental cost -effectiveness ratio (ICER was estimated at US$1,142. Considering only additional costs (cost of computer-assisted CDSS, cost per pregnancy complication detected was US$285.Computer -assisted CDSS has the potential to identify complications during pregnancy and marginal reduction in labour complications. Implementing computer-assisted CDSS is more costly but more effective in the detection of pregnancy complications compared to routine maternal care, hence making the decision to implement CDSS very complex. Policy makers should however be guided by whether the additional benefit is worth

  1. A Mobile Clinical Decision Support Tool for Pediatric Cardiovascular Risk-Reduction Clinical Practice Guidelines: Development and Description

    Science.gov (United States)

    2017-01-01

    Background Widespread application of research findings to improve patient outcomes remains inadequate, and failure to routinely translate research findings into daily clinical practice is a major barrier for the implementation of any evidence-based guideline. Strategies to increase guideline uptake in primary care pediatric practices and to facilitate adherence to recommendations are required. Objective Our objective was to operationalize the US National Heart, Lung, and Blood Institute’s Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents into a mobile clinical decision support (CDS) system for healthcare providers, and to describe the process development and outcomes. Methods To overcome the difficulty of translating clinical practice guidelines into a computable form that can be used by a CDS system, we used a multilayer framework to convert the evidence synthesis into executable knowledge. We used an iterative process of design, testing, and revision through each step in the translation of the guidelines for use in a CDS tool to support the development of 4 validated modules: an integrated risk assessment; a blood pressure calculator; a body mass index calculator; and a lipid management instrument. Results The iterative revision process identified several opportunities to improve the CDS tool. Operationalizing the integrated guideline identified numerous areas in which the guideline was vague or incorrect and required more explicit operationalization. Iterative revisions led to workable solutions to problems and understanding of the limitations of the tool. Conclusions The process and experiences described provide a model for other mobile CDS systems that translate written clinical practice guidelines into actionable, real-time clinical recommendations. PMID:28270384

  2. Recommendations for a Clinical Decision Support for the Management of Individuals with Chronic Kidney Disease

    Science.gov (United States)

    Patwardhan, Meenal B.; Kawamoto, Kensaku; Lobach, David; Patel, Uptal D.; Matchar, David B.

    2009-01-01

    Background and objectives: Care for advanced CKD patients is suboptimal. CKD practice guidelines aim to close gaps in care, but making providers aware of guidelines is an ineffective implementation strategy. The Institute of Medicine has endorsed the use of clinical decision support (CDS) for implementing guidelines. The authors’ objective was to identify the requirements of an optimal CDS system for CKD management. Design, setting, participants, and measurements: The aims of this study expanded on those of previous work that used the facilitated process improvement (FPI) methodology. In FPI, an expert workgroup develops a set of quality improvement tools that can subsequently be utilized by practicing physicians. The authors conducted a discussion with a group of multidisciplinary experts to identify requirements for an optimal CDS system. Results: The panel considered the process of patient identification and management, associated barriers, and elements by which CDS could address these barriers. The panel also discussed specific knowledge needs in the context of a typical scenario in which CDS would be used. Finally, the group developed a set of core requirements that will likely facilitate the implementation of a CDS system aimed at improving the management of any chronic medical condition. Conclusions: Considering the growing burden of CKD and the potential healthcare and resource impact of guideline implementation through CDS, the relevance of this systematic process, consistent with Institute of Medicine recommendations, cannot be understated. The requirements described in this report could serve as a basis for the design of a CKD-specific CDS. PMID:19176797

  3. Design, Implementation, Use, and Preliminary Evaluation of SEBASTIAN, a Standards-Based Web Service for Clinical Decision Support

    Science.gov (United States)

    Kawamoto, Kensaku; Lobach, David F.

    2005-01-01

    Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility. PMID:16779066

  4. A fuzzy logic decision support system for assessing clinical nutritional risk

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Hadianfard

    2015-04-01

    Full Text Available Introduction: Studies have indicated a global high prevalence of hospital malnutrition on admission and during hospitalization. Clinical Nutritional Risk Screen (CNRS is a way to identify malnutrition and manage nutritional interventions. Several traditional and non-computer based tools have been suggested for screening nutritional risk levels. The present study was an attempt to employ a computer based fuzzy model decision support system as a nutrition-screening tool for inpatients. Method: This is an applied modeling study. The system architecture was designed based on the fuzzy logic model including input data, inference engine, and output. A clinical nutritionist entered nineteen input variables using a windows-based graphical user interface. The inference engine was involved with knowledge obtained from literature and the construction of ‘IF-THEN’ rules. The output of the system was stratification of patients into four risk levels from ‘No’ to ‘High’ where a number was also allocated to them as a nutritional risk grade. All patients (121 people admitted during implementing the system participated in testing the model. The classification tests were used to measure the CNRS fuzzy model performance. IBM SPSS version 21 was utilized as a tool for data analysis with α = 0.05 as a significance level. Results: Results showed that sensitivity, specificity, accuracy, and precision of the fuzzy model performance were 91.67% (±4.92, 76% (±7.6, 88.43% (±5.7, and 93.62% (±4.32, respectively. Instant performance on admission and very low probability of mistake in predicting malnutrition risk level may justify using the model in hospitals. Conclusion: To conclude, the fuzzy model-screening tool is based on multiple nutritional risk factors, having the capability of classifying inpatients into several nutritional risk levels and identifying the level of required nutritional intervention.

  5. An ontology-driven, case-based clinical decision support model for removable partial denture design

    Science.gov (United States)

    Chen, Qingxiao; Wu, Ji; Li, Shusen; Lyu, Peijun; Wang, Yong; Li, Miao

    2016-06-01

    We present the initial work toward developing a clinical decision support model for specific design of removable partial dentures (RPDs) in dentistry. We developed an ontological paradigm to represent knowledge of a patient’s oral conditions and denture component parts. During the case-based reasoning process, a cosine similarity algorithm was applied to calculate similarity values between input patients and standard ontology cases. A group of designs from the most similar cases were output as the final results. To evaluate this model, the output designs of RPDs for 104 randomly selected patients were compared with those selected by professionals. An area under the curve of the receiver operating characteristic (AUC-ROC) was created by plotting true-positive rates against the false-positive rate at various threshold settings. The precision at position 5 of the retrieved cases was 0.67 and at the top of the curve it was 0.96, both of which are very high. The mean average of precision (MAP) was 0.61 and the normalized discounted cumulative gain (NDCG) was 0.74 both of which confirmed the efficient performance of our model. All the metrics demonstrated the efficiency of our model. This methodology merits further research development to match clinical applications for designing RPDs. This paper is organized as follows. After the introduction and description of the basis for the paper, the evaluation and results are presented in Section 2. Section 3 provides a discussion of the methodology and results. Section 4 describes the details of the ontology, similarity algorithm, and application.

  6. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review

    Directory of Open Access Journals (Sweden)

    Wilczynski Nancy L

    2010-02-01

    Full Text Available Abstract Background Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit. Methods The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system. Results Data will be summarized

  7. DEVELOPMENT OF A PROTOTYPE OF MALARIA CLINICAL DIAGNOSTIC DECISION SUPPORT SYSTEM

    OpenAIRE

    Harefa, Sudarta Yabesman; Lazuardi, Lutfan; Fuad, Anis

    2014-01-01

    Introduction : Malaria is a public health problem that still causes mortality, particularly in high risk population. Kabupaten Nias is one of the malaria endemic areas. Malaria diagnosis is mainly determined according to physical examination, despite the fact that laboratory examination is the gold standard of malaria diagnosis. To help health workers in diagnosing malaria accurately, it is necessary to develop a decision support system for malaria diagnosis.Objectives: To develop a prototype...

  8. Usability of clinical decision support system as a facilitator for learning the assistive technology adaptation process.

    Science.gov (United States)

    Danial-Saad, Alexandra; Kuflik, Tsvi; Weiss, Patrice L Tamar; Schreuer, Naomi

    2016-01-01

    The aim of this study was to evaluate the usability of Ontology Supported Computerized Assistive Technology Recommender (OSCAR), a Clinical Decision Support System (CDSS) for the assistive technology adaptation process, its impact on learning the matching process, and to determine the relationship between its usability and learnability. Two groups of expert and novice clinicians (total, n = 26) took part in this study. Each group filled out system usability scale (SUS) to evaluate OSCAR's usability. The novice group completed a learning questionnaire to assess OSCAR's effect on their ability to learn the matching process. Both groups rated OSCAR's usability as "very good", (M [SUS] = 80.7, SD = 11.6, median = 83.7) by the novices, and (M [SUS] = 81.2, SD = 6.8, median = 81.2) by the experts. The Mann-Whitney results indicated that no significant differences were found between the expert and novice groups in terms of OSCAR's usability. A significant positive correlation existed between the usability of OSCAR and the ability to learn the adaptation process (rs = 0.46, p = 0.04). Usability is an important factor in the acceptance of a system. The successful application of user-centered design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically in developing other systems. Implications for Rehabilitation Creating a CDSS with a focus on its usability is an important factor for its acceptance by its users. Successful usability outcomes can impact the learning process of the subject matter in general, and the AT prescription process in particular. The successful application of User-Centered Design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically. The study emphasizes the importance of close collaboration between the developers and

  9. Prototype to practice: Developing and testing a clinical decision support system for secondary stroke prevention in a veterans healthcare facility.

    Science.gov (United States)

    Anderson, Jane A; Willson, Pamela; Peterson, Nancy J; Murphy, Chris; Kent, Thomas A

    2010-01-01

    A clinical decision support system that guides nurse practitioners and other healthcare providers in secondary stroke prevention was developed by a multidisciplinary team with funding received from the Veterans Health Administration Office of Nursing Services. This article presents alpha-testing results obtained while using an integrated model for clinical decision support system development that emphasizes end-user perspectives throughout the development process. Before-after and descriptive methods were utilized to evaluate functionality and usability of the prototype among a sample of multidisciplinary clinicians. The predominant functionality feature of the tool is automated prompting and documentation of secondary stroke prevention guidelines in the electronic medical record. Documentation of guidelines was compared among multidisciplinary providers (N = 15) using test case scenarios and two documentation systems, standard versus the prototype. Usability was evaluated with an investigator-developed questionnaire and one open-ended question. The prototype prompted a significant increase (P < .05) in provider documentation for six of 11 guidelines as compared with baseline documentation while using the standard system. Of a possible 56 points, usability was scored high (mean, 48.9 [SD, 6.8]). These results support that guideline prompting has been successfully engineered to produce a usable and useful clinical decision support system for secondary stroke prevention.

  10. Decision Support for Radiologists

    Directory of Open Access Journals (Sweden)

    M. Fatehi

    2005-08-01

    Full Text Available Introduction & Background: Radiology practice like any other discipline in medicine consists of professional problem solving. A practicing radiologist may face different kinds of problems from pathology finding in im-age, suggestion of appropriate workup in a specific situation, formulating relevant differential diagnosis list for comparison with normal variants and artifacts. When a radiologist has the opportunity to use a computer he/she will also be able to use digital material/technology to solve these problems and make sound decisions. The available methods/materials for digital decision support in radiology may be categorized as follow: A. Image Processing When a radiological image is captured or converted to digital format, techniques like edge enhancement and contrast change may improve the diagnostic value of an image and help in decision making. B. Computer-aided Detection Thoracic imaging and mammography are two fields with promising advances in computer-aided diagnosis (CAD. The ultimate role of CAD is as a second opinion besides radiologists own perception. It is obvious how-ever that when available, CAD may decrease detection errors in radiology practice. C. Decision Support Databases Image Banks: An electronic atlas may be used to compare patients’ image to a predefined classified set of im-ages in order to help radiologist in pattern recognition. This may also be used for anatomic details and variants. Knowledge Bases: A digital differential diagnosis table or algorithmic approach to a specific problem may be helpful in reading room. Digital Textbooks: Classical radiological textbooks may be used in routine practice to remember some definitions, lists or hints, When available, digital version of textbooks are invaluable decision aids. D. Internet resources Online resources can be easily updated, widely used by different users, uniformly applied by different radiolo-gists. Although digital decision support materials and

  11. Anticoagulation manager: development of a clinical decision support mobile application for management of anticoagulants.

    Science.gov (United States)

    Chih-Wen Cheng; Hang Wu; Thompson, Pamela J; Taylor, Julie R; Zehnbauer, Barbara A; Wilson, Karlyn K; Wang, May D

    2016-08-01

    Patients with certain clotting disorders or conditions have a greater risk of developing arterial or venous clots and downstream embolisms, strokes, and arterial insufficiency. These patients need prescription anticoagulant drugs to reduce the possibility of clot formation. However, historically, the clinical decision making workflow in determining the correct type and dosage of anticoagulant(s) is part science and part art. To address this problem, we developed Anticoagulation Manager, an intelligent clinical decision workflow management system on iOS-based mobile devices to help clinicians effectively choose the most appropriate and helpful follow-up clotting tests for patients with a common clotting profile. The app can provide physicians guidance to prescribe the most appropriate medication for patients in need of anticoagulant drugs. This intelligent app was jointly designed and developed by medical professionals in CDC and engineers at Georgia Tech, and will be evaluated by physicians for ease-of-use, robustness, flexibility, and scalability. Eventually, it will be deployed and shared in both physician community and developer community.

  12. Evaluation of User Interface and Workflow Design of a Bedside Nursing Clinical Decision Support System

    Science.gov (United States)

    Yuan, Michael Juntao; Finley, George Mike; Mills, Christy; Johnson, Ron Kim

    2013-01-01

    Background Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations. Objective Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS. Methods Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration

  13. Support and Assessment for Fall Emergency Referrals (SAFER 1: cluster randomised trial of computerised clinical decision support for paramedics.

    Directory of Open Access Journals (Sweden)

    Helen Anne Snooks

    Full Text Available To evaluate effectiveness, safety and cost-effectiveness of Computerised Clinical Decision Support (CCDS for paramedics attending older people who fall.Cluster trial randomised by paramedic; modelling.13 ambulance stations in two UK emergency ambulance services.42 of 409 eligible paramedics, who attended 779 older patients for a reported fall.Intervention paramedics received CCDS on Tablet computers to guide patient care. Control paramedics provided care as usual. One service had already installed electronic data capture.Effectiveness: patients referred to falls service, patient reported quality of life and satisfaction, processes of care.Further emergency contacts or death within one month.Costs and quality of life. We used findings from published Community Falls Prevention Trial to model cost-effectiveness.17 intervention paramedics used CCDS for 54 (12.4% of 436 participants. They referred 42 (9.6% to falls services, compared with 17 (5.0% of 343 participants seen by 19 control paramedics [Odds ratio (OR 2.04, 95% CI 1.12 to 3.72]. No adverse events were related to the intervention. Non-significant differences between groups included: subsequent emergency contacts (34.6% versus 29.1%; OR 1.27, 95% CI 0.93 to 1.72; quality of life (mean SF12 differences: MCS -0.74, 95% CI -2.83 to +1.28; PCS -0.13, 95% CI -1.65 to +1.39 and non-conveyance (42.0% versus 36.7%; OR 1.13, 95% CI 0.84 to 1.52. However ambulance job cycle time was 8.9 minutes longer for intervention patients (95% CI 2.3 to 15.3. Average net cost of implementing CCDS was £208 per patient with existing electronic data capture, and £308 without. Modelling estimated cost per quality-adjusted life-year at £15,000 with existing electronic data capture; and £22,200 without.Intervention paramedics referred twice as many participants to falls services with no difference in safety. CCDS is potentially cost-effective, especially with existing electronic data capture.ISRCTN Register ISRCTN

  14. A randomized trial of population-based clinical decision support to manage health and resource use for Medicaid beneficiaries.

    Science.gov (United States)

    Lobach, David F; Kawamoto, Kensaku; Anstrom, Kevin J; Silvey, Garry M; Willis, Janese M; Johnson, Fred S; Edwards, Rex; Simo, Jessica; Phillips, Pam; Crosslin, David R; Eisenstein, Eric L

    2013-02-01

    To determine whether a clinical decision support system can favorably impact the delivery of emergency department and hospital services. Randomized clinical trial of three clinical decision support delivery modalities: email messages to care managers (email), printed reports to clinic administrators (report) and letters to patients (letter) conducted among 20,180 Medicaid beneficiaries in Durham County, North Carolina with follow-up through 9 months. Patients in the email group had fewer low-severity emergency department encounters vs. controls (8.1 vs. 10.6/100 enrollees, p < 0.001) with no increase in outpatient encounters or medical costs. Patients in the letter group had more outpatient encounters and greater outpatient and total medical costs. There were no treatment-related differences for patients in the reports group. Among patients <18 years, those in the email group had fewer low severity (7.6 vs. 10.6/100 enrollees, p < 0.001) and total emergency department encounters (18.3 vs. 23.5/100 enrollees, p < 0.001), and lower emergency department ($63 vs. $89, p = 0.002) and total medical costs ($1,736 vs. $2,207, p = 0.009). Patients who were ≥18 years in the letter group had greater outpatient medical costs. There were no intervention-related differences in patient-reported assessments of quality of life and medical care received. The effectiveness of clinical decision support messaging depended upon the delivery modality and patient age. Health IT interventions must be carefully evaluated to ensure that the resultant outcomes are aligned with expectations as interventions can have differing effects on clinical and economic outcomes.

  15. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine

    Directory of Open Access Journals (Sweden)

    Willard Huntington F

    2009-03-01

    Full Text Available Abstract Background In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs. Discussion Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the Roadmap for National Action on Clinical Decision Support commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government. Summary A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and

  16. Real-Time Clinical Decision Support System with Data Stream Mining

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2012-01-01

    Full Text Available This research aims to describe a new design of data stream mining system that can analyze medical data stream and make real-time prediction. The motivation of the research is due to a growing concern of combining software technology and medical functions for the development of software application that can be used in medical field of chronic disease prognosis and diagnosis, children healthcare, diabetes diagnosis, and so forth. Most of the existing software technologies are case-based data mining systems. They only can analyze finite and structured data set and can only work well in their early years and can hardly meet today's medical requirement. In this paper, we describe a clinical-support-system based data stream mining technology; the design has taken into account all the shortcomings of the existing clinical support systems.

  17. Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework.

    Science.gov (United States)

    Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song

    2016-05-01

    Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.

  18. The effect of attitude to risk on decisions made by nurses using computerised decision support software in telephone clinical assessment: an observational study

    Directory of Open Access Journals (Sweden)

    O'Donnell Catherine

    2007-11-01

    Full Text Available Abstract Background There is variation in the decisions made by telephone assessment nurses using computerised decision support software (CDSS. Variation in nurses' attitudes to risk has been identified as a possible explanatory factor. This study was undertaken to explore the effect of nurses' attitudes to risk on the decisions they make when using CDSS. The setting was NHS 24 which is a nationwide telephone assessment service in Scotland in which nurses assess health problems, mainly on behalf of out-of-hours general practice, and triage calls to self care, a service at a later date, or immediate contact with a service. Methods All NHS 24 nurses were asked to complete a questionnaire about their background and attitudes to risk. Routine data on the decisions made by these nurses was obtained for a six month period in 2005. Multilevel modelling was used to measure the effect of nurses' risk attitudes on the proportion of calls they sent to self care rather than to services. Results The response rate to the questionnaire was 57% (265/464. 231,112 calls were matched to 211 of these nurses. 16% (36,342/231,112 of calls were sent to self care, varying three fold between the top and bottom deciles of nurses. Fifteen risk attitude variables were tested, including items on attitudes to risk in clinical decision-making. Attitudes to risk varied greatly between nurses, for example 27% (71/262 of nurses strongly agreed that an NHS 24 nurse "must not take any risks with physical illness" while 17% (45/262 disagreed. After case-mix adjustment, there was some evidence that nurses' attitudes to risk affected decisions but this was inconsistent and unconvincing. Conclusion Much of the variation in decision-making by nurses using CDSS remained unexplained. There was no convincing evidence that nurses' attitudes to risk affected the decisions made. This may have been due to the limitations of the instrument used to measure risk attitude.

  19. Does computer-aided clinical decision support improve the management of acute abdominal pain? A systematic review.

    Science.gov (United States)

    Cooper, Jamie G; West, Robert M; Clamp, Susan E; Hassan, Tajek B

    2011-07-01

    Acute abdominal pain is a common reason for emergency presentation to hospital. Despite recent medical advances in diagnostics, overall clinical decision-making in the assessment of patients with undifferentiated acute abdominal pain remains poor, with initial clinical diagnostic accuracy being 45-50%. Computer-aided decision support (CADS) systems were widely tested in this arena during the 1970s and 1980s with results that were generally favourable. Inception into routine clinical practice was hampered largely by the size and speed of the hardware. Computer systems and literacy are now vastly superior and the potential benefit of CADS deserves investigation. An extensive literature search was undertaken to find articles that directly compared the clinical diagnostic accuracy prospectively of medical staff in the diagnosis of acute abdominal pain before and after the institution of a CADS programme. Included articles underwent meta-analysis with a random-effects model. Ten studies underwent meta-analysis that demonstrated an overall mean percentage improvement in clinical diagnostic accuracy of 17.25% with the use of CADS systems. There is a role for CADS in the initial evaluation of acute abdominal pain, which very often takes place in the emergency department setting.

  20. A clinical decision support system for integrating tuberculosis and HIV care in Kenya: a human-centered design approach.

    Directory of Open Access Journals (Sweden)

    Caricia Catalani

    Full Text Available With the aim of integrating HIV and tuberculosis care in rural Kenya, a team of researchers, clinicians, and technologists used the human-centered design approach to facilitate design, development, and deployment processes of new patient-specific TB clinical decision support system for medical providers. In Kenya, approximately 1.6 million people are living with HIV and have a 20-times higher risk of dying of tuberculosis. Although tuberculosis prevention and treatment medication is widely available, proven to save lives, and prioritized by the World Health Organization, ensuring that it reaches the most vulnerable communities remains challenging. Human-centered design, used in the fields of industrial design and information technology for decades, is an approach to improving the effectiveness and impact of innovations that has been scarcely used in the health field. Using this approach, our team followed a 3-step process, involving mixed methods assessment to (1 understand the situation through the collection and analysis of site observation sessions and key informant interviews; (2 develop a new clinical decision support system through iterative prototyping, end-user engagement, and usability testing; and, (3 implement and evaluate the system across 24 clinics in rural West Kenya. Through the application of this approach, we found that human-centered design facilitated the process of digital innovation in a complex and resource-constrained context.

  1. A clinical decision support system for integrating tuberculosis and HIV care in Kenya: a human-centered design approach.

    Science.gov (United States)

    Catalani, Caricia; Green, Eric; Owiti, Philip; Keny, Aggrey; Diero, Lameck; Yeung, Ada; Israelski, Dennis; Biondich, Paul

    2014-01-01

    With the aim of integrating HIV and tuberculosis care in rural Kenya, a team of researchers, clinicians, and technologists used the human-centered design approach to facilitate design, development, and deployment processes of new patient-specific TB clinical decision support system for medical providers. In Kenya, approximately 1.6 million people are living with HIV and have a 20-times higher risk of dying of tuberculosis. Although tuberculosis prevention and treatment medication is widely available, proven to save lives, and prioritized by the World Health Organization, ensuring that it reaches the most vulnerable communities remains challenging. Human-centered design, used in the fields of industrial design and information technology for decades, is an approach to improving the effectiveness and impact of innovations that has been scarcely used in the health field. Using this approach, our team followed a 3-step process, involving mixed methods assessment to (1) understand the situation through the collection and analysis of site observation sessions and key informant interviews; (2) develop a new clinical decision support system through iterative prototyping, end-user engagement, and usability testing; and, (3) implement and evaluate the system across 24 clinics in rural West Kenya. Through the application of this approach, we found that human-centered design facilitated the process of digital innovation in a complex and resource-constrained context.

  2. Implementation of virtual medical record object model for a standards-based clinical decision support rule engine.

    Science.gov (United States)

    Huang, Christine; Noirot, Laura A; Heard, Kevin M; Reichley, Richard M; Dunagan, Wm Claiborne; Bailey, Thomas C

    2006-01-01

    The Virtual Medical Record (vMR) is a structured data model for representing individual patient informations. Our implementation of vMR is based on HL7 Reference Information Model (RIM) v2.13 from which a minimum set of objects and attributes are selected to meet the requirement of a clinical decision support (CDS) rule engine. Our success of mapping local patient data to the vMR model and building a vMR adaptor middle layer demonstrate the feasibility and advantages of implementing a vMR in a portable CDS solution.

  3. Study of Clinical Decision Support Knowledge Base%临床决策支持知识库研究

    Institute of Scientific and Technical Information of China (English)

    徐金耀

    2011-01-01

    Objective To explore clinical decision support knowledge base model that is suitable to practical use by utilizing knowledge management idea and method, which is used to enhance hospital core competency. Methods Collecting domestic and foreign medical informatics related information, to study and analyze the framework of clinical decision support knowledge base with artificial intelligence. Results The key to implement hospital knowledge management is to establish machine-learning and dynamic clinical decision support knowledge base, which is not only connected with HIS to collect traditional medical knowledge , but also needs establishing standard medical knowledge collecting engine and tacit medical knowledge translation model; in addition, intelligentized tools are embedded in the knowledge base, which make it hold machine learning function and intelligentized clinical decision support capacity with dynamic and updated medical knowledge. Conclusion The process to establish hospital knowledge base, in fact, is to create hospital value.The development of intelligentized clinical decision support knowledge base is not only related to medical knowledge collection and processing,but also dealt with medical knowledge expression, artificial intelligence technique embedding and application of rules, terms and classifications, which needs further study.%目的 运用知识管理的理念和方法,探讨切合实际应用的临床决策支持知识库概念模型,使医院能够通过知识管理提升其核心竞争力.方法收集国内外相关资料,系统化研究及分析具有人工智能的临床决策支持知识库的框架.结果实施医院知识管理的关键就是必须建立一个动态的,并具有自我学习能力的临床决策支持知识库,该知识库不仅需要通过医院信息系统收集传统的医学知识,而且需要建立用于临床指南等的标准医学知识收集的引擎和隐性知识转化模型,并嵌入智能化工具,通过

  4. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients.

    Science.gov (United States)

    Barbieri, Carlo; Molina, Manuel; Ponce, Pedro; Tothova, Monika; Cattinelli, Isabella; Ion Titapiccolo, Jasmine; Mari, Flavio; Amato, Claudia; Leipold, Frank; Wehmeyer, Wolfgang; Stuard, Stefano; Stopper, Andrea; Canaud, Bernard

    2016-08-01

    Managing anemia in hemodialysis patients can be challenging because of competing therapeutic targets and individual variability. Because therapy recommendations provided by a decision support system can benefit both patients and doctors, we evaluated the impact of an artificial intelligence decision support system, the Anemia Control Model (ACM), on anemia outcomes. Based on patient profiles, the ACM was built to recommend suitable erythropoietic-stimulating agent doses. Our retrospective study consisted of a 12-month control phase (standard anemia care), followed by a 12-month observation phase (ACM-guided care) encompassing 752 patients undergoing hemodialysis therapy in 3 NephroCare clinics located in separate countries. The percentage of hemoglobin values on target, the median darbepoetin dose, and individual hemoglobin fluctuation (estimated from the intrapatient hemoglobin standard deviation) were deemed primary outcomes. In the observation phase, median darbepoetin consumption significantly decreased from 0.63 to 0.46 μg/kg/month, whereas on-target hemoglobin values significantly increased from 70.6% to 76.6%, reaching 83.2% when the ACM suggestions were implemented. Moreover, ACM introduction led to a significant decrease in hemoglobin fluctuation (intrapatient standard deviation decreased from 0.95 g/dl to 0.83 g/dl). Thus, ACM support helped improve anemia outcomes of hemodialysis patients, minimizing erythropoietic-stimulating agent use with the potential to reduce the cost of treatment.

  5. Individualized real-time clinical decision support to monitor cardiac loading during venoarterial ECMO

    NARCIS (Netherlands)

    Broomé, Michael; Donker, DW

    2016-01-01

    Veno-arterial extracoporeal membrane oxygenation (VA ECMO) is increasingly used for acute and refractory cardiogenic shock. Yet, in clinical practice, monitoring of cardiac loading conditions during VA ECMO can be cumbersome. To this end, we illustrate the validity and clinical applicability of a re

  6. Computerized clinical decision support systems for acute care management: A decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes

    Directory of Open Access Journals (Sweden)

    Sahota Navdeep

    2011-08-01

    Full Text Available Abstract Background Acute medical care often demands timely, accurate decisions in complex situations. Computerized clinical decision support systems (CCDSSs have many features that could help. However, as for any medical intervention, claims that CCDSSs improve care processes and patient outcomes need to be rigorously assessed. The objective of this review was to systematically review the effects of CCDSSs on process of care and patient outcomes for acute medical care. Methods We conducted a decision-maker-researcher partnership systematic review. MEDLINE, EMBASE, Evidence-Based Medicine Reviews databases (Cochrane Database of Systematic Reviews, DARE, ACP Journal Club, and others, and the Inspec bibliographic database were searched to January 2010, in all languages, for randomized controlled trials (RCTs of CCDSSs in all clinical areas. We included RCTs that evaluated the effect on process of care or patient outcomes of a CCDSS used for acute medical care compared with care provided without a CCDSS. A study was considered to have a positive effect (i.e., CCDSS showed improvement if at least 50% of the relevant study outcomes were statistically significantly positive. Results Thirty-six studies met our inclusion criteria for acute medical care. The CCDSS improved process of care in 63% (22/35 of studies, including 64% (9/14 of medication dosing assistants, 82% (9/11 of management assistants using alerts/reminders, 38% (3/8 of management assistants using guidelines/algorithms, and 67% (2/3 of diagnostic assistants. Twenty studies evaluated patient outcomes, of which three (15% reported improvements, all of which were medication dosing assistants. Conclusion The majority of CCDSSs demonstrated improvements in process of care, but patient outcomes were less likely to be evaluated and far less likely to show positive results.

  7. Decision support for participatory wetland decision-making

    NARCIS (Netherlands)

    Goosen, H.; Janssen, R.H.H.; Vermaat, J.E.

    2007-01-01

    Decision support systems can be helpful tools in wetland planning and management. Decision support systems can contribute to efficient exchange of information between experts, stakeholders, decision makers and laypeople. However, the achievements of decision support systems are repeatedly being repo

  8. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    Energy Technology Data Exchange (ETDEWEB)

    Thwaites, D [University of Sydney, Camperdown, Sydney (Australia); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Bailey, M; Carolan, M; Miller, A [Illawarra Cancer Care Centre, Wollongong, NSW (Australia); Barakat, S; Field, M [University of Sydney, Sydney, NSW (Australia); Delaney, G; Vinod, S [Liverpool Hospital, Liverpool, NSW (Australia); Dekker, A [Maastro Clinic, Maastricht (Netherlands); Lustberg, T; Soest, J van; Walsh, S [MAASTRO Clinic, Maastricht (Netherlands)

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction and mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  9. San Francisco State University at TREC 2014: Clinical Decision Support Track and Microblog Track

    Science.gov (United States)

    2014-11-01

    many biomedical articles we saw numerous medical terms occurring in pairs or triples. Words such as “heart attack” and “ myocardial infarction ... diagnosis , treatment and test. The experimental results demonstrate that the developed system performed close to the median performance on most metrics...case report. Three types of clinical questions were included in the 2014 task: diagnosis , treatment or test

  10. Future perspectives toward the early definition of a multivariate decision-support scheme employed in clinical decision making for senior citizens.

    Science.gov (United States)

    Frantzidis, Christos A; Gilou, Sotiria; Billis, Antonis; Karagianni, Maria; Bratsas, Charalampos D; Bamidis, Panagiotis

    2016-03-01

    Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.

  11. Evaluation of a Clinical Decision Support System for Dyslipidemia Treatment (HTE-DLPR by QoE questionnaire

    Directory of Open Access Journals (Sweden)

    Alberto Zamora

    2017-01-01

    Full Text Available Introduction: Clinical decision support systems (CDSS are computer systems designed to assist clinicians with patient-related decision making, such as diagnosis and treatment. CDSS have shown to improve both patient outcomes and cost of care.Methods: A multi-center observational prospective study was conducted. Ten physicians agreed to participate. Seventy-seven patients with high or very high cardiovascular risk were included. After using CDSS for dyslipidemia (HTE-DLPR for a 3 months period, participants were asked to evaluate their experience with HTE-DLPR using a quality of experience questionnaire (QoE tool for mHealth applications.Results: Total score on the QoE was 3.89 out of 5. The highest scores were received for precision, ease of use and content quality. The lowest scores were given to security, appearance and performance. Physicians were in strong agreement with the 1st HTEDLPR recommendation in 86.1% and the system’s use was described as comfortablein 85% of cases. Users positively evaluated the development of a new version of HTEDLPR in the future receiving a total score of 4.25 out of 5.Conclusions: A CDSS for dyslipidemia (HTE-DLP has been positively evaluated by physicians using QoE questionnaire.

  12. Perceived barriers of heart failure nurses and cardiologists in using clinical decision support systems in the treatment of heart failure patients

    NARCIS (Netherlands)

    de Vries, Arjen E.; van der Wal, Martje H. L.; Nieuwenhuis, Maurice M. W.; de Jong, Richard M.; van Dijk, Rene B.; Jaarsma, Tiny; Hillege, Hans L.; Jorna, Rene J.

    2013-01-01

    Background: Clinical Decision Support Systems (CDSSs) can support guideline adherence in heart failure (HF) patients. However, the use of CDSSs is limited and barriers in working with CDSSs have been described as a major obstacle. It is unknown if barriers to CDSSs are present and differ between HF

  13. Query Refinement: Negation Detection and Proximity Learning Georgetown at TREC 2014 Clinical Decision Support Track

    Science.gov (United States)

    2014-11-01

    documents to be returned in the ranked list. Terms comprised of more than one word such as “ myocardial infarction ” were ignored as Lemur’s indexing...articles to answer clinical questions to determine the patient’s diagnosis , the tests the patient should receive, and how the patient should be treated...what is the patient’s diagnosis ?”, “what tests should the patient receive?”, and “how should the patient be treated?” [1]. Thirty topics were

  14. Formal Logic and Flowchart for Diagnosis Validity Verification and Inclusion in Clinical Decision Support Systems

    Science.gov (United States)

    Sosa, M.; Grundel, L.; Simini, F.

    2016-04-01

    Logical reasoning is part of medical practice since its origins. Modern Medicine has included information-intensive tools to refine diagnostics and treatment protocols. We are introducing formal logic teaching in Medical School prior to Clinical Internship, to foster medical practice. Two simple examples (Acute Myocardial Infarction and Diabetes Mellitus) are given in terms of formal logic expression and truth tables. Flowcharts of both diagnostic processes help understand the procedures and to validate them logically. The particularity of medical information is that it is often accompanied by “missing data” which suggests to adapt formal logic to a “three state” logic in the future. Medical Education must include formal logic to understand complex protocols and best practices, prone to mutual interactions.

  15. Clinical Decision Support Tools for Selecting Interventions for Patients with Disabling Musculoskeletal Disorders

    DEFF Research Database (Denmark)

    Gross, Douglas P; Armijo-Olivo, Susan; Shaw, William S;

    2016-01-01

    articles, 123 were considered relevant. Within this literature, there were 43 CDS tools located. These were classified into 3 main areas: computer-based tools/questionnaires (n = 8, 19 %), treatment algorithms/models (n = 14, 33 %), and clinical prediction rules/classification systems (n = 21, 49 %). Each...... the research question; (2) identifying relevant studies; (3) selecting studies for analysis; (4) charting the data; and (5) collating, summarizing and reporting results. We considered computer-based, and other available tools, such as algorithms, care pathways, rules and models. Since this research crosses...... rapidly advancing computer technologies, are under development and of potential interest to health care providers, case management organizations and funders of care. Based on the results of this scoping review, we conclude that these tools, models and systems should be subjected to further validation...

  16. Spatial Decision Support Systems

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2015-10-01

    Full Text Available The satellite image processing is an important tool for decision making in domains like agriculture, forestry, hydrology, for normal activity tracking but also in special situations caused by natural disasters. In this paper it is proposed a method for forestry surface evaluation in terms of occupied surface and also as number of trees. The segmentation method is based on watershed transform which offers good performances in case the objects to detect have connected borders. The method is applied for automatic multi-temporal analysis of forestry areas and represents a useful instrument for decision makers.

  17. Clinical Decision Support and Closed-Loop Control for Cardiopulmonary Management and Intensive Care Unit Sedation Using Expert Systems.

    Science.gov (United States)

    Gholami, Behnood; Bailey, James M; Haddad, Wassim M; Tannenbaum, Allen R

    2012-03-01

    Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While physicians select the agent(s) used for sedation and cardiovascular function, the actual administration of these agents is the responsibility of the nursing staff. If clinical decision support systems and closed-loop control systems could be developed for critical care monitoring and lifesaving interventions as well as the administration of sedation and cardiopulmonary management, the ICU nurse could be released from the intense monitoring of sedation, allowing her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend the deterministic rule-based expert system for cardiopulmonary management and ICU sedation framework presented in [1] to a stochastic setting by using probability theory to quantify uncertainty and hence deal with more realistic clinical situations.

  18. Coupling Clinical Decision Support System with Computerized Prescriber Order Entry and their Dynamic Plugging in the Medical Workflow System

    CERN Document Server

    Bouzguenda, Lotfi

    2012-01-01

    This work deals with coupling Clinical Decision Support System (CDSS) with Computerized Prescriber Order Entry (CPOE) and their dynamic plugging in the medical Workflow Management System (WfMS). First, in this paper we argue some existing CDSS representative of the state of the art in order to emphasize their inability to deal with coupling with CPOE and medical WfMS. The multi-agent technology is at the basis of our proposition since (i) it provides natural abstractions to deal with distribution, heterogeneity and autonomy which are inherent to the previous systems (CDSS, CPOE and medical WfMS), and (ii) it introduces powerful concepts such as organizations, goals and roles useful to describe in details the coordination of the different components involved in these systems. In this paper, we also propose a Multi-Agent System (MAS) to support the coupling CDSS with CPOE. Finally, we show how we integrate the proposed MAS in the medical workflow management system which is also based on collaborating agents

  19. Shared clinical decision making

    Science.gov (United States)

    AlHaqwi, Ali I.; AlDrees, Turki M.; AlRumayyan, Ahmad; AlFarhan, Ali I.; Alotaibi, Sultan S.; AlKhashan, Hesham I.; Badri, Motasim

    2015-01-01

    Objectives: To determine preferences of patients regarding their involvement in the clinical decision making process and the related factors in Saudi Arabia. Methods: This cross-sectional study was conducted in a major family practice center in King Abdulaziz Medical City, Riyadh, Saudi Arabia, between March and May 2012. Multivariate multinomial regression models were fitted to identify factors associated with patients preferences. Results: The study included 236 participants. The most preferred decision-making style was shared decision-making (57%), followed by paternalistic (28%), and informed consumerism (14%). The preference for shared clinical decision making was significantly higher among male patients and those with higher level of education, whereas paternalism was significantly higher among older patients and those with chronic health conditions, and consumerism was significantly higher in younger age groups. In multivariate multinomial regression analysis, compared with the shared group, the consumerism group were more likely to be female [adjusted odds ratio (AOR) =2.87, 95% confidence interval [CI] 1.31-6.27, p=0.008] and non-dyslipidemic (AOR=2.90, 95% CI: 1.03-8.09, p=0.04), and the paternalism group were more likely to be older (AOR=1.03, 95% CI: 1.01-1.05, p=0.04), and female (AOR=2.47, 95% CI: 1.32-4.06, p=0.008). Conclusion: Preferences of patients for involvement in the clinical decision-making varied considerably. In our setting, underlying factors that influence these preferences identified in this study should be considered and tailored individually to achieve optimal treatment outcomes. PMID:26620990

  20. Decision support systems

    DEFF Research Database (Denmark)

    Jørgensen, L N; Noe, E; Langvad, A M;

    2007-01-01

    system Crop Protection Online is widely used by advisors and as a learning tool for students. Although the system has been validated in many field trials over the years and has shown reliable results, the number of end-users among farmers has been relatively low during the last 10 years (approximately...... 1000 farmers). A sociological investigation of farmers' decision-making styles in the area of crop protection has shown that arable farmers can be divided into three major groups: (a) system-orientated farmers, (b) experience-based farmers and (c) advisory-orientated farmers. The information required...

  1. Decision Support Systems in Logistics

    Science.gov (United States)

    Encheva, Sylvia; Kondratenko, Yuriy; Solesvik, Maryna Z.; Tumin, Sharil

    2008-11-01

    Experience shows that intuitive judgment and decision making is not allwas of sufficient quality and is getting worse in the presence of increasing complexity. One of the solutions to such problems is to use decision support systems. This paper focuses on assessment criteria of delivery quality in the transport logistics.

  2. Computerized physician order entry with clinical decision support in long-term care facilities: costs and benefits to stakeholders.

    Science.gov (United States)

    Subramanian, Sujha; Hoover, Sonja; Gilman, Boyd; Field, Terry S; Mutter, Ryan; Gurwitz, Jerry H

    2007-09-01

    Nursing homes are the setting of care for growing numbers of our nation's older people, and adverse drug events are an increasingly recognized safety and quality concern in this population. Health information technology, including computerized physician/provider order entry (CPOE) with clinical decision support (CDS), has been proposed as an important systems-based approach for reducing medication errors and preventable drug-related injuries. This article describes the costs and benefits of CPOE with CDS for the various stakeholders involved in long-term care (LTC), including nurses, physicians, the pharmacy, the laboratory, the payer (e.g., the insurer), nursing home residents, and the LTC facility. Critical barriers to adoption of these systems are discussed, primarily from an economic perspective. The analysis suggests that multiple stakeholders will incur the costs related to implementation of CPOE with CDS in the LTC setting, but the costs incurred by each may not be aligned with the benefits, which may present a major barrier to broad adoption. Physicians and LTC facilities are likely to bear a large burden of the costs, whereas residents and payers will enjoy a large portion of the benefits. Consideration of these costs and benefits suggests that financial incentives to physicians and facilities may be necessary to encourage and accelerate widespread use of these systems in the LTC setting.

  3. An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection

    Directory of Open Access Journals (Sweden)

    Panagiotis Bountris

    2014-01-01

    Full Text Available Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV, including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS, composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%, high specificity (97.1%, high positive predictive value (89.4%, and high negative predictive value (97.1%, for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+. In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.

  4. How should we manage information needs, family anxiety, depression, and breathlessness for those affected by advanced disease: development of a Clinical Decision Support Tool using a Delphi design.

    NARCIS (Netherlands)

    Vliet, L.M. van; Harding, R.; Bausewein, C.; Payne, S.; Higginson, I.J.

    2015-01-01

    Background: Clinicians request guidance to aid the routine use and interpretation of Patient Reported Outcome Measures (PROMs), but tools are lacking. We aimed to develop a Clinical Decision Support Tool (CDST) focused on information needs, family anxiety, depression, and breathlessness (measured us

  5. Perceived barriers of heart failure nurses and cardiologists in using clinical decision support systems in the treatment of heart failure patients

    OpenAIRE

    Vries, Arjen E. de; van der Wal, Martje H. L.; Nieuwenhuis, Maurice M. W.; Richard M. de Jong; Rene B. van Dijk; Jaarsma, Tiny; Hillege, Hans L; Jorna, Rene J.

    2013-01-01

    Background Clinical Decision Support Systems (CDSSs) can support guideline adherence in heart failure (HF) patients. However, the use of CDSSs is limited and barriers in working with CDSSs have been described as a major obstacle. It is unknown if barriers to CDSSs are present and differ between HF nurses and cardiologists. Therefore the aims of this study are; 1. Explore the type and number of perceived barriers of HF nurses and cardiologists to use a CDSS in the treatment of HF patients. 2. ...

  6. Development of a real-time clinical decision support system upon the web mvc-based architecture for prostate cancer treatment

    Directory of Open Access Journals (Sweden)

    Liang Wen-Miin

    2011-03-01

    Full Text Available Abstract Background A real-time clinical decision support system (RTCDSS with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC architecture, by which the system can easily be adapted to different diseases and applications. Methods We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. Results The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Conclusions Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital

  7. Informing the design of clinical decision support services for evaluation of children with minor blunt head trauma in the emergency department: a sociotechnical analysis.

    Science.gov (United States)

    Sheehan, Barbara; Nigrovic, Lise E; Dayan, Peter S; Kuppermann, Nathan; Ballard, Dustin W; Alessandrini, Evaline; Bajaj, Lalit; Goldberg, Howard; Hoffman, Jeffrey; Offerman, Steven R; Mark, Dustin G; Swietlik, Marguerite; Tham, Eric; Tzimenatos, Leah; Vinson, David R; Jones, Grant S; Bakken, Suzanne

    2013-10-01

    Integration of clinical decision support services (CDSS) into electronic health records (EHRs) may be integral to widespread dissemination and use of clinical prediction rules in the emergency department (ED). However, the best way to design such services to maximize their usefulness in such a complex setting is poorly understood. We conducted a multi-site cross-sectional qualitative study whose aim was to describe the sociotechnical environment in the ED to inform the design of a CDSS intervention to implement the Pediatric Emergency Care Applied Research Network (PECARN) clinical prediction rules for children with minor blunt head trauma. Informed by a sociotechnical model consisting of eight dimensions, we conducted focus groups, individual interviews and workflow observations in 11 EDs, of which 5 were located in academic medical centers and 6 were in community hospitals. A total of 126 ED clinicians, information technology specialists, and administrators participated. We clustered data into 19 categories of sociotechnical factors through a process of thematic analysis and subsequently organized the categories into a sociotechnical matrix consisting of three high-level sociotechnical dimensions (workflow and communication, organizational factors, human factors) and three themes (interdisciplinary assessment processes, clinical practices related to prediction rules, EHR as a decision support tool). Design challenges that emerged from the analysis included the need to use structured data fields to support data capture and re-use while maintaining efficient care processes, supporting interdisciplinary communication, and facilitating family-clinician interaction for decision-making.

  8. A collaborative framework for contributing DICOM RT PHI (Protected Health Information) to augment data mining in clinical decision support

    Science.gov (United States)

    Deshpande, Ruchi; Thuptimdang, Wanwara; DeMarco, John; Liu, Brent J.

    2014-03-01

    We have built a decision support system that provides recommendations for customizing radiation therapy treatment plans, based on patient models generated from a database of retrospective planning data. This database consists of relevant metadata and information derived from the following DICOM objects - CT images, RT Structure Set, RT Dose and RT Plan. The usefulness and accuracy of such patient models partly depends on the sample size of the learning data set. Our current goal is to increase this sample size by expanding our decision support system into a collaborative framework to include contributions from multiple collaborators. Potential collaborators are often reluctant to upload even anonymized patient files to repositories outside their local organizational network in order to avoid any conflicts with HIPAA Privacy and Security Rules. We have circumvented this problem by developing a tool that can parse DICOM files on the client's side and extract de-identified numeric and text data from DICOM RT headers for uploading to a centralized system. As a result, the DICOM files containing PHI remain local to the client side. This is a novel workflow that results in adding only relevant yet valuable data from DICOM files to the centralized decision support knowledge base in such a way that the DICOM files never leave the contributor's local workstation in a cloud-based environment. Such a workflow serves to encourage clinicians to contribute data for research endeavors by ensuring protection of electronic patient data.

  9. Automating hypertext for decision support

    Science.gov (United States)

    Bieber, Michael

    1990-01-01

    A decision support system (DSS) shell is being constructed that can support applications in a variety of fields, e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for 'navigating' among DSS application models, data, and reports. The traditional notion of hypertext had to be enhanced. Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext connections to be built 'on the fly'. The role of hypertext is discussed in augmenting DSS applications and the decision making process. Also discussed is how hypertext nodes, links, and link markers tailored to an arbitrary DSS application were automatically generated.

  10. How clinical decisions are made.

    Science.gov (United States)

    Bate, Louise; Hutchinson, Andrew; Underhill, Jonathan; Maskrey, Neal

    2012-10-01

    There is much variation in the implementation of the best available evidence into clinical practice. These gaps between evidence and practice are often a result of multiple individual decisions. When making a decision, there is so much potentially relevant information available, it is impossible to know or process it all (so called 'bounded rationality'). Usually, a limited amount of information is selected to reach a sufficiently satisfactory decision, a process known as satisficing. There are two key processes used in decision making: System 1 and System 2. System 1 involves fast, intuitive decisions; System 2 is a deliberate analytical approach, used to locate information which is not instantly recalled. Human beings unconsciously use System 1 processing whenever possible because it is quicker and requires less effort than System 2. In clinical practice, gaps between evidence and practice can occur when a clinician develops a pattern of knowledge, which is then relied on for decisions using System 1 processing, without the activation of a System 2 check against the best available evidence from high quality research. The processing of information and decision making may be influenced by a number of cognitive biases, of which the decision maker may be unaware. Interventions to encourage appropriate use of System 1 and System 2 processing have been shown to improve clinical decision making. Increased understanding of decision making processes and common sources of error should help clinical decision makers to minimize avoidable mistakes and increase the proportion of decisions that are better.

  11. Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record.

    Science.gov (United States)

    González-Ferrer, A; Peleg, M; Marcos, M; Maldonado, J A

    2016-07-01

    Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients' data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.

  12. EVALUATING ENVIRONMENTAL DECISION SUPPORT TOOLS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-10-01

    Effective contaminated land management requires a number of decisions addressing a suite of technical, economic, and social concerns. These concerns include human health risks, ecological risks, economic costs, technical feasibility of proposed remedial actions, and the value society places on clean-up and re-use of formerly contaminated lands. Decision making, in the face of uncertainty and multiple and often conflicting objectives, is a vital and challenging role in environmental management that affects a significant economic activity. Although each environmental remediation problem is unique and requires a site-specific analysis, many of the key decisions are similar in structure. This has led many to attempt to develop standard approaches. As part of the standardization process, attempts have been made to codify specialist expertise into decision support tools. This activity is intended to facilitate reproducible and transparent decision making. The process of codifying procedures has also been found to be a useful activity for establishing and rationalizing management processes. This study will have two primary objectives. The first is to develop taxonomy for Decision Support Tools (DST) to provide a framework for understanding the different tools and what they are designed to address in the context of environmental remediation problems. The taxonomy will have a series of subject areas for the DST. From these subjects, a few key areas will be selected for further study and software in these areas will be identified. The second objective, will be to review the existing DST in the selected areas and develop a screening matrix for each software product.

  13. Development and evaluation of a computerised clinical decision support system for switching drugs at the interface between primary and tertiary care

    Directory of Open Access Journals (Sweden)

    Pruszydlo Markus G

    2012-11-01

    Full Text Available Abstract Background Upon admission to a hospital patients’ medications are frequently switched to alternative drugs compiled in so called hospital drug formularies. This substitution process is a laborious and error-prone task which should be supported by sophisticated electronic tools. We developed a computerised decision support system and evaluated benefit and potential harm associated with its use. Methods Based on a multi-step algorithm we identified drug classes suitable for exchange, defined conversion factors for therapeutic interchange, built a web-based decision support system, and implemented it into the computerised physician order entry of a large university hospital. For evaluation we compared medications manually switched by clinical pharmacists with the results of automated switching by the newly developed computer system and optimised the system in an iterative process. Thereafter the final system was tested in an independent set of prescriptions. Results After iterative optimisation of the logical framework the tool was able to switch drugs to pharmaceutical equivalents and alternatives; in addition, it contained 21 different drug classes for therapeutic substitution. In this final version it switched 91.6% of 202 documented medication consultations (containing 1,333 drugs automatically, leaving 8.4% for manual processing by clinical professionals. No incorrect drug switches were found. Conclusion A large majority (>90% of drug switches performed at the interface between primary and tertiary care can be handled automatically using electronic decision support systems, indicating that medication errors and workload of healthcare professionals can be considerably reduced.

  14. Tools for Supporting Responsible Decision-Making?

    NARCIS (Netherlands)

    Vriens, D.J.; Achterbergh, J.M.I.M.

    2015-01-01

    In this paper, we assess the characteristics decision support tools should have in order to support “responsible decision-making”. To this end, we first describe responsible decision-making. We argue that responsibility relates to both the outcome and the process of decision-making. On the basis of

  15. Decision support for patient care: implementing cybernetics.

    Science.gov (United States)

    Ozbolt, Judy; Ozdas, Asli; Waitman, Lemuel R; Smith, Janis B; Brennan, Grace V; Miller, Randolph A

    2004-01-01

    The application of principles and methods of cybernetics permits clinicians and managers to use feedback about care effectiveness and resource expenditure to improve quality and to control costs. Keys to the process are the specification of therapeutic goals and the creation of an organizational culture that supports the use of feedback to improve care. Daily feedback on the achievement of each patient's therapeutic goals provides tactical decision support, enabling clinicians to adjust care as needed. Monthly or quarterly feedback on aggregated goal achievement for all patients on a clinical pathway provides strategic decision support, enabling clinicians and managers to identify problems with supposed "best practices" and to test hypotheses about solutions. Work is underway at Vanderbilt University Medical Center to implement feedback loops in care and management processes and to evaluate the effects.

  16. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial

    Science.gov (United States)

    Henderson, John C.; Neradilek, Moni B.; Moyer, Nicolas A.; Ashcraft, Kristine C.; Thirumaran, Ranjit K.

    2017-01-01

    Background In polypharmacy patients under home health management, pharmacogenetic testing coupled with guidance from a clinical decision support tool (CDST) on reducing drug, gene, and cumulative interaction risk may provide valuable insights in prescription drug treatment, reducing re-hospitalization and emergency department (ED) visits. We assessed the clinical impact of pharmacogenetic profiling integrating binary and cumulative drug and gene interaction warnings on home health polypharmacy patients. Methods and findings This prospective, open-label, randomized controlled trial was conducted at one hospital-based home health agency between February 2015 and February 2016. Recruitment came from patient referrals to home health at hospital discharge. Eligible patients were aged 50 years and older and taking or initiating treatment with medications with potential or significant drug-gene-based interactions. Subjects (n = 110) were randomized to pharmacogenetic profiling (n = 57). The study pharmacist reviewed drug-drug, drug-gene, and cumulative drug and/or gene interactions using the YouScript® CDST to provide drug therapy recommendations to clinicians. The control group (n = 53) received treatment as usual including pharmacist guided medication management using a standard drug information resource. The primary outcome measure was the number of re-hospitalizations and ED visits at 30 and 60 days after discharge from the hospital. The mean number of re-hospitalizations per patient in the tested vs. untested group was 0.25 vs. 0.38 at 30 days (relative risk (RR), 0.65; 95% confidence interval (CI), 0.32–1.28; P = 0.21) and 0.33 vs. 0.70 at 60 days following enrollment (RR, 0.48; 95% CI, 0.27–0.82; P = 0.007). The mean number of ED visits per patient in the tested vs. untested group was 0.25 vs. 0.40 at 30 days (RR, 0.62; 95% CI, 0.31–1.21; P = 0.16) and 0.39 vs. 0.66 at 60 days (RR, 0.58; 95% CI, 0.34–0.99; P = 0.045). Differences in composite outcomes at

  17. Real-time use of the iPad by third-year medical students for clinical decision support and learning: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Michelle A. Nuss

    2014-09-01

    Full Text Available Purpose: Despite widespread use of mobile technology in medical education, medical students’ use of mobile technology for clinical decision support and learning is not well understood. Three key questions were explored in this extensive mixed methods study: 1 how medical students used mobile technology in the care of patients, 2 the mobile applications (apps used and 3 how expertise and time spent changed overtime. Methods: This year-long (July 2012–June 2013 mixed methods study explored the use of the iPad, using four data collection instruments: 1 beginning and end-of-year questionnaires, 2 iPad usage logs, 3 weekly rounding observations, and 4 weekly medical student interviews. Descriptive statistics were generated for the questionnaires and apps reported in the usage logs. The iPad usage logs, observation logs, and weekly interviews were analyzed via inductive thematic analysis. Results: Students predominantly used mobile technology to obtain real-time patient data via the electronic health record (EHR, to access medical knowledge resources for learning, and to inform patient care. The top four apps used were Epocrates®, PDF Expert®, VisualDx®, and Micromedex®. The majority of students indicated that their use (71% and expertise (75% using mobile technology grew overtime. Conclusions: This mixed methods study provides substantial evidence that medical students used mobile technology for clinical decision support and learning. Integrating its use into the medical student's daily workflow was essential for achieving these outcomes. Developing expertise in using mobile technology and various apps was critical for effective and efficient support of real-time clinical decisions.

  18. Barriers to implementation of a computerized decision support system for depression: an observational report on lessons learned in "real world" clinical settings

    Directory of Open Access Journals (Sweden)

    Sunderajan Prabha

    2009-01-01

    Full Text Available Abstract Background Despite wide promotion, clinical practice guidelines have had limited effect in changing physician behavior. Effective implementation strategies to date have included: multifaceted interventions involving audit and feedback, local consensus processes, marketing; reminder systems, either manual or computerized; and interactive educational meetings. In addition, there is now growing evidence that contextual factors affecting implementation must be addressed such as organizational support (leadership procedures and resources for the change and strategies to implement and maintain new systems. Methods To examine the feasibility and effectiveness of implementation of a computerized decision support system for depression (CDSS-D in routine public mental health care in Texas, fifteen study clinicians (thirteen physicians and two advanced nurse practitioners participated across five sites, accruing over 300 outpatient visits on 168 patients. Results Issues regarding computer literacy and hardware/software requirements were identified as initial barriers. Clinicians also reported concerns about negative impact on workflow and the potential need for duplication during the transition from paper to electronic systems of medical record keeping. Conclusion The following narrative report based on observations obtained during the initial testing and use of a CDSS-D in clinical settings further emphasizes the importance of taking into account organizational factors when planning implementation of evidence-based guidelines or decision support within a system.

  19. Developing public health clinical decision support systems (CDSS for the outpatient community in New York City: our experience

    Directory of Open Access Journals (Sweden)

    Singer Jesse

    2011-09-01

    Full Text Available Abstract Background Developing a clinically relevant set of quality measures that can be effectively used by an electronic health record (EHR is difficult. Whether it is achieving internal consensus on relevant priority quality measures, communicating to EHR vendors' whose programmers generally lack clinical contextual knowledge, or encouraging implementation of EHR that meaningfully impacts health outcomes, the path is challenging. However, greater transparency of population health, better accountability, and ultimately improved health outcomes is the goal and EHRs afford us a realistic chance of reaching it in a scalable way. Method In this article, we summarize our experience as a public health government agency with developing measures for a public health oriented EHR in New York City in partnership with a commercial EHR vendor. Results From our experience, there are six key lessons that we share in this article that we believe will dramatically increase the chance of success. First, define the scope and build consensus. Second, get support from executive leadership. Third, find an enthusiastic and competent software partner. Fourth, implement a transparent operational strategy. Fifth, create and test the EHR system with real life scenarios. Last, seek help when you need it. Conclusions Despite the challenges, we encourage public health agencies looking to build a similarly focused public health EHR to create one both for improved individual patient as well as the larger population health.

  20. GROTTO visualization for decision support

    Science.gov (United States)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  1. General practitioners' attitudes and preparedness towards Clinical Decision Support in e-Prescribing (CDS-eP adoption in the West of Ireland: a cross sectional study

    Directory of Open Access Journals (Sweden)

    O'Brien Timothy

    2010-01-01

    Full Text Available Abstract Background Electronic clinical decision support (CDS is increasingly establishing its role in evidence-based clinical practice. Considerable evidence supports its enhancement of efficiency in e-Prescribing, but some controversy remains. This study evaluated the practicality and identified the perceived benefits of, and barriers to, its future adoption in the West of Ireland. Methods This cross sectional study was carried out by means of a 27-part questionnaire sent to 262 registered general practitioners in Counties Galway, Mayo and Roscommon. The survey domains encompassed general information of individual's practice, current use of CDS and the practitioner's attitudes towards adoption of CDS-eP. Descriptive and inferential analyses were performed to analyse the data collected. Results The overall response rate was 37%. Nearly 92% of respondents employed electronic medical records in their practice. The majority acknowledged the value of electronic CDS in improving prescribing quality (71% and reducing prescribing errors (84%. Despite a high degree of unfamiliarity (73%, the practitioners were open to the use of CDS-eP (94% and willing to invest greater resources for its implementation (62%. Lack of a strategic implementation plan (78% is the main perceived barrier to the incorporation of CDS-eP into clinical practice, followed by i lack of financial incentives (70%, ii lack of standardized product software (61%, iii high sensitivity of drug-drug interaction or medication allergy markers (46%, iv concern about overriding physicians' prescribing decisions(44% and v lack of convincing evidence on the systems' effectiveness (22%. Conclusions Despite favourable attitudes towards the adoption of CDS-eP, multiple perceived barriers impede its incorporation into clinical practice. These merit further exploration, taking into consideration the structure of the Irish primary health care system, before CDS-eP can be recommended for routine

  2. Decision Support for effective production control

    DEFF Research Database (Denmark)

    Africa, E.; Nehzati, T.; Strandhagen, J.O.;

    2012-01-01

    This study aims to identify the actual needs of decision makers for decision support in the production control activity, considering the role and cognitive skills of human decision-makers in the decision-making process. Multiple case studies have been conducted in order to gain practical insights...

  3. Platform decisions supported by gaming

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan

    2007-01-01

    of these decisions can cause a high strategic risk. This paper describes and discusses the complexity of the platform decisions. We argue that new methods have to be introduced in order to create a comprehensive picture of the consequences of the platform decisions. One of the promising new methods...

  4. Data-mining to build a knowledge representation store for clinical decision support. Studies on curation and validation based on machine performance in multiple choice medical licensing examinations.

    Science.gov (United States)

    Robson, Barry; Boray, Srinidhi

    2016-06-01

    Extracting medical knowledge by structured data mining of many medical records and from unstructured data mining of natural language source text on the Internet will become increasingly important for clinical decision support. Output from these sources can be transformed into large numbers of elements of knowledge in a Knowledge Representation Store (KRS), here using the notation and to some extent the algebraic principles of the Q-UEL Web-based universal exchange and inference language described previously, rooted in Dirac notation from quantum mechanics and linguistic theory. In a KRS, semantic structures or statements about the world of interest to medicine are analogous to natural language sentences seen as formed from noun phrases separated by verbs, prepositions and other descriptions of relationships. A convenient method of testing and better curating these elements of knowledge is by having the computer use them to take the test of a multiple choice medical licensing examination. It is a venture which perhaps tells us almost as much about the reasoning of students and examiners as it does about the requirements for Artificial Intelligence as employed in clinical decision making. It emphasizes the role of context and of contextual probabilities as opposed to the more familiar intrinsic probabilities, and of a preliminary form of logic that we call presyllogistic reasoning.

  5. Development of EBM-CDSS (Evidence-Based Clinical Decision Support System) to AIG Prognostication in Terminally Ill Patients

    Science.gov (United States)

    2016-03-01

    Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta- analysis . Systematic Reviews, 4:2(1...prediction models . Figure 1. Regret based Decision Curve Analysis for a Cox model developed to predict survival for patients suffering from...adjusted PPS prognostic model . We compared the regret-based threshold model recommendation to the patients ’ choice at two different time

  6. Proactive and Adaptive Decision Support Study (PDS)

    Science.gov (United States)

    2014-12-09

    will enable proactive analysis within the decision support layer to anticipate, request, compute , and pre-position information supporting the decision... Proactive and Adaptive Decision Support Study (PDS) Final Report CDRL: C001 CLIN: 0006 Contract Number: N00014-14-P-1187 Submitted...PAGES 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 12/09/2014 Final Report 28 Jul 2014 - 31 Dec 2014 Proactive and

  7. Integrating Decision Support and Social Networks

    Directory of Open Access Journals (Sweden)

    Francisco Antunes

    2012-01-01

    Full Text Available We elaborate on the shifting of decision support systems towards social networking, which is based on the concepts of Web 2.0 and Semantic Web technology. As the characteristics of the relevant components are different from traditional decision support systems, we present necessary adaptations when adopting social networks for decision support within an organization. We also present organizational obstacles when adopting/using such systems and clues to overcome them.

  8. Decision support systems for robotic surgery and acute care

    Science.gov (United States)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  9. Intention to adopt clinical decision support systems in a developing country: effect of Physician’s perceived professional autonomy, involvement and belief: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Sambasivan Murali

    2012-12-01

    Full Text Available Abstract Background Computer-based clinical decision support systems (CDSS are regarded as a key element to enhance decision-making in a healthcare environment to improve the quality of medical care delivery. The concern of having new CDSS unused is still one of the biggest issues in developing countries for the developers and implementers of clinical IT systems. The main objectives of this study are to determine whether (1 the physician’s perceived professional autonomy, (2 involvement in the decision to implement CDSS and (3 the belief that CDSS will improve job performance increase the intention to adopt CDSS. Four hypotheses were formulated and tested. Methods A questionnaire-based survey conducted between July 2010 and December 2010. The study was conducted in seven public and five private hospitals in Kuala Lumpur, Malaysia. Before contacting the hospitals, necessary permission was obtained from the Ministry of Health, Malaysia and the questionnaire was vetted by the ethics committee of the ministry. Physicians working in 12 hospitals from 10 different specialties participated in the study. The sampling method used was stratified random sampling and the physicians were stratified based on the specialty. A total of 450 physicians were selected using a random number generator. Each of these physicians was given a questionnaire and out of 450 questionnaires, 335 (response rate – 74% were returned and 309 (69% were deemed usable. Results The hypotheses were tested using Structural Equation Modeling (SEM. Salient results are: (1 Physicians’ perceived threat to professional autonomy lowers the intention to use CDSS (p Conclusion The proposed model with the three main constructs (physician’s professional characteristic, involvement and belief explains 47% of the variance in the intention to use CDSS. This is significantly higher than the models addressed so far. The results will have a major impact in implementing CDSS in developing

  10. Unit 127 - Spatial Decision Support Systems

    OpenAIRE

    064, CC in GIScience; Malczewski, Jacek; Keller, C Peter

    2000-01-01

    This unit focuses on the concept of Spatial Decision Support Systems (SDSS). It covers the major characteristics of spatial decision problems; the decision-making process; a definition of SDSS; principles of SDSS; the dialog, data, model (DDM) paradigm; and technologies for developing SDSS.

  11. Estimating the Horizon of articles to decide when to stop searching in systematic reviews: an example using a systematic review of RCTs evaluating osteoporosis clinical decision support tools.

    Science.gov (United States)

    Kastner, Monika; Straus, Sharon; Goldsmith, Charlie H

    2007-10-11

    Researchers conducting systematic reviews need to search multiple bibliographic databases such as MEDLINE and EMBASE. However, researchers have no rational search stopping rule when looking for potentially-relevant articles. We empirically tested a stopping rule based on the concept of capture-mark-recapture (CMR), which was first pioneered in ecology. The principles of CMR can be adapted to systematic reviews and meta-analyses to estimate the Horizon of articles in the literature with its confidence interval. We retrospectively tested this Horizon Estimation using a systematic review of randomized controlled trials (RCTs) that evaluated clinical decision support tools for osteoporosis disease management. The Horizon Estimation was calculated based on 4 bibliographic databases that were included as the main data sources for the review in the following order: MEDLINE, EMBASE, CINAHL, and EBM Reviews. The systematic review captured 68% of known articles from the 4 data sources, which represented 592 articles that were estimated as missing from the Horizon.

  12. Integrating clinical research into clinical decision making

    Directory of Open Access Journals (Sweden)

    Mark R Tonelli

    2011-01-01

    Full Text Available Evidence-based medicine has placed a general priority on knowledge gained from clinical research for clinical decision making. However, knowledge derived from empiric, population-based research, while valued for its ability to limit bias, is not directly applicable to the care of individual patients. The gap between clinical research and individual patient care centers on the fact that empiric research is not generally designed to answer questions of direct relevance to individual patients. Clinicians must utilize other forms of medical knowledge, including pathophysiologic rationale and clinical experience, in order to arrive at the best medical decision for a particular patient. In addition, clinicians must also elucidate and account for the goals and values of individual patients as well as barriers and facilitators of care inherent in the system in which they practice. Evidence-based guidelines and protocols, then, can never be prescriptive. Clinicians must continue to rely on clinical judgment, negotiating potentially conflicting warrants for action, in an effort to arrive at the best decision for a particular patient.

  13. DECISIONS, METHODS AND TECHNIQUES RELATED TO DECISION SUPPORT SYSTEMS (DSS

    Directory of Open Access Journals (Sweden)

    Boghean Florin

    2015-07-01

    Full Text Available Generalised uncertainty, a phenomenon that today’s managers are facing as part of their professional experience, makes it impossible to anticipate the way the business environment will evolve or what will be the consequences of the decisions they plan to implement. Any decision making process within the company entails the simultaneous presence of a number of economic, technical, juridical, human and managerial variables. The development and the approval of a decision is the result of decision making activities developed by the decision maker and sometimes by a decision support team or/and a decision support system (DSS. These aspects related to specific applications of decision support systems in risk management will be approached in this research paper. Decisions in general and management decisions in particular are associated with numerous risks, due to their complexity and increasing contextual orientation. In each business entity, there are concerns with the implementation of risk management in order to improve the likelihood of meeting objectives, the trust of the parties involved, increase the operational safety and security as well as the protection of the environment, minimise losses, improve organisational resilience in order to diminish the negative impact on the organisation and provide a solid foundation for decision making. Since any business entity is considered to be a wealth generator, the analysis of their performance should not be restricted to financial efficiency alone, but will also encompass their economic efficiency as well. The type of research developed in this paper entails different dimensions: conceptual, methodological, as well as empirical testing. Subsequently, the conducted research entails a methodological side, since the conducted activities have resulted in the presentation of a simulation model that is useful in decision making processes on the capital market. The research conducted in the present paper

  14. Accessibility, usability, and usefulness of a Web-based clinical decision support tool to enhance provider-patient communication around Self-management TO Prevent (STOP) Stroke.

    Science.gov (United States)

    Anderson, Jane A; Godwin, Kyler M; Saleem, Jason J; Russell, Scott; Robinson, Joshua J; Kimmel, Barbara

    2014-12-01

    This article reports redesign strategies identified to create a Web-based user-interface for the Self-management TO Prevent (STOP) Stroke Tool. Members of a Stroke Quality Improvement Network (N = 12) viewed a visualization video of a proposed prototype and provided feedback on implementation barriers/facilitators. Stroke-care providers (N = 10) tested the Web-based prototype in think-aloud sessions of simulated clinic visits. Participants' dialogues were coded into themes. Access to comprehensive information and the automated features/systematized processes were the primary accessibility and usability facilitator themes. The need for training, time to complete the tool, and computer-centric care were identified as possible usability barriers. Patient accountability, reminders for best practice, goal-focused care, and communication/counseling themes indicate that the STOP Stroke Tool supports the paradigm of patient-centered care. The STOP Stroke Tool was found to prompt clinicians on secondary stroke-prevention clinical-practice guidelines, facilitate comprehensive documentation of evidence-based care, and support clinicians in providing patient-centered care through the shared decision-making process that occurred while using the action-planning/goal-setting feature of the tool.

  15. Evaluation of Stream Mining Classifiers for Real-Time Clinical Decision Support System: A Case Study of Blood Glucose Prediction in Diabetes Therapy

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2013-01-01

    Full Text Available Earlier on, a conceptual design on the real-time clinical decision support system (rt-CDSS with data stream mining was proposed and published. The new system is introduced that can analyze medical data streams and can make real-time prediction. This system is based on a stream mining algorithm called VFDT. The VFDT is extended with the capability of using pointers to allow the decision tree to remember the mapping relationship between leaf nodes and the history records. In this paper, which is a sequel to the rt-CDSS design, several popular machine learning algorithms are investigated for their suitability to be a candidate in the implementation of classifier at the rt-CDSS. A classifier essentially needs to accurately map the events inputted to the system into one of the several predefined classes of assessments, such that the rt-CDSS can follow up with the prescribed remedies being recommended to the clinicians. For a real-time system like rt-CDSS, the major technological challenges lie in the capability of the classifier to process, analyze and classify the dynamic input data, quickly and upmost reliably. An experimental comparison is conducted. This paper contributes to the insight of choosing and embedding a stream mining classifier into rt-CDSS with a case study of diabetes therapy.

  16. Data Fusion for Decision Support

    Science.gov (United States)

    2014-03-27

    result in extreme fire behavior, making them dangerous to emergency personnel. Features also influence the mechanics of the hydrologic cycle in an...assessing wildfire risk in the wilderness urban interface (WUI) to facilitate better informed land management decisions and reduce mission impacts of...Information Systems, Landsat 8, Remote Sensing, Wildfire, Wildland Urban Interface v Acknowledgments I would like to thank Dr. Jonathan

  17. Integration of Rule Based Expert Systems and Case Based Reasoning in an Acute Bacterial Meningitis Clinical Decision Support System

    CERN Document Server

    Cabrera, Mariana Maceiras

    2010-01-01

    This article presents the results of the research carried out on the development of a medical diagnostic system applied to the Acute Bacterial Meningitis, using the Case Based Reasoning methodology. The research was focused on the implementation of the adaptation stage, from the integration of Case Based Reasoning and Rule Based Expert Systems. In this adaptation stage we use a higher level RBC that stores and allows reutilizing change experiences, combined with a classic rule-based inference engine. In order to take into account the most evident clinical situation, a pre-diagnosis stage is implemented using a rule engine that, given an evident situation, emits the corresponding diagnosis and avoids the complete process.

  18. Using Visualization in Cockpit Decision Support Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.

    2005-07-01

    In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.

  19. Decision support, analytics, and business intelligence

    CERN Document Server

    Power, Daniel J

    2013-01-01

    Competition is becoming more intense and decision makers are encountering increasing complexity, rapid change, and higher levels of risk. In many situations, the solution is more and better computerized decision support, especially analytics and business intelligence. Today managers need to learn about and understand computerized decision support. If a business is to succeed, managers must know much more about information technology solutions. This second edition of a powerful introductory book is targeted at busy managers and MBA students who need to grasp the basics of computerized decision

  20. Physicians’ use of computerized clinical decision supports to improve medication management in the elderly – the Seniors Medication Alert and Review Technology intervention

    Directory of Open Access Journals (Sweden)

    Alagiakrishnan K

    2016-01-01

    Full Text Available Kannayiram Alagiakrishnan,1 Patricia Wilson,2 Cheryl A Sadowski,3 Darryl Rolfson,1 Mark Ballermann,4,5 Allen Ausford,6,7 Karla Vermeer,7 Kunal Mohindra,8 Jacques Romney,9 Robert S Hayward10 1Department of Medicine, Division of Geriatric Medicine, 2Department of Medicine, 3Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 4Chief Medical Information Office, Alberta Health Services, 5Division of Critical Care, Department of Medicine, University of Alberta, 6Department of Family Medicine, University of Alberta, 7Lynwood Family Physician, 8eClinician EMR, Alberta Health Services-Information Systems, 9Department of Medicine, Division of Endocrinology, 10Division of General Internal Medicine, University of Alberta, Edmonton, AB, Canada Background: Elderly people (aged 65 years or more are at increased risk of polypharmacy (five or more medications, inappropriate medication use, and associated increased health care costs. The use of clinical decision support (CDS within an electronic medical record (EMR could improve medication safety.Methods: Participatory action research methods were applied to preproduction design and development and postproduction optimization of an EMR-embedded CDS implementation of the Beers’ Criteria for medication management and the Cockcroft–Gault formula for estimating glomerular filtration rates (GFR. The “Seniors Medication Alert and Review Technologies” (SMART intervention was used in primary care and geriatrics specialty clinics. Passive (chart messages and active (order-entry alerts prompts exposed potentially inappropriate medications, decreased GFR, and the possible need for medication adjustments. Physician reactions were assessed using surveys, EMR simulations, focus groups, and semi-structured interviews. EMR audit data were used to identify eligible patient encounters, the frequency of CDS events, how alerts were managed, and when evidence links were followed.Results: Analysis of

  1. Information gap decision support for contaminant remediation

    Science.gov (United States)

    Vesselinov, V. V.; O'Malley, D.

    2013-12-01

    Uncertainty quantifications and decision analyses under severe lack of information are ubiquitous in every applied field of engineering, policy, and science. A severe lack of information precludes our ability to determine unbiased probabilistic distributions for model parameters and model predictions; therefore, model and decision uncertainties due to a severe lack of information cannot be characterized probabilistically. To circumvent this problem, information gap (info-gap) theory has been developed to explicitly recognize and quantify the implications of information gaps in decision making. Here we present a decision analysis based on info-gap theory developed for a source identification problem where the locations and mass fluxes of contaminants impacting groundwater resources are unknown. The problem is characterized with a lack of information related to (1) model parameters representing contaminant migration in the aquifer, and (2) observed contamination concentration in the existing monitoring wells. These two sources of uncertainty are coupled through an inverse model where the observed concentrations are applied to estimate model parameters. The decision goal is based on contaminant predictions at points of compliance. The decision analysis is demonstrated for synthetic and real-world test cases. The applied uncertainty-quantification, decision-support techniques and computational algorithms are implemented in code MADS (Model Analyses for Decision Support; http://mads.lanl.gov). MADS is C/C++ code that provides a framework for model-based decision support. MADS performs various types of model analyses including sensitivity analysis, parameter estimation, uncertainty quantification, model calibration, selection and averaging. To perform the analyses, MADS can be coupled with any external simulators. Our efforts target development of an interactive computer-based Decision Support System (DSS) that will help domain scientist, managers, regulators, and

  2. Medical decision support systems and therapeutics: The role of autopilots.

    Science.gov (United States)

    Woosley, R L; Whyte, J; Mohamadi, A; Romero, K

    2016-02-01

    For decades, medical practice has increasingly relied on prescription medicines to treat, cure, or prevent illness but their net benefit is reduced by prescribing errors that result in adverse drug reactions (ADRs) and tens of thousands of deaths each year. Optimal prescribing requires effective management of massive amounts of data. Clinical decision support systems (CDSS) can help manage information and support optimal therapeutic decisions before errors are made by operating as the prescribers' "autopilot."

  3. Fertility and contraceptive decision-making and support for HIV infected individuals: client and provider experiences and perceptions at two HIV clinics in Uganda

    Directory of Open Access Journals (Sweden)

    Wanyenze Rhoda K

    2013-02-01

    Full Text Available Abstract Background Some people living with HIV/AIDS (PLHIV want to have children while others want to prevent pregnancies; this calls for comprehensive services to address both needs. This study explored decisions to have or not to have children and contraceptive preferences among PLHIV at two clinics in Uganda. Methods This was a qualitative cross-sectional study. We conducted seventeen focus group discussions and 14 in-depth interviews with sexually active adult men and women and adolescent girls and boys, and eight key informant interviews with providers. Overall, 106 individuals participated in the interviews; including 84 clients through focus group discussions. Qualitative latent content analysis technique was used, guided by key study questions and objectives. A coding system was developed before the transcripts were examined. Codes were grouped into categories and then themes and subthemes further identified. Results In terms of contraceptive preferences, clients had a wide range of preferences; whereas some did not like condoms, pills and injectables, others preferred these methods. Fears of complications were raised mainly about pills and injectables while cost of the methods was a major issue for the injectables, implants and intrauterine devices. Other than HIV sero-discordance and ill health (which was cited as transient, the decision to have children or not was largely influenced by socio-cultural factors. All adult men, women and adolescents noted the need to have children, preferably more than one. The major reasons for wanting more children for those who already had some were; the sex of the children (wanting to have both girls and boys and especially boys, desire for large families, pressure from family, and getting new partners. Providers were supportive of the decision to have children, especially for those who did not have any child at all, but some clients cited negative experiences with providers and information gaps for

  4. Evaluation of selected environmental decision support software

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.M.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States); Gitten, M. [Environmental Project Control, Maynard, MA (United States)

    1997-06-01

    Decision Support Software (DSS) continues to be developed to support analysis of decisions pertaining to environmental management. Decision support systems are computer-based systems that facilitate the use of data, models, and structured decision processes in decision making. The optimal DSS should attempt to integrate, analyze, and present environmental information to remediation project managers in order to select cost-effective cleanup strategies. The optimal system should have a balance between the sophistication needed to address the wide range of complicated sites and site conditions present at DOE facilities, and ease of use (e.g., the system should not require data that is typically unknown and should have robust error checking of problem definition through input, etc.). In the first phase of this study, an extensive review of the literature, the Internet, and discussions with sponsors and developers of DSS led to identification of approximately fifty software packages that met the preceding definition.

  5. Geospatial decision support systems for societal decision making

    Science.gov (United States)

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  6. A Geospatial Decision Support System Toolkit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a working prototype Geospatial Decision Support Toolkit (GeoKit) that will enable scientists, agencies, and stakeholders to configure and deploy...

  7. Effects of a computerized provider order entry and a clinical decision support system to improve cefazolin use in surgical prophylaxis: a cost saving analysis

    Directory of Open Access Journals (Sweden)

    Okumura LM

    2016-10-01

    Full Text Available Background: Computerized Provider Order Entry (CPOE and Clinical Decision Support System (CDSS help practitioners to choose evidence-based decisions, regarding patients’ needs. Despite its use in developed countries, in Brazil, the impact of a CPOE/CDSS to improve cefazolin use in surgical prophylaxis was not assessed yet. Objective: We aimed to evaluate the impact of a CDSS to improve the use of prophylactic cefazolin and to assess the cost savings associated to inappropriate prescribing. Methods: This is a cross-sectional study that compared two different scenarios: one prior CPOE/CDSS versus after software implementation. We conducted twelve years of data analysis (3 years prior and 9 years after CDSS implementation, where main outcomes from this study included: cefazolin Defined Daily Doses/100 bed-days (DDD, crude costs and product of costs-DDD (cost-DDD/100 bed-days. We applied a Spearman rho non-parametric test to assess the reduction of cefazolin consumption through the years. Results: In twelve years, 84,383 vials of cefazolin were dispensed and represented 38.89 DDD/100 bed-days or USD 44,722.99. Surgical wards were the largest drug prescribers and comprised >95% of our studied sample. While in 2002, there were 6.31 DDD/100 bed-days, 9 years later there was a reduction to 2.15 (p<0.05. In a scenario without CDSS, the hospital would have consumed 75.72 DDD/100 bed-days, which is equivalent to USD 116 998.07. It is estimated that CDSS provided USD 50,433.39 of cost savings. Conclusion: The implementation of a CPOE/CDSS helped to improve prophylactic cefazolin use by reducing its consumption and estimated direct costs.

  8. Indonesian Earthquake Decision Support System

    CERN Document Server

    Warnars, Spits

    2010-01-01

    Earthquake DSS is an information technology environment which can be used by government to sharpen, make faster and better the earthquake mitigation decision. Earthquake DSS can be delivered as E-government which is not only for government itself but in order to guarantee each citizen's rights for education, training and information about earthquake and how to overcome the earthquake. Knowledge can be managed for future use and would become mining by saving and maintain all the data and information about earthquake and earthquake mitigation in Indonesia. Using Web technology will enhance global access and easy to use. Datawarehouse as unNormalized database for multidimensional analysis will speed the query process and increase reports variation. Link with other Disaster DSS in one national disaster DSS, link with other government information system and international will enhance the knowledge and sharpen the reports.

  9. Solutions for decision support in university management

    Directory of Open Access Journals (Sweden)

    Andrei STANCIU

    2009-06-01

    Full Text Available The paper proposes an overview of decision support systems in order to define the role of a system to assist decision in university management. The authors present new technologies and the basic concepts of multidimensional data analysis using models of business processes within the universities. Based on information provided by scientific literature and on the authors’ experience, the study aims to define selection criteria in choosing a development environment for designing a support system dedicated to university management. The contributions consist in designing a data warehouse model and models of OLAP analysis to assist decision in university management.

  10. Evaluating Ethical Responsibility in Inverse Decision Support

    Directory of Open Access Journals (Sweden)

    Ahmad M. Kabil

    2012-01-01

    Full Text Available Decision makers have considerable autonomy on how they make decisions and what type of support they receive. This situation places the DSS analyst in a different relationship with the client than his colleagues who support regular MIS applications. This paper addresses an ethical dilemma in “Inverse Decision Support,” when the analyst supports a decision maker who requires justification for a preconceived selection that does not correspond to the best option that resulted from the professional resolution of the problem. An extended application of the AHP model is proposed for evaluating the ethical responsibility in selecting a suboptimal alternative. The extended application is consistent with the Inverse Decision Theory that is used extensively in medical decision making. A survey of decision analysts is used to assess their perspective of using the proposed extended application. The results show that 80% of the respondents felt that the proposed extended application is useful in business practices. 14% of them expanded the usability of the extended application to academic teaching of the ethics theory. The extended application is considered more usable in a country with a higher Transparency International Corruption Perceptions Index (TICPI than in a country with a lower one.

  11. Implementation pearls from a new guidebook on improving medication use and outcomes with clinical decision support. Effective CDS is essential for addressing healthcare performance improvement imperatives.

    Science.gov (United States)

    Sirajuddin, Anwar M; Osheroff, Jerome A; Sittig, Dean F; Chuo, John; Velasco, Ferdinand; Collins, David A

    2009-01-01

    Effective clinical decision support (CDS) is essential for addressing healthcare performance improvement imperatives, but care delivery organizations (CDO) typically struggle with CDS deployment. Ensuring safe and effective medication delivery to patients is a central focus of CDO performance improvement efforts, and this article provides an overview of best-practice strategies for applying CDS to these goals. The strategies discussed are drawn from a new guidebook, co-published and co-sponsored by more than a dozen leading organizations. Developed by scores of CDS implementers and experts, the guidebook outlines key steps and success factors for applying CDS to medication management. A central thesis is that improving outcomes with CDS interventions requires that the CDS five rights be addressed successfully. That is, the interventions must deliver the right information, to the right person, in the right format, through the right channel, at the right point in workflow. This paper provides further details about these CDS five rights, and highlights other important strategies for successful CDS programs.

  12. Group decision support using Toulmin argument structures

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T. [Argonne National Lab., IL (United States)]|[George Mason Univ., Fairfax, VA (United States). School of Information Technology and Engineering; Sage, A.P. [George Mason Univ., Fairfax, VA (United States). School of Information Technology and Engineering

    1996-12-31

    This paper addresses the need for sound science, technology, and management assessment relative to environmental policy decision making through an approach that involves a logical structure for evidence, a framed decision-making process, and an environment that encourages group participation. Toulmin-based logic possesses these characteristics and is used as the basis for development of a group decision support system. This system can support several user groups, such as pesticide policy-making experts, who can use the support system to state arguments for or against an important policy issue, and pest management experts, who can use the system to assist in identifying and evaluating alternatives for controlling pests on agricultural commodities. The resulting decision support system assists in improving the clarity of the lines of reasoning used in specific situations; the warrants, grounds, and backings that are used to support claims and specific lines of reasoning; and the contradictions, rebuttals, and arguments surrounding each step in the reasoning process associated with evaluating a claim or counterclaim. Experts and decisions makers with differing views can better understand each other`s thought processes. The net effect is enhanced communications and understanding of the whole picture and, in many cases, consensus on decisions to be taken.

  13. Costs associated with implementation of computer-assisted clinical decision support system for antenatal and delivery care: case study of Kassena-Nankana district of northern Ghana.

    Directory of Open Access Journals (Sweden)

    Maxwell Ayindenaba Dalaba

    Full Text Available OBJECTIVE: This study analyzed cost of implementing computer-assisted Clinical Decision Support System (CDSS in selected health care centres in Ghana. METHODS: A descriptive cross sectional study was conducted in the Kassena-Nankana district (KND. CDSS was deployed in selected health centres in KND as an intervention to manage patients attending antenatal clinics and the labour ward. The CDSS users were mainly nurses who were trained. Activities and associated costs involved in the implementation of CDSS (pre-intervention and intervention were collected for the period between 2009-2013 from the provider perspective. The ingredients approach was used for the cost analysis. Costs were grouped into personnel, trainings, overheads (recurrent costs and equipment costs (capital cost. We calculated cost without annualizing capital cost to represent financial cost and cost with annualizing capital costs to represent economic cost. RESULTS: Twenty-two trained CDSS users (at least 2 users per health centre participated in the study. Between April 2012 and March 2013, users managed 5,595 antenatal clients and 872 labour clients using the CDSS. We observed a decrease in the proportion of complications during delivery (pre-intervention 10.74% versus post-intervention 9.64% and a reduction in the number of maternal deaths (pre-intervention 4 deaths versus post-intervention 1 death. The overall financial cost of CDSS implementation was US$23,316, approximately US$1,060 per CDSS user trained. Of the total cost of implementation, 48% (US$11,272 was pre-intervention cost and intervention cost was 52% (US$12,044. Equipment costs accounted for the largest proportion of financial cost: 34% (US$7,917. When economic cost was considered, total cost of implementation was US$17,128-lower than the financial cost by 26.5%. CONCLUSIONS: The study provides useful information in the implementation of CDSS at health facilities to enhance health workers' adherence to practice

  14. Time-dependent estimates of recurrence and survival in colon cancer: clinical decision support system tool development for adjuvant therapy and oncological outcome assessment.

    Science.gov (United States)

    Steele, Scott R; Bilchik, Anton; Johnson, Eric K; Nissan, Aviram; Peoples, George E; Eberhardt, John S; Kalina, Philip; Petersen, Benjamin; Brücher, Björn; Protic, Mladjan; Avital, Itzhak; Stojadinovic, Alexander

    2014-05-01

    Unanswered questions remain in determining which high-risk node-negative colon cancer (CC) cohorts benefit from adjuvant therapy and how it may differ in an equal access population. Machine-learned Bayesian Belief Networks (ml-BBNs) accurately estimate outcomes in CC, providing clinicians with Clinical Decision Support System (CDSS) tools to facilitate treatment planning. We evaluated ml-BBNs ability to estimate survival and recurrence in CC. We performed a retrospective analysis of registry data of patients with CC to train-test-crossvalidate ml-BBNs using the Department of Defense Automated Central Tumor Registry (January 1993 to December 2004). Cases with events or follow-up that passed quality control were stratified into 1-, 2-, 3-, and 5-year survival cohorts. ml-BBNs were trained using machine-learning algorithms and k-fold crossvalidation and receiver operating characteristic curve analysis used for validation. BBNs were comprised of 5301 patients and areas under the curve ranged from 0.85 to 0.90. Positive predictive values for recurrence and mortality ranged from 78 to 84 per cent and negative predictive values from 74 to 90 per cent by survival cohort. In the 12-month model alone, 1,132,462,080 unique rule sets allow physicians to predict individual recurrence/mortality estimates. Patients with Stage II (N0M0) CC benefit from chemotherapy at different rates. At one year, all patients older than 73 years of age with T2-4 tumors and abnormal carcinoembryonic antigen levels benefited, whereas at five years, all had relative reduction in mortality with the largest benefit amongst elderly, highest T-stage patients. ml-BBN can readily predict which high-risk patients benefit from adjuvant therapy. CDSS tools yield individualized, clinically relevant estimates of outcomes to assist clinicians in treatment planning.

  15. Physicians’ use of computerized clinical decision supports to improve medication management in the elderly – the Seniors Medication Alert and Review Technology intervention

    Science.gov (United States)

    Alagiakrishnan, Kannayiram; Wilson, Patricia; Sadowski, Cheryl A; Rolfson, Darryl; Ballermann, Mark; Ausford, Allen; Vermeer, Karla; Mohindra, Kunal; Romney, Jacques; Hayward, Robert S

    2016-01-01

    Background Elderly people (aged 65 years or more) are at increased risk of polypharmacy (five or more medications), inappropriate medication use, and associated increased health care costs. The use of clinical decision support (CDS) within an electronic medical record (EMR) could improve medication safety. Methods Participatory action research methods were applied to preproduction design and development and postproduction optimization of an EMR-embedded CDS implementation of the Beers’ Criteria for medication management and the Cockcroft–Gault formula for estimating glomerular filtration rates (GFR). The “Seniors Medication Alert and Review Technologies” (SMART) intervention was used in primary care and geriatrics specialty clinics. Passive (chart messages) and active (order-entry alerts) prompts exposed potentially inappropriate medications, decreased GFR, and the possible need for medication adjustments. Physician reactions were assessed using surveys, EMR simulations, focus groups, and semi-structured interviews. EMR audit data were used to identify eligible patient encounters, the frequency of CDS events, how alerts were managed, and when evidence links were followed. Results Analysis of subjective data revealed that most clinicians agreed that CDS appeared at appropriate times during patient care. Although managing alerts incurred a modest time burden, most also agreed that workflow was not disrupted. Prevalent concerns related to clinician accountability and potential liability. Approximately 36% of eligible encounters triggered at least one SMART alert, with GFR alert, and most frequent medication warnings were with hypnotics and anticholinergics. Approximately 25% of alerts were overridden and ~15% elicited an evidence check. Conclusion While most SMART alerts validated clinician choices, they were received as valuable reminders for evidence-informed care and education. Data from this study may aid other attempts to implement Beers’ Criteria in

  16. Perceived barriers of heart failure nurses and cardiologists in using clinical decision support systems in the treatment of heart failure patients

    Science.gov (United States)

    2013-01-01

    Background Clinical Decision Support Systems (CDSSs) can support guideline adherence in heart failure (HF) patients. However, the use of CDSSs is limited and barriers in working with CDSSs have been described as a major obstacle. It is unknown if barriers to CDSSs are present and differ between HF nurses and cardiologists. Therefore the aims of this study are; 1. Explore the type and number of perceived barriers of HF nurses and cardiologists to use a CDSS in the treatment of HF patients. 2. Explore possible differences in perceived barriers between two groups. 3. Assess the relevance and influence of knowledge management (KM) on Responsibility/Trust (R&T) and Barriers/Threats (B&T). Methods A questionnaire was developed including; B&T, R&T, and KM. For analyses, descriptive techniques, 2-tailed Pearson correlation tests, and multiple regression analyses were performed. Results The response- rate of 220 questionnaires was 74%. Barriers were found for cardiologists and HF nurses in all the constructs. Sixty-five percent did not want to be dependent on a CDSS. Nevertheless thirty-six percent of HF nurses and 50% of cardiologists stated that a CDSS can optimize HF medication. No relationship between constructs and age; gender; years of work experience; general computer experience and email/internet were observed. In the group of HF nurses a positive correlation (r .33, PKM was associated with the constructs B&T (B=.55, P=barriers in working with a CDSS in all of the examined constructs. KM has a strong positive correlation with perceived barriers, indicating that increasing knowledge about CDSSs can decrease their barriers. PMID:23622342

  17. A pragmatic study exploring the prevention of delirium among hospitalized older hip fracture patients: Applying evidence to routine clinical practice using clinical decision support

    Directory of Open Access Journals (Sweden)

    Schmaltz Heidi N

    2010-10-01

    Full Text Available Abstract Delirium occurs in up to 65% of older hip fracture patients. Developing delirium in hospital has been associated with a variety of adverse outcomes. Trials have shown that multi-component preventive interventions can lower delirium rates. The objective of this study was to implement and evaluate the effectiveness of an evidence-based electronic care pathway, which incorporates multi-component delirium strategies, among older hip fracture patients. We conducted a pragmatic study using an interrupted time series design in order to evaluate the use and impact of the intervention. The target population was all consenting patients aged 65 years or older admitted with an acute hip fracture to the orthopedic units at two Calgary, Alberta hospitals. The primary outcome was delirium rates. Secondary outcomes included length of hospital stay, in-hospital falls, in-hospital mortality, new discharges to long-term care, and readmissions. A Durbin Watson test was conducted to test for serial correlation and, because no correlation was found, Chi-square statistics, Wilcoxon test and logistic regression analyses were conducted as appropriate. At study completion, focus groups were conducted at each hospital to explore issues around the use of the order set. During the 40-week study period, 134 patients were enrolled. The intervention had no effect on the overall delirium rate (33% pre versus 31% post; p = 0.84. However, there was a significant interaction between study phase and hospital (p = 0.03. Although one hospital did not experience a decline in delirium rate, the delirium rate at the other hospital declined from 42% to 19% (p = 0.08. This difference by hospital was mirrored in focus group feedback. The hospital that experienced a decline in delirium rates was more supportive of the intervention. Overall, post-intervention there were no significant differences in mean length of stay (12 days post versus 14 days pre; p = 0.74, falls (6% post

  18. Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise

    Science.gov (United States)

    Militello, Laura G.; Saleem, Jason J.; Borders, Morgan R.; Sushereba, Christen E.; Haverkamp, Donald; Wolf, Steven P.; Doebbeling, Bradley N.

    2016-01-01

    Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration’s EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability. PMID:26973441

  19. Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Kathrin Blagec

    2016-02-01

    Full Text Available Background. Pharmacogenomic testing has the potential to improve the safety and efficacy of pharmacotherapy, but clinical application of pharmacogenetic knowledge has remained uncommon. Clinical Decision Support (CDS systems could help overcome some of the barriers to clinical implementation. The aim of this study was to evaluate the perception and usability of a web- and mobile-enabled CDS system for pharmacogenetics-guided drug therapy–the Medication Safety Code (MSC system–among potential users (i.e., physicians and pharmacists. Furthermore, this study sought to collect data on the practicability and comprehensibility of potential layouts of a proposed personalized pocket card that is intended to not only contain the machine-readable data for use with the MSC system but also human-readable data on the patient’s pharmacogenomic profile. Methods. We deployed an emergent mixed methods design encompassing (1 qualitative interviews with pharmacists and pharmacy students, (2 a survey among pharmacogenomics experts that included both qualitative and quantitative elements and (3 a quantitative survey among physicians and pharmacists. The interviews followed a semi-structured guide including a hypothetical patient scenario that had to be solved by using the MSC system. The survey among pharmacogenomics experts focused on what information should be printed on the card and how this information should be arranged. Furthermore, the MSC system was evaluated based on two hypothetical patient scenarios and four follow-up questions on the perceived usability. The second survey assessed physicians’ and pharmacists’ attitude towards the MSC system. Results. In total, 101 physicians, pharmacists and PGx experts coming from various relevant fields evaluated the MSC system. Overall, the reaction to the MSC system was positive across all investigated parameters and among all user groups. The majority of participants were able to solve the patient

  20. Biometric and intelligent decision making support

    CERN Document Server

    Kaklauskas, Arturas

    2015-01-01

    This book presents different methods for analyzing the body language (movement, position, use of personal space, silences, pauses and tone, the eyes, pupil dilation or constriction, smiles, body temperature and the like) for better understanding people’s needs and actions, including biometric data gathering and reading. Different studies described in this book indicate that sufficiently much data, information and knowledge can be gained by utilizing biometric technologies. This is the first, wide-ranging book that is devoted completely to the area of intelligent decision support systems, biometrics technologies and their integrations. This book is designated for scholars, practitioners and doctoral and master’s degree students in various areas and those who are interested in the latest biometric and intelligent decision making support problems and means for their resolutions, biometric and intelligent decision making support systems and the theory and practice of their integration and the opportunities fo...

  1. Ecological Assessment of Clinicians’ Antipsychotic Prescription Habits in Psychiatric Inpatients: A Novel Web- and Mobile Phone–Based Prototype for a Dynamic Clinical Decision Support System

    Science.gov (United States)

    Barrigón, Maria Luisa; Brandt, Sara A; Nitzburg, George C; Ovejero, Santiago; Alvarez-Garcia, Raquel; Carballo, Juan; Walter, Michel; Billot, Romain; Lenca, Philippe; Delgado-Gomez, David; Ropars, Juliette; de la Calle Gonzalez, Ivan; Courtet, Philippe; Baca-García, Enrique

    2017-01-01

    Background Electronic prescribing devices with clinical decision support systems (CDSSs) hold the potential to significantly improve pharmacological treatment management. Objective The aim of our study was to develop a novel Web- and mobile phone–based application to provide a dynamic CDSS by monitoring and analyzing practitioners’ antipsychotic prescription habits and simultaneously linking these data to inpatients’ symptom changes. Methods We recruited 353 psychiatric inpatients whose symptom levels and prescribed medications were inputted into the MEmind application. We standardized all medications in the MEmind database using the Anatomical Therapeutic Chemical (ATC) classification system and the defined daily dose (DDD). For each patient, MEmind calculated an average for the daily dose prescribed for antipsychotics (using the N05A ATC code), prescribed daily dose (PDD), and the PDD to DDD ratio. Results MEmind results found that antipsychotics were used by 61.5% (217/353) of inpatients, with the largest proportion being patients with schizophrenia spectrum disorders (33.4%, 118/353). Of the 217 patients, 137 (63.2%, 137/217) were administered pharmacological monotherapy and 80 (36.8%, 80/217) were administered polytherapy. Antipsychotics were used mostly in schizophrenia spectrum and related psychotic disorders, but they were also prescribed in other nonpsychotic diagnoses. Notably, we observed polypharmacy going against current antipsychotics guidelines. Conclusions MEmind data indicated that antipsychotic polypharmacy and off-label use in inpatient units is commonly practiced. MEmind holds the potential to create a dynamic CDSS that provides real-time tracking of prescription practices and symptom change. Such feedback can help practitioners determine a maximally therapeutic drug treatment while avoiding unproductive overprescription and off-label use. PMID:28126703

  2. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  3. ADDIS: A decision support system for evidence-based medicine

    NARCIS (Netherlands)

    G. van Valkenhoef (Gert); T. Tervonen (Tommi); T. Zwinkels (Tijs); B. de Brock (Bert); H.L. Hillege (Hans)

    2013-01-01

    textabstractClinical trials are the main source of information for the efficacy and safety evaluation of medical treatments. Although they are of pivotal importance in evidence-based medicine, there is a lack of usable information systems providing data-analysis and decision support capabilities for

  4. Management Decision Support Systems: From Theory to Practice.

    Science.gov (United States)

    Wong, Simon C. H.

    1995-01-01

    A decision support system integrates individuals' intellectual resources with computer capabilities to improve decision-making quality. This paper presents the theoretical aspects of decision making and decision support and shows how the theories can be applied in developing an operational management decision-making support system for room booking…

  5. Decision support system for vehicle scheduling

    Directory of Open Access Journals (Sweden)

    C. Gaindric

    1999-08-01

    Full Text Available A decision support system (DSS is described to form schedules of traffic from a central warehouse to a set of consumers by cyclic routes. The system may be used by dispatchers at transportation enterprises. The system structure, short description of modules, and algorithms solving the originating problems are presented.

  6. QUICKScan: a pragmatic approach to decision support

    NARCIS (Netherlands)

    Verweij, P.J.F.M.; Winograd, M.; Perez-Soba, M.; Knapen, M.J.R.; Randen, van Y.

    2012-01-01

    Decision Support Tools (DST) are a key instrument for preparing legislative proposals and policy initiatives. They provide insight about options, conflicts, synergies and trade-offs between issues, sectors and regions at multiple scales. DST range from integrated systems modelling to value-based kno

  7. Decision Support and Knowledge-Based Systems.

    Science.gov (United States)

    Konsynski, Benn R.; And Others

    1988-01-01

    A series of articles addresses issues concerning decision support and knowledge based systems. Topics covered include knowledge-based systems for information centers; object oriented systems; strategic information systems case studies; user perception; manipulation of certainty factors by individuals and expert systems; spreadsheet program use;…

  8. Nitrogenius: a nitrogen decision support system

    NARCIS (Netherlands)

    Erisman, J.W.; Hensen, A.; Vries, de W.; Kros, H.; Wal, van der T.; Winter, de W.; Wien, J.E.; Elswijk, van M.; Maat, M.; Sanders, K.

    2002-01-01

    A nitrogen decision support system in the form of a game (NitroGenius) was developed for the Second International Nitrogen Conference. The aims were to: i) improve understanding among scientists and policy makers about the complexity of nitrogen pollution problems in an area of intensive agricultura

  9. Modeling uncertainty in requirements engineering decision support

    Science.gov (United States)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  10. Decision support system for nursing management control

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, C.J.

    1983-01-01

    A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.

  11. Context based support for Clinical Reasoning

    DEFF Research Database (Denmark)

    Vilstrup Pedersen, Klaus

    2004-01-01

    In many areas of the medical domain, the decision process i.e. reasoning, involving health care professionals is distributed, cooperative and complex. Computer based decision support systems has usually been focusing on the outcome of the decision making and treated it as a single task. In this p......In many areas of the medical domain, the decision process i.e. reasoning, involving health care professionals is distributed, cooperative and complex. Computer based decision support systems has usually been focusing on the outcome of the decision making and treated it as a single task....... In this paper a framework for a Clinical Reasoning Knowledge Warehouse (CRKW) is presented, intended to support the reasoning process, by providing the decision participants with an analysis platform that captures and enhances information and knowledge. The CRKW mixes theories and models from Artificial...... Intelligence, Knowledge Management Systems and Business Intelligence to make context sensitive, patient case specific analysis and knowledge management. The knowledge base consists of patient health records, reasoning process information and clinical guidelines. Patient specific information and knowledge...

  12. The conceptual foundation of environmental decision support.

    Science.gov (United States)

    Reichert, Peter; Langhans, Simone D; Lienert, Judit; Schuwirth, Nele

    2015-05-01

    Environmental decision support intends to use the best available scientific knowledge to help decision makers find and evaluate management alternatives. The goal of this process is to achieve the best fulfillment of societal objectives. This requires a careful analysis of (i) how scientific knowledge can be represented and quantified, (ii) how societal preferences can be described and elicited, and (iii) how these concepts can best be used to support communication with authorities, politicians, and the public in environmental management. The goal of this paper is to discuss key requirements for a conceptual framework to address these issues and to suggest how these can best be met. We argue that a combination of probability theory and scenario planning with multi-attribute utility theory fulfills these requirements, and discuss adaptations and extensions of these theories to improve their application for supporting environmental decision making. With respect to (i) we suggest the use of intersubjective probabilities, if required extended to imprecise probabilities, to describe the current state of scientific knowledge. To address (ii), we emphasize the importance of value functions, in addition to utilities, to support decisions under risk. We discuss the need for testing "non-standard" value aggregation techniques, the usefulness of flexibility of value functions regarding attribute data availability, the elicitation of value functions for sub-objectives from experts, and the consideration of uncertainty in value and utility elicitation. With respect to (iii), we outline a well-structured procedure for transparent environmental decision support that is based on a clear separation of scientific prediction and societal valuation. We illustrate aspects of the suggested methodology by its application to river management in general and with a small, didactical case study on spatial river rehabilitation prioritization.

  13. Text summarization as a decision support aid

    Directory of Open Access Journals (Sweden)

    Workman T

    2012-05-01

    Full Text Available Abstract Background PubMed data potentially can provide decision support information, but PubMed was not exclusively designed to be a point-of-care tool. Natural language processing applications that summarize PubMed citations hold promise for extracting decision support information. The objective of this study was to evaluate the efficiency of a text summarization application called Semantic MEDLINE, enhanced with a novel dynamic summarization method, in identifying decision support data. Methods We downloaded PubMed citations addressing the prevention and drug treatment of four disease topics. We then processed the citations with Semantic MEDLINE, enhanced with the dynamic summarization method. We also processed the citations with a conventional summarization method, as well as with a baseline procedure. We evaluated the results using clinician-vetted reference standards built from recommendations in a commercial decision support product, DynaMed. Results For the drug treatment data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.848 and 0.377, while conventional summarization produced 0.583 average recall and 0.712 average precision, and the baseline method yielded average recall and precision values of 0.252 and 0.277. For the prevention data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.655 and 0.329. The baseline technique resulted in recall and precision scores of 0.269 and 0.247. No conventional Semantic MEDLINE method accommodating summarization for prevention exists. Conclusion Semantic MEDLINE with dynamic summarization outperformed conventional summarization in terms of recall, and outperformed the baseline method in both recall and precision. This new approach to text summarization demonstrates potential in identifying decision support data for multiple needs.

  14. Automatic decision support in heterogeneous sensor networks

    Science.gov (United States)

    Kozma, Robert; Tanigawa, Timothy; Furxhi, Orges; Consul, Sergi

    2012-06-01

    There is a need to model complementary aspects of various data channels in distributed sensor networks in order to provide efficient tools of decision support in rapidly changing, dynamic real life scenarios. Our aim is to develop an autonomous cyber-sensing system that supports decision support based on the integration of information from diverse sensory channels. Target scenarios include dismounts performing various peaceful and/or potentially malicious activities. The studied test bed includes Ku band high bandwidth radar for high resolution range data and K band low bandwidth radar for high Doppler resolution data. We embed the physical sensor network in cyber network domain to achieve robust and resilient operation in adversary conditions. We demonstrate the operation of the integrated sensor system using artificial neural networks for the classification of human activities.

  15. Decision support tools for policy and planning

    Energy Technology Data Exchange (ETDEWEB)

    Jacyk, P.; Schultz, D.; Spangenberg, L.

    1995-07-01

    A decision support system (DSS) is being developed at the Radioactive Liquid Waste Treatment Facility, Los Alamos National Laboratory (LANL). The DSS will be used to evaluate alternatives for improving LANL`s existing central radioactive waste water treatment plant and to evaluate new site-wide liquid waste treatment schemes that are required in order to handle the diverse waste streams produced at LANL. The decision support system consists of interacting modules that perform the following tasks: rigorous process simulation, configuration management, performance analysis, cost analysis, risk analysis, environmental impact assessment, transportation modeling, and local, state, and federal regulation compliance checking. Uncertainty handling techniques are used with these modules and also with a decision synthesis module which combines results from the modules listed above. We believe the DSS being developed can be applied to almost any other industrial water treatment facility with little modification because in most situations the waste streams are less complex, fewer regulations apply, and the political environment is simpler. The techniques being developed are also generally applicable to policy and planning decision support systems in the chemical process industry.

  16. Tsunami early warning and decision support

    Directory of Open Access Journals (Sweden)

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  17. Decision Strategy Research and Policy Support

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, F

    2002-04-01

    The objective of SCK-CEN's R and D programme on decision strategies and policy support is: (1) to investigate the decision making process, with all its relevant dimensions, in the context of radiation protection or other nuclear issues (with particular emphasis on emergency preparedness); (2) to disseminate knowledge on decision making and nuclear emergencies, including the organisation of training courses, the contribution to manuals or guidelines, the participation in working groups or discussion forums; (3) to assist the authorities and the industry on any topic related to radiation protection and to make expertise and infrastructure available; (4) to participate in and contribute to initiatives related to social sciences and their implementation into SCK-CEN; (5) to co-ordinate efforts of SCK-CEN related to medical applications of ionising radiation. Principal achievements in 2001 are described.

  18. Computer-supported collaborative decision-making

    CERN Document Server

    Filip, Florin Gheorghe; Ciurea, Cristian

    2017-01-01

    This is a book about how management and control decisions are made by persons who collaborate and possibly use the support of an information system. The decision is the result of human conscious activities aiming at choosing a course of action for attaining a certain objective (or a set of objectives). The act of collaboration implies that several entities who work together and share responsibilities to jointly plan, implement and evaluate a program of activities to achieve the common goals. The book is intended to present a balanced view of the domain to include both well-established concepts and a selection of new results in the domains of methods and key technologies. It is meant to answer several questions, such as: a) “How are evolving the business models towards the ever more collaborative schemes?”; b) “What is the role of the decision-maker in the new context?” c) “What are the basic attributes and trends in the domain of decision-supporting information systems?”; d) “Which are the basic...

  19. DECISION SUPPORT SYSTEMS FOR LOGISTICS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Pere Tumbas

    2007-12-01

    Full Text Available The environment where managers make decisions has been significantly changed ttiese years. Today, organizations design their products in one country, purchase of materials and raw materials in the other one, production is done in the third country, and finished products are brought out in many countries in the world. Logistics, as a transaction intensive function mutually connect these substantially different business processes and enables more effective and efficient management of the long logistics chains. In realizing such a task, the intensive use of infomiation technologies that provide timely transaction processing and give support in decisionmaking processes is especially important for logistics. The work reviews information systems development in the field of logistics, and a special attention is paid to the conceptual level of the global structure in decision support systems (DSS. Possible contents of identified subsystems are cited and potential development trends of its application are discussed.

  20. An exploration of clinical decision making in mental health triage.

    Science.gov (United States)

    Sands, Natisha

    2009-08-01

    Mental health (MH) triage is a specialist area of clinical nursing practice that involves complex decision making. The discussion in this article draws on the findings of a Ph.D. study that involved a statewide investigation of the scope of MH triage nursing practice in Victoria, Australia. Although the original Ph.D. study investigated a number of core practices in MH triage, the focus of the discussion in this article is specifically on the findings related to clinical decision making in MH triage, which have not previously been published. The study employed an exploratory descriptive research design that used mixed data collection methods including a survey questionnaire (n = 139) and semistructured interviews (n = 21). The study findings related to decision making revealed a lack of empirically tested evidence-based decision-making frameworks currently in use to support MH triage nursing practice. MH triage clinicians in Australia rely heavily on clinical experience to underpin decision making and have little of knowledge of theoretical models for practice, such as methodologies for rating urgency. A key recommendation arising from the study is the need to develop evidence-based decision-making frameworks such as clinical guidelines to inform and support MH triage clinical decision making.

  1. Computerised decision support systems for healthcare professionals: an interpretative review

    Directory of Open Access Journals (Sweden)

    Kathrin Cresswell

    2013-03-01

    Full Text Available Purpose Computerised decision support systems are designed to support clinicians in making decisions and thereby enhance the quality and safety of care. We aimed to undertake an interpretative review of the empirical evidence on computerised decision support systems, their contexts of use, and summarise evidence on the effectiveness of these tools and insights into how these can be successfully implemented and adopted.Methods We systematically searched the empirical literature to identify systematic literature reviews on computerised decision support applications and their impact on the quality and safety of healthcare delivery over a 13-year period (1997–2010. The databases searched included: MEDLINE, EMBASE, The Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, The Cochrane Central Register of Controlled Trials, The Cochrane Methodology Register, The Health Technology Assessment Database, and The National Health Service (NHS Economic Evaluation Database. To be eligible for inclusion, systematic reviews needed to address computerised decision support systems, and at least one of the following: impact on safety; quality; or organisational, implementation or adoption considerations.Results Our searches yielded 121 systematic reviews relating to eHealth, of which we identified 41 as investigating computerised decision support systems. These indicated that, whilst there was a lack of investigating potential risks, such tools can result in improvements in practitioner performance in the promotion of preventive care and guideline adherence, particularly if specific information is available in real time and systems are effectively integrated into clinical workflows. However, the evidence regarding impact on patient outcomes was less clear-cut with reviews finding either no, inconsistent or modest benefits.Conclusions Whilst the potential of clinical decision support systems in improving, in particular

  2. Clinical Decision Making of Rural Novice Nurses

    Science.gov (United States)

    Seright, Teresa J.

    2010-01-01

    The purpose of this study was to develop substantive theory regarding decision making by the novice nurse in a rural hospital setting. Interviews were guided by the following research questions: What cues were used by novice rural registered nurses in order to make clinical decisions? What were the sources of feedback which influenced subsequent…

  3. Personalized Clinical Decision Making in Gastrointestinal Malignancies

    DEFF Research Database (Denmark)

    Hess, Søren; Bjerring, Ole Steen; Pfeiffer, Per

    2016-01-01

    and initial stages. This article outlines the potential use of fluorodeoxyglucose-PET/CT in clinical decision making with special regard to preoperative evaluation and response assessment in gastric cancer (including the gastroesophageal junction), pancreatic cancer (excluding neuroendocrine tumors...

  4. Handling risk attitudes for preference learning and intelligent decision support

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Hougaard, Jens Leth; Nielsen, Kurt

    2015-01-01

    Intelligent decision support should allow integrating human knowledge with efficient algorithms for making interpretable and useful recommendations on real world decision problems. Attitudes and preferences articulate and come together under a decision process that should be explicitly modeled...

  5. GIS as spatial decision support system

    Directory of Open Access Journals (Sweden)

    V. Vostrovský

    2011-06-01

    Full Text Available This paper describes the possibility of the Geographic Information Systems (GIS as a means to support decision making in solving spatial problems. Spatial problems accompany every human activity, of which agriculture is no exception. The solutions to these problems requires the application of available knowledge in the relevant decision-making processes. GISs integrate hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. Coupled with GISs, geography helps to better understand and apply geographic knowledge to a host of global problems (unemployment, environmental pollution, the loss of arable land, epidemics etc.. The result may be a geographical approach represents a new way of thinking and solutions to existing spatial problems. This approach allows to apply existing knowledge to model and analyze these problems and thus help to solve them.

  6. Interactive Decision Support Algorithm and Its Application

    Institute of Scientific and Technical Information of China (English)

    HONG Xiao-kang; LIU Jian-lin; XIE Jian-cang; LIU Fu-chao; MA Bin

    2001-01-01

    On the bases of the properties of abstract hierarchical structure model and the concrete structure of the model system, which is convenient to solve practical problems, a visual interactive hierarchical coordination method has been proposed. In this paper, a compensation adjustment sub-model for hydropower stations, an optimal operation sub-model for hydro-thermal power systems, and an aggregation model based on the aspiration level theory are built, and these models can be solved with decision support algorithm. The set of objectives and its structure could be made by the decision-maker in visual software,which could be decided by AHP. Finally, the application results show that this methodology is feasible,however, the software (DSS) needs further improvement.

  7. Towards better modelling and decision support

    DEFF Research Database (Denmark)

    Meli, Mattia; Grimm, V; Augusiak, J.;

    2014-01-01

    The potential of ecological models for supporting environmental decision making is increasingly acknowledged. However, it often remains unclear whether a model is realistic and reliable enough. Good practice for developing and testing ecological models has not yet been established. Therefore, TRACE......, thereby also linking modellers and model users, for example stakeholders, decision makers, and developers of policies. We report on first experiences in producing TRACE documents. We found that the original idea underlying TRACE was valid, but to make its use more coherent and efficient, an update of its......, a general framework for documenting a model's rationale, design, and testing was recently suggested. Originally TRACE was aimed at documenting good modelling practice. However, the word 'documentation' does not convey TRACE's urgency. Therefore, we re-define TRACE as a tool for planning, performing...

  8. Towards better modelling and decision support

    DEFF Research Database (Denmark)

    Meli, Mattia; Grimm, V; Augusiak, J.;

    2014-01-01

    The potential of ecological models for supporting environmental decision making is increasingly acknowledged. However, it often remains unclear whether a model is realistic and reliable enough. Good practice for developing and testing ecological models has not yet been established. Therefore, TRACE......, thereby also linking modellers and model users, for example stakeholders, decision makers, and developers of policies. We report on first experiences in producing TRACE documents. We found that the original idea underlying TRACE was valid, but to make its use more coherent and efficient, an update of its...... a tool for planning, documenting, and assessing model evaludation, which includes understanding the rationale behind a model and its envisaged use. We introduce the new structure and revised terminology of TRACE and provide examples...

  9. An Ontology-driven Framework for Supporting Complex Decision Process

    OpenAIRE

    Chai, Junyi; Liu, James N. K.

    2011-01-01

    The study proposes a framework of ONTOlogy-based Group Decision Support System (ONTOGDSS) for decision process which exhibits the complex structure of decision-problem and decision-group. It is capable of reducing the complexity of problem structure and group relations. The system allows decision makers to participate in group decision-making through the web environment, via the ontology relation. It facilitates the management of decision process as a whole, from criteria generation, alternat...

  10. Sediment Analysis Network for Decision Support (SANDS)

    Science.gov (United States)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.

    2009-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  11. Decision investigation and support environment (DISE)

    Science.gov (United States)

    VonPlinsky, Michael J.; Johnson, Pete; Crowder, Ed

    2001-09-01

    The "Decision Integration and Support Environment" (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision process. FTI has developed two BNs to model these processes, incorporating aircraft, target, and overall mission priorities from the Air Operations Center (OAC) and the mission planners/command staff. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR Sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosectued, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process, including factors such as: * Fuel Level - amount of fuel in aircraft * Type of Weapon - available weapons on board aircraft * Probability of Survival - depends on the type of TST, time criticality and other factors * Potential Collateral Damage - amount of damage incurred on TST surroundings * Time Criticality of TST - how "critical" it is to attack the target depending on its launch status * Time to Target - aircraft's distance (in minutes) from the TST * Current Mission Priority - priority of the mission to which the aircraft is currently assigned * TST Mission Priority - determined when the target is originally nominated * Possible Reassignment - represents whether it is even possible to reassign the aircraft * Aircraft Re-tasking Availability - represents any factor not taken into account by the model, including commander override.

  12. Marketing Decision Making and Decision Support: Challenges and Perspectives for Successful Marketing Management Support Systems

    NARCIS (Netherlands)

    G.H. van Bruggen (Gerrit); B. Wierenga (Berend)

    2009-01-01

    textabstractMarketing management support systems (MMSS) are computer-enabled devices that help marketers to make better decisions. Marketing processes can be quite complex, involving large numbers of variables and mostly outcomes are the results of the actions of many different stakeholders (e.g., t

  13. Reactive Software Agent Anesthesia Decision Support System

    Directory of Open Access Journals (Sweden)

    Grant H. Kruger

    2011-12-01

    Full Text Available Information overload of the anesthesiologist through technological advances have threatened the safety of patients under anesthesia in the operating room (OR. Traditional monitoring and alarm systems provide independent, spatially distributed indices of patient physiological state. This creates the potential to distract caregivers from direct patient care tasks. To address this situation, a novel reactive agent decision support system with graphical human machine interface was developed. The system integrates the disparate data sources available in the operating room, passes the data though a decision matrix comprising a deterministic physiologic rule base established through medical research. Patient care is improved by effecting change to the care environment by displaying risk factors and alerts as an intuitive color coded animation. The system presents a unified, contextually appropriate snapshot of the patient state including current and potential risk factors, and alerts of critical patient events to the operating room team without requiring any user intervention. To validate the efficacy of the system, a retrospective analysis focusing on the hypotension rules were performed. Results show that even with vigilant and highly trained clinicians, deviations from ideal patient care exist and it is here that the proposed system may allow more standardized and improved patient care and potentially outcomes.

  14. Decision Support System for Fighter Pilots

    DEFF Research Database (Denmark)

    Randleff, Lars Rosenberg

    2007-01-01

    During a mission over enemy territory a fighter aircraft may be engaged by ground based threats. The pilot can use different measures to avoid the aircraft from being detected by e.g. enemy radar systems. If the enemy detects the aircraft a missile may be fired to seek and destroy the aircraft...... and countermeasures that can be applied to mitigate threats. This work is concerned with finding proper evasive actions when a fighter aircraft is engaged by ground based threats. To help the pilot in deciding on these actions a decision support system may be implemented. The environment in which such a system must...... platforms (aircraft, ships, etc.) is described. Different approaches to finding the combination of countermeasures and manoeuvres improving the pilots survivability is investigated. During training a fighter pilot will learn a set of rules to follow when threat occurs. For the pilot these rules...

  15. Clinical Information Support System (CISS)

    Data.gov (United States)

    Department of Veterans Affairs — Clinical Information Support System (CISS) is a web-based portal application that provides a framework of services for the VA enterprise and supplies an integration...

  16. Patterns of use of decision support tools by clinicians.

    Science.gov (United States)

    Hayward, Robert S; El-Hajj, Mohamad; Voth, Tanya K; Deis, Kelly

    2006-01-01

    This paper analyses information behavior data automatically gathered by an integrated clinical information environment used by internal medicine physicians and trainees at the University of Alberta. The study reviews how clinical information systems, decision-support tools and evidence resources were used over a 13 month period. Aggregate and application-specific frequency and duration of use was compared for location, time of day, physician status, and application-type (clinical information system or 5 categories of knowledge resources). Significant differences are observed for when and where resources were used, diurnal patterns of use, minutes spent per encounter, and patterns of use for physicians and trainees. We find that evidence use is not restricted to either the place or time of clinical work, resources are used for very short periods at the point-of-care, and that use of filtered evidence-based resources is concentrated among trainees.

  17. Clinical decision making of nurses working in hospital settings.

    Science.gov (United States)

    Bjørk, Ida Torunn; Hamilton, Glenys A

    2011-01-01

    This study analyzed nurses' perceptions of clinical decision making (CDM) in their clinical practice and compared differences in decision making related to nurse demographic and contextual variables. A cross-sectional survey was carried out with 2095 nurses in four hospitals in Norway. A 24-item Nursing Decision Making Instrument based on cognitive continuum theory was used to explore how nurses perceived their CDM when meeting an elective patient for the first time. Data were analyzed with descriptive frequencies, t-tests, Chi-Square test, and linear regression. Nurses' decision making was categorized into analytic-systematic, intuitive-interpretive, and quasi-rational models of CDM. Most nurses reported the use of quasi-rational models during CDM thereby supporting the tenet that cognition most often includes properties of both analysis and intuition. Increased use of intuitive-interpretive models of CDM was associated with years in present job, further education, male gender, higher age, and working in predominantly surgical units.

  18. Improving Decision Making by Means of a Marketing Decision Support System

    OpenAIRE

    Gerrit H. van Bruggen; Ale Smidts; Berend Wierenga

    1998-01-01

    Marketing decision makers are confronted with an increasing amount of information. This leads to a complex decision environment that may cause decision makers to lapse into using mental-effort-reducing heuristics such as anchoring and adjustment. In an experimental study, we find that the use of a marketing decision support system (MDSS) increases the effectiveness of marketing decision makers. An MDSS is effective because it assists its users in identifying the important decision variables a...

  19. Development of a Web-Based Clinical Decision Support System for Drug Prescription: Non-Interventional Naturalistic Description of the Antipsychotic Prescription Patterns in 4345 Outpatients and Future Applications

    Science.gov (United States)

    Berrouiguet, Sofian; Barrigón, Maria Luisa; Brandt, Sara A.; Ovejero-García, Santiago; Álvarez-García, Raquel; Carballo, Juan Jose; Lenca, Philippe; Courtet, Philippe; Baca-García, Enrique

    2016-01-01

    Purpose The emergence of electronic prescribing devices with clinical decision support systems (CDSS) is able to significantly improve management pharmacological treatments. We developed a web application available on smartphones in order to help clinicians monitor prescription and further propose CDSS. Method A web application (www.MEmind.net) was developed to assess patients and collect data regarding gender, age, diagnosis and treatment. We analyzed antipsychotic prescriptions in 4345 patients attended in five Psychiatric Community Mental Health Centers from June 2014 to October 2014. The web-application reported average daily dose prescribed for antipsychotics, prescribed daily dose (PDD), and the PDD to defined daily dose (DDD) ratio. Results The MEmind web-application reported that antipsychotics were used in 1116 patients out of the total sample, mostly in 486 (44%) patients with schizophrenia related disorders but also in other diagnoses. Second generation antipsychotics (quetiapine, aripiprazole and long-acting paliperidone) were preferably employed. Low doses were more frequently used than high doses. Long acting paliperidone and ziprasidone however, were the only two antipsychotics used at excessive dosing. Antipsychotic polypharmacy was used in 287 (26%) patients with classic depot drugs, clotiapine, amisulpride and clozapine. Conclusions In this study we describe the first step of the development of a web application that is able to make polypharmacy, high dose usage and off label usage of antipsychotics visible to clinicians. Current development of the MEmind web application may help to improve prescription security via momentary feedback of prescription and clinical decision support system. PMID:27764107

  20. Quantitative Decision Support Requires Quantitative User Guidance

    Science.gov (United States)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output

  1. Apply creative thinking of decision support in electrical nursing record.

    Science.gov (United States)

    Hao, Angelica Te-Hui; Hsu, Chien-Yeh; Li-Fang, Huang; Jian, Wen-Shan; Wu, Li-Bin; Kao, Ching-Chiu; Lu, Mei-Show; Chang, Her-Kung

    2006-01-01

    The nursing process consists of five interrelated steps: assessment, diagnosis, planning, intervention, and evaluation. In the nursing process, the nurse collects a great deal of data and information. The amount of data and information may exceed the amount the nurse can process efficiently and correctly. Thus, the nurse needs assistance to become proficient in the planning of nursing care, due to the difficulty of simultaneously processing a large set of information. Computer systems are viewed as tools to expand the capabilities of the nurse's mind. Using computer technology to support clinicians' decision making may provide high-quality, patient-centered, and efficient healthcare. Although some existing nursing information systems aid in the nursing process, they only provide the most fundamental decision support--i.e., standard care plans associated with common nursing diagnoses. Such a computerized decision support system helps the nurse develop a care plan step-by-step. But it does not assist the nurse in the decision-making process. The decision process about how to generate nursing diagnoses from data and how to individualize the care plans still reminds of the nurse. The purpose of this study is to develop a pilot structure in electronic nursing record system integrated with international nursing standard for improving the proficiency and accuracy of plan of care in clinical pathway process. The proposed pilot systems not only assist both student nurses and nurses who are novice in nursing practice, but also experts who need to work in a practice area which they are not familiar with.

  2. Entrustment Decision Making in Clinical Training.

    Science.gov (United States)

    Ten Cate, Olle; Hart, Danielle; Ankel, Felix; Busari, Jamiu; Englander, Robert; Glasgow, Nicholas; Holmboe, Eric; Iobst, William; Lovell, Elise; Snell, Linda S; Touchie, Claire; Van Melle, Elaine; Wycliffe-Jones, Keith

    2016-02-01

    The decision to trust a medical trainee with the critical responsibility to care for a patient is fundamental to clinical training. When carefully and deliberately made, such decisions can serve as significant stimuli for learning and also shape the assessment of trainees. Holding back entrustment decisions too much may hamper the trainee's development toward unsupervised practice. When carelessly made, however, they jeopardize patient safety. Entrustment decision-making processes, therefore, deserve careful analysis.Members (including the authors) of the International Competency-Based Medical Education Collaborative conducted a content analysis of the entrustment decision-making process in health care training during a two-day summit in September 2013 and subsequently reviewed the pertinent literature to arrive at a description of the critical features of this process, which informs this article.The authors discuss theoretical backgrounds and terminology of trust and entrustment in the clinical workplace. The competency-based movement and the introduction of entrustable professional activities force educators to rethink the grounds for assessment in the workplace. Anticipating a decision to grant autonomy at a designated level of supervision appears to align better with health care practice than do most current assessment practices. The authors distinguish different modes of trust and entrustment decisions and elaborate five categories, each with related factors, that determine when decisions to trust trainees are made: the trainee, supervisor, situation, task, and the relationship between trainee and supervisor. The authors' aim in this article is to lay a theoretical foundation for a new approach to workplace training and assessment.

  3. Clinical decision making in Barrett's oesophagus can be supported by computerized immunoquantitation and morphometry of features associated with proliferation and differentiation.

    Science.gov (United States)

    Polkowski, W; Baak, J P; van Lanschot, J J; Meijer, G A; Schuurmans, L T; Ten Kate, F J; Obertop, H; Offerhaus, G J

    1998-02-01

    (especially Ki67 and SI) can be a valuable adjunct tool for clinical decision making in Barrett's oesophagus.

  4. Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on SV ¹H MRS: evaluation as an additional information procedure for novice radiologists.

    Science.gov (United States)

    Sáez, Carlos; Martí-Bonmatí, Luis; Alberich-Bayarri, Angel; Robles, Montserrat; García-Gómez, Juan M

    2014-02-01

    The results of a randomized pilot study and qualitative evaluation of the clinical decision support system Curiam BT are reported. We evaluated the system's feasibility and potential value as a radiological information procedure complementary to magnetic resonance (MR) imaging to assist novice radiologists in diagnosing brain tumours using MR spectroscopy (1.5 and 3.0T). Fifty-five cases were analysed at three hospitals according to four non-exclusive diagnostic questions. Our results show that Curiam BT improved the diagnostic accuracy in all the four questions. Additionally, we discuss the findings of the users' feedback about the system, and the further work to optimize it for real environments and to conduct a large clinical trial.

  5. A problem solving framework for group decision support system

    Institute of Scientific and Technical Information of China (English)

    陈晓红; 周艳菊; 胡东滨

    2002-01-01

    A new problem solving framework for group decision support system using layer model approach is proposed. This kind of framework includes four basic layers, namely, application layer, task layer, logical layer and physical layer. Based on indicating the respective meanings of those layers a task skeleton of group decision support system and a logical structure of group decision support system generator are put forward and discussed in detail. The framework provides theoretical guidance for developing group decision support system to lower systematic development complexity and support reuse of software.

  6. Investing in deliberation: a definition and classification of decision support interventions for people facing difficult health decisions.

    Science.gov (United States)

    Elwyn, Glyn; Frosch, Dominick; Volandes, Angelo E; Edwards, Adrian; Montori, Victor M

    2010-01-01

    This article provides an analysis of 'decision aids', interventions to support patients facing tough decisions. Interest has increased since the concept of shared decision making has become widely considered to be a means of achieving desirable clinical outcomes. We consider the aims of these interventions and examine assumptions about their use. We propose three categories, interventions that are used in face-to-face encounters, those designed for use outside clinical encounters and those which are mediated, using telephone or other communication media. We propose the following definition: decision support interventions help people think about choices they face; they describe where and why choice exists; they provide information about options, including, where reasonable, the option of taking no action. These interventions help people to deliberate, independently or in collaboration with others, about options, by considering relevantattributes; they support people to forecast how they might feel about short, intermediate and long-term outcomes which have relevant consequences, in ways which help the process of constructing preferences and eventual decision making, appropriate to their individual situation. Although quality standards have been published for these interventions, we are also cautious about premature closure and consider that the need for short versions for use inside clinical encounters and long versions for external use requires further research. More work is also needed on the use of narrative formats and the translation of theory into practical designs. The interest in decision support interventions for patients heralds a transformation in clinical practice although many important areas remain unresolved.

  7. Developing a Support Tool for Global Product Development Decisions

    DEFF Research Database (Denmark)

    Søndergaard, Erik Stefan; Ahmed-Kristensen, Saeema

    2016-01-01

    This paper investigates how global product development decisions are made through a multiple-case study in three Danish engineering. The paper identifies which information and methods are applied for making decisions and how decision-making can be supported based on previous experience. The paper...... presents results from 51 decisions made in the three companies, and based on the results of the studies a framework for a decision-support tool is outlined and discussed. The paper rounds off with an identification of future research opportunities in the area of global product development and decision-making....

  8. Proactive Decision Support Via Narrative-Integrated Multi-Level Support System (NIMSS)

    Science.gov (United States)

    2014-11-30

    30/2014 Final Report 07/11/2014 - 11/30/2014 Final Report - Proactive Decision Support Via Narrative -Integrated Multi-Level Support System (NIMSS...think, demonstrated via a realistic Naval/Marine Corps warfighting domain. Context-driven decision making; proactive decision support; narrative ...0005, CDRL B001 Proactive Decision Support via Narrative -Integrated Multi-level Support System (NIMSS) CHI Project # 14002 Purchase Order: N00014

  9. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    Science.gov (United States)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  10. Post Disaster Assessment with Decision Support System

    Directory of Open Access Journals (Sweden)

    May Florence J. Franco

    2016-05-01

    Full Text Available The study aimed to develop an online system that would expedite the response of agencies after disaster strikes; generate a list of the kinds and volume of relief aids needed per family affected for a fair, precise and timely distribution; implement community-based ICT by remotely gathering all the necessary data needed for disaster assessment; and adhere to ISO 9126 standards. The system was designed to calculate the effects of disaster in human lives and economy. Integrated into the system were Goggle Maps, Mines and GeoSciences Bureau Hazard Maps, SMS sending features, best passable routes calculations, and decision support on the needs that has to be addressed. The system was made live at pdrrmcguimaras.herokuapp.com to allow remote data entry. The functionality and usability of the system were evaluated by 19 potential users by computing for the arithmetic Mean and Standard Deviation of the survey. The result showed that most of them strongly agreed that the system is acceptable based on these criteria. A group of IT experts also evaluated the system’s conformance to ISO 9126 standards using the same method. The result showed that majority of them strongly agreed that the system conforms to this international standard. The system is seen as a valuable tool for the Provincial Disaster Risk Reduction Management Council (PDRRMC and the National Disaster Risk Reduction Management Council (NDRRMC for it could help expedite the assessment of the effects of disasters and the formulation of response plans and strategies.

  11. 基于数据仓库的临床决策支持系统在我院的应用%Application of Clinical Decision-making Support System Based on Data Warehouse in the Hospital

    Institute of Scientific and Technical Information of China (English)

    赵妍; 王颖; 闫国涛; 邵伟

    2016-01-01

    目的:建设临床决策支持系统,辅助医生从日常大量的临床数据中迅速挖掘出有价值的信息,为患者快速制定个性化的诊疗方案、降低医疗风险、提升医疗质量。方法收集国内外相关材料,利用数据仓库、数据挖掘技术,结合相关医疗保障政策建立一个符合临床实际操作的临床决策系统。结果该系统可智能提供安全诊疗方案、药物过敏警示、重复检验检查提示等相关功能。结论基于数据仓库的临床决策支持系统的应用,减轻了医生负担,是基层医院信息化发展的趋势。%Objective To establish a clinical decision-making support system to assist physicians in quickly mining valuable information from a large number of daily clinical data, developing personalized diagnosis and treatment program for patients, and improving medical quality. Methods The related domestic and foreign information was collected, on the basis of which the data warehouse and data mining technology were deployed in combination of relevant medical security policies to establish a clinical decision-making system suited for practical clinical operation. Results The system was equipped with versatile features, including smart provision of secure treatment programs, drug allergy alerts and reminders for repeated testing and inspection. Conclusion The clinical decision-making support system developed based on data warehouse reduced doctors burden and was the future trend for the development of hospital informatization.

  12. Decision Support for Countering Terrorist Threats against Transportation Networks

    Directory of Open Access Journals (Sweden)

    Dr. Richard Adler

    2009-01-01

    Full Text Available This article presents a dynamic decision support methodology forcounter-terrorism decision support. The initial sections introduce basic objectives and challenges of terrorism risk analysis and risk management. The remainder of the paper describes TRANSEC, a decision support framework for defining, validating, and monitoring strategies focused on managing terrorism risks to international transportation networks. The methodology and software tools underlying TRANSEC are applicable to other homeland security problems, such as critical infrastructure and border protection.

  13. Assessing the quality of decision support technologies using the International Patient Decision Aid Standards instrument (IPDASi).

    NARCIS (Netherlands)

    Elwyn, G.; O'Connor, A.M.; Bennett, C.; Newcombe, R.G.; Politi, M.; Durand, M.A.; Drake, E.; Joseph-Williams, N.; Khangura, S.; Saarimaki, A.; Sivell, S.; Stiel, M.; Bernstein, S.J.; Col, N.; Coulter, A.; Eden, K.; Harter, M.; Rovner, M.H.; Moumjid, N.; Stacey, D.; Thomson, R.; Whelan, T.; Weijden, G.D.E.M. van der; Edwards, A.

    2009-01-01

    OBJECTIVES: To describe the development, validation and inter-rater reliability of an instrument to measure the quality of patient decision support technologies (decision aids). DESIGN: Scale development study, involving construct, item and scale development, validation and reliability testing. SETT

  14. A decision support system for preliminary design

    NARCIS (Netherlands)

    Groot, E.H. de; Mallory, S.M.; Zutphen, R.H.M. van; Vries, B. de

    1999-01-01

    The design of buildings is a complex task for a variety of reasons. In the conceptual stage, particularly in the inception phase, a small number of people make decisions that have far reaching impact on the final result in terms of efficiency and effectiveness. Decision-making in the inception phase

  15. Psychotherapy treatment decisions supported by SelectCare

    NARCIS (Netherlands)

    Witteman, C.L.M.

    2008-01-01

    SelectCare is a computerized decision support system for psychotherapists who decide how to treat their depressed patients. This paper descibes the decision making model that is implemented in SelectCare and the decision elements it uses to give advice to its users. The system itself is then present

  16. Proposal for Development of EBM-CDSS (Evidence-based Clinical Decision Support System) to Aid Prognostication in Terminally Ill Patients

    Science.gov (United States)

    2012-10-01

    therapy, pain medication, nutritional and psychological support, thoracocentesis and/or tube thorascopy.”44 Three studies described supportive care... gestalt survival expectation is presented without loss of contradictory information. This increases the transparency and traceability of the...and/ or psychological damages to the patient. Specifically, a patient may suffer harms due to a treatment strategy (e. g. adverse effects) or

  17. Probability, clinical decision making and hypothesis testing

    Directory of Open Access Journals (Sweden)

    A Banerjee

    2009-01-01

    Full Text Available Few clinicians grasp the true concept of probability expressed in the ′P value.′ For most, a statistically significant P value is the end of the search for truth. In fact, the opposite is the case. The present paper attempts to put the P value in proper perspective by explaining different types of probabilities, their role in clinical decision making, medical research and hypothesis testing.

  18. Method for designing organization decision support system framework

    Institute of Scientific and Technical Information of China (English)

    Fan Jiancong; Liang Yongquan; Zeng Qingtian

    2006-01-01

    The concept of organization decision support system (ODSS) is defined according to practical applications and novel understanding. And a framework for ODSS is designed. The framework has three components: infrastructure, decision-making process and decision execution process. Infrastructure is responsible to transfer data and information. Decision-making process is the ODSS's soul to support decision-making. Decision execution process is to evaluate and execute decision results derived from decision-making process. The framework presents a kind of logic architecture. An example is given to verify and analyze the framework. The analysis shows that the framework has practical values, and has also reference values for understanding ODSS and for theoretical studies.

  19. Decision Support Systems (DSS) in Construction Tendering Processes

    CERN Document Server

    Mohemad, Rosmayati; Othman, Zulaiha Ali; Noor, Noor Maizura Mohamad

    2010-01-01

    The successful execution of a construction project is heavily impacted by making the right decision during tendering processes. Managing tender procedures is very complex and uncertain involving coordination of many tasks and individuals with different priorities and objectives. Bias and inconsistent decision are inevitable if the decision-making process is totally depends on intuition, subjective judgement or emotion. In making transparent decision and healthy competition tendering, there exists a need for flexible guidance tool for decision support. Aim of this paper is to give a review on current practices of Decision Support Systems (DSS) technology in construction tendering processes. Current practices of general tendering processes as applied to the most countries in different regions such as United States, Europe, Middle East and Asia are comprehensively discussed. Applications of Web-based tendering processes is also summarised in terms of its properties. Besides that, a summary of Decision Support Sy...

  20. Modeling Based Decision Support Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phoenix Integration's vision is the creation of an intuitive human-in-the-loop engineering environment called Decision Navigator that leverages recent advances in...

  1. MOIDSS?- Mobile Online Intelligent Decision Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GRID has had a successfully completed Phase I 'Mobile Online Intelligent Decision Support System' (MOIDSS). The system developed into a total solution that supports...

  2. Sttudy on intelligent spatial decision support system of agriculture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong-mei; SUN Jie-li

    2006-01-01

    This paper studies how to apply GIS, ES, and Data mining and WEB technologies in agriculture Decision Support System, with the researching background of Hebei expert system for farming soil variable rate fertilization. A model of agriculture intelligent spatial decision support system is built and the key technologies to implement this system are described in details.

  3. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection will be p...

  4. Fault-Tolerant Onboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran

    The purpose of this research project is to improve current onboard decision support systems. Special focus is on the onboard prediction of the instantaneous sea state. In this project a new approach to increasing the overall reliability of a monitoring and decision support system has been...

  5. A review of decision support technologies for amniocentesis.

    NARCIS (Netherlands)

    Durand, M.A.; Boivin, J.; Elwyn, G.

    2008-01-01

    BACKGROUND: There is an increasing interest in designing decision tools [decision support technologies (DSTs)] that support patients when they have to decide about health matters. The purpose of this review was to describe and evaluate existing DSTs for amniocentesis testing. METHODS: Ten medical an

  6. Adjuncts or adversaries to shared decision-making? Applying the Integrative Model of behavior to the role and design of decision support interventions in healthcare interactions.

    NARCIS (Netherlands)

    Frosch, D.; Legare, F.; Fishbein, M.; Elwyn, G.

    2009-01-01

    ABSTRACT: BACKGROUND: A growing body of literature documents the efficacy of decision support interventions (DESI) in helping patients make informed clinical decisions. DESIs are frequently described as an adjunct to shared decision-making between a patient and healthcare provider, however little is

  7. Decision-support tools for climate change mitigation planning

    DEFF Research Database (Denmark)

    Puig, Daniel; Aparcana Robles, Sandra Roxana

    This document describes three decision-support tools that can aid the process of planning climate change mitigation actions. The phrase ‘decision-support tools’ refers to science-based analytical procedures that facilitate the evaluation of planning options (individually or compared to alternative...... options) against a particular evaluation criterion or set of criteria. Most often decision-support tools are applied with the help of purpose-designed software packages and drawing on specialised databases.The evaluation criteria alluded to above define and characterise each decision-support tool....... For example, in the case of life-cycle analysis, the evaluation criterion entails that the impacts of interest are examined across the entire life-cycle of the product under study, from extraction of raw materials, to product disposal. Effectively, then, the choice of decision-support tool directs...

  8. Proposal for Development of EBM-CDSS (Evidence-Based Clinical Decision Support System) to Aid Prognostication in Terminally Ill Patients

    Science.gov (United States)

    2013-10-01

    studies described supportive care as comprising “analgesics, an antitussive, relief of increased intracranial pressure , palliative radiotherapy...centered about the mean. All analyses were performed using STATA (30). To derive the optimal treatment strategy, we then utilized the Regret-based...and subgroup analyses were excluded. Additionally, RCTs comparing two active treatments were excluded. Two reviewers read the titles and abstracts

  9. Data Mining Session-Based Patient Reported Outcomes (PROs) in a Mental Health Setting: Toward Data-Driven Clinical Decision Support and Personalized Treatment

    CERN Document Server

    Bennett, Casey; Bragg, April; Luellen, Jason; Van Regenmorter, Christina; Lockman, Jennifer; Reiserer, Randall; 10.1109/HISB.2011.20

    2011-01-01

    The CDOI outcome measure - a patient-reported outcome (PRO) instrument utilizing direct client feedback - was implemented in a large, real-world behavioral healthcare setting in order to evaluate previous findings from smaller controlled studies. PROs provide an alternative window into treatment effectiveness based on client perception and facilitate detection of problems/symptoms for which there is no discernible measure (e.g. pain). The principal focus of the study was to evaluate the utility of the CDOI for predictive modeling of outcomes in a live clinical setting. Implementation factors were also addressed within the framework of the Theory of Planned Behavior by linking adoption rates to implementation practices and clinician perceptions. The results showed that the CDOI does contain significant capacity to predict outcome delta over time based on baseline and early change scores in a large, real-world clinical setting, as suggested in previous research. The implementation analysis revealed a number of ...

  10. Developing the US Wildland Fire Decision Support System

    Directory of Open Access Journals (Sweden)

    Erin K. Noonan-Wright

    2011-01-01

    Full Text Available A new decision support tool, the Wildland Fire Decision Support System (WFDSS has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply information to the decision making process. Risk-informed decision-making is becoming increasingly important as a means of improving fire management and offers substantial opportunities to benefit natural and community resource protection, management response effectiveness, firefighter resource use and exposure, and, possibly, suppression costs. This paper reviews the development, structure, and function of WFDSS, and how it contributes to increased flexibility and agility in decision making, leading to improved fire management program effectiveness.

  11. Group Decision Support Systems and Group Communication: A Comparison of Decision Making in Computer-Supported and Nonsupported Groups.

    Science.gov (United States)

    Poole, Marshall Scott; And Others

    1993-01-01

    Explores the effects of Group Decision Support Systems (GDSS) on small group communication and decision-making processes. Finds that comparing GDSS, manual, and baseline conditions enables separation of effects resulting from procedural structures from those resulting from computerization. Results support some aspects of the research model and…

  12. Cost Decision Support in Product Design

    NARCIS (Netherlands)

    Liebers, A.; Kals, H.J.J.

    1997-01-01

    The constraints addressed in decision making during product design, process planning and production planning determine the admissible solution space for the manufacture of products. The solution space determines largely the costs that are incurred in the production process. In order to be able to ma

  13. Decision support modeling for milk valorization

    NARCIS (Netherlands)

    Banaszewska, A.

    2014-01-01

    The research presented in this thesis concerns decision problems in practice that require structured, precise, scientific studies to provide strong, reliable answers. An opportunity to contribute to both practice and science emerged in 2008 when two large, Dutch dairy companies merged, creating Frie

  14. Clinical Decision Support System on Basis of Case-Based Reasoning for Traditional Chinese Medicine%基于案例推理的中医临床诊疗决策支持系统

    Institute of Scientific and Technical Information of China (English)

    杨丽; 周雪忠; 毕斓馨; 张润顺; 王映辉; 刘保延; 谢琪

    2014-01-01

    Real world clinical diagnosis and treatment activity is a complicated decision-making task. The effective clinical cases of traditional Chinese medicine (TCM) of highly experienced physicians play an important role in the routine diagnosis and treatment and the formulation of medical knowledge . Based on TCM electronic medical record data, this paper proposed a decision support prototype system on TCM clinical diagnosis and treatment based on TCM effective clinical cases and case-based reasoning (CBR) algorithm, which is used to assist inexperienced clinicians to make more reliable clinical decisions, and thereafter to improve the clinical curative effectiveness. The system integrates TCM clinical cases data set from a TCM clinical data warehouse, and retrieves the similar cases based on CBR method. In particular, according to the underlying personalized diagnosis and treatment for patients in TCM, this system implemented a flexible diagnosis and treatment modification mechanism based on correlation analysis among symptoms, diagnoses (syndrome or pattern in TCM) and medicine. Finally, through a demonstration of clinical application, we made an initial evaluation of the usefulness and practical effects of the system.%真实世界临床诊疗活动是一个复杂的决策过程。中医学中名老中医效验案例对日常诊疗行为的指导和诊疗知识的普及具有重要作用。本文基于临床实际中医病历数据,提出基于名老中医临床诊疗效验案例,基于案例推理的中医临床诊疗决策支持系统,用来辅助经验不足的临床医师做出临床决策,以提高临床疗效。该系统从中医临床数据仓库中筛选加工形成中医学临床效验案例库,基于案例推理和相似性计算实现类似案例的检索和展示。特别是针对不同案例的个体性特点,实现了基于症-诊断-药相关分析的灵活的案例修正方案,以满足临床诊疗过程中个体化诊疗决策的需求

  15. Generic Opinion Mining System for Decision Support

    Directory of Open Access Journals (Sweden)

    Dr.P.G.Naik

    2016-04-01

    Full Text Available Social networking sites prove to be indispensible tools for decision making owing to the large repository of user views accumulated over a period of time. Such a real data can be exploited for various purposes such as making buying decisions, analysing the user views about new product launched by a company, product promotion campaign , impact of policy decisions made by a political party on society etc. In the current work the authors have proposed a generic model for feature based polarity determination by sentiment analysis of tweets. This model has been implemented by the seamless integration of R tool, XML, JAVA, Link Parser A practical multistep system, in place, efficiently extracts data from tweet text, pre-process the raw data to remove noise, and tags their polarity. Data used in the current study is derived from online product feature based reviews collected from tweeter tweets. Link parser version 4.1 b is employed for parsing a natural sentence which is broken into multiple tokens corresponding to noun and adjective before being stored in a persistent storage medium. The objectivity score is determined using SentiWordNet 3.0 lexical resource which is parsed using a tool implemented in Java. The linguistic hedges are taken care of using Zadeh’s proposition which modifies the final objectivity score. The objectivity score so computed, provides the necessary guidelines in influencing decisions. The authors have tested the model for product purchase decisions of two different sets of products, smart phone and laptop based on predefined set of features. The model is generic and can be applied to any set of products evaluated on a predefined set of features.

  16. A Fuzzy Decision Support System for Management of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ahmed Abou Elfetouh Saleh

    2011-03-01

    Full Text Available In the molecular era the management of cancer is no more a plan based on simple guidelines. Clinical findings, tumor characteristics, and molecular markers are integrated to identify different risk categories, based on which treatment is planned for each individual case. This paper aims at developing a fuzzy decision support system (DSS to guide the doctors for the risk stratification of breast cancer, which is expected to have a great impact on treatment decision and to minimize individual variations in selecting the optimal treatment for a particular case. The developed system was based on clinical practice of Oncology Center Mansoura University (OCMU. This system has six input variables (Her2, hormone receptors, age, tumor grade, tumor size, and lymph node and one output variable (risk status. The output variable is a value from 1 to 4; representing low risk status, intermediate risk status and high risk status. This system uses Mamdani inference method and simulation applied in MATLAB R2009b fuzzy logic toolbox.

  17. Information fusion measures of effectiveness (MOE) for decision support

    Science.gov (United States)

    Blasch, Erik P.; Breton, Richard; Valin, Pierre

    2011-06-01

    For decades, there have been discussions on measures of merits (MOM) that include measures of effectiveness (MOE) and measures of performance (MOP) for system-level performance. As the amount of sensed and collected data becomes increasingly large, there is a need to look at the architectures, metrics, and processes that provide the best methods for decision support systems. In this paper, we overview some information fusion methods in decision support and address the capability to measure the effects of the fusion products on user functions. The current standard Information Fusion model is the Data Fusion Information Group (DFIG) model that specifically addresses the needs of the user in an information fusion system. Decision support implies that information methods augment user decision making as opposed to the machine making the decision and displaying it to user. We develop a list of suggested measures of merits that facilitate decision support decision support Measures of Effectiveness (MOE) metrics of quality, information gain, and robustness, from the analysis based on the measures of performance (MOPs) of timeliness, accuracy, confidence, throughput, and cost. We demonstrate in an example with motion imagery to support the MOEs of quality (time/decision confidence plots), information gain (completeness of annotated imagery for situation awareness), and robustness through analysis of imagery over time and repeated looks for enhanced target identification confidence.

  18. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: An example from a vertigo phase III study with longitudinal count data as primary endpoint

    Directory of Open Access Journals (Sweden)

    Adrion Christine

    2012-09-01

    Full Text Available Abstract Background A statistical analysis plan (SAP is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs. The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC or probability integral transform (PIT, and by using proper scoring rules (e.g. the logarithmic score. Results The instruments under study

  19. Framework for a spatial Decision Support Tool for policy and decision making

    NARCIS (Netherlands)

    Carsjens, G.J.; Chen, W.

    2008-01-01

    The main challenge of developing of a spatial DST (Decision Support Tool) to support the decision making on future livestock production will not be a technical one, but instead a challenge of meeting the con-text requirements of the tool, such as the characteristics of the country-specific spatial p

  20. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    Science.gov (United States)

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician.

  1. Decision support modeling for milk valorization

    OpenAIRE

    Banaszewska, A.

    2014-01-01

    The research presented in this thesis concerns decision problems in practice that require structured, precise, scientific studies to provide strong, reliable answers. An opportunity to contribute to both practice and science emerged in 2008 when two large, Dutch dairy companies merged, creating FrieslandCampina (FC), which was the fourth largest dairy company in the world at that time. In 2009, a new Milk Valorization & Allocation (MVA) department was created at the corporate level to opt...

  2. Intelligent Information System to support decision making.

    Directory of Open Access Journals (Sweden)

    Kathrin Rodríguez Llanes

    2010-06-01

    Full Text Available Making decisions is complicated in a generalized way, the materials and humans resources of the entity we belong to depends on it, such as the fulfillment of its goals. But when the situations are complex, making decisions turns into a very difficult work, due to the great amount of aspects to consider when making the right choice. To make this efficiently the administration must to consult an important volume of information, which generally, is scattered and in any different formats. That’s why appears the need of developing software that crowd together all that information and be capable of, by using powerful search engines and process algorithms improve the good decisions making process. Considering previous explanation, a complete freeware developed product is proposed, this constitutes a generic and multi-platform solution, that using artificial intelligence techniques, specifically the cases based reasoning, gives the possibility to leaders of any institution or organism of making the right choice in any situation.With client-server architecture, this system is consumed from web as a service and it can be perfectly integrated with a management system or the geographic information system to facilitate the business process.

  3. Driving and dementia: a clinical decision pathway

    Science.gov (United States)

    Carter, Kirsty; Monaghan, Sophie; O'Brien, John; Teodorczuk, Andrew; Mosimann, Urs; Taylor, John-Paul

    2015-01-01

    Objective This study aimed to develop a pathway to bring together current UK legislation, good clinical practice and appropriate management strategies that could be applied across a range of healthcare settings. Methods The pathway was constructed by a multidisciplinary clinical team based in a busy Memory Assessment Service. A process of successive iteration was used to develop the pathway, with input and refinement provided via survey and small group meetings with individuals from a wide range of regional clinical networks and diverse clinical backgrounds as well as discussion with mobility centres and Forum of Mobility Centres, UK. Results We present a succinct clinical pathway for patients with dementia, which provides a decision-making framework for how health professionals across a range of disciplines deal with patients with dementia who drive. Conclusions By integrating the latest guidance from diverse roles within older people's health services and key experts in the field, the resulting pathway reflects up-to-date policy and encompasses differing perspectives and good practice. It is potentially a generalisable pathway that can be easily adaptable for use internationally, by replacing UK legislation for local regulations. A limitation of this pathway is that it does not address the concern of mild cognitive impairment and how this condition relates to driving safety. © 2014 The Authors. International Journal of Geriatric Psychiatry published by John Wiley & Sons, Ltd. PMID:24865643

  4. Decision support for information systems management: applying analytic hierarchy process

    OpenAIRE

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision making. AHP can be applied if the decision problem includes multiple objectives, conflicting criteria, incommensurable units, and aims at selecting an alternative from a known set of alternatives. ...

  5. A Gaussian Model of Expert Opinions for Supporting Design Decisions

    NARCIS (Netherlands)

    Rajabalinejad, M.

    2012-01-01

    Decision making in design is of great importance, resulting in success or failure of a system. This paper describes a robust decision support tool for engineering design process, which can be used throughout the design process. The tool is graphical and designed to communicate efficiently with diffe

  6. Towards an integrated approach in supporting microbiological food safety decisions

    NARCIS (Netherlands)

    Havelaar, A.H.; Bräunig, J.; Christiansen, K.; Cornu, M.; Hald, T.; Mangen, M.J.J.; Molbak, K.; Pielaat, A.; Snary, E.; Pelt, van W.; Velthuis, A.G.J.; Wahlström, H.

    2007-01-01

    Decisions on food safety involve consideration of a wide range of concerns including the public health impact of foodborne illness, the economic importance of the agricultural sector and the food industry, and the effectiveness and efficiency of interventions. To support such decisions, we propose a

  7. Micro-based decision support systems for stock farmers

    OpenAIRE

    H.C. De Kock; Sinclair, M. (Michael)

    2003-01-01

    Decision support systems were developed for use on stock farms. The systems were designed to run on Commodore 8032 microcomputers. They give the user quantitative results on which decisions such as feed mixes, sale of livestock, work programmes, etc can be based. In this paper these systems are described and illustrated with printouts from sample runs.

  8. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K;

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...

  9. A Gaussian decision-support tool for engineering design process

    NARCIS (Netherlands)

    Rajabalinejad, Mohammad; Spitas, Christos

    2013-01-01

    Decision-making in design is of great importance, resulting in success or failure of a system (Liu et al., 2010; Roozenburg and Eekels, 1995; Spitas, 2011a). This paper describes a robust decision-support tool for engineering design process, which can be used throughout the design process in either

  10. Decision support for information systems management : applying analytic hierarchy process

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision

  11. Prototyping a Rangeland Decision Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted under the Innovative Tools and Techniques Supporting the Practical Uses of Earth Science Observations topic. We seek to create a prototype...

  12. Development of a Decision Support System to Predict Physicians' Rehabilitation Protocols for Patients with Knee Osteoarthritis

    Science.gov (United States)

    Hawamdeh, Ziad M.; Alshraideh, Mohammad A.; Al-Ajlouni, Jihad M.; Salah, Imad K.; Holm, Margo B.; Otom, Ali H.

    2012-01-01

    To design a medical decision support system (MDSS) that would accurately predict the rehabilitation protocols prescribed by the physicians for patients with knee osteoarthritis (OA) using only their demographic and clinical characteristics. The demographic and clinical variables for 170 patients receiving one of three treatment protocols for knee…

  13. Marketing Decision Support Systems: Adoption, Use and Satisfaction

    NARCIS (Netherlands)

    B. Wierenga (Berend); P.A.M. Oude Ophuis

    1997-01-01

    textabstractThis paper deals with marketing decision support systems (MDSS) in companies. In a conceptual framework five categories of factors are distinguished that potentially affect adoption, use, and satisfaction: external environment factors, organizational factors, task environment factors, us

  14. Marketing decision support systems: Adoption, use and satisfaction.

    NARCIS (Netherlands)

    Wierenga, B.; Oude Ophuis, P.A.M.

    1997-01-01

    This paper deals with marketing decision support systems (MDSS) in companies. In a conceptual framework five categories of factors are distinguished that potentially affect adoption, use, and satisfaction: external environment factors, organizational factors, task environment factors, user factors a

  15. MODIS-Based Products for Operational Decision Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SMH Consulting proposes to develop a web-based decision support system to assist in Rapid Assessment, Monitoring, and Management (RAMM-DSS) on a regional scale. SMH...

  16. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland; Börner, Dirk; Suarez, Angel; Schneider, Jan; Antonaci, Alessandra

    2015-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile devices

  17. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland

    2014-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile devices a

  18. The Intelligent Ventilator Project: Application of Physiological Models in Decision Support

    DEFF Research Database (Denmark)

    Rees, Stephen Edward; Karbing, Dan Stieper; Allerød, Charlotte

    2011-01-01

    Management of mechanical ventilation in intensive care patients is complicated by conflicting clinical goals. Decision support systems (DSS) may support clinicians in finding the correct balance. The objective of this study was to evaluate a computerized model-based DSS for its advice on inspired...

  19. Intelligent decision technology support in practice

    CERN Document Server

    Neves-Silva, Rui; Jain, Lakhmi; Phillips-Wren, Gloria; Watada, Junzo; Howlett, Robert

    2016-01-01

    This book contains a collection of innovative chapters emanating from topics raised during the 5th KES International Conference on Intelligent Decision Technologies (IDT), held during 2013 at Sesimbra, Portugal. The authors were invited to expand their original papers into a plethora of innovative chapters espousing IDT methodologies and applications. This book documents leading-edge contributions, representing advances in Knowledge-Based and Intelligent Information and Engineering System. It acknowledges that researchers recognize that society is familiar with modern Advanced Information Processing and increasingly expect richer IDT systems. Each chapter concentrates on the theory, design, development, implementation, testing or evaluation of IDT techniques or applications.  Anyone that wants to work with IDT or simply process knowledge should consider reading one or more chapters and focus on their technique of choice. Most readers will benefit from reading additional chapters to access alternative techniq...

  20. Clinical Decision Making of Nurses Working in Hospital Settings

    Directory of Open Access Journals (Sweden)

    Ida Torunn Bjørk

    2011-01-01

    Full Text Available This study analyzed nurses' perceptions of clinical decision making (CDM in their clinical practice and compared differences in decision making related to nurse demographic and contextual variables. A cross-sectional survey was carried out with 2095 nurses in four hospitals in Norway. A 24-item Nursing Decision Making Instrument based on cognitive continuum theory was used to explore how nurses perceived their CDM when meeting an elective patient for the first time. Data were analyzed with descriptive frequencies, t-tests, Chi-Square test, and linear regression. Nurses' decision making was categorized into analytic-systematic, intuitive-interpretive, and quasi-rational models of CDM. Most nurses reported the use of quasi-rational models during CDM thereby supporting the tenet that cognition most often includes properties of both analysis and intuition. Increased use of intuitive-interpretive models of CDM was associated with years in present job, further education, male gender, higher age, and working in predominantly surgical units.

  1. A Stochastic Decision Support System for Economic Order Quantity Problem

    Directory of Open Access Journals (Sweden)

    Amir Yousefli

    2012-01-01

    Full Text Available Improving decisions efficiency is one of the major concerns of the decision support systems. Specially in the uncertain environment, decision support systems could be implemented efficiently to simplify decision making process. In this paper stochastic economic order quantity (EOQ problem is investigated in which decision variables and objective function are uncertain in nature and optimum probability distribution functions of them are calculated through a geometric programming model. Obtained probability distribution functions of the decision variables and the objective function are used as optimum knowledge to design a new probabilistic rule base (PRB as a decision support system for EOQ model. The developed PRB is a new type of the stochastic rule bases that can be used to infer optimum or near optimum values of the decision variables and the objective function of the EOQ model without solving the geometric programming problem directly. Comparison between the results of the developed PRB and the optimum solutions which is provided in the numerical example illustrates the efficiency of the developed PRB.

  2. Support Management Decisions in Small and Medium Companies

    Directory of Open Access Journals (Sweden)

    Roxana POPA STRAINU

    2015-12-01

    Full Text Available A system built to support management decisions and not only needs to be accurate and well adapted to the requirements of the decision and the variables involved in it, and this happens because a decision is still a human act in any type of business and institution. We can say that a decision support system has a part in it that cannot be determined by any software: the human decision which is not a determinist act. It depends on a lot of variables but also still involves the decision maker intuition and experience. This is why an important problem emerged to be discussed in this paper: the need to implement and develop an in house solution to help management decisions and not only, using existing tools and this with no additional fees. This can be a good opportunity to discover models and solutions. An identified solution using Microsoft Excel and Access is discussed in this paper and a model applied on a case study will be presented. The results of the case study showed a real support in making decisions and a better transparency in manipulating the data, improving also the time needed to collect, transform and present data. The model can be applied in any type of problem that needs a visual presentation of data as well as in situations that need working with a large amount of data, but especially in small and medium size companies.

  3. The analytic hierarchy process as a support for decision making

    Directory of Open Access Journals (Sweden)

    Filipović Milanka

    2007-01-01

    Full Text Available The first part of this text deals with a convention site selection as one of the most lucrative areas in the tourism industry. The second part gives a further description of a method for decision making - the analytic hierarchy process. The basic characteristics: hierarchy constructions and pair wise comparison on the given level of the hierarchy are allured. The third part offers an example of application. This example is solved using the Super - Decision software, which is developed as a computer support for the analytic hierarchy process. This indicates that the AHP approach is a useful tool to help support a decision of convention site selection. .

  4. Research of Agile Supply Chain Management Decision Support System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Agile Supply Chain Management (ASCM) is an important topic and has received much attention recently.ASCM is a new management technology.Agile Supply Chain Management Decision Support System (ASCM-DSS) is presented.Firstly, agile supply chain management technology is introduced.Secondly a decision support system for agile supply chain management is proposed.Then, the implementation of ASCM-DSS in enterprise is discussed.Finally, a fuzzy intelligence decision-making process in Shanghai Turbine Generator Company (STGC) is described in detail.

  5. MULTI SUPPORT VECTOR MACHINES DECISION MODEL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    阎威武; 陈治纲; 邵惠鹤

    2002-01-01

    Support Vector Machines (SVM) is a powerful machine learning method developed from statistical learning theory and is currently an active field in artificial intelligent technology. SVM is sensitive to noise vectors near hyperplane since it is determined only by few support vectors. In this paper, Multi SVM decision model(MSDM)was proposed. MSDM consists of multiple SVMs and makes decision by synthetic information based on multi SVMs. MSDM is applied to heart disease diagnoses based on UCI benchmark data set. MSDM somewhat inproves the robust of decision system.

  6. Electronic market models for decision support systems on the Web

    Institute of Scientific and Technical Information of China (English)

    谢勇; 王红卫; 费奇

    2004-01-01

    With the prevalence of the Web, most decision-makers are likely to use the Web to support their decision-making. Web-based technologies are leading a major stream of researching decision support systems (DSS). We propose a formal definition and a conceptual framework for Web-based open DSS (WODSS). The formal definition gives an overall view of WODSS, and the conceptual framework based on browser/broker/server computing mode employs the electronic market to mediate decision-makers and providers, and facilitate sharing and reusing of decision resources. We also develop an admitting model, a trading model and a competing model of electronic market in WODSS based on market theory in economics. These models reveal the key mechanisms that drive WODSS operate efficiently.

  7. TUW @ TREC Clinical Decision Support Track

    Science.gov (United States)

    2014-11-01

    for health has become a common task nowadays. Pew Research Center estimates that 80% of the American population uses the Web to seek health information...Herrera, Jayashree Kalpathy-Cramer, Dina Demner-Fushman, Sameer Antani, and Ivan Eggel. Overview of the imageclef 2012 medical image retrieval and

  8. LIMSI @ 2014 Clinical Decision Support Track

    Science.gov (United States)

    2014-11-01

    Database [3]. Our best run was a MeSH-based run in which PubMed was queried directly with the MeSH terms extracted from the case reports, combined...from OrphaNet [4] and the Disease Symptom Knowledge Database [3]. Our best run was a MeSH-based run in which PubMed was queried directly with the MeSH...collection is a 21-01-2014 snapshot from the Open Access Subset from PubMed Central (PMC). It contains 733,138 articles which were furnished in NXML

  9. Query Reformulation for Clinical Decision Support Search

    Science.gov (United States)

    2014-11-01

    general purpose search engines: case reports are much longer than traditional queries and present a narrative structure. Our system, initially...relevance feedback (PRF). The advantage of using such technique is that it is able to expand the case report not only by adding relevant medical terms...v.4.8. The following fields were indexed and used for document retrieval (unless otherwise stated): article title, article abstract, and article text

  10. TUW @ TREC Clinical Decision Support Track 2015

    Science.gov (United States)

    2015-11-20

    Introduction It is estimated that more than 80% of the American population uses the Web to seek health information [1]. Small wonder that it attracts...generated by this important mapping. <topic number=ŕ" type="diagnosis"> <description>....</description> <summary>58-year-old woman with hypertension and...TUW1 1 - - - TUW2 1 1 1 - TUW3 3 2 1 - B TUW4 1 - - 6 TUW5 1 1, 4 1, 4 6 TUW6 3 2, 5 1, 4 6 Original Text: ============== 58-year-old woman with

  11. OPENING COMMENTS TO THE SPECIAL SESSION ON DECISION SUPPORT TOOLS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; BARDOS,P.

    2000-06-01

    The emphasis of the session was on the use of decision support tools for actual remediation decisions. It considered two perspectives: site-specific decision making for example choosing a particular remediation system; and remediation in terms of a risk management/risk reduction process as part of a wider process of site management. These were addressed both as general topics and as case studies. Case studies were included to provide information on decision support techniques for specific contamination problems such as remedy selection. In the case studies, the authors present the general process to provide decision support and then discuss the application to a specific problem. The intent of this approach is to provide the interested reader with enough knowledge to determine if the process could be used on their specific set of problems. The general topics included broader issues that are not directly tied to a specific problem. The general topics included papers on the role of stakeholders in the decision process and decision support approaches for sustainable development.

  12. Healthcare performance turned into decision support

    DEFF Research Database (Denmark)

    Sørup, Christian Michel; Jacobsen, Peter

    2013-01-01

    Purpose – The purpose of this study is to first create an overview of relevant factors directly influencing employee absence in the healthcare sector. The overview is used to further investigate the factors identified using employee satisfaction survey scores exclusively. The result of the overall...... objective is a management framework that allows managers to gain insight into the current status of risk factors with high influence on employee absence levels. Design/methodology/approach – The research consists of a quantitative literature study supported by formal and semi-formal interviews conducted...... and holistic information about the determinants with regard to current levels of employee absence. The framework will be a valuable support for leaders with the authority to alter the determinants of employee absence. Research limitations/implications – Since a great part of the empirical material is supplied...

  13. Crowdsourced Decision Support for Emergency Responders

    Science.gov (United States)

    2013-06-01

    the GMU campus: a large concert at the Patriot Center, and a speech by a fictional controversial author named Simon Pierce taking place at the...Separately, the websites of the County and GMU were hacked by a fictional terrorist group called the Anti-Pierce Group. They defaced the websites and...Internet. Interaction was limited to laptops. Support for mobile devices would increase realism and improve student access, but required too much

  14. Decision Support Systems - Technical Prerequisites and Military Requirements

    CERN Document Server

    Tolk, Andreas

    2010-01-01

    Decision Support Systems in the sense of online alternative course of action (ACAO) development and analysis as well as tools for online Development of Doctrine and Tactics Techniques, and Procedures (DTTP) for support to operations make it possible to evaluate and forecast the command and control processes and the performance capabilities of the friendly and enemy forces and other decision relevant factors, support the military commander (brigade and higher) and his staff in their headquarter by increasing their ability to identify own opportunities, support all phases of the command and control process, use computer based, automatic and closed models, that can be adapted to the current situation. Objective of the paper is to present the results of studies conducted in Germany on behalf of the German Ministry of Defense with the objective to work out the conceptual basis for decision support systems and to evaluate, how this technique will influence the command and control system of the army of the federal a...

  15. Web-Based Group Decision Support System: an Economic Application

    Directory of Open Access Journals (Sweden)

    Ion ISTUDOR

    2010-01-01

    Full Text Available Decision Support Systems (DSS form a specific class of computerized information systems that support business and managerial decision-making activities. Making the right decision in business primarily depends on the quality of data. It also depends on the ability to analyze the data with a view to identifying trends that can suggest solutions and strategies. A “cooperative” decision support system means the data are collected, analyzed and then provided to a human agent who can help the system to revise or refine the data. It means that both a human component and computer component work together to come up with the best solution. This paper describes the usage of a software product (Vanguard System to a specific economic application (evaluating the financial risk assuming that the rate of the economic profitability can be under the value of the interest rate.

  16. Decision-making on olympic urban development - multi-actor decision support tool

    NARCIS (Netherlands)

    Heurkens, E.W.T.M.

    Subject of study is the possible organisation of the Olympic Games of 2028 in the Netherlands, as seen from an urban development viewpoint. The project focuses on the decision-making process in the initiative phase. Aim of the project is the development of a decision support tool for the complex, in

  17. Structured decision making as a method for linking quantitative decision support to community fundamental objectives

    Science.gov (United States)

    Decision support intended to improve ecosystem sustainability requires that we link stakeholder priorities directly to quantitative tools and measures of desired outcomes. Actions taken at the community level can have large impacts on production and delivery of ecosystem service...

  18. A Cooperative Intelligent Decision Support System for Contingency Management

    Directory of Open Access Journals (Sweden)

    Abdelkader ADLA

    2006-01-01

    Full Text Available Traditional Decision Support Systems (DSS give not enough possibilities of intervention to the user. These systems are reduced to an insular and very technical state in which the objective is not support decision but to dump data on the screen in the hope that the user will know what to do with. In complex situations, decision is not structured and it becomes primordial to design intelligent and cooperative systems allowing a joint resolution of problem based on dynamic sharing of the tasks between the user and the system and according to problems to be solved. In this perspective, we propose a cooperative architecture for intelligent decision support system. The framework embeds expert knowledge within the DSS to provide intelligent DSS using collaboration technologies by putting the decision maker effectively in the loop of the decision process. To this end, we used a structure based on domain and task conceptual modelling. Applicability and relevance of this model are illustrated through a case study where the system and the operator cooperate in decision problem which consists of identifying boiler defects, diagnosing and suggesting actions of cure.

  19. Decision Support Systems (DSS in Construction Tendering Processes

    Directory of Open Access Journals (Sweden)

    Rosmayati Mohemad

    2010-03-01

    Full Text Available The successful execution of a construction project is heavily impacted by making the right decision during tendering processes. Managing tender procedures is very complex and uncertain involving coordination of many tasks and individuals with different priorities and objectives. Bias and inconsistent decision are inevitable if the decision-making process is totally depends on intuition, subjective judgement or emotion. In making transparent decision and healthy competition tendering, there exists a need for flexible guidance tool for decision support. Aim of this paper is to give a review on current practices of Decision Support Systems (DSS technology in construction tendering processes. Current practices of general tendering processes as applied to the most countries in different regions such as United States, Europe, Middle East and Asia are comprehensively discussed. Applications of Web-based tendering processes is also summarised in terms of its properties. Besides that, a summary of Decision Support System (DSS components is included in the next section. Furthermore, prior researches on implementation of DSS approaches in tendering processes are discussed in details. Current issues arise from both of paper-based and Web-based tendering processes are outlined. Finally, conclusion is included at the end of this paper.

  20. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE

    Directory of Open Access Journals (Sweden)

    Sullivan Frank M

    2007-04-01

    Full Text Available Abstract Background Liver function tests (LFTs are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people. The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000 between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1, dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150 with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision

  1. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky; Sohn, Michael D.

    2014-01-01

    The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support...

  2. The Development of Clinical Decision Support System in U.S. and Its Enlightenment%美国临床决策支持系统发展与启示

    Institute of Scientific and Technical Information of China (English)

    盛赟; 张越

    2016-01-01

    美国典型的临床决策支持系统包括QMR,DXplain,MYCIN,Isabel,VisualDx等。美国临床决策支持系统在发展过程中存在许多问题:CDSS的应用对患者结果以及医生表现的效果评估良莠不齐,CDSS接受过程障碍重重,现有CDSS与临床需求不匹配等。美国临床决策支持系统发展过程中的问题及经验值得我们借鉴,例如:致力于推广临床决策支持系统的图书管理员应该与临床医生和医疗教育工作者紧密合作,以权衡临床决策支持系统和电子病历及其他系统整合的能力,以及实用性、准确性、可靠性和知识度的深度,同时加快流程,改善病人治疗结果,降低成本也很重要[1]。%Typical Clinical Decision Support System in U.S. include QMR, DXplain, MYCIN, Isabel, VisualDX etc.. A branch of problems exists with the development of CDSS: the results of studies that evaluate the effect of CDSS on patient outcome and physician performance are not consistent; there are many barriers to adoption of CDSS; current CDSS program may not meet the need of clinicians, etc. The successful experiences accumulated in the development of the US health decision support system are worth referring to. For instance, librarians seeking to add robust CDSS should partner with clinicians and medical educators to weigh usability, ability to integrate with electronic medical records and other systems, accuracy, reliability, depth of knowledge base, and improvements to process and patient outcomes, along with costs reduction, which can be substantial[1].

  3. Decision support tools with an economic flavor

    Energy Technology Data Exchange (ETDEWEB)

    Bomber, T.M.; Baxter, J.

    1997-10-01

    This paper discusses criteria for selecting analytical support tools for manufacturing engineering in the early phases of product development, and the lessons learned at Sandia National Laboratories in selecting and applying these tools. The IPPD (Integrated Product and Process Design) process requires manufacturing process developers to be involved earlier than ever before in product development. Operating in an IPPD environment, Sandia`s manufacturing engineers were required to develop early estimates of the cost and performance of manufacturing plans. In early pre-production, there are very little actual data on manufacturing processes and almost no detailed data on the performance of various manufacturing process steps. The manufacturing engineer needs the capability to analyze various manufacturing process flows over a large set of assumptions involving capacity, resource requirements (equipment, labor, material, utilities,...), yields, product designs, etc. If the manufacturing process involves many process steps, or if there are multiple products in a single manufacturing area that share resources, or there are multiple part starts resulting in merged flow for final assembly, then this analysis capability must somehow be mechanized. This situation led them to look to modeling and simulation tools for a solution. Example analyses of manufacturing issues for two product sets in the early phases of product development are presented.

  4. Towards generic online multicriteria decision support in patient-centred health care

    DEFF Research Database (Denmark)

    Dowie, Jack; Kaltoft, Mette Kjer; Salkeld, Glenn

    2015-01-01

    OBJECTIVE: To introduce a new online generic decision support system based on multicriteria decision analysis (MCDA), implemented in practical and user-friendly software (Annalisa©). BACKGROUND: All parties in health care lack a simple and generic way to picture and process the decisions to be made...... in pursuit of improved decision making and more informed choice within an overall philosophy of person- and patient-centred care. METHODS: The MCDA-based system generates patient-specific clinical guidance in the form of an opinion as to the merits of the alternative options in a decision, which are all...... software within which the Annalisa file is embedded (Elicia©) customizes and personalizes the presentation and inputs. Principles relevant to the development of such decision-specific MCDA-based aids are noted and comparisons with alternative implementations presented. The necessity to trade...

  5. Decision Making Based On Management Information System and Decision Support System

    Directory of Open Access Journals (Sweden)

    Şükrü Ada

    2015-04-01

    Full Text Available Information hasbecome an essentialresource for managing modern organizations. This is so because today’sbusiness environment is volatile, dynamic, turbulent and necessitates the burgeoning demand for accurate, relevant, complete,timely and economical information needed to drive the decision-making process in order to accentuate organizational abilities to manage opportunities and threat. MIS work on online mode with an average processing speed. Generally, it is used by low level management. Decision support system are powerful tool that assist corporate executives, administrators and other senior officials in making decision regarding the problem. Management Information Systems is a useful tool that provided organized and summarized information in a proper time to decision makers and enable making accurate decision for managers in organizations. This paper will discuss the concept, characteristics, types of MIS, the MIS model, and in particular it will highlight the impact and role of MIS on decision making.

  6. DYNAMICALLY EVOLVING CLINICAL PRACTICES AND IMPLICATIONS FOR PREDICTING MEDICAL DECISIONS

    Science.gov (United States)

    CHEN, JONATHAN H; GOLDSTEIN, MARY K; ASCH, STEVEN M; ALTMAN, RUSS B

    2015-01-01

    Automatically data-mining clinical practice patterns from electronic health records (EHR) can enable prediction of future practices as a form of clinical decision support (CDS). Our objective is to determine the stability of learned clinical practice patterns over time and what implication this has when using varying longitudinal historical data sources towards predicting future decisions. We trained an association rule engine for clinical orders (e.g., labs, imaging, medications) using structured inpatient data from a tertiary academic hospital. Comparing top order associations per admission diagnosis from training data in 2009 vs. 2012, we find practice variability from unstable diagnoses with rank biased overlap (RBO)0.6. Predicting admission orders for future (2013) patients with associations trained on recent (2012) vs. older (2009) data improved accuracy evaluated by area under the receiver operating characteristic curve (ROC-AUC) 0.89 to 0.92, precision at ten (positive predictive value of the top ten predictions against actual orders) 30% to 37%, and weighted recall (sensitivity) at ten 2.4% to 13%, (P<10−10). Training with more longitudinal data (2009-2012) was no better than only using recent (2012) data. Secular trends in practice patterns likely explain why smaller but more recent training data is more accurate at predicting future practices. PMID:26776186

  7. Decision Support in Heart Disease Prediction System using Naive Bayes

    Directory of Open Access Journals (Sweden)

    G.Subbalakshmi,

    2011-04-01

    Full Text Available Data Mining refers to using a variety of techniques to identify suggest of information or decision making knowledge in thedatabase and extracting these in a way that they can put to use in areas such as decision support, predictions, forecasting and estimation. The healthcare industry collects huge amounts of healthcare data which, unfortunately, are not “mined” to discover hidden information for effective decision making. Discovering relations that connect variables in a database is the subject of data mining. This research has developed a Decision Support in Heart Disease Prediction System (DSHDPS using data mining modeling technique, namely, Naïve Bayes. Using medical profiles such as age, sex, blood pressure and blood sugar it can predict the likelihood of patients getting a heart disease. It is implemented as web based questionnaire application. It can serve a training tool to train nurses and medical students to diagnose patients with heart disease.

  8. Decision Support Systems: Usage And Applications In Logistics Services

    Directory of Open Access Journals (Sweden)

    Eyüp AKÇETİN

    2014-06-01

    Full Text Available Competitive advantage in logistics operations is possible by analyzing data to create information and turning that information into decision. Supply chain optimization depends on effective management of chain knowledge. Analyzing data from supply chain and making a decision creates complex operations. Therefore, these operations require benefitting from information technology. In today’s global world, businesses use outsourcing for logistics services to focus on their own field, so are seeking to achieve competitive advantage against competitors. Outsourcing requires sharing of various information and data with companies that provide logistical support. Effective strategies are based on well-analyzed the data and information. Best options for right decisions can be created only from good analysis. That’s why companies that supply logistics services achieve competitive advantage using decision support systems (DSS in industrial competition. In short, DSS has become driving force for every business in today’s knowledge-based economy.

  9. Composite decision support by combining cost-benefit and multi-criteria decision

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen

    2011-01-01

    This paper concerns composite decision support based on combining cost-benefit analysis (CBA) with multi-criteria decision analysis (MCDA) for the assessment of economic as well as strategic impacts within transport projects. Specifically a composite model for assessment (COSIMA) is presented...... as a decision support system (DSS). This COSIMA DSS ensures that the assessment is conducted in a systematic, transparent and explicit way. The modelling principles presented are illuminated with a case study concerning a complex decision problem. The outcome demonstrates the approach as a valuable DSS......, and it is concluded that appraisals of large transport projects can be effectively supported using a combination of CBA and MCDA. Finally, perspectives of the future modelling work are given....

  10. Conceptual framework of knowledge management for ethical decision-making support in neonatal intensive care.

    Science.gov (United States)

    Frize, Monique; Yang, Lan; Walker, Robin C; O'Connor, Annette M

    2005-06-01

    This research is built on the belief that artificial intelligence estimations need to be integrated into clinical social context to create value for health-care decisions. In sophisticated neonatal intensive care units (NICUs), decisions to continue or discontinue aggressive treatment are an integral part of clinical practice. High-quality evidence supports clinical decision-making, and a decision-aid tool based on specific outcome information for individual NICU patients will provide significant support for parents and caregivers in making difficult "ethical" treatment decisions. In our approach, information on a newborn patient's likely outcomes is integrated with the physician's interpretation and parents' perspectives into codified knowledge. Context-sensitive content adaptation delivers personalized and customized information to a variety of users, from physicians to parents. The system provides structuralized knowledge translation and exchange between all participants in the decision, facilitating collaborative decision-making that involves parents at every stage on whether to initiate, continue, limit, or terminate intensive care for their infant.

  11. Application of GIS in foreign direct investment decision support system

    Science.gov (United States)

    Zhou, Jianlan; Sun, Koumei

    2007-06-01

    It is important to make decisions on how to attract foreign direct investment (FDI) to China and know how the inequality of FDI introduction by locational different provinces. Following background descriptions on China's FDI economic environments and FDI-related policies, this paper demonstrates the uses of geographical information system (GIS) and multi-criterion decision-making (MCDM) framework in solving a spatial multi-objective problem of evaluating and ranking China's provinces for FDI introduction. It implements a foreign direct investment decision support system, which reveals the main determinants of FDI in China and gives some results of regional geographical analysis over spatial data.

  12. Recent developments associated with decision support systems in water resources

    Science.gov (United States)

    Watkins, David W.; McKinney, Daene C.

    1995-07-01

    In order to limit the scope of this review, a working definition of a decision support system is needed. L. Adelman has defined decision support systems (DSSs) as "interactive computer programs that utilize analytical methods, such as decision analysis, optimization algorithms, program scheduling routines, and so on, for developing models to help decision makers formulate alternatives, analyze their impacts, and interpret and select appropriate options for implementation" (Adelman [1992], p. 2). Another definition has been offered by S. J. Andriole, who defined decision support as consisting of "any and all data, information, expertise or activities that contribute to option selection" (Andriole [1989], p. 3). A common idea explicit in each of these definitions is that DSSs integrate various technologies and aid in option selection. Implicit in each definition is that these are options for solving relatively large, unstructured problems. Thus, the following working definition of a DSS will be used in this review: A DSS is an integrated, interactive computer system, consisting of analytical tools and information management capabilities, designed to aid decision makers in solving relatively large, unstructured problems.

  13. Modular analytics management architecture for interoperability and decision support

    Science.gov (United States)

    Marotta, Stephen; Metzger, Max; Gorman, Joe; Sliva, Amy

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture is a new approach to information fusion and decision support systems. By combining cognitive systems engineering organizational analysis tools, such as decision trees, with the Dual Node Network (DNN) technical architecture for information fusion, the DNDW can align relevant data and information products with an organization's decision-making processes. In this paper, we present the Compositional Inference and Machine Learning Environment (CIMLE), a prototype framework based on the principles of the DNDW architecture. CIMLE provides a flexible environment so heterogeneous data sources, messaging frameworks, and analytic processes can interoperate to provide the specific information required for situation understanding and decision making. It was designed to support the creation of modular, distributed solutions over large monolithic systems. With CIMLE, users can repurpose individual analytics to address evolving decision-making requirements or to adapt to new mission contexts; CIMLE's modular design simplifies integration with new host operating environments. CIMLE's configurable system design enables model developers to build analytical systems that closely align with organizational structures and processes and support the organization's information needs.

  14. Evolution of Decision Support Systems Research Field in Numbers

    Directory of Open Access Journals (Sweden)

    Ana-Maria SUDUC

    2010-01-01

    Full Text Available The scientific production in a certain field shows, in great extent, the research interests in that field. Decision Support Systems are a particular class of information systems which are gaining more popularity in various domains. In order to identify the evolution in time of the publications number, authors, subjects, publications in the Decision Support Systems (DSS field, and therefore the scientific world interest for this field, in November 2010 there have been organized a series of queries on three major international scientific databases: ScienceDirect, IEEE Xplore Digital Library and ACM Digital Library. The results presented in this paper shows that, even the decision support systems research field started in 1960s, the interests for this type of systems grew exponentially with each year in the last decades.

  15. Exploring the impact of a decision support intervention on vascular access decisions in chronic hemodialysis patients: study protocol

    Directory of Open Access Journals (Sweden)

    Donnelly Sandra

    2011-02-01

    Full Text Available Abstract Background In patients with Stage 5 Chronic Kidney Disease who require renal replacement therapy a major decision concerns modality choice. However, many patients defer the decision about modality choice or they have an urgent or emergent need of RRT, which results in them starting hemodialysis with a Central Venous Catheter. Thereafter, efforts to help patients make more timely decisions about access choices utilizing education and resource allocation strategies met with limited success resulting in a high prevalent CVC use in Canada. Providing decision support tailored to meet patients' decision making needs may improve this situation. The Registered Nurses Association of Ontario has developed a clinical practice guideline to guide decision support for adults living with Chronic Kidney Disease (Decision Support for Adults with Chronic Kidney Disease. The purpose of this study is to determine the impact of implementing selected recommendations this guideline on priority provincial targets for hemodialysis access in patients with Stage 5 CKD who currently use Central Venous Catheters for vascular access. Methods/Design A non-experimental intervention study with repeated measures will be conducted at St. Michaels Hospital in Toronto, Canada. Decisional conflict about dialysis access choice will be measured using the validated SURE tool, an instrument used to identify decisional conflict. Thereafter a tailored decision support intervention will be implemented. Decisional conflict will be re-measured and compared with baseline scores. Patients and staff will be interviewed to gain an understanding of how useful this intervention was for them and whether it would be feasible to implement more widely. Quantitative data will be analyzed using descriptive and inferential statistics. Statistical significance of difference between means over time for aggregated SURE scores (pre/post will be assessed using a paired t-test. Qualitative analysis

  16. Data Mining for Education Decision Support: A Review

    Directory of Open Access Journals (Sweden)

    Suhirman Suhirman

    2014-12-01

    Full Text Available Management of higher education must continue to evaluate on an ongoing basis in order to improve the quality of institutions. This will be able to do the necessary evaluation of various data, information, and knowledge of both internal and external institutions. They plan to use more efficiently the collected data, develop tools so that to collect and direct management information, in order to support managerial decision making. The collected data could be utilized to evaluate quality, perform analyses and diagnoses, evaluate dependability to the standards and practices of curricula and syllabi, and suggest alternatives in decision processes. Data minings to support decision making are well suited methods to provide decision support in the education environments, by generating and presenting relevant information and knowledge towards quality improvement of education processes. In educational domain, this information is very useful since it can be used as a base for investigating and enhancing the current educational standards and managements. In this paper, a review on data mining for academic decision support in education field is presented. The details of this paper will review on recent data mining in educational field and outlines future researches in educational data mining.

  17. Decision Support Systems for Research and Management in Advanced Life Support

    Science.gov (United States)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  18. Revisiting the dose calculation methodologies in European decision support systems

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roos, Per; Hou, Xiaolin;

    2012-01-01

    in connection with management of the consequences of other types of contaminating incidents, including ‘dirty bomb’ explosions. This would require a number of new modelling features and parametric changes. Also for nuclear power plant preparedness a number of revisions of the decision support systems are called......The paper presents examples of current needs for improvement and extended applicability of the European decision support systems. The systems were originally created for prediction of the radiological consequences of accidents at nuclear installations. They could however also be of great value...

  19. The Intelligent Decision Support System Model of SARS

    Institute of Scientific and Technical Information of China (English)

    ZhouXingyu; ZhangJiang; LiuYang; XieYanqing; ZhangRan; ZhaoYang; HeZhongxiong

    2004-01-01

    Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper. This model can be used not only for SARS but also for other paroxysmal accidences.

  20. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    Science.gov (United States)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  1. Decision Support Model for Introduction of Gamification Solution Using AHP

    Directory of Open Access Journals (Sweden)

    Sangkyun Kim

    2014-01-01

    Full Text Available Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform.

  2. Decision support model for introduction of gamification solution using AHP.

    Science.gov (United States)

    Kim, Sangkyun

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform.

  3. Simulation-based decision support for evaluating operational plans

    Directory of Open Access Journals (Sweden)

    Johan Schubert

    2015-12-01

    Full Text Available In this article, we describe simulation-based decision support techniques for evaluation of operational plans within effects-based planning. Using a decision support tool, developers of operational plans are able to evaluate thousands of alternative plans against possible courses of events and decide which of these plans are capable of achieving a desired end state. The objective of this study is to examine the potential of a decision support system that helps operational analysts understand the consequences of numerous alternative plans through simulation and evaluation. Operational plans are described in the effects-based approach to operations concept as a set of actions and effects. For each action, we examine several different alternative ways to perform the action. We use a representation where a plan consists of several actions that should be performed. Each action may be performed in one of several different alternative ways. Together these action alternatives make up all possible plan instances, which are represented as a tree of action alternatives that may be searched for the most effective sequence of alternative actions. As a test case, we use an expeditionary operation with a plan of 43 actions and several alternatives for these actions, as well as a scenario of 40 group actors. Decision support for planners is provided by several methods that analyze the impact of a plan on the 40 actors, e.g., by visualizing time series of plan performance. Detailed decision support for finding the most influential actions of a plan is presented by using sensitivity analysis and regression tree analysis. Finally, a decision maker may use the tool to determine the boundaries of an operation that it must not move beyond without risk of drastic failure. The significant contribution of this study is the presentation of an integrated approach for evaluation of operational plans.

  4. Automation, decision support, and expert systems in nephrology.

    Science.gov (United States)

    Soman, Sandeep; Zasuwa, Gerard; Yee, Jerry

    2008-01-01

    Increasing data suggest that errors in medicine occur frequently and result in substantial harm to the patient. The Institute of Medicine report described the magnitude of the problem, and public interest in this issue, which was already large, has grown. The traditional approach in medicine has been to identify the persons making the errors and recommend corrective strategies. However, it has become increasingly clear that it is more productive to focus on the systems and processes through which care is provided. If these systems are set up in ways that would both make errors less likely and identify those that do occur and, at the same time, improve efficiency, then safety and productivity would be substantially improved. Clinical decision support systems (CDSSs) are active knowledge systems that use 2 or more items of patient data to generate case specific recommendations. CDSSs are typically designed to integrate a medical knowledge base, patient data, and an inference engine to generate case specific advice. This article describes how automation, templating, and CDSS improve efficiency, patient care, and safety by reducing the frequency and consequences of medical errors in nephrology. We discuss practical applications of these in 3 settings: a computerized anemia-management program (CAMP, Henry Ford Health System, Detroit, MI), vascular access surveillance systems, and monthly capitation notes in the hemodialysis unit.

  5. Decision Support System for Diabetes Mellitus through Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Tarik A. Rashid

    2016-07-01

    Full Text Available recently, the diseases of diabetes mellitus have grown into extremely feared problems that can have damaging effects on the health condition of their sufferers globally. In this regard, several machine learning models have been used to predict and classify diabetes types. Nevertheless, most of these models attempted to solve two problems; categorizing patients in terms of diabetic types and forecasting blood surge rate of patients. This paper presents an automatic decision support system for diabetes mellitus through machine learning techniques by taking into account the above problems, plus, reflecting the skills of medical specialists who believe that there is a great relationship between patient’s symptoms with some chronic diseases and the blood sugar rate. Data sets are collected from Layla Qasim Clinical Center in Kurdistan Region, then, the data is cleaned and proposed using feature selection techniques such as Sequential Forward Selection and the Correlation Coefficient, finally, the refined data is fed into machine learning models for prediction, classification, and description purposes. This system enables physicians and doctors to provide diabetes mellitus (DM patients good health treatments and recommendations.

  6. A Decision Support System for effective use of probability forecasts

    Science.gov (United States)

    De Kleermaeker, Simone; Verkade, Jan

    2013-04-01

    Often, water management decisions are based on hydrological forecasts. These forecasts, however, are affected by inherent uncertainties. It is increasingly common for forecasting agencies to make explicit estimates of these uncertainties and thus produce probabilistic forecasts. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a stricter separation of responsibilities between forecasters and decision maker can be made. However, simply having probabilistic forecasts available is not sufficient to realise the associated benefits. Additional effort is required in areas such as forecast visualisation and communication, decision making in uncertainty and forecast verification. Also, revised separation of responsibilities requires a shift in institutional arrangements and responsibilities. A recent study identified a number of additional issues related to the effective use of probability forecasts. When moving from deterministic to probability forecasting, a dimension is added to an already multi-dimensional problem; this makes it increasingly difficult for forecast users to extract relevant information from a forecast. A second issue is that while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be present. For example, in many cases no estimates of flood damage, of costs of management measures and of damage reduction are available. This paper presents the results of the study, including some suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development of the DSS is outlined.

  7. Neuro computing in knowledge-based decision support systems

    Energy Technology Data Exchange (ETDEWEB)

    Sirola, Miki; Lampi, Golan; Parviainen, Jukka

    2004-07-01

    Knowledge-based decision support systems of today are due to development of many decades. More and more methodologies and application areas have been involved during this time. In this paper neural methods are combined with knowledge-based methodologies. Self-Organizing Map (SOM) is used together with rule-based reasoning, and realized in a prototype of a decision support system. This system, which can be used e.g. in fault diagnosis, is based on an earlier study including compatibility analysis. A Matlab-based tool is capable of doing tasks in fault detection and identification. We show with an example how SOM analysis can help decision making in a computerized decision support system. Quantisation error between normal data and error data is one important methodological tool in this analysis. This kind of decision making is needed for instance in control room in state monitoring of a safety critical process in industry. A scenario about a leak in the primary circuit of a BWR nuclear power plant is also shortly demonstrated. (Author)

  8. Knowledge Management Technology for Decision Support: an empirical examination

    Directory of Open Access Journals (Sweden)

    Meliha Handzic

    2001-11-01

    Full Text Available This paper reports the results of an empirical examination of the effectiveness of one type of knowledge management technology, namely 'contextual knowledge repository', for supporting individual decision makers in a predictive judgement task context. 31 volunteer subjects participated in the study. The results indicate that a given technology was fairly useful, but insufficient to maximally enhance individual decision making. On one hand, subjects were found to extract more knowledge and make significantly smaller decision errors than their notional naive counterparts. On the other hand, subjects tended to extract less knowledge and make significantly larger decision errors compared to notional optimal counterparts. These findings suggest that individuals could potentially benefit from those knowledge management technologies that would provide additional explicit analytical and procedural knowledge, or those that would facilitate sharing of tacit knowledge through interaction with others. Future research is necessary to address these issues.

  9. Data Mining and Data Fusion for Enhanced Decision Support

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shiraj [ORNL; Ganguly, Auroop R [ORNL; Gupta, Amar [University of Arizona

    2008-01-01

    The process of Data Mining converts information to knowledge by utilizing tools from the disciplines of computational statistics, database technologies, machine learning, signal processing, nonlinear dynamics, process modeling, simulation, and allied disciplines. Data Mining allows business problems to be analyzed from diverse perspectives, including dimensionality reduction, correlation and co-occurrence, clustering and classification, regression and forecasting, anomaly detection, and change analysis. The predictive insights generated from Data Mining can be further utilized through real-time analysis and decision sciences, as well as through human-driven analysis based on management by exceptions or by objectives, to generate actionable knowledge. The tools that enable the transformation of raw data to actionable predictive insights are collectively referred as Decision Support tools. This chapter presents a new formalization of the decision process, leading to a new Decision Superiority model, partially motivated by the Joint Directors of Laboratories (JDL) Data Fusion Model. In addition, it examines the growing importance of Data Fusion concepts.

  10. Pricing Decision Support System for Generation Companies in Electricity Market

    Institute of Scientific and Technical Information of China (English)

    FangDebin; WangXianjia

    2005-01-01

    In order to meet the requirement of separating power plants from power network and that of the competition based power transaction in power market, the pricing decision support system for generation companies (GCPDSS) is built in electricity market. This paper introduces the conception of intelligent decision support system (IDSS) and puts emphasis on the systematical structural framework,work process, design principal, and fundamental function of GCPDSS. The system has the module to analyze the cost, to forecast the demand of power, to construct the pricing strategies, to manage the pricing risk, and to dispatch giving the pricing strategies.The case study illustrates that the friendly window-based user interface of the system enables the user to take full advantage of the capabilities of the system in order to make effective real-time decisions.

  11. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital...... elevation model integrated with flood plain area. The system can show how the flooding prediction based on the output from hydrological modeling for the next 48 hours along the lower Saint John River Valley.......In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...

  12. Assessment of Transport Projects: Risk Analysis and Decision Support

    DEFF Research Database (Denmark)

    Salling, Kim Bang

    2008-01-01

    The subject of this thesis is risk analysis and decision support in the context of transport infrastructure assessment. During my research I have observed a tendency in studies of assessing transport projects of overlooking the substantial amount of uncertainties within the decision making process....... Even though vast amounts of money are spent upon preliminary models, environmental investigations, public hearings, etc., the resulting outcome is given by point estimates, i.e. in terms of net present values or benefit-cost rates. This thesis highlights the perspective of risks when assessing...... transport projects, namely by moving from point estimates to interval results. The main focus of this Ph.D. study has been to develop a valid, flexible and functional decision support tool in which risk oriented aspects of project evaluation is implemented. Throughout the study six papers have been produced...

  13. Coherent Frameworks for Statistical Inference serving Integrating Decision Support Systems

    OpenAIRE

    2015-01-01

    A subjective expected utility policy making centre, managing complex, dynamic systems, needs to draw on the expertise of a variety of disparate panels of experts and integrate this information coherently. To achieve this, diverse supporting probabilistic models need to be networked together, the output of one model providing the input to the next. In this paper we provide a technology for designing an integrating decision support system and to enable the centre to explore and compare the effi...

  14. Behavior-aware decision support systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.; Homer, Jack (Homer Consulting); Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  15. Generalized Tumor Dose for Treatment Planning Decision Support

    Science.gov (United States)

    Zuniga, Areli A.

    Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment

  16. Model based decision support for planning of road maintenance

    NARCIS (Netherlands)

    Worm, J.M.; Harten, van A.

    1996-01-01

    In this article we describe a Decision Support Model, based on Operational Research methods, for the multi-period planning of maintenance of bituminous pavements. This model is a tool for the road manager to assist in generating an optimal maintenance plan for a road. Optimal means: minimising the N

  17. Report of subgroup epidemiology and decision support systems

    NARCIS (Netherlands)

    Kessel, G.J.T.; Hansen, J.G.

    2010-01-01

    Developments Decision Support Models. In France, the DSS’s Mildi-LIS and MilPV merged to form a new DSS for advisors and potato growers: Mileos. Furthermore, DSS’s for organic production in France (Fredon) and Germany (Oko-SIMPHYT) were developed to help scheduling copper applications within the nat

  18. Real time traffic models, decision support for traffic management

    NARCIS (Netherlands)

    Wismans, L.J.J.; Romph, de E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various con

  19. Real Time Traffic Models, Decision Support for Traffic Management

    NARCIS (Netherlands)

    Wismans, L.; De Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various con

  20. A Decision Support System for Solving Multiple Criteria Optimization Problems

    Science.gov (United States)

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  1. New threats and new challenges for radiological decision support

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Astrup, Poul; Mikkelsen, Torben;

    2011-01-01

    It is described how ongoing work will extend European standard decision support systems currently integrated in the nuclear power plant preparedness in many countries, to enable estimation of the radiological consequences of atmospheric dispersion of contaminants following a terror attack in a ci...

  2. Team Machine: A Decision Support System for Team Formation

    Science.gov (United States)

    Bergey, Paul; King, Mark

    2014-01-01

    This paper reports on the cross-disciplinary research that resulted in a decision-support tool, Team Machine (TM), which was designed to create maximally diverse student teams. TM was used at a large United States university between 2004 and 2012, and resulted in significant improvement in the performance of student teams, superior overall balance…

  3. Decision support system for treatment of dredged sediments

    NARCIS (Netherlands)

    Joziasse, J.; Bakker, T.; Eggels, P.G.

    1998-01-01

    A decision support system for treatment of dredged sediments (DSTS) has been constructed, in which the environmental effects of various treatment options applied can be compared. The effects are evaluated by scores on environmental themes like global warming and acidification, using life cycle asses

  4. Breast cancer therapy planning - a novel support concept for a sequential decision making problem.

    Science.gov (United States)

    Scherrer, Alexander; Schwidde, Ilka; Dinges, Andreas; Rüdiger, Patrick; Kümmel, Sherko; Küfer, Karl-Heinz

    2015-09-01

    Breast cancer is the most common carcinosis with the largest number of mortalities in women. Its therapy comprises a wide spectrum of different treatment modalities a breast oncologist decides about for the individual patient case. These decisions happen according to medical guide lines, current scientific publications and experiences acquired in former cases. Clinical decision making therefore involves the time-consuming search for possible therapy options and their thorough testing for applicability to the current patient case.This research work addresses breast cancer therapy planning as a multi-criteria sequential decision making problem. The approach is based on a data model for patient cases with therapy descriptions and a mathematical notion for therapeutic relevance of medical information. This formulation allows for a novel decision support concept, which targets at eliminating observed weaknesses in clinical routine of breast cancer therapy planning.

  5. Decision support system for containment and release management

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhuis, B. [Twente Univ., Enschede (Netherlands). Computer Science Dept.

    1995-09-01

    The Containment and Release Management project was carried out within the Reinforced Concerted Action Programme for Accident Management Support and partly financed by the European Union. In this report a prototype of an accident management support system is presented. The support system integrates several concepts from accident management research, like safety objective trees, severe accident phenomena, calculation models and an emergency response data system. These concepts are provided by the prototype in such a way that the decision making process of accident management is supported. The prototype application is demonstrated by process data taken from a severe accident scenario for a pressurized water reactor (PWR) that was simulated with the thermohydraulic computer program MAAP. The prototype was derived from a decision support framework based on a decision theory. For established and innovative concepts from accident management research it is pointed out in which way these concepts can support accident management and how these concepts can be integrated. This approach is generic in two ways; it applies to both pressurized and boiling water reactors and it applies to both in vessel management and containment and release management. The prototype application was developed in Multimedia Toolbox 3.0 and requires at least a 386 PC with 4 MB memory, 6 MB free disk space and MS Windows 3.1. (orig.).

  6. Interactive Decision-Support Tool for Risk-Based Radiation Therapy Plan Comparison for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; Maraldo, Maja V.; Aznar, Marianne C.

    2014-01-01

    of dose-response curves to drive the reoptimization of a volumetric modulated arc therapy treatment plan for an HL patient with head-and-neck involvement. We also use this decision-support tool to visualize and quantitatively evaluate the trade-off between a 3-dimensional conformal RT plan......: A decision-support tool for risk-based, individualized treatment plan comparison is presented. The tool displays dose-response relationships, derived from published clinical data, for a number of relevant side effects and thereby provides direct visualization of the trade-off between these endpoints...

  7. A Decision Support System for Concrete Bridge Maintenance

    Science.gov (United States)

    Rashidi, Maria; Lemass, Brett; Gibson, Peter

    2010-05-01

    The maintenance of bridges as a key element in transportation infrastructure has become a major concern for asset managers and society due to increasing traffic volumes, deterioration of existing bridges and well-publicised bridge failures. A pivotal responsibility for asset managers in charge of bridge remediation is to identify the risks and assess the consequences of remediation programs to ensure that the decisions are transparent and lead to the lowest predicted losses in recognized constraint areas. The ranking of bridge remediation treatments can be quantitatively assessed using a weighted constraint approach to structure the otherwise ill-structured phases of problem definition, conceptualization and embodiment [1]. This Decision Support System helps asset managers in making the best decision with regards to financial limitations and other dominant constraints imposed upon the problem at hand. The risk management framework in this paper deals with the development of a quantitative intelligent decision support system for bridge maintenance which has the ability to provide a source for consistent decisions through selecting appropriate remediation treatments based upon cost, service life, product durability/sustainability, client preferences, legal and environmental constraints. Model verification and validation through industry case studies is ongoing.

  8. A Synthesis Of Knowledge About Caregiver Decision Making Finds Gaps In Support For Those Who Care For Aging Loved Ones.

    Science.gov (United States)

    Garvelink, Mirjam M; Ngangue, Patrice A G; Adekpedjou, Rheda; Diouf, Ndeye T; Goh, Larissa; Blair, Louisa; Légaré, France

    2016-04-01

    We conducted a mixed-methods knowledge synthesis to assess the effectiveness of interventions to improve caregivers' involvement in decision making with seniors, and to describe caregivers' experiences of decision making in the absence of interventions. We analyzed forty-nine qualitative, fourteen quantitative, and three mixed-methods studies. The qualitative studies indicated that caregivers had unmet needs for information, discussions of values and needs, and decision support, which led to negative sentiments after decision making. Our results indicate that there have been insufficient quantitative evaluations of interventions to involve caregivers in decision making with seniors and that the evaluations that do exist found few clinically significant effects. Elements of usual care that received positive evaluations were the availability of a decision coach and a supportive decision-making environment. Additional rigorously evaluated interventions are needed to help caregivers be more involved in decision making with seniors.

  9. Assessing the quality of decision support technologies using the International Patient Decision Aid Standards instrument (IPDASi.

    Directory of Open Access Journals (Sweden)

    Glyn Elwyn

    Full Text Available OBJECTIVES: To describe the development, validation and inter-rater reliability of an instrument to measure the quality of patient decision support technologies (decision aids. DESIGN: Scale development study, involving construct, item and scale development, validation and reliability testing. SETTING: There has been increasing use of decision support technologies--adjuncts to the discussions clinicians have with patients about difficult decisions. A global interest in developing these interventions exists among both for-profit and not-for-profit organisations. It is therefore essential to have internationally accepted standards to assess the quality of their development, process, content, potential bias and method of field testing and evaluation. METHODS: Scale development study, involving construct, item and scale development, validation and reliability testing. PARTICIPANTS: Twenty-five researcher-members of the International Patient Decision Aid Standards Collaboration worked together to develop the instrument (IPDASi. In the fourth Stage (reliability study, eight raters assessed thirty randomly selected decision support technologies. RESULTS: IPDASi measures quality in 10 dimensions, using 47 items, and provides an overall quality score (scaled from 0 to 100 for each intervention. Overall IPDASi scores ranged from 33 to 82 across the decision support technologies sampled (n = 30, enabling discrimination. The inter-rater intraclass correlation for the overall quality score was 0.80. Correlations of dimension scores with the overall score were all positive (0.31 to 0.68. Cronbach's alpha values for the 8 raters ranged from 0.72 to 0.93. Cronbach's alphas based on the dimension means ranged from 0.50 to 0.81, indicating that the dimensions, although well correlated, measure different aspects of decision support technology quality. A short version (19 items was also developed that had very similar mean scores to IPDASi and high correlation

  10. Wireless Sensor Networking for Rain-fed Farming Decision Support

    CERN Document Server

    Panchard, J; Sheshshayee, M S; Papadimitratos, P; Kumar, S; Hubaux, J-P

    2009-01-01

    Wireless sensor networks (WSNs) can be a valuable decision-support tool for farmers. This motivated our deployment of a WSN system to support rain-fed agriculture in India. We defined promising use cases and resolved technical challenges throughout a two-year deployment of our COMMON-Sense Net system, which provided farmers with environment data. However, the direct use of this technology in the field did not foster the expected participation of the population. This made it difficult to develop the intended decision-support system. Based on this experience, we take the following position in this paper: currently, the deployment of WSN technology in developing regions is more likely to be effective if it targets scientists and technical personnel as users, rather than the farmers themselves. We base this claim on the lessons learned from the COMMON-Sense system deployment and the results of an extensive user experiment with agriculture scientists, which we describe in this paper.

  11. Decision support for simulation-based operation planning

    Science.gov (United States)

    Schubert, Johan; Hörling, Pontus

    2016-05-01

    In this paper, we develop methods for analyzing large amounts of data from a military ground combat simulation system. Through a series of processes, we focus the big data set on situations that correspond to important questions and show advantageous outcomes. The result is a decision support methodology that provides commanders with results that answer specific questions of interest, such as what the consequences for the Blue side are in various Red scenarios or what a particular Blue force can withstand. This approach is a step toward taking the traditional data farming methodology from its analytical view into a prescriptive operation planning context and a decision making mode.

  12. Empirically and Clinically Useful Decision Making in Psychotherapy: Differential Predictions with Treatment Response Models

    Science.gov (United States)

    Lutz, Wolfgang; Saunders, Stephen M.; Leon, Scott C.; Martinovich, Zoran; Kosfelder, Joachim; Schulte, Dietmar; Grawe, Klaus; Tholen, Sven

    2006-01-01

    In the delivery of clinical services, outcomes monitoring (i.e., repeated assessments of a patient's response to treatment) can be used to support clinical decision making (i.e., recurrent revisions of outcome expectations on the basis of that response). Outcomes monitoring can be particularly useful in the context of established practice research…

  13. A Framework for a Decision Support System in a Hierarchical Extended Enterprise Decision Context

    Science.gov (United States)

    Boza, Andrés; Ortiz, Angel; Vicens, Eduardo; Poler, Raul

    Decision Support System (DSS) tools provide useful information to decision makers. In an Extended Enterprise, a new goal, changes in the current objectives or small changes in the extended enterprise configuration produce a necessary adjustment in its decision system. A DSS in this context must be flexible and agile to make suitable an easy and quickly adaptation to this new context. This paper proposes to extend the Hierarchical Production Planning (HPP) structure to an Extended Enterprise decision making context. In this way, a framework for DSS in Extended Enterprise context is defined using components of HPP. Interoperability details have been reviewed to identify the impact in this framework. The proposed framework allows overcoming some interoperability barriers, identifying and organizing components for a DSS in Extended Enterprise context, and working in the definition of an architecture to be used in the design process of a flexible DSS in Extended Enterprise context which can reuse components for futures Extended Enterprise configurations.

  14. Family patterns of decision-making in pediatric clinical trials.

    Science.gov (United States)

    Snethen, Julia A; Broome, Marion E; Knafl, Kathleen; Deatrick, Janet A; Angst, Denise B

    2006-06-01

    The decision-making process related to a child's participation in clinical trials often involves multiple family members. The aim of this study was to compare family patterns of decision-making within and across family units in pediatric clinical trials. Participants for this secondary analysis included 14 families from a larger study of informed consent. Four distinct patterns of decision-making were identified: Exclusionary, informative, collaborative, and delegated. These patterns varied with regard to three dimensions of parents' decision-making goals, child level of involvement, and the parental role. These patterns of decision-making affect how parents and children communicate with health professionals and influence the effectiveness of health care providers interactions with the family related to the decision-making process.

  15. Integrated assessment for supporting decision making with multiple criteria

    Directory of Open Access Journals (Sweden)

    Friedrich R.

    2015-01-01

    Full Text Available Decisions about the development of the energy system should take all relevant criteria into account, including costs and health, environmental and climate impacts. As usually no decision alternative fulfils all criteria better than all other alternatives, a weighting between the indicators that show the degree of fulfilment of the criteria, is necessary. In the following the “impact pathway approach” is described that supports decisions by using weighting factors that are derived from measuring or observing the preferences of the population. The methodology is applied to rank technologies for generating electricity according to their social costs, which is a summary indicator comprising simultaneously costs, impacts of air pollution on health and biodiversity and climate impacts.

  16. Insurance Contract Analysis for Company Decision Support in Acquisition Management

    Science.gov (United States)

    Chernovita, H. P.; Manongga, D.; Iriani, A.

    2017-01-01

    One of company activities to retain their business is marketing the products which include in acquisition management to get new customers. Insurance contract analysis using ID3 to produce decision tree and rules to be decision support for the insurance company. The decision tree shows 13 rules that lead to contract termination claim. This could be a guide for the insurance company in acquisition management to prevent contract binding with these contract condition because it has a big chance for the customer to terminate their insurance contract before its expired date. As the result, there are several strong points that could be the determinant of contract termination such as: 1) customer age whether too young or too old, 2) long insurance period (above 10 years), 3) big insurance amount, 4) big amount of premium charges, and 5) payment method.

  17. The potential use of decision analysis to support shared decision making in the face of uncertainty: the example of atrial fibrillation and warfarin anticoagulation.

    Science.gov (United States)

    Robinson, A; Thomson, R G

    2000-12-01

    The quality of patient care is dependent upon the quality of the multitude of decisions that are made daily in clinical practice. Increasingly, modern health care is seeking to pursue better decisions (including an emphasis on evidence-based practice) and to engage patients more in decisions on their care. However, many treatment decisions are made in the face of clinical uncertainty and may be critically dependent upon patient preferences. This has led to attempts to develop decision support tools that enable patients and clinicians to make better decisions. One approach that may be of value is decision analysis, which seeks to create a rational framework for evaluating complex medical decisions and to provide a systematic way of integrating potential outcomes with probabilistic information such as that generated by randomised controlled trials of interventions. This paper describes decision analysis and discusses the potential of this approach with reference to the clinical decision as to whether to treat patients in atrial fibrillation with warfarin to reduce their risk of stroke.

  18. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    Science.gov (United States)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  19. Audio-video decision support for patients: the documentary genre as a basis for decision aids

    NARCIS (Netherlands)

    Volandes, A.E.; Barry, M.J.; Wood, F.; Elwyn, G.

    2013-01-01

    Objective Decision support tools are increasingly using audio-visual materials. However, disagreement exists about the use of audio-visual materials as they may be subjective and biased. Methods This is a literature review of the major texts for documentary film studies to extrapolate issues of obje

  20. Human Decision Processes: Implications for SSA Support Tools

    Science.gov (United States)

    Picciano, P.

    2013-09-01

    paper), one opinion shared is that the rational, economic, deliberate listing/evaluation of all options is NOT representative of how many decision are made. A framework gaining interest lately describes two systems predominantly at work: intuition and reasoning (Kahneman, 2003). Intuition is fast, automatic, and parallel contrasted with the more effortful, deliberative, and sequential reasoning. One of the issues of contention is that considerable research is stacked supporting both sides claiming that intuition is: • A hallmark of expertise responsible for rapid, optimal decisions in the face of adversity • A vulnerability where biases serve as decision traps leading to wrong choices Using seminal studies from a range of domains and tasking, potential solutions for SSA decision support will be offered. Important issues such as managing uncertainty, framing inquiries, and information architecture, and contextual cues will be discussed. The purpose is to provide awareness of the human limitations and capabilities in complex decision making so engineers and designers can consider such factors in their development of SSA tools.

  1. Evaluation of fuzzy relation method for medical decision support.

    Science.gov (United States)

    Wagholikar, Kavishwar; Mangrulkar, Sanjeev; Deshpande, Ashok; Sundararajan, Vijayraghavan

    2012-02-01

    The potential of computer based tools to assist physicians in medical decision making, was envisaged five decades ago. Apart from factors like usability, integration with work-flow and natural language processing, lack of decision accuracy of the tools has hindered their utility. Hence, research to develop accurate algorithms for medical decision support tools, is required. Pioneering research in last two decades, has demonstrated the utility of fuzzy set theory for medical domain. Recently, Wagholikar and Deshpande proposed a fuzzy relation based method (FR) for medical diagnosis. In their case studies for heart and infectious diseases, the FR method was found to be better than naive bayes (NB). However, the datasets in their studies were small and included only categorical symptoms. Hence, more evaluative studies are required for drawing general conclusions. In the present paper, we compare the classification performance of FR with NB, for a variety of medical datasets. Our results indicate that the FR method is useful for classification problems in the medical domain, and that FR is marginally better than NB. However, the performance of FR is significantly better for datasets having high proportion of unknown attribute values. Such datasets occur in problems involving linguistic information, where FR can be particularly useful. Our empirical study will benefit medical researchers in the choice of algorithms for decision support tools.

  2. A Customized Drought Decision Support Tool for Hsinchu Science Park

    Science.gov (United States)

    Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin

    2016-04-01

    Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.

  3. Clinical decision-making: physicians' preferences and experiences

    Directory of Open Access Journals (Sweden)

    White Martha

    2007-03-01

    Full Text Available Abstract Background Shared decision-making has been advocated; however there are relatively few studies on physician preferences for, and experiences of, different styles of clinical decision-making as most research has focused on patient preferences and experiences. The objectives of this study were to determine 1 physician preferences for different styles of clinical decision-making; 2 styles of clinical decision-making physicians perceive themselves as practicing; and 3 the congruence between preferred and perceived style. In addition we sought to determine physician perceptions of the availability of time in visits, and their role in encouraging patients to look for health information. Methods Cross-sectional survey of a nationally representative sample of U.S. physicians. Results 1,050 (53% response rate physicians responded to the survey. Of these, 780 (75% preferred to share decision-making with their patients, 142 (14% preferred paternalism, and 118 (11% preferred consumerism. 87% of physicians perceived themselves as practicing their preferred style. Physicians who preferred their patients to play an active role in decision-making were more likely to report encouraging patients to look for information, and to report having enough time in visits. Conclusion Physicians tend to perceive themselves as practicing their preferred role in clinical decision-making. The direction of the association cannot be inferred from these data; however, we suggest that interventions aimed at promoting shared decision-making need to target physicians as well as patients.

  4. A decision support system for AIDS intervention and prevention.

    Science.gov (United States)

    Xu, L D

    1994-08-01

    In recent years, the importance of information systems has been identified as a vital issue to continuing success in AIDS intervention and prevention (AIP). The advances in information technology have resulted in integrative information systems including decision support systems (DSS). The concept of DSS for AIP was created at the intersection of two trends. The first trend was a growing belief that AIP information systems are successful in automating operations in AIP programs. The second was a continuing improvement in modeling and software development in the AIP area. This paper presents an integrated DSS for AIP. The system is integrated with a database and achieves its efficiency by incorporating various algorithms and models to support AIP decision processes. The application examples include screening AIDS-risky behaviors, evaluating educational interventions, and scheduling AIP sessions. The implementation results present evidence of the usefulness of the system in AIP.

  5. Advanced intelligent computational technologies and decision support systems

    CERN Document Server

    Kountchev, Roumen

    2014-01-01

    This book offers a state of the art collection covering themes related to Advanced Intelligent Computational Technologies and Decision Support Systems which can be applied to fields like healthcare assisting the humans in solving problems. The book brings forward a wealth of ideas, algorithms and case studies in themes like: intelligent predictive diagnosis; intelligent analyzing of medical images; new format for coding of single and sequences of medical images; Medical Decision Support Systems; diagnosis of Down’s syndrome; computational perspectives for electronic fetal monitoring; efficient compression of CT Images; adaptive interpolation and halftoning for medical images; applications of artificial neural networks for real-life problems solving; present and perspectives for Electronic Healthcare Record Systems; adaptive approaches for noise reduction in sequences of CT images etc.

  6. Computational intelligence for decision support in cyber-physical systems

    CERN Document Server

    Ali, A; Riaz, Zahid

    2014-01-01

    This book is dedicated to applied computational intelligence and soft computing techniques with special reference to decision support in Cyber Physical Systems (CPS), where the physical as well as the communication segment of the networked entities interact with each other. The joint dynamics of such systems result in a complex combination of computers, software, networks and physical processes all combined to establish a process flow at system level. This volume provides the audience with an in-depth vision about how to ensure dependability, safety, security and efficiency in real time by making use of computational intelligence in various CPS applications ranging from the nano-world to large scale wide area systems of systems. Key application areas include healthcare, transportation, energy, process control and robotics where intelligent decision support has key significance in establishing dynamic, ever-changing and high confidence future technologies. A recommended text for graduate students and researche...

  7. Interventions to support shared decision-making for women with heavy menstrual bleeding: A systematic review.

    Science.gov (United States)

    Zandstra, D; Busser, J A S; Aarts, J W M; Nieboer, T E

    2017-04-01

    This review studies women's preferences for shared decision-making about heavy menstrual bleeding treatment and evaluates interventions that support shared decision-making and their effectiveness. PubMed, Cochrane, Embase, Medline and ClinicalTrials.gov were searched. Three research questions were predefined: 1) What is the range of perspectives gathered in studies that examine women facing a decision related to heavy menstrual bleeding management?; 2) What types of interventions have been developed to support shared decision-making for women experiencing heavy menstrual bleeding?; and 3) In what way might women benefit from interventions that support shared decision-making? All original studies were included if the study population consisted of women experiencing heavy menstrual bleeding. We used the TIDieR (Template for Intervention: Description and Replication) checklist to assess the quality of description and the reproducibility of interventions. Interventions were categorized using Grande et al. guidelines and collated and summarized outcomes measures into three categories: 1) patient-reported outcomes; 2) observer-reported outcomes; and 3) doctor-reported outcomes. Fifteen studies were included. Overall, patients preferred to decide together with their doctor (74%). Women's previsit preference was the strongest predictor for treatment choice in two studies. Information packages did not have a statistically significant effect on treatment choice or satisfaction. However, adding a structured interview or decision aid to increase patient involvement did show a positive effect on treatment choice and results, patient satisfaction and shared decision-making related outcomes. In conclusion shared decision-making is becoming more important in the care of women with heavy menstrual bleeding. Structured interviews or well-designed (computerized) tools such as decision aids seem to facilitate this process, but there is room for improvement. A shared treatment choice

  8. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    . The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...... – Iberian market operator....

  9. Real time traffic models, decision support for traffic management

    OpenAIRE

    Wismans, L.; De Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various control strategies and enhance the performance of the overall network. By taking proactive action deploying traffic management measures, congestion may be prevented or its effects limited. An approach...

  10. Analytical and Decision Support Tools for Genomics-Assisted Breeding

    OpenAIRE

    Varshney, Rajeev K.; Singh, Vikas K; Hickey, John M.; Xun, Xu; Marshall, David F; Wang, Jun; Edwards, David; Ribaut, Jean-Marcel

    2016-01-01

    To successfully implement genomics-assisted breeding (GAB) in crop improvement programs, efficient and effective analytical and decision support tools (ADSTs) are 'must haves' to evaluate and select plants for developing next-generation crops. Here we review the applications and deployment of appropriate ADSTs for GAB, in the context of next-generation sequencing (NGS), an emerging source of massive genomic information. We discuss suitable software tools and pipelines for marker-based approac...

  11. Intelligent Decision Support System for Bank Loans Risk Classification

    Institute of Scientific and Technical Information of China (English)

    杨保安; 马云飞; 俞莲

    2001-01-01

    Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.

  12. Agent based decision support in the supply chain context

    OpenAIRE

    Hilletofth, Per; Lättilä, Lauri

    2012-01-01

    Purpose – The purpose of this paper is to investigate the benefits and the barriers of agent based decision support (ABDS) systems in the supply chain context. Design/methodology/approach – Two ABDS systems have been developed and evaluated. The first system concerns a manufacturing supply chain while the second concerns a service supply chain. The systems are based on actual case companies. Findings – This research shows that the benefits of ABDS systems in the supply chain context include t...

  13. Personalized Clinical Diagnosis in Data Bases for Treatment Support in Phthisiology.

    Science.gov (United States)

    Lugovkina, T K; Skornyakov, S N; Golubev, D N; Egorov, E A; Medvinsky, I D

    2016-01-01

    The decision-making is a key event in the clinical practice. The program products with clinical decision support models in electronic data-base as well as with fixed decision moments of the real clinical practice and treatment results are very actual instruments for improving phthisiological practice and may be useful in the severe cases caused by the resistant strains of Mycobacterium tuberculosis. The methodology for gathering and structuring of useful information (critical clinical signals for decisions) is described. Additional coding of clinical diagnosis characteristics was implemented for numeric reflection of the personal situations. The created methodology for systematization and coding Clinical Events allowed to improve the clinical decision models for better clinical results.

  14. Emulation Modeling with Bayesian Networks for Efficient Decision Support

    Science.gov (United States)

    Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.

    2012-12-01

    Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate

  15. Describing a Decision Support System for Nuisance Management of Urban Building Sites

    OpenAIRE

    Hankach, Pierre; CHACHOUA, Mohamed; MARTIN, Jean Marc; GOYAT, YANN

    2011-01-01

    In this paper, a decision support system for managing urban building sites nuisances is described. First, the decision process for nuisance management is studied in order to understand the use context of the decision support system. Two levels are identified where decision support is appropriate : at the territorial level for the administrator of the public space and at the building site level for the project owner. The decision support system at the former level is described. The interactio...

  16. Effects on Decision Quality of Supporting Multi-attribute Evaluation in Groups

    Science.gov (United States)

    Timmermans; Vlek

    1996-11-01

    In this study the effectiveness of multi-attribute utility (MAU) decision support in groups is evaluated for personnel selection problems differing in complexity. Subjects were asked to make an initial individual decision with or without MAU decision support. Next individuals formed small groups and were asked to reach a decision about the same problem. Groups received either MAU support or no support. Results show that for relatively simple problems the most effective method is to provide subjects with both individual and group decision support. Here, decision support had a clear impact on subjects' preferences and the level of agreement between group members. In addition, satisfaction with the decision and the decision procedure was relatively high. Overall, decision support improved communication; subjects reported to find the problem easier, to have more influence on the group decision, and to find it easier to express their opinions. For more complex problems, however, decision making without group support (whether preceded by individual support or not) was evaluated most favorably. Individual decision support in this condition was sometimes better than no support; i.e., there was a lower reported problem difficulty, a higher satisfaction with the group decision, and a higher reported influence on the group decision. The effectiveness of group MAU decision support for complex problems was evaluated less favorably.

  17. Bridging groundwater models and decision support with a Bayesian network

    Science.gov (United States)

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  18. The economic valuation of improved process plant decision support technology.

    Science.gov (United States)

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  19. Demonstration of Decision Support Tools for Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, David Earl; Jacobson, Jacob Jordan; Berrett, Sharon; Cobb, D. A.; Worhach, P.

    2000-11-01

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  20. Decision Support for Participatory Forest Planning Using AHP and TOPSIS

    Directory of Open Access Journals (Sweden)

    Hilma Nilsson

    2016-05-01

    Full Text Available Long-term forest management planning often involves several stakeholders with conflicting objectives, creating a complex decision process. Multiple-criteria decision analysis (MCDA presents a promising framework for finding solutions in terms of suitable trade-offs among the objectives. However, many of the MCDA methods that have been implemented in forest management planning can only be used to compare and evaluate a limited number of management plans, which increases the risk that the most suitable plan is not included in the decision process. The aim of this study is to test whether the combination of two MCDA methods can facilitate the evaluation of a large number of strategic forest management plans in a situation with multiple objectives and several stakeholders. The Analytic Hierarchy Process (AHP was used to set weights for objectives based on stakeholder preferences and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS was used to produce an overall ranking of alternatives. This approach was applied to a case study of the Vilhelmina municipality, northern Sweden. The results show that the combination of AHP and TOPSIS is easy to implement in participatory forest planning and takes advantage of the capacity of forest decision support systems to create a wide array of management plans. This increases the possibility that the most suitable plan for all stakeholders will be identified.

  1. Questioning assent: how are children's views included as families make decisions about clinical trials?

    OpenAIRE

    Madden, L; Shilling, Valerie; Woolfall, K.; Sowden, E.; Smyth, R L; Williamson, P. R. (Paula R.); Young, B.

    2016-01-01

    BACKGROUND: Assent is used to take children's wishes into account when they are invited into clinical trials, but the concept has attracted considerable criticism. We investigated children's accounts of decision-making with the aim of informing practice in supporting children when invited to join a clinical trial. METHODS: We audio-recorded qualitative, semi-structured interviews with 22 children aged 8-16 years about being invited to take part in a clinical trial. Most children were intervie...

  2. Decision Integration and Support Engine (DISE) for dynamic aircraft and ISR asset tasking/retasking decision support for the AOC

    Science.gov (United States)

    VonPlinsky, Michael J.; Crowder, Ed

    2002-07-01

    The Decision Integration and Support Environment (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision processes. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosecuted, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process. DISE, when running in its constructive mode, automatically selects the best-suited aircraft and assigns the new target. In virtual mode, with a human operator, DISE presents the user with a suitability ranked list of the available aircraft for assignment. Recent DISE enhancements are applying this concept to the prioritization and scheduling of ISR support requests from Users to support both latent and dynamic tasking and scheduling of both space-based and airborne ISR assets.

  3. An Intelligent Polar Cyberinfrastrucuture to Support Spatiotemporal Decision Making

    Science.gov (United States)

    Song, M.; Li, W.; Zhou, X.

    2014-12-01

    In the era of big data, polar sciences have already faced an urgent demand of utilizing intelligent approaches to support precise and effective spatiotemporal decision-making. Service-oriented cyberinfrastructure has advantages of seamlessly integrating distributed computing resources, and aggregating a variety of geospatial data derived from Earth observation network. This paper focuses on building a smart service-oriented cyberinfrastructure to support intelligent question answering related to polar datasets. The innovation of this polar cyberinfrastructure includes: (1) a problem-solving environment that parses geospatial question in natural language, builds geoprocessing rules, composites atomic processing services and executes the entire workflow; (2) a self-adaptive spatiotemporal filter that is capable of refining query constraints through semantic analysis; (3) a dynamic visualization strategy to support results animation and statistics in multiple spatial reference systems; and (4) a user-friendly online portal to support collaborative decision-making. By means of this polar cyberinfrastructure, we intend to facilitate integration of distributed and heterogeneous Arctic datasets and comprehensive analysis of multiple environmental elements (e.g. snow, ice, permafrost) to provide a better understanding of the environmental variation in circumpolar regions.

  4. Decision support for integrated water-energy planning.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  5. Technosocial Predictive Analytics in Support of Naturalistic Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Cowell, Andrew J.; Malone, Elizabeth L.; Riensche, Roderick M.; Thomas, James J.; Unwin, Stephen D.; Whitney, Paul D.; Wong, Pak C.

    2009-06-23

    A main challenge we face in fostering sustainable growth is to anticipate outcomes through predictive and proactive across domains as diverse as energy, security, the environment, health and finance in order to maximize opportunities, influence outcomes and counter adversities. The goal of this paper is to present new methods for anticipatory analytical thinking which address this challenge through the development of a multi-perspective approach to predictive modeling as a core to a creative decision making process. This approach is uniquely multidisciplinary in that it strives to create decision advantage through the integration of human and physical models, and leverages knowledge management and visual analytics to support creative thinking by facilitating the achievement of interoperable knowledge inputs and enhancing the user’s cognitive access. We describe a prototype system which implements this approach and exemplify its functionality with reference to a use case in which predictive modeling is paired with analytic gaming to support collaborative decision-making in the domain of agricultural land management.

  6. North Slope Decision Support for Water Resource Planning and Management

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  7. Impella ventricular support in clinical practice

    DEFF Research Database (Denmark)

    Burzotta, Francesco; Trani, Carlo; Doshi, Sagar N;

    2015-01-01

    Mechanical circulatory support represents an evolving field of clinical research and practice. Currently, several cardiac assist devices have been developed but, among different institutions and countries, a large variation in indications for use and device selection exists. The Impella platform ...

  8. How to develop web-based decision support interventions for patients: a process map

    NARCIS (Netherlands)

    Elwyn, G.; Kreuwel, I.; Durand, M.A.; Sivell, S.; Joseph-Williams, N.; Evans, R.; Edwards, A.

    2011-01-01

    OBJECTIVE: Significant advances have been made in the development of decision support interventions, also called decision aids, for patients facing difficult or uncertain decisions. However, challenges related to the definition, the theoretical underpinnings, the relative contribution of different c

  9. Fast Interactive Decision Support for Modifying Stowage Plans Using Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Leknes, Eilif; Bebbington, Thomas

    Low cost containerized shipping requires high quality stowage plans. Scalable stowage planning optimization algorithms have been developed recently. All of these algorithms, however, produce monolithic solutions that are hard for stowage coordinators to modify, which is necessary in practice due ...... fast, complete, and backtrack-free decision support. Our computational results show that the approach can solve real-sized instances when breaking symmetries among similar containers...

  10. Implications of Modern Decision Science for Military Decision-Support Systems

    Science.gov (United States)

    2005-01-01

    DSS decision-support system EBO effects-based operations EBP effects-based planning HBP heuristics and biases paradigm IIASA International Institute for...policy among citizens); 15 The work done by the International Institute for Applied Systems Analysis ( IIASA ) in Austria is basically the same as what...www.cbo.gov. Although some CBO documents are exclusively focused on economic issues, many are substantial policy analyses. IIASA also has a great many

  11. Water flow algorithm decision support tool for travelling salesman problem

    Science.gov (United States)

    Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd

    2016-08-01

    This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.

  12. FWFA Optimization based Decision Support System for Road Traffic Engineering

    Science.gov (United States)

    Utama, D. N.; Zaki, F. A.; Munjeri, I. J.; Putri, N. U.

    2017-01-01

    Several ways and efforts have been already conducted to formally solve the road traffic congestion. However, the objective strategy type of road traffic engineering could not be proven truly. Try and error is one inefficient way in road traffic engineering to degrade the level of congestion. The combination between fuzzy-logic and water flow algorithm methods (called FWFA) was used as a main method to construct the decision support system (DSS) for selecting the objective strategy in road traffic engineering. The proposed DSS can suggest the most optimal strategy decision in road traffic engineering. Here, a main traffic road of Juanda in area Ciputat, Tangerang Selatan, province Banten, Indonesia; was selected as a research object in this study. The constructed DSS for road traffic engineering was structurally delivered in this paper.

  13. Perspectives on Spatial Decision Support Concerning Location of Biogas Production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel

    biomass resource availability is expected to decline by 10% until 2020 but with regional variation. We find that large scale biogas producers enjoy 16% lower transportation costs than small biogas producers. It is argued that biogas producers need to see themselves as agro-based retailers and accordingly...... whilst safeguarding a transparent and informative decision making process. Through the PhD thesis spatial temporal issues regarding slurry biomass resource availability is analysed together with the aspects of spatial competition in order to achieve national biogas policy ambitions. We find that slurry...... are developed through this PhD project, may be combined into integrated spatial planning and decision support systems with a human expert based user interface....

  14. A hybrid decision support system for iron ore supply

    Directory of Open Access Journals (Sweden)

    A. Samolejová

    2012-01-01

    Full Text Available Many European metallurgical companies are forced to import iron ore from remote destinations. For these companies it is necessary to determine the amount of iron ore that will have to be ordered and to create such a delivery schedule so that the continuous operation of blast-furnace plant is not disrupted and there is no exceedingly large stock of this raw material. The objective of this article is to design the decision support system for iron ore supply which would effi ciently reduce uncertainty and risk of that decision-making. The article proposes a hybrid intelligent system which represents a combination of diff erent artifi cial intelligence methods with dynamic simulation technique for that purpose.

  15. Decision Support Tools for Cloud Migration in the Enterprise

    CERN Document Server

    Khajeh-Hosseini, Ali; Bogaerts, Jurgen; Teregowda, Pradeep

    2011-01-01

    This paper describes two tools that aim to support decision making during the migration of IT systems to the cloud. The first is a modeling tool that produces cost estimates of using public IaaS clouds. The tool enables IT architects to model their applications, data and infrastructure requirements in addition to their computational resource usage patterns. The tool can be used to compare the cost of different cloud providers, deployment options and usage scenarios. The second tool is a spreadsheet that outlines the benefits and risks of using IaaS clouds from an enterprise perspective; this tool provides a starting point for risk assessment. Two case studies were used to evaluate the tools. The tools were useful as they informed decision makers about the costs, benefits and risks of using the cloud.

  16. Building a financial decision support system with Oracle

    CERN Document Server

    Angberg, M

    2001-01-01

    CERN (European Organization for Nuclear Research) is the world's leading particle physics research laboratory. It is a truly global organization, collaborating with more than 500 research institutes around the world. The laboratory is currently working on the construction of its largest and most complex scientific instrument ever, the Large Hadron Collider (LHC), due for completion in 2007. Under the current economic climate, however, the laboratory, along with many other businesses and organizations, is having to face shrinking resources and reduced staff levels. Since CERN is expected to continue to grow, it will be forced to achieve higher productivity with fewer resources. In the area of administrative information systems, the situation described above led us to the decision to use Oracle's Data Warehousing concepts and J2EE for the implementation of a scalable and flexible financial decision support system with a low maintenance cost. This paper outlines the experiences drawn from this implementation, fr...

  17. Decision Support System for Maintenance Management Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The maintenance process has undergone several major developments that have led to proactive considerations and the transformation from the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing parts and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.

  18. Implementing broad scale childhood immunization decision support as a web service.

    Science.gov (United States)

    Zhu, Vivienne J; Grannis, Shaun J; Rosenman, Marc B; Downs, Stephen M

    2009-11-14

    Timely vaccinations decrease a child's risk of contracting vaccine-preventable disease and prevent disease outbreaks. Childhood immunization schedules may represent the only clinical guideline for which there is official national consensus. So an immunization clinical decision support system (CDSS) is a natural application. However, immunization schedules are complex and change frequently. Maintaining multiple CDSS's is expensive and error prone. Therefore, a practical strategy would be an immunization CDSS as a centralized web service that can be easily accessed by various electronic medical record (EMR) systems. This allows centralized maintenance of immunization guidelines. We have developed a web service, based on Miller's tabular model with modifications, which implements routine childhood immunization guidelines. This immunization web service is currently operating in the Regenstrief Institute intranet and system evaluations are ongoing. We will make this web service available on the Internet. In this paper, we describe this web service -based immunization decision support tool.

  19. U.S. Dept. Veterans Affairs (VA) SMEC-bio Reporting for Leadership Decision Support

    OpenAIRE

    2013-01-01

    Objective To assess Reports sent from the United States VA Subject Matter Expertise Center for Biological Events (SMEC-bio) – a proof-of-concept decision support initiative – to the VA Integrated Operations Center (VA IOC). Introduction VA is the U.S. federal agency responsible for providing services to America’s Veterans. Within VA, VHA is the organization responsible for administration of health care services. VHA, with 152 Medical Centers and over 900 outpatient clinics located throughout ...

  20. New Decision Support for Landslide and Other Disaster Events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Kaulfus, A.; Srinivasan, K.; Anderson, E. R.; McEniry, M.

    2013-12-01

    An Event-Driven Data delivery (ED3) framework has been created that provides reusable services and configurations to support better data preparedness for decision support of disasters and other events by rapidly providing pre-planned access to data, special processing, modeling and other capabilities, all executed in response to criteria-based events. ED3 facilitates decision makers to plan in advance of disasters and other types of events for the data necessary for decisions and response activities. A layer of services provided in the ED3 framework allows systems to support user definition of subscriptions for data plans that will be triggered when events matching specified criteria occur. Pre-planning for data in response to events lessens the burden on decision makers in the aftermath of an event and allows planners to think through the desired processing for specialized data products. Additionally the ED3 framework provides support for listening for event alerts and support for multiple workflow managers that provide data and processing functionality in response to events. Landslides are often costly and, at times, deadly disaster events. Whereas intense and/or sustained rainfall is often the primary trigger for landslides, soil type and slope are also important factors in determining the location and timing of slope failure. Accounting for the substantial spatial variability of these factors is one of the major difficulties when predicting the timing and location of slope failures. A wireless sensor network (WSN), developed by NASA SERVIR and USRA, with peer-to-peer communication capability and low power consumption, is ideal for high spatial in situ monitoring in remote locations. In collaboration with the University of Huntsville at Alabama, WSN equipped with accelerometer, rainfall and soil moisture sensors is being integrated into an end-to-end landslide warning system. The WSN is being tested to ascertain communication capabilities and the density of

  1. Coordinating complex decision support activities across distributed applications

    Science.gov (United States)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  2. Learning discriminative distance functions for valve retrieval and improved decision support in valvular heart disease

    Science.gov (United States)

    Voigt, Ingmar; Vitanovski, Dime; Ionasec, Razvan I.; Tsymal, Alexey; Georgescu, Bogdan; Zhou, Shaohua K.; Huber, Martin; Navab, Nassir; Hornegger, Joachim; Comaniciu, Dorin

    2010-03-01

    Disorders of the heart valves constitute a considerable health problem and often require surgical intervention. Recently various approaches were published seeking to overcome the shortcomings of current clinical practice,that still relies on manually performed measurements for performance assessment. Clinical decisions are still based on generic information from clinical guidelines and publications and personal experience of clinicians. We present a framework for retrieval and decision support using learning based discriminative distance functions and visualization of patient similarity with relative neighborhood graphsbased on shape and derived features. We considered two learning based techniques, namely learning from equivalence constraints and the intrinsic Random Forest distance. The generic approach enables for learning arbitrary user-defined concepts of similarity depending on the application. This is demonstrated with the proposed applications, including automated diagnosis and interventional suitability classification, where classification rates of up to 88.9% and 85.9% could be observed on a set of valve models from 288 and 102 patients respectively.

  3. Artificial intelligence based decision support for trumpeter swan management

    Science.gov (United States)

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988

  4. Calculating Outcrossing Rates used in Decision Support Systems for Ships

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    Onboard decision support systems (DSS) are used to increase the operational safety of ships. Ideally, DSS can estimate - in the statistical sense - future ship responses on a time scale of the order of 1-3 hours taking into account speed and course changes. The calculations depend on both...... operational and environmental parameters that are known only in the statistical sense. The present paper suggests a procedure to incorporate random variables and associated uncertainties in calculations of outcrossing rates, which are the basis for risk-based DSS. The procedure is based on parallel system...

  5. A Decision Support Tool for Transient Stability Preventive Control

    DEFF Research Database (Denmark)

    Pertl, Michael; Weckesser, Tilman; Rezkalla, Michel M.N.

    2017-01-01

    The paper presents a decision support tool for transient stability preventive control contributing to increased situation awareness of control room operators by providing additional information about the state of the power system in terms of transient stability. A time-domain approach is used...... to assess the transient stability for potentially critical faults. Potential critical fault locations are identified by a critical bus screening through analysis of pre-disturbance steady-state conditions. The identified buses are subject to a fast critical contingency screening determining the actual....... The effectiveness of the proposed method is demonstrated on a standard nine-bus and the New England test system...

  6. Collaborative Decision Support Systems for Primary Health care Managers

    Directory of Open Access Journals (Sweden)

    Gunjan Pahuja

    2012-03-01

    Full Text Available In this paper, a collaborative DSS Model for health care systems and results obtained are described. The proposed framework [1] embeds expert knowledge within DSS to provide intelligent decision support, and implements the intelligent DSS using collaboration technologies. The problem space contains several Hub and Spoke networks. Information about such networks is dynamically captured and represented in a Meta-data table. This master table enables collaboration between any two networks in the problem space, through load transfer, between them. In order to show the collaboration the sample database of 15 health care centers is taken assuming that there are 5 health care centers in one network.

  7. Decision support system for individualized nursing procedures: SAPIEN-Tx.

    Science.gov (United States)

    Ito, M; Ramos, M P; Chern, M S; Espósito, S R; Carmagnani, M I; Cunha, I C; Piveta, V M; Nespoulos, E; Iwasa, A T; Anção, M S

    1995-01-01

    The present work proposes a Decision Support System for nursing procedures: SAPIEN-Tx. The discussion includes the acquisition, modeling , and implementation of nursing expertise professionals in Renal Transplant. It was developed to obtain better quality healthcare services, as well as an effective contribution to the nursing professional in the global assistance of their clientele. We used the KADS methodology to develop the system knowledge base. This methodology permitted us to perform the knowledge modeling with quality and organization. In opposition to the old method, errors were detected before the implementation, avoiding possible modification on the whole project structure.

  8. Intelligent Decision-Support in Virtual Reality Healthcare & Rehabilitation

    DEFF Research Database (Denmark)

    Lewis Brooks, Anthony

    2011-01-01

    at the core of an open-ended custom system where unencumbered residual function manipulates selected audiovisual and robotic feedback that results in afferent-efferent neural feedback loop closure. Such loop closure is hypothesized as the reason why such interactive system environments are so effective......-support of adjustment of difficulty encountered. To date facilitator role has included manual parameter manipulation of interface to affect an invisible active zone quality (typically, sensitivity or location) and/or content quality. Inaction human adjustment-decisions are according to interpretation of user state...

  9. Development of a Mixed Scanning Interactive System for Decision Support.

    Science.gov (United States)

    1984-07-01

    0542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBEN ETIca , VOL SMC-10, NO. 12, DBCDMER 1980 891 REFERENCES The options assumed available to the...nore gen - and decision support is strong; consequently there erally determining the set P2 9H x n, where (7’, is much motivation to seek an approach...1. 8 -h* a. o" 6*81t & aS t hSO.418 bal-.. 0) * 11. $500 $750 3 1.0 .5 3/S 5-1000.0 A - $0 IS) C.-. SiLaiata 6 Decisin treefor ~ Fig. 3. Gen . probi

  10. Data assimilation in the decision support system RODOS

    DEFF Research Database (Denmark)

    Rojas-Palma, C.; Madsen, H.; Gering, F.;

    2003-01-01

    Model predictions for a rapid assessment and prognosis of possible radiological consequences after an accidental release of radionuclides play an important role in nuclear emergency management. Radiological observations, e.g. dose rate measurements. can be used to improve such model predictions....... The process of combining model predictions and observations, usually referred to as data assimilation, is described in this article within the framework of the real time on-line decision support system (RODOS) for off-site nuclear emergency management in Europe. Data assimilation capabilities, based on Kalman...

  11. Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain.

    Directory of Open Access Journals (Sweden)

    Razan Paul

    Full Text Available A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis. We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.

  12. Decision support system for the operating room rescheduling problem.

    Science.gov (United States)

    van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J

    2012-12-01

    Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.

  13. Intelligent decision support system for home energy retrofit adoption

    Directory of Open Access Journals (Sweden)

    D. Duah

    2016-12-01

    Full Text Available Despite the well-established benefits of home energy retrofits (HER, its adoption has faced huge challenges. Though homeowners typically depend on energy practitioners for HER advice, previous work by the researchers has identified the inadequateness of such information as a barrier. Using an earlier developed information model, an energy retrofit intelligent decision support system (ERIDSS, that integrates expert knowledge with quantitative information to provide homeowners with accurate information for decision-making, was developed. This paper identifies the key components of the proposed ERIDSS, develops rules for relevant energy retrofit expert knowledge to be employed in the knowledge-based system of the proposed ERIDSS, develops the ERIDSS for decision-making for home energy retrofits, and demonstrates the application of the ERIDSS using a pilot system on two test homes. The quantitative information was obtained from published sources and the U.S. Department of Energy’s cost database, and the expert knowledge was obtained through the application of the modified Delphi technique and job shadowing of energy auditors and retrofit contractors. The research contributes to improving the adoption of energy retrofits by homeowners, assisting industry practitioners with the corroboration of knowledge/information they provide to homeowners in order to reduce homeowner bias, providing a good understanding of available implicit domain knowledge through the development of six knowledge-based modules, and the development of a system and approach that may be replicated in other domains.

  14. An Investment Decision Support System for Process Industries

    Institute of Scientific and Technical Information of China (English)

    周章玉; 成思危; 华贲; 曾敏刚; 尹清华

    2001-01-01

    Most studies on investment evaluation mainly focus on enterprise economic benefits only, without process operability and sustainability considered. In this paper, we suggest that investment evaluation in process industries should be executed under three strategic objectives--enterprise benefits, social benefits and customer benefits. A systematic investment evaluation and decision-making method with a four-step procedure based on the analytic hierarchy process (AHP) is proposed to evaluate various qualitative and quantitative elements with various criteria. At the first step, the decision hierarchy is constructed under the three strategic objectives. Second, pair-wise comparison is utilized to evaluate the weights of elements and criteria. Third, qualitative elements are quantified by pair-wise comparison and quantitative elements are re-scaled by a uniform criterion. At the last, the best choice is made through synthesizing values upward in the hierarchy. An investment decision support system (DSS) is developed based on Microsoft Excel, and applied to a retrofit investment of united fluid catalytic cracking(FCC) and liquefied gas separation process in a refinery plant.

  15. A decision support system for the reading of ancient documents

    DEFF Research Database (Denmark)

    Roued-Cunliffe, Henriette

    2011-01-01

    The research presented in this thesis is based in the Humanities discipline of Ancient History and begins by attempting to understand the interpretation process involved in reading ancient documents and how this process can be aided by computer systems such as Decision Support Systems (DSS...... this process in the five areas: remembering complex reasoning, searching huge datasets, international collaboration, publishing editions, and image enhancement. This research contains a large practical element involving the development of a DSS prototype. The prototype is used to illustrate how a DSS......). The thesis balances between the use of IT tools to aid Humanities research and the understanding that Humanities research must involve human beings. It does not attempt to develop a system that can automate the reading of ancient documents. Instead it seeks to demonstrate and develop tools that can support...

  16. Computer-based clinical decision aids. A review of methods and assessment of systems

    NARCIS (Netherlands)

    Reisman, Y

    1996-01-01

    During the last three decades a great deal of research has been devoted to the development of integrated clinical decision support systems. This report aims to give a basic understanding of what is required for such a system. By means of a large literature study a survey is given of the major compon

  17. Modelling of the costs of decision support for small and medium-sized enterprises

    Directory of Open Access Journals (Sweden)

    Viera Tomišová

    2017-01-01

    Full Text Available The support of decision-making activities in small and medium-sized enterprises (SME has its specific features. When suggesting steps for the implementation of decision-support tools in the enterprise, we identified two main ways of decision-making support based on the data analysis: ERP (Enterprise Resource Planning without BI (Business Intelligence and ERP with BI. In our contribution, we present costs models of both mentioned decision support systems and their practical interpretation.

  18. Integrated Decision Support for Global Environmental Change Adaptation

    Science.gov (United States)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this

  19. How Turing and Wolf influenced my Decision Support Systems.

    Science.gov (United States)

    Richards, Bernard

    2013-01-01

    Decision Support Systems (DSS) have a vital role to play in today's scenario for Patient Care. They can embody a vast knowledge not normally found in one individual where diagnosis and treatment are involved. This paper highlights the training in minute details and precise mathematics needed in a successful DSS and indicates how such attention-to-detail was instilled into the writer as a result of working with Alan Turing and Emil Wolf who have both since achieved world-wide recognition in their own fields as a result of international publicity by the current writer. The article discusses four Decision Support Systems written by the present writer all of which have been shown to improve patient treatment and care, and which are of such complexity that, without their use, patient care would fall short of optimum. The Systems considered are those for Intensive Care Units, Cardiovascular Surgery, a Programmed Investigation Unit, and Diagnosis of Congenital Abnormalities. All these Systems have performed better than the human alternatives and have shown their value in the improvement of patient care.

  20. Implementing a decision support system (DSS in e-business

    Directory of Open Access Journals (Sweden)

    Alexandra Ruiz G.

    2010-05-01

    Full Text Available Decision support systems (DSS and e-business (EB have emerged as separate areas. However, currently, and for some years now, DSS and EB have become merged to provide customers with greater benefits and added value. There are different types of DSS and different categories and business models for EB; one area’s applicability to the other thus expands the possible combi- nations which can arise from such different categories. Some representative examples would include auction sites which, through applying intelligent agents, can learn about which products to offer or when and where to sell them; DSS allow a company’s in- formation avilable in web portals for customers and employees to be accessed in a controlled way and decisions thus made; vir- tual stores may be positively affected by data mining and data warehousing being applied; complex algorithms could be used in customer relationship management for predicting and analysing “what would happen if” to identify revenue opportunities in com- petitive markets; and a wide range of other applications where imagination is the limit. Research into DSS / BE must be ongoing due to the constant emergence of new business models and DSS subsystems. Applications can be varied and provide bi-directio- nal support for each one. New interaction mechanisms and efforts to satisfy customers are also the focus of inspiration for new applications for DSS systems in EB.

  1. Effects of Clinical Decision Topic on Patients' Involvement in and Satisfaction With Decisions and Their Subsequent Implementation

    DEFF Research Database (Denmark)

    Freidl, Marion; Pesola, Francesca; Konrad, Jana;

    2016-01-01

    OBJECTIVE: Clinical decision making is an important aspect of mental health care. Predictors of how patients experience decision making and whether decisions are implemented are underresearched. This study investigated the relationship between decision topic and involvement in the decision......, satisfaction with it, and its subsequent implementation from both staff and patient perspectives. METHODS: As part of the Clinical Decision Making and Outcome in Routine Care for People With Severe Mental Illness study, patients (N=588) and their providers (N=213) were recruited from community-based mental...... health services in six European countries. Both completed bimonthly assessments for one year using the Clinical Decision Making in Routine Care Scale to assess the decision topic and implementation; both also completed the Clinical Decision Making Involvement and Satisfaction Scale. RESULTS: Three...

  2. Aggregation of Environmental Model Data for Decision Support

    Science.gov (United States)

    Alpert, J. C.

    2013-12-01

    model output offering access to probability and calibrating information for real time decision making. The aggregation content server reports over ensemble component and forecast time in addition to the other data dimensions of vertical layer and position for each variable. The unpacking, organization and reading of many binary packed files is accomplished most efficiently on the server while weather element event probability calculations, the thresholds for more accurate decision support, or display remain for the client. Our goal is to reduce uncertainty for variables of interest, e.g, agricultural importance. The weather service operational GFS model ensemble and short range ensemble forecasts can make skillful probability forecasts to alert users if and when their selected weather events will occur. A description of how this framework operates and how it can be implemented using existing NOMADS content services and applications is described.

  3. Improving life cycle assessment methodology for the application of decision support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg

    for the application of decision support and evaluation of uncertainty in LCA. From a decision maker’s (DM’s) point of view there are at least three main “illness” factors influencing the quality of the information that the DM uses for making decisions. The factors are not independent of each other, but it seems...... the different steps. A deterioration of the quality in each step is likely to accumulate through the statistical value chain in terms of increased uncertainty and bias. Ultimately this can make final decision support problematic. The "Law of large numbers" (LLN) is the methodological tool/probability theory......) refrain from making a decision based on an LCA and thus support a decision on other parameters than the LCA environmental parameters. Conversely, it may in some decision support contexts be acceptable to base a decision on highly uncertain information. This all depends on the specific decision support...

  4. The role of emotions in clinical reasoning and decision making.

    Science.gov (United States)

    Marcum, James A

    2013-10-01

    What role, if any, should emotions play in clinical reasoning and decision making? Traditionally, emotions have been excluded from clinical reasoning and decision making, but with recent advances in cognitive neuropsychology they are now considered an important component of them. Today, cognition is thought to be a set of complex processes relying on multiple types of intelligences. The role of mathematical logic (hypothetico-deductive thinking) or verbal linguistic intelligence in cognition, for example, is well documented and accepted; however, the role of emotional intelligence has received less attention-especially because its nature and function are not well understood. In this paper, I argue for the inclusion of emotions in clinical reasoning and decision making. To that end, developments in contemporary cognitive neuropsychology are initially examined and analyzed, followed by a review of the medical literature discussing the role of emotions in clinical practice. Next, a published clinical case is reconstructed and used to illustrate the recognition and regulation of emotions played during a series of clinical consultations, which resulted in a positive medical outcome. The paper's main thesis is that emotions, particularly in terms of emotional intelligence as a practical form of intelligence, afford clinical practitioners a robust cognitive resource for providing quality medical care.

  5. A Methodology to Support Decision Making in Flood Plan Mitigation

    Science.gov (United States)

    Biscarini, C.; di Francesco, S.; Manciola, P.

    2009-04-01

    The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process

  6. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    Science.gov (United States)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with

  7. Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles

    Science.gov (United States)

    Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.

    Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.

  8. Decision support system for diagnosis and treatment of hearing disorders the case of tinnitus

    CERN Document Server

    Tarnowska, Katarzyna A; Jastreboff, Pawel J

    2017-01-01

    The book presents a knowledge discovery based approach to build a recommender system supporting a physician in treating tinnitus patients with the highly successful method called Tinnitus Retraining Therapy. It describes experiments on extracting novel knowledge from the historical dataset of patients treated by Dr. P. Jastreboff so that to better understand factors behind therapy's effectiveness and better personalize treatments for different profiles of patients. The book is a response for a growing demand of an advanced data analytics in the healthcare industry in order to provide better care with the data driven decision-making solutions. The potential economic benefits of applying computerized clinical decision support systems include not only improved efficiency in health care delivery (by reducing costs, improving quality of care and patient safety), but also enhancement in treatment's standardization, objectivity and availability in places of scarce expert's knowledge on this difficult to treat hearin...

  9. Edhibou: a Customizable Interface for Decision Support in a Semantic Portal

    CERN Document Server

    Badra, Fadi; Lieber, Jean; Meilender, Thomas

    2008-01-01

    The Semantic Web is becoming more and more a reality, as the required technologies have reached an appropriate level of maturity. However, at this stage, it is important to provide tools facilitating the use and deployment of these technologies by end-users. In this paper, we describe EdHibou, an automatically generated, ontology-based graphical user interface that integrates in a semantic portal. The particularity of EdHibou is that it makes use of OWL reasoning capabilities to provide intelligent features, such as decision support, upon the underlying ontology. We present an application of EdHibou to medical decision support based on a formalization of clinical guidelines in OWL and show how it can be customized thanks to an ontology of graphical components.

  10. Risk perception and clinical decision making in primary care

    DEFF Research Database (Denmark)

    Barfoed, Benedicte Marie Lind

    2015-01-01

    Objectives We aim to present new knowledge about different perspectives of health care professionals’ risk perceptions and clinical decision making. Furthermore, we intend to discuss differences between professional and personal risk perceptions and the impact on decisions in terms of both short...... and long-term outcomes. Background Insight into healthcare professionals’ perception of risk is a cornerstone for understanding their strategies for practising preventive care. The way people perceive risk can be seen as part of a general personality trait influenced by a mixture of individual...... considerations and the specific context. Most research has been focused on understanding of the concepts of risk. However healthcare professionals’ risk perception and personal attitudes also affect their clinical decision-making and risk communication. The differences between health care professionals’ personal...

  11. CLIPS based decision support system for Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    S. Kulshrestha

    2011-03-01

    Full Text Available The Water Distribution Networks (WDN are managed by experts, who, over the years of their association and responsibility, acquire an empirical knowledge of the system and, characteristically, this knowledge remains largely confined to their respective personal domains. In the event of any new information and/or emergence of a new problem, these experts apply simple heuristics to design corrective measures and cognitively seek to predict network performance. The human interference leads to inefficient utilization of resources and unfair distribution. Researchers over the past, have tried to address to the problem and they have applied Artificial Intelligence (AI tool to automate the decision process and encode the heuristic rules. The application of AI tool in the field of WDN management is meager. This paper describes a component of an ongoing research initiative to investigate the potential application of artificial intelligence package CLIPS (short for C Language Integrated Production System, developed at NASA/Johnson Space Center in the development of an expert decision support system for management of a water distribution network. The system aims to meet several concerns of modern water utility managers as it attempts to formalize operational and management experiences, and provides a frame work for assisting water utility managers even in the absence of expert personnel.

  12. Knowledge model-based decision support system for maize management

    Institute of Scientific and Technical Information of China (English)

    GUO Yinqiao; ZHAO Chuande; WANG Wenxin; LI Cundong

    2007-01-01

    Based on the relationship between crops and circumstances,a dynamic knowledge model for maize management with wide applicability was developed using the system method and mathematical modeling technique.With soft component characteristics incorporated,a component and digital knowledge model-based decision support system for maize management was established on the Visual C++platform.This system realized six major functions:target yield calculation,design of pre-sowing plan,prediction of regular indices,real-time management control,expert knowledge reference and system administration.Cases were studied on the target yield knowledge model with data sets that include different eco-sites,yield levels of the last three years,and fertilizer and water management levels.The results indicated that this system overcomes the shortcomings of traditional expert systems and planting patterns,such as sitespecific conditions and narrow applicability,and can be used more under different conditions and environments.This system provides a scientific knowledge system and a broad decision-making tool for maize management.

  13. Integrating Software Repository Mining: A Decision Support Centered Approach

    Directory of Open Access Journals (Sweden)

    Luiz Dourado Dias Junior

    2012-12-01

    Full Text Available Mining software repositories (MSR research had significantly contributed to software engineering.However, MSR results integration across repositories is a recent concern that is getting more attentionfrom researchers each day. Some noticeable research in this sense is related to the approximation betweenMSR and semantic web, specially linked data approaches which makes it possible to integrate repositoriesand mined results. Manifested that way, we believe that current research is not fully addressing thepractical integration of MSR results, specially, in software engineering due to not considering that theseresults needs to be integrated to the tools as assistance to activity performers, as a kind of decision makingsupport. Based on this statement this research describes an approach, named Sambasore, which isconcerned with MSR results inter-repository integration and also to decision making support processes,based on tool assistance modelling. To show its feasibility we describe the main concepts, some relatedworks and also a proof of concept experiment applied to a software process modelling tool named SpiderPM.

  14. ANALYSIS AND COMPARISON OF EXISTING DECISION SUPPORT TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    V. A. Rybak

    2016-01-01

    Full Text Available The article presents the results of an analytical review and comparison of the most common managerial decision support technologies: the analytic hierarchy method, neural networks, fuzzy set theory, genetic algorithms and neural-fuzzy modeling. The advantages and disadvantages of these approaches are shown. Determine the scope of their application. It is shown that the hierarchy analysis method works well with the full initial information, but due to the need for expert comparison of alternatives and the selection of evaluation criteria has a high proportion of subjectivity. For problems in the conditions of risk and uncertainty prediction seems reasonable use of the theory of fuzzy sets and neural networks. It is also considered technology collective decision applied both in the general election, and the group of experts. It reduces the time for conciliation meetings to reach a consensus by the preliminary analysis of all views submitted for the plane in the form of points. At the same time the consistency of opinion is determined by the distance between them.

  15. Decision Support Systems for Launch and Range Operations Using Jess

    Science.gov (United States)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  16. Decision tools for coral reef managers: Using participatory decision support to integrate potential climate impacts and informed decision making

    Directory of Open Access Journals (Sweden)

    Pamela J. Fletcher

    2015-07-01

    Full Text Available The decline in coral reef health presents a complex management issue. While several causes of decline have been identified and are under continued study, it is often difficult to discern management actions necessary to address multiple near- and far-field stressors to these ecosystems. As a result, resource managers seek tools to improve the understanding of ecosystem condition and to develop management responses to reduce local and regional pressures in the wake of larger, global impacts. A research study conducted from 2010 to 2014 in southeast Florida, USA consisted of two objectives: (1 conduct a needs assessment survey with coral reef and marine resource managers to identify data needs and the preferred design and delivery of climate information; and (2 develop and evaluate prototype decision support tools. The needs assessment process was helpful for identifying the types of climate information managers would like to obtain to inform decision making and to specify the preferred format for the delivery of that information. Three prototype tools were evaluated by managers using pre/post surveys that included hands-on tutorials to explore the functionality of each. Manager responses were recorded using a five-point scale with 1 being No or Not Useful to 5 being Absolutely or Very Useful. The median responses rated the usefulness of the tools (4, if they would consider using the tool (4, and if they would recommend using the tool to other managers (4 or 5. The median response for increasing manager’s knowledge about climate impacts after completing a tutorial of each of the climate tools was a 3 (moderately useful. Of the managers surveyed in the pre/post-survey, all but one stated they believed they would use the decision support tools in the future with the single response due to wealth of data availability in their institution.

  17. FRAMEWORK FOR DECISION SUPPORT USED IN CONTAMINATED LAND MANAGEMENT IN EUROPE AND NORTH AMERICA.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; BARDOS,R.P.; MAROT,C.; MARIOTTI,R.

    2000-06-01

    Effective contaminated land management requires a number of decisions addressing a suite of technical, economic and social concerns. This paper offers a common framework and terminology for describing decision support approaches, along with an overview of recent applications of decision support tools in Europe and the USA. A common problem with work on decision support approaches is a lack of a common framework and terminology to describe the process. These have been proposed in this paper.

  18. Visitor schedule management system- an intelligent decision support system

    CERN Document Server

    Nidhra, Srinivas; Ethiraj, Vinay Sudha

    2012-01-01

    Travelling salesman problem is a problem which is of high interest for researchers, industry professionals, and academicians. Visitor or salesman used to face lot of problems with respect to scheduling based on meeting top ranked clients. Even excel sheet made the work tedious. So these flaws propelled us to design an intelligent decision support system. This paper reports the problem definition we tried to address and possible solution to this problem. We even explained the project design and implementation of our visitor schedule management system.. Our system made a major contribution in terms of valuable resources such as time and satisfying high ranked clients efficiently. We used optimization via mathematical programming to solve these issues.

  19. Intelligent decision support systems for sustainable computing paradigms and applications

    CERN Document Server

    Abraham, Ajith; Siarry, Patrick; Sheng, Michael

    2017-01-01

    This unique book dicusses the latest research, innovative ideas, challenges and computational intelligence (CI) solutions in sustainable computing. It presents novel, in-depth fundamental research on achieving a sustainable lifestyle for society, either from a methodological or from an application perspective. Sustainable computing has expanded to become a significant research area covering the fields of computer science and engineering, electrical engineering and other engineering disciplines, and there has been an increase in the amount of literature on aspects sustainable computing such as energy efficiency and natural resources conservation that emphasizes the role of ICT (information and communications technology) in achieving system design and operation objectives. The energy impact/design of more efficient IT infrastructures is a key challenge in realizing new computing paradigms. The book explores the uses of computational intelligence (CI) techniques for intelligent decision support that can be explo...

  20. Logic-Based Decision Support for Strategic Environmental Assessment

    CERN Document Server

    Gavanelli, Marco; Milano, Michela; Cagnoli, Paolo; 10.1017/S1471068410000335

    2010-01-01

    Strategic Environmental Assessment is a procedure aimed at introducing systematic assessment of the environmental effects of plans and programs. This procedure is based on the so-called coaxial matrices that define dependencies between plan activities (infrastructures, plants, resource extractions, buildings, etc.) and positive and negative environmental impacts, and dependencies between these impacts and environmental receptors. Up to now, this procedure is manually implemented by environmental experts for checking the environmental effects of a given plan or program, but it is never applied during the plan/program construction. A decision support system, based on a clear logic semantics, would be an invaluable tool not only in assessing a single, already defined plan, but also during the planning process in order to produce an optimized, environmentally assessed plan and to study possible alternative scenarios. We propose two logic-based approaches to the problem, one based on Constraint Logic Programming a...

  1. Managing smarter: a decision support system for mental health providers.

    Science.gov (United States)

    Mohan, L; Muse, L; McInerney, C

    1998-11-01

    Financing of mental health care has changed radically, especially with managed care. Shrinking revenues have forced providers to look for creative ways in which to provide quality services at less expense. Delivery of quality services depends largely on the productive use of the provider's prime resource--the clinicians. Productivity was the focus of the PC-based decision support system developed for mental health providers in New York State. It enables administrators to track key indicators of productivity such as face-to-face time and non-face-to-face time against goals. Unmet goals can be pinpointed quickly, and clinicians' caseloads can be reviewed to determine the underlying causes. A key feature of the system is the conversion of raw data into actionable information to help in problem finding and problem solving. The system has been implemented in Ulster County, the pilot site for the project. The software can be customized easily to suit the data of other providers.

  2. Research design of decision support system for team sport

    Science.gov (United States)

    Abidin, Mohammad Zukuwwan Zainol; Nawawi, Mohd Kamal Mohd; Kasim, Maznah Mat

    2016-10-01

    This paper proposes a suitable research procedure that can be referred to while conducting a Decision Support System (DSS) study, especially when the development activity of system artifacts becomes one of the research objectives. The design of the research procedure was based on the completion of a football DSS development that can help in determining the position of a player and the best team formation to be used during a game. After studying the relevant literature, we found that it is necessary to combine the conventional rainfall System Development Life Cycle (SDLC) approach with Case Study approach to help in structuring the research task and phases, which can contribute to the fulfillment of the research aim and objectives.

  3. NOAA Climate Information and Tools for Decision Support Services

    Science.gov (United States)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  4. Impact Decision Support Services in the Arctic - A Case Study

    Science.gov (United States)

    Scott, C. A.

    2015-12-01

    The National Weather Service Alaska Region's (AR) Regional Operation Center (ROC) provided weather and ice decision support services for the Bureau of Ocean and Energy Management (BOEM) oversight of Royal Dutch Shell's exploratory drilling operations in the Chukchi Sea during the summer and early fall of 2015. The AR ROC, coordinated input from WFO's Anchorage and Fairbanks, the NCEP/Ocean Prediction Center and Climate Prediction Center, and NOAA's National Ice Center. Briefings began in early Spring 2015, focused on melt-out and freeze up dates in the vicinity of the "Burger" drill site. Initially packages were prepared and briefed twice weekly. The frequency increased as the drilling season progressed, and included marine and aviation weather forecasts, current and forecast sea ice conditions as it impacts vessels and aircraft transiting to and from the drilling sites in the Chukchi Sea. Spot forecasts are also available for specific missions as needed.

  5. Decision Support System for Blockage Management in Fire Service

    Directory of Open Access Journals (Sweden)

    Krasuski Adam

    2014-08-01

    Full Text Available In this article we present the foundations of a decision support system for blockage management in Fire Service. Blockage refers to the situation when all fire units are out and a new incident occurs. The approach is based on two phases: off-line data preparation and online blockage estimation. The off-line phase consists of methods from data mining and natural language processing and results in semantically coherent information granules. The online phase is about building the probabilistic models that estimate the block-age probability based on these granules. Finally, the selected classifier judges whether a blockage can occur and whether the resources from neighbour fire stations should be asked for assistance.

  6. Shared decision making: a model for clinical practice

    NARCIS (Netherlands)

    Elwyn, G.; Frosch, D.; Thomson, R.; Joseph-Williams, N.; Lloyd, A.; Kinnersley, P.; Cording, E.; Tomson, D.; Dodd, C.; Rollnick, S.; Edwards, A.; Barry, M.

    2012-01-01

    The principles of shared decision making are well documented but there is a lack of guidance about how to accomplish the approach in routine clinical practice. Our aim here is to translate existing conceptual descriptions into a three-step model that is practical, easy to remember, and can act as a

  7. AQUAZONE: A Spatial Decision Support System for Aquatic Zone Management

    Directory of Open Access Journals (Sweden)

    Sekhri A. Arezki

    2015-03-01

    Full Text Available During the last years, the Sebkha Lake of Oran (Algeria has been the subject of many studies for its protection and recovery. Many environmental and wetlands experts are a hope on the integration of this rich and fragile space, ecologically, as a pilot project in "management of water tides". Support the large of Sebkha (Lake of Oran is a major concern for governments looking to make this a protected natural area and viable place. It was a question of putting in place a management policy to respond to the requirements of economic, agricultural and urban development and the preservation of this natural site through management of its water and the preservation of its quality. The objective of this study is to design and develop a Spatial Decision Support System, namely AQUAZONE, able to assist decision makers in various natural resource management projects. The proposed system integrates remote sensing image processing methods, from display operations, to analysis results, in order to extract useful knowledge to best natural resource management, and in particular define the extension of Sebkha Lake of Oran (Algeria. Two methods were applied to classify LANDSAT 5 TM images of Oran (Algeria: Fuzzy C-Means (FCM applied on multi spectral images, and the other that comes with the manual which is the Ordered Queue-based Watershed (OQW. The FCM will serve as initialization phase, to automatically discover the different classes (urban, forest, water, etc.. from a LANDSAT 5 TM images, and also minimize ambiguity in grayscale and establish Land cover map of this region.

  8. A critical assessment of supported decision-making for persons aging with intellectual disabilities.

    Science.gov (United States)

    Kohn, Nina A; Blumenthal, Jeremy A

    2014-01-01

    Supported decision-making is increasingly being promoted as an alternative to guardianship for persons aging with intellectual disabilities. Proponents argue that supported decision-making, unlike guardianship, empowers persons with disabilities by providing them with help in making their own decisions, rather than simply providing someone else to make decisions for them. To evaluate the empirical support for these claims, we reviewed the evidence base on supported decision-making. Our review found little such empirical research, suggesting that significant further research is warranted to determine whether--and under what conditions--supported decision-making can benefit persons with intellectual disabilities. Indeed, without more empirical evidence as to how supported decision-making functions in practice, it is too early to rule out the possibility it may actually disempower individuals with disabilities by facilitating undue influence by their alleged supporters. We therefore suggest several key areas for future research.

  9. Observations to support adaptation: Principles, scales and decision-making

    Science.gov (United States)

    Pulwarty, R. S.

    2012-12-01

    As has been long noted, a comprehensive, coordinated observing system is the backbone of any Earth information system. Demands are increasingly placed on earth observation and prediction systems and attendant services to address the needs of economically and environmentally vulnerable sectors and investments, including energy, water, human health, transportation, agriculture, fisheries, tourism, biodiversity, and national security. Climate services include building capacity to interpret information and recognize standards and limitations of data in the promotion of social and economic development in a changing climate. This includes improving the understanding of climate in the context of a variety of temporal and spatial scales (including the influence of decadal scale forcings and land surface feedbacks on seasonal forecast reliability). Climate data and information are central for developing decision options that are sensitive to climate-related uncertainties and the design of flexible adaptation pathways. Ideally monitoring should be action oriented to support climate risk assessment and adaptation including informing robust decision making to multiple risks over the long term. Based on the experience of global observations programs and empirical research we outline- Challenges in developing effective monitoring and climate information systems to support adaptation. The types of observations of critical importance needed for sector planning to enhance food, water and energy security, and to improve early warning for disaster risk reduction Observations needed for ecosystem-based adaptation including the identification of thresholds, maintenance of biological diversity and land degradation The benefits and limits of linking regional model output to local observations including analogs and verification for adaptation planning To support these goals a robust systems of integrated observations are needed to characterize the uncertainty surrounding emergent risks

  10. Improvements in agricultural water decision support using remote sensing

    Science.gov (United States)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  11. WEB-GIS Decision Support System for CO2 storage

    Science.gov (United States)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  12. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    Science.gov (United States)

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-03-09

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  13. Clinical decision making on the use of physical restraint in intensive care units

    Directory of Open Access Journals (Sweden)

    Xinqian Li

    2014-12-01

    Full Text Available Physical restraint is a common nursing intervention in intensive care units and nurses often use it to ensure patients' safety and to prevent unexpected accidents. However, existing literature indicated that the use of physical restraint is a complex one because of inadequate rationales, the negative physical and emotional effects on patients, but the lack of perceived alternatives. This paper is aimed to interpret the clinical decision-making theories related to the use of physical restraint in intensive care units in order to facilitate our understanding on the use of physical restraint and to evaluate the quality of decisions made by nurses. By reviewing the literature, intuition and heuristics are the main decision-making strategies related to the use of physical restraint in intensive care units because the rapid and reflexive nature of intuition and heuristics allow nurses to have a rapid response to urgent and emergent cases. However, it is problematic if nurses simply count their decision-making on experience rather than incorporate research evidence into clinical practice because of inadequate evidence to support the use of physical restraint. Besides that, such a rapid response may lead nurses to make decisions without adequate assessment and thinking and therefore biases and errors may be generated. Therefore, despite the importance of intuition and heuristics in decision-making in acute settings on the use of physical restraint, it is recommended that nurses should incorporate research evidence with their experience to make decisions and adequate assessment before implementing physical restraint is also necessary.

  14. Effects on decision quality of supporting multi-attribute evaluation in groups

    NARCIS (Netherlands)

    Vlek, C.A.J.; Timmermans, D.

    1996-01-01

    In this study the effectiveness of multi-attribute utility (MAU) decision support in groups is evaluated for personnel selection problems differing in complexity. Subjects were asked to make an initial individual decision with or without MAU decision support. Next individuals formed small groups and

  15. Developing a Software for Fuzzy Group Decision Support System: A Case Study

    Science.gov (United States)

    Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem

    2009-01-01

    The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…

  16. The Aegean Sea marine security decision support system

    Directory of Open Access Journals (Sweden)

    L. Perivoliotis

    2011-05-01

    Full Text Available As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON, into an active element of the European Decision Support System (EuroDeSS. The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  17. The Aegean sea marine security decision support system

    Directory of Open Access Journals (Sweden)

    L. Perivoliotis

    2011-10-01

    Full Text Available As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON, into an active element of the European Decision Support System (EuroDeSS. The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order to support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  18. A decision support system for farm regional planning

    Directory of Open Access Journals (Sweden)

    Papathanasiou I.

    2005-01-01

    Full Text Available This paper presents a Decision Support System (DSS for planning of farm regions in Greece. The DSS is based on the development possibilities of the agricultural sector in relation with the agricultural processing industries of the region and aims at the development of farm regions through a better utilization of available agricultural recourses and agricultural industries. The DSS uses Linear and Goal Programming models and provides for different goals alternative production plans that optimize the use of available recourses. On the other hand, the alternative plans achieve a better utilization of the existent agricultural processing industries or propose their expansion by taking into account the supply and demand of agricultural products in the region. The DSS is computerized and supported by a set of relational data bases. The corresponding software has been developed in Microsoft Windows platform, using Microsoft Visual Basic, Microsoft Access and LINDO. For demonstration reasons, the paper includes an application of the proposed DSS in the region of Servia Kozanis in Northern Greece.

  19. Retooling institutional support infrastructure for clinical research.

    Science.gov (United States)

    Snyder, Denise C; Brouwer, Rebecca N; Ennis, Cory L; Spangler, Lindsey L; Ainsworth, Terry L; Budinger, Susan; Mullen, Catherine; Hawley, Jeffrey; Uhlenbrauck, Gina; Stacy, Mark

    2016-05-01

    Clinical research activities at academic medical centers are challenging to oversee. Without effective research administration, a continually evolving set of regulatory and institutional requirements can divert investigator and study team attention away from a focus on scientific gain, study conduct, and patient safety. However, even when the need for research administration is recognized, there can be struggles over what form it should take. Central research administration may be viewed negatively, with individual groups preferring to maintain autonomy over processes. Conversely, a proliferation of individualized approaches across an institution can create inefficiencies or invite risk. This article describes experiences establishing a unified research support office at the Duke University School of Medicine based on a framework of customer support. The Duke Office of Clinical Research was formed in 2012 with a vision that research administration at academic medical centers should help clinical investigators navigate the complex research environment and operationalize research ideas. The office provides an array of services that have received high satisfaction ratings. The authors describe the ongoing culture change necessary for success of the unified research support office. Lessons learned from implementation of the Duke Office of Clinical Research may serve as a model for other institutions undergoing a similar transition.

  20. A decision support system for use of probability forecasts

    NARCIS (Netherlands)

    De Kleermaeker, S.; Verkade, J.S.

    2013-01-01

    Often, water management decisions are based on hydrological forecasts, which are affected by inherent uncertainties. It is increasingly common for forecasters to make explicit estimates of these uncertainties. Associated benefits include the decision makers’ increased awareness of forecasting uncert

  1. Documentation of a decision framework to support enhanced sludge washing

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, A.J.

    1995-12-31

    This document describes a proposed decision model that, if developed to its fullest, can provide a wide range of analysis options and insights to pretreatment/sludge washing alternatives. A recent decision has been made to terminate this work

  2. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  3. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    Science.gov (United States)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  4. The development of a disease oriented eFolder for multiple sclerosis decision support

    Science.gov (United States)

    Ma, Kevin; Jacobs, Colin; Fernandez, James; Amezcua, Lilyana; Liu, Brent

    2010-03-01

    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. The chronic nature of MS necessitates multiple MRI studies to track disease progression. Currently, MRI assessment of multiple sclerosis requires manual lesion measurement and yields an estimate of lesion volume and change that is highly variable and user-dependent. In the setting of a longitudinal study, disease trends and changes become difficult to extrapolate from the lesions. In addition, it is difficult to establish a correlation between these imaged lesions and clinical factors such as treatment course. To address these clinical needs, an MS specific e-Folder for decision support in the evaluation and assessment of MS has been developed. An e-Folder is a disease-centric electronic medical record in contrast to a patient-centric electronic health record. Along with an MS lesion computer aided detection (CAD) package for lesion load, location, and volume, clinical parameters such as patient demographics, disease history, clinical course, and treatment history are incorporated to make the e-Folder comprehensive. With the integration of MRI studies together with related clinical data and informatics tools designed for monitoring multiple sclerosis, it provides a platform to improve the detection of treatment response in patients with MS. The design and deployment of MS e-Folder aims to standardize MS lesion data and disease progression to aid in decision making and MS-related research.

  5. Intelligent Decision Support and Big Data for Logistics and Supply Chain Management – A Biased View

    DEFF Research Database (Denmark)

    Pahl, Julia; Voss, Stefan; Sebastian, Hans-Jürgen

    2017-01-01

    Intelligent Decision Support and Big Data for Logistics and Supply Chain Management” features theoretical developments, real-world applications and information systems related to solving decision problems in logistics and supply chain management. Methods include optimization, heuristics...

  6. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    Science.gov (United States)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it

  7. Visualization Component of Vehicle Health Decision Support System

    Science.gov (United States)

    Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy

    2008-01-01

    The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a

  8. Towards a Decision Support System for Space Flight Operations

    Science.gov (United States)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  9. A decision support tool for basin irrigation in northern Nigeria

    Directory of Open Access Journals (Sweden)

    Olumuyiwa S. Asaolu

    2009-07-01

    Full Text Available Inadequate rainfall, water resources scarcity and attendant food security-related problems have made irrigation technology a necessity. This work presents the development of a decision support system for solving surface irrigation design problems in northern Nigeria. The arid northern states affected by desert encroachment constitute a good candidate and their climatological data was obtained from the Nigerian Metrological Agency. The interactive system was defined in terms of inputs and outputs. The inputs were properties of soil, surface irrigation method and climate. The outputs were mainly the quantity of water application, scheduling pattern, possible design configuration, advance time, cut-off time, application rate, and water use efficiency. The FAO Penman-Monteith equation was used to estimate evapotranspiration values of major crops grown in Nigeria. Mathematical models outlined by Walker and Skogerboe were adapted, and heuristics applied in determining the best configuration that achieves optimum water application efficiency. We encoded the knowledge base using Matlab® software. The application was successfully used for the modification of a farm irrigation scheme in Kaduna state. This indicates that the adoption of new technologies for irrigation design issues could enhance agricultural productivity in northern Nigeria.

  10. Why decision support systems are important for medical education.

    Science.gov (United States)

    Konstantinidis, Stathis Th; Bamidis, Panagiotis D

    2016-03-01

    During the last decades, the inclusion of digital tools in health education has rapidly lead to a continuously enlarging digital era. All the online interactions between learners and tutors, the description, creation, reuse and sharing of educational digital resources and the interlinkage between them in conjunction with cheap storage technology has led to an enormous amount of educational data. Medical education is a unique type of education due to accuracy of information needed, continuous changing competences required and alternative methods of education used. Nowadays medical education standards provide the ground for organising the educational data and the paradata. Analysis of such education data through education data mining techniques is in its infancy, but decision support systems (DSSs) for medical education need further research. To the best of our knowledge, there is a gap and a clear need for identifying the challenges for DSSs in medical education in the era of medical education standards. Thus, in this Letter the role and the attributes of such a DSS for medical education are delineated and the challenges and vision for future actions are identified.

  11. Agricultural Model for the Nile Basin Decision Support System

    Science.gov (United States)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  12. The Use of Decision Support Systems in Social Work: A Scoping Study Literature Review.

    Science.gov (United States)

    Liedgren, Pernilla; Elvhage, Gudrun; Ehrenberg, Anna; Kullberg, Christian

    2016-01-01

    Decision support systems are known to be helpful for professionals in many medical professions. In social work, decision support systems have had modest use, accompanied by strong criticism from the profession but often by praise from political management. In this study the aim of the authors was to collect and report on the published evidence on decision support systems in social work. The conclusion of the authors is that a decision support system gives support to social workers in conducting a thorough investigation, but at the same time gives them the freedom to make autonomous decisions that might be the most helpful for and used by social workers. Their results also indicate that decision support systems focusing on atypical rather than typical cases are perceived as the most useful among experienced staff.

  13. Adoption of Web-based Group Decision Support Systems: Conditions for Growth

    NARCIS (Netherlands)

    Hillegersberg, van Jos; Koenen, Sebastiaan

    2014-01-01

    While organizations have massively adopted enterprise information systems to support business processes, business meetings in which key decisions are made about products, services and processes are usually held without much support of information systems. This is remarkable as group decision support

  14. Towards knowledge-based systems in clinical practice: development of an integrated clinical information and knowledge management support system.

    Science.gov (United States)

    Kalogeropoulos, Dimitris A; Carson, Ewart R; Collinson, Paul O

    2003-09-01

    Given that clinicians presented with identical clinical information will act in different ways, there is a need to introduce into routine clinical practice methods and tools to support the scientific homogeneity and accountability of healthcare decisions and actions. The benefits expected from such action include an overall reduction in cost, improved quality of care, patient and public opinion satisfaction. Computer-based medical data processing has yielded methods and tools for managing the task away from the hospital management level and closer to the desired disease and patient management level. To this end, advanced applications of information and disease process modelling technologies have already demonstrated an ability to significantly augment clinical decision making as a by-product. The wide-spread acceptance of evidence-based medicine as the basis of cost-conscious and concurrently quality-wise accountable clinical practice suffices as evidence supporting this claim. Electronic libraries are one-step towards an online status of this key health-care delivery quality control environment. Nonetheless, to date, the underlying information and knowledge management technologies have failed to be integrated into any form of pragmatic or marketable online and real-time clinical decision making tool. One of the main obstacles that needs to be overcome is the development of systems that treat both information and knowledge as clinical objects with same modelling requirements. This paper describes the development of such a system in the form of an intelligent clinical information management system: a system which at the most fundamental level of clinical decision support facilitates both the organised acquisition of clinical information and knowledge and provides a test-bed for the development and evaluation of knowledge-based decision support functions.

  15. Decision Support Systems Effect on Reengineering Field Research on Jordanian Tourism Companies

    OpenAIRE

    2014-01-01

    This research aimed to recognize the cause and effect of decision support system on reengineering the Jordanian tourism companies. In order to achieve the research aims, researcher developed a questionnaire and distributed it to a 43-individual sample randomly. The research results in that the extent of interest in decision support systems and reengineering work systems doesn’t get that high, and clearly there was a cause and effect relationship between decision support systems and reengineer...

  16. Computer aided decision support system for cervical cancer classification

    Science.gov (United States)

    Rahmadwati, Rahmadwati; Naghdy, Golshah; Ros, Montserrat; Todd, Catherine

    2012-10-01

    Conventional analysis of a cervical histology image, such a pap smear or a biopsy sample, is performed by an expert pathologist manually. This involves inspecting the sample for cellular level abnormalities and determining the spread of the abnormalities. Cancer is graded based on the spread of the abnormal cells. This is a tedious, subjective and time-consuming process with considerable variations in diagnosis between the experts. This paper presents a computer aided decision support system (CADSS) tool to help the pathologists in their examination of the cervical cancer biopsies. The main aim of the proposed CADSS system is to identify abnormalities and quantify cancer grading in a systematic and repeatable manner. The paper proposes three different methods which presents and compares the results using 475 images of cervical biopsies which include normal, three stages of pre cancer, and malignant cases. This paper will explore various components of an effective CADSS; image acquisition, pre-processing, segmentation, feature extraction, classification, grading and disease identification. Cervical histological images are captured using a digital microscope. The images are captured in sufficient resolution to retain enough information for effective classification. Histology images of cervical biopsies consist of three major sections; background, stroma and squamous epithelium. Most diagnostic information are contained within the epithelium region. This paper will present two levels of segmentations; global (macro) and local (micro). At the global level the squamous epithelium is separated from the background and stroma. At the local or cellular level, the nuclei and cytoplasm are segmented for further analysis. Image features that influence the pathologists' decision during the analysis and classification of a cervical biopsy are the nuclei's shape and spread; the ratio of the areas of nuclei and cytoplasm as well as the texture and spread of the abnormalities

  17. The decision exploration lab : supporting the business analyst in understanding automated decisions

    NARCIS (Netherlands)

    Broeksema, Bertjan

    2014-01-01

    A Decision Management System (DMS) provides means to model and automate enterprise decisions and they are applied in a wide range of industries, among which health care, commerce, insurance, finance and transportation. These systems make millions of decisions each day without direct human supervisio

  18. Health innovations in patient decision support: Bridging the gaps and challenges

    Directory of Open Access Journals (Sweden)

    Chirk Jenn Ng

    2013-02-01

    Full Text Available Patient decision aids (PDAs help to support patients in making an informed and value-based decision. Despite advancement in decision support technologies over the past 30 years, most PDAs are still inaccessible and few address individual needs. Health innovation may provide a solution to bridge these gaps. Information and computer technology provide a platform to incorporate individual profiles and needs into PDAs, making the decision support more personalised. Health innovation may enhance accessibility by using mobile, tablet and Internet technologies; make risk communication more interactive; and identify patient values more effectively. In addition, using databases to capture patient data and the usage of PDAs can help: developers to improve PDAs’ design; clinicians to facilitate the decisionmaking process more effectively; and policy makers to make shared decision making more feasible and cost-effective. Health innovation may hold the key to advancing PDAs by creating a more personalised and effective decision support tool for patients making healthcare decisions.

  19. Health innovations in patient decision support: Bridging the gaps and challenges.

    Science.gov (United States)

    Ng, Chirk Jenn; Lee, Yew Kong; Lee, Ping Yein; Abdullah, Khatijah Lim

    2013-01-01

    Patient decision aids (PDAs) help to support patients in making an informed and value-based decision. Despite advancement in decision support technologies over the past 30 years, most PDAs are still inaccessible and few address individual needs. Health innovation may provide a solution to bridge these gaps. Information and computer technology provide a platform to incorporate individual profiles and needs into PDAs, making the decision support more personalised. Health innovation may enhance accessibility by using mobile, tablet and Internet technologies; make risk communication more interactive; and identify patient values more effectively. In addition, using databases to capture patient data and the usage of PDAs can help: developers to improve PDAs' design; clinicians to facilitate the decisionmaking process more effectively; and policy makers to make shared decision making more feasible and cost-effective. Health innovation may hold the key to advancing PDAs by creating a more personalised and effective decision support tool for patients making healthcare decisions.

  20. Representing Human Expertise by the OWL Web Ontology Language to Support Knowledge Engineering in Decision Support Systems.

    Science.gov (United States)

    Ramzan, Asia; Wang, Hai; Buckingham, Christopher

    2014-01-01

    Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.