WorldWideScience

Sample records for clinical ct-based calculations

  1. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Science.gov (United States)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  2. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Institute of Scientific and Technical Information of China (English)

    Chen Chaobin; Huang Qunying; Wu Yican

    2005-01-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of X-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  3. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations

    Science.gov (United States)

    Bazalova, Magdalena; Carrier, Jean-François; Beaulieu, Luc; Verhaegen, Frank

    2008-05-01

    Monte Carlo (MC) dose calculations are performed on patient geometries derived from computed tomography (CT) images. For most available MC codes, the Hounsfield units (HU) in each voxel of a CT image have to be converted into mass density (ρ) and material type. This is typically done with a (HU; ρ) calibration curve which may lead to mis-assignment of media. In this work, an improved material segmentation using dual-energy CT-based material extraction is presented. For this purpose, the differences in extracted effective atomic numbers Z and the relative electron densities ρe of each voxel are used. Dual-energy CT material extraction based on parametrization of the linear attenuation coefficient for 17 tissue-equivalent inserts inside a solid water phantom was done. Scans of the phantom were acquired at 100 kVp and 140 kVp from which Z and ρe values of each insert were derived. The mean errors on Z and ρe extraction were 2.8% and 1.8%, respectively. Phantom dose calculations were performed for 250 kVp and 18 MV photon beams and an 18 MeV electron beam in the EGSnrc/DOSXYZnrc code. Two material assignments were used: the conventional (HU; ρ) and the novel (HU; ρ, Z) dual-energy CT tissue segmentation. The dose calculation errors using the conventional tissue segmentation were as high as 17% in a mis-assigned soft bone tissue-equivalent material for the 250 kVp photon beam. Similarly, the errors for the 18 MeV electron beam and the 18 MV photon beam were up to 6% and 3% in some mis-assigned media. The assignment of all tissue-equivalent inserts was accurate using the novel dual-energy CT material assignment. As a result, the dose calculation errors were below 1% in all beam arrangements. Comparable improvement in dose calculation accuracy is expected for human tissues. The dual-energy tissue segmentation offers a significantly higher accuracy compared to the conventional single-energy segmentation.

  4. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Fin, Loic; Daouk, Joel; Morvan, Julie; Esper, Isabelle El; Saidi, Lazhar; Meyer, Marc-Etienne [Amiens University Hospital, Nuclear Medicine Department, Amiens (France); Bailly, Pascal [Amiens University Hospital, Nuclear Medicine Department, Amiens (France); CHU d' Amiens, Service de Medecine Nucleaire, unite TEP, Hopital Sud, Amiens cedex (France)

    2008-11-15

    Respiratory motion causes uptake in positron emission tomography (PET) images of chest structures to spread out and misregister with the CT images. This misregistration can alter the attenuation correction and thus the quantisation of PET images. In this paper, we present the first clinical results for a respiratory-gated PET (RG-PET) processing method based on a single breath-hold CT (BH-CT) acquisition, which seeks to improve diagnostic accuracy via better PET-to-CT co-registration. We refer to this method as ''CT-based'' RG-PET processing. Thirteen lesions were studied. Patients underwent a standard clinical PET protocol and then the CT-based protocol, which consists of a 10-min List Mode RG-PET acquisition, followed by a shallow end-expiration BH-CT. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions' centroids on PET and CT images. SUV{sub MAX} and volume variations were also investigated. The CT-based method showed significantly lower (p=0.027) centroid distances (mean change relative to the clinical method =-49%; range =-100% to 0%). This led to higher SUV{sub MAX} (mean change =+33%; range =-4% to 69%). Lesion volumes were significantly lower (p=0.022) in CT-based PET volumes (mean change =-39%: range =-74% to -1%) compared with clinical ones. A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement. (orig.)

  5. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions

    International Nuclear Information System (INIS)

    Respiratory motion causes uptake in positron emission tomography (PET) images of chest structures to spread out and misregister with the CT images. This misregistration can alter the attenuation correction and thus the quantisation of PET images. In this paper, we present the first clinical results for a respiratory-gated PET (RG-PET) processing method based on a single breath-hold CT (BH-CT) acquisition, which seeks to improve diagnostic accuracy via better PET-to-CT co-registration. We refer to this method as ''CT-based'' RG-PET processing. Thirteen lesions were studied. Patients underwent a standard clinical PET protocol and then the CT-based protocol, which consists of a 10-min List Mode RG-PET acquisition, followed by a shallow end-expiration BH-CT. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions' centroids on PET and CT images. SUVMAX and volume variations were also investigated. The CT-based method showed significantly lower (p=0.027) centroid distances (mean change relative to the clinical method =-49%; range =-100% to 0%). This led to higher SUVMAX (mean change =+33%; range =-4% to 69%). Lesion volumes were significantly lower (p=0.022) in CT-based PET volumes (mean change =-39%: range =-74% to -1%) compared with clinical ones. A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement. (orig.)

  6. A CT-based analytical dose calculation method for HDR 192Ir brachytherapy

    International Nuclear Information System (INIS)

    Purpose: This article presents an analytical dose calculation method for high-dose-rate 192Ir brachytherapy, taking into account the effects of inhomogeneities and reduced photon backscatter near the skin. The adequacy of the Task Group 43 (TG-43) two-dimensional formalism for treatment planning is also assessed. Methods: The proposed method uses material composition and density data derived from computed tomography images. The primary and scatter dose distributions for each dwell position are calculated first as if the patient is an infinite water phantom. This is done using either TG-43 or a database of Monte Carlo (MC) dose distributions. The latter can be used to account for the effects of shielding in water. Subsequently, corrections for photon attenuation, scatter, and spectral variations along medium- or low-Z inhomogeneities are made according to the radiological paths determined by ray tracing. The scatter dose is then scaled by a correction factor that depends on the distances between the point of interest, the body contour, and the source position. Dose calculations are done for phantoms with tissue and lead inserts, as well as patient plans for head-and-neck, esophagus, and MammoSite balloon breast brachytherapy treatments. Gamma indices are evaluated using a dose-difference criterion of 3% and a distance-to-agreement criterion of 2 mm. PTRANCT MC calculations are used as the reference dose distributions. Results: For the phantom with tissue and lead inserts, the percentages of the voxels of interest passing the gamma criteria (Pγ≥1) are 100% for the analytical calculation and 91% for TG-43. For the breast patient plan, TG-43 overestimates the target volume receiving the prescribed dose by 4% and the dose to the hottest 0.1 cm3 of the skin by 9%, whereas the analytical and MC results agree within 0.4%. Pγ≥1 are 100% and 48% for the analytical and TG-43 calculations, respectively. For the head-and-neck and esophagus patient plans, Pγ≥1 are ≥99

  7. Organ dose calculation in CT based on scout image data and automatic image registration

    Energy Technology Data Exchange (ETDEWEB)

    Kortesniemi, Mika; Salli, Eero; Seuri, Raija [HUS Helsinki Medical Imaging Center, Univ. of Helsinki, Helsinki (Finland)], E-mail: mika.kortesniemi@hus.fi

    2012-10-15

    Background Computed tomography (CT) has become the main contributor of the cumulative radiation exposure in radiology. Information on cumulative exposure history of the patient should be available for efficient management of radiation exposures and for radiological justification. Purpose To develop and evaluate automatic image registration for organ dose calculation in CT. Material and Methods Planning radiograph (scout) image data describing CT scan ranges from 15 thoracic CT examinations (9 men and 6 women) and 10 abdominal CT examinations (6 men and 4 women) were co-registered with the reference trunk CT scout image. 2-D affine transformation and normalized correlation metric was used for image registration. Longitudinal (z-axis) scan range coordinates on the reference scout image were converted into slice locations on the CT-Expo anthropomorphic male and female models, following organ and effective dose calculations. Results The average deviation of z-location of studied patient images from the corresponding location in the reference scout image was 6.2 mm. The ranges of organ and effective doses with constant exposure parameters were from 0 to 28.0 mGy and from 7.3 to 14.5 mSv, respectively. The mean deviation of the doses for fully irradiated organs (inside the scan range), partially irradiated organs and non-irradiated organs (outside the scan range) was 1%, 5%, and 22%, respectively, due to image registration. Conclusion The automated image processing method to registrate individual chest and abdominal CT scout radiograph with the reference scout radiograph is feasible. It can be used to determine the individual scan range coordinates in z-direction to calculate the organ dose values. The presented method could be utilized in automatic organ dose calculation in CT for radiation exposure tracking of the patients.

  8. Monte Carlo simulation for dose distribution calculations in a CT-based phantom at the Portuguese gamma irradiation facility

    Science.gov (United States)

    Oliveira, Carlos; Yoriyaz, Hélio; Oliveira, M. Carmo; Ferreira, L. M.

    2004-01-01

    In preview works the Portuguese Gamma Irradiation Facility, UTR, has been simulated using the MCNP code and the product to be irradiated has been drawn using the boolean operators with the MCNP surfaces. However, sometimes the product to be irradiated could have an irregular shape. The paper describes an alternative way for drawing the corresponding volume based on CT image data in a format of a 3D matrix of voxels. This data are read by a specific code called SCMS which transforms it into a MCNP input file. The dimensions of each MCNP voxel depend on the number of elements in the CT-based matrix. Additionally, the new approach allows one to know dose distributions anywhere without extra definitions of surfaces or volumes. Experimental dose measurements were carried out using Amber Perspex dosimeters. This work presents the results of MCNP simulations using both modeling modes - the standard mode and the voxel mode.

  9. NOTE: How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis?

    Science.gov (United States)

    Roberts, Ralph

    2001-09-01

    The accuracy of a CT-based dose calculation on a treatment planning system (TPS) for a radiotherapy patient with a metallic prosthesis has not previously been reported. In this study, the accuracy of the CT-based inhomogeneity correction on a pencil beam TPS (Helax TMS) was determined in a phantom containing a metallic prosthesis. A steel prosthesis phantom and a titanium prosthesis phantom were investigated. The phantoms were CT-scanned and dose plans produced on the TPS, using the CT images to provide density information for the inhomogeneity corrections. Verification measurements were performed on a linear accelerator for 6 and 15 MV x-rays. Measured dose profiles at three different depths were compared to the calculations of the TPS. For the titanium prosthesis and for 6 MV x-rays, the TPS overestimated the beam attenuation by approximately 20% at 15 and 20 cm depths in the phantom. This is due to a limitation in the density allocation of this TPS: any Hounsfield number (HN) above a certain threshold is allocated the density of steel. For the steel prosthesis, the TPS performed the correct mapping of HN to mass density. The dose calculation was within 6% for 6 MV x-rays at 15 and 20 cm depths. However, the accuracy of dose calculation varied with beam energy and depth, with large errors in the region close to the prosthesis. The TPS overestimated the dose by 11% for 6 MV and 15% for 15 MV x-rays at 11 cm depth, 2.5 cm beyond the steel prosthesis. These results highlight the limitations in the density allocation of this TPS and demonstrate shortcomings in the pencil beam dose calculation.

  10. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis?

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ralph [Department of Medical Physics, Oxford Radcliffe Hospitals, The Churchill, Headington, Oxford (United Kingdom)

    2001-09-01

    The accuracy of a CT-based dose calculation on a treatment planning system (TPS) for a radiotherapy patient with a metallic prosthesis has not previously been reported. In this study, the accuracy of the CT-based inhomogeneity correction on a pencil beam TPS (Helax TMS) was determined in a phantom containing a metallic prosthesis. A steel prosthesis phantom and a titanium prosthesis phantom were investigated. The phantoms were CT-scanned and dose plans produced on the TPS, using the CT images to provide density information for the inhomogeneity corrections. Verification measurements were performed on a linear accelerator for 6 and 15 MV x-rays. Measured dose profiles at three different depths were compared to the calculations of the TPS. For the titanium prosthesis and for 6 MV x-rays, the TPS overestimated the beam attenuation by approximately 20% at 15 and 20 cm depths in the phantom. This is due to a limitation in the density allocation of this TPS: any Hounsfield number (HN) above a certain threshold is allocated the density of steel. For the steel prosthesis, the TPS performed the correct mapping of HN to mass density. The dose calculation was within 6% for 6 MV x-rays at 15 and 20 cm depths. However, the accuracy of dose calculation varied with beam energy and depth, with large errors in the region close to the prosthesis. The TPS overestimated the dose by 11% for 6 MV and 15% for 15 MV x-rays at 11 cm depth, 2.5 cm beyond the steel prosthesis. These results highlight the limitations in the density allocation of this TPS and demonstrate shortcomings in the pencil beam dose calculation. (author)

  11. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis?

    International Nuclear Information System (INIS)

    The accuracy of a CT-based dose calculation on a treatment planning system (TPS) for a radiotherapy patient with a metallic prosthesis has not previously been reported. In this study, the accuracy of the CT-based inhomogeneity correction on a pencil beam TPS (Helax TMS) was determined in a phantom containing a metallic prosthesis. A steel prosthesis phantom and a titanium prosthesis phantom were investigated. The phantoms were CT-scanned and dose plans produced on the TPS, using the CT images to provide density information for the inhomogeneity corrections. Verification measurements were performed on a linear accelerator for 6 and 15 MV x-rays. Measured dose profiles at three different depths were compared to the calculations of the TPS. For the titanium prosthesis and for 6 MV x-rays, the TPS overestimated the beam attenuation by approximately 20% at 15 and 20 cm depths in the phantom. This is due to a limitation in the density allocation of this TPS: any Hounsfield number (HN) above a certain threshold is allocated the density of steel. For the steel prosthesis, the TPS performed the correct mapping of HN to mass density. The dose calculation was within 6% for 6 MV x-rays at 15 and 20 cm depths. However, the accuracy of dose calculation varied with beam energy and depth, with large errors in the region close to the prosthesis. The TPS overestimated the dose by 11% for 6 MV and 15% for 15 MV x-rays at 11 cm depth, 2.5 cm beyond the steel prosthesis. These results highlight the limitations in the density allocation of this TPS and demonstrate shortcomings in the pencil beam dose calculation. (author)

  12. Correlation of CT-based regional cardiac function (SQUEEZ) with myocardial strain calculated from tagged MRI: an experimental study.

    Science.gov (United States)

    Pourmorteza, Amir; Chen, Marcus Y; van der Pals, Jesper; Arai, Andrew E; McVeigh, Elliot R

    2016-05-01

    The objective of this study was to investigate the correlation between local myocardial function estimates from CT and myocardial strain from tagged MRI in the same heart. Accurate detection of regional myocardial dysfunction can be an important finding in the diagnosis of functionally significant coronary artery disease. Tagged MRI is currently a reference standard for noninvasive regional myocardial function analysis; however, it has practical drawbacks. We have developed a CT imaging protocol and automated image analysis algorithm for estimating regional cardiac function from a few heartbeats. This method tracks the motion of the left ventricular (LV) endocardial surface to produce local function maps: we call the method Stretch Quantification of Endocardial Engraved Zones (SQUEEZ). Myocardial infarction was created by ligation of the left anterior descending coronary artery for 2 h followed by reperfusion in canine models. Tagged and cine MRI scans were performed during the reperfusion phase and first-pass contrast enhanced CT scans were acquired. The average delay between the CT and MRI scans was myocardial strain (Ecc) was calculated from the tagged MRI data. The agreement between peak systolic Ecc and SQUEEZ was investigated in 162 segments in the 9 hearts. Linear regression and Bland-Altman analysis was used to assess the correlation between the two metrics of local LV function. The results show good agreement between SQUEEZ and Ecc: (r = 0.71, slope = 0.78, p function. The good agreement between the estimates of local myocardial function obtained from CT SQUEEZ and tagged MRI provides encouragement to investigate the use of SQUEEZ for measuring regional cardiac function at a low clinical dose in humans.

  13. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data

    Directory of Open Access Journals (Sweden)

    Andrzej Kotela

    2015-01-01

    Full Text Available Total knee arthroplasty (TKA is a frequently performed procedure in orthopaedic surgery. Recently, patient-specific instrumentation was introduced to facilitate correct positioning of implants. The aim of this study was to compare the early clinical results of TKA performed with patient-specific CT-based instrumentation and conventional technique. A prospective, randomized controlled trial on 112 patients was performed between January 2011 and December 2011. A group of 112 patients who met the inclusion and exclusion criteria were enrolled in this study and randomly assigned to an experimental or control group. The experimental group comprised 52 patients who received the Signature CT-based implant positioning system, and the control group consisted of 60 patients with conventional instrumentation. Clinical outcomes were evaluated with the KSS scale, WOMAC scale, and VAS scales to assess knee pain severity and patient satisfaction with the surgery. Specified in-hospital data were recorded. Patients were followed up for 12 months. At one year after surgery, there were no statistically significant differences between groups with respect to clinical outcomes and in-hospital data, including operative time, blood loss, hospital length of stay, intraoperative observations, and postoperative complications. Further high-quality investigations of various patient-specific systems and longer follow-up may be helpful in assessing their utility for TKA.

  14. CT-based liver volumetry in a porcine model: impact on clinical volumetry prior to living donated liver transplantation

    International Nuclear Information System (INIS)

    Purpose: Exact preoperative determination of the liver volume is of great importance prior to hepatobiliary surgery, especially in living donated liver transplantation (LDLT). In the current literature, a strong correlation between preoperatively calculated and intraoperatively measured liver volumes has been described. Such accuracy seems questionable, primarily due to a difference in the perfusion state of the liver in situ versus after explantation. Purpose of the study was to asses the influence of the perfusion state on liver volume and the validity of the preoperative liver volumetry prior to LDLT. Methods: In an experimental study, 20 porcine livers were examined. The livers were weighted and their volumes were determined by water displacement prior and after fluid infusion to achieve a pressure physiologically found in the liver veins. The liver volumes in the different perfusion states were calculated based on CT-data. The calculated values were compared with the volume measured by water displacement and the weight of the livers. Results: Assessment of calculated CT volumes and water displacements at identical perfusion states showed a tight correlation and differed on average by 4 ± 5%. However, livers before and after fluid infusion showed a 33 ± 8% (350 ± 150 ml) difference in volume. Conclusion: CT-volumetry acquires highly accurate data as confirmed by water displacement studies. However, the perfusion state has major impact on liver volume, which has to be accounted for in clinical use. (orig.)

  15. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van, E-mail: m.v.herk@nki.nl

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  16. Clinical value of CT-based preoperative software assisted lung lobe volumetry for predicting postoperative pulmonary function after lung surgery

    Science.gov (United States)

    Wormanns, Dag; Beyer, Florian; Hoffknecht, Petra; Dicken, Volker; Kuhnigk, Jan-Martin; Lange, Tobias; Thomas, Michael; Heindel, Walter

    2005-04-01

    This study was aimed to evaluate a morphology-based approach for prediction of postoperative forced expiratory volume in one second (FEV1) after lung resection from preoperative CT scans. Fifteen Patients with surgically treated (lobectomy or pneumonectomy) bronchogenic carcinoma were enrolled in the study. A preoperative chest CT and pulmonary function tests before and after surgery were performed. CT scans were analyzed by prototype software: automated segmentation and volumetry of lung lobes was performed with minimal user interaction. Determined volumes of different lung lobes were used to predict postoperative FEV1 as percentage of the preoperative values. Predicted FEV1 values were compared to the observed postoperative values as standard of reference. Patients underwent lobectomy in twelve cases (6 upper lobes; 1 middle lobe; 5 lower lobes; 6 right side; 6 left side) and pneumonectomy in three cases. Automated calculation of predicted postoperative lung function was successful in all cases. Predicted FEV1 ranged from 54% to 95% (mean 75% +/- 11%) of the preoperative values. Two cases with obviously erroneous LFT were excluded from analysis. Mean error of predicted FEV1 was 20 +/- 160 ml, indicating absence of systematic error; mean absolute error was 7.4 +/- 3.3% respective 137 +/- 77 ml/s. The 200 ml reproducibility criterion for FEV1 was met in 11 of 13 cases (85%). In conclusion, software-assisted prediction of postoperative lung function yielded a clinically acceptable agreement with the observed postoperative values. This method might add useful information for evaluation of functional operability of patients with lung cancer.

  17. Intravenous contrast-enhanced CT can be used for CT-based attenuation correction in clinical 111In-octreotide SPECT/CT

    DEFF Research Database (Denmark)

    Klausen, Thomas Levin; Mortensen, Jann; de Nijs, Robin;

    2015-01-01

    , and (C) 110 ± 9. For all attenuation correction (AC) scans, the mean values increased with increasing iodine concentration. PATIENTS: there were no visible artifacts in single photon emission computed tomography (SPECT) following CT-AC with contrast-enhanced CT. The average score of image quality was 4......BACKGROUND: CT-based attenuation correction (CT-AC) using contrast-enhancement CT impacts (111)In-SPECT image quality and quantification. In this study we assessed and evaluated the effect. METHODS: A phantom (5.15 L) was filled with an aqueous solution of In-111. Three SPECT/CT scans were...... in a central volume. Ten patients referred for (111)In-octreotide scintigraphy were scanned according to our clinical (111)In-SPECT/CT protocol including a topogram, a LD (140 kVp), and a FD (120 kVp). The FD/contrast-enhanced CT was acquired in both arterial (FDAP) and venous phase (FDVP) following a mono...

  18. Intravenous contrast-enhanced CT can be used for CT-based attenuation correction in clinical 111In-octreotide SPECT/CT

    OpenAIRE

    Klausen, Thomas Levin; Mortensen, Jann; de Nijs, Robin; Andersen, Flemming Littrup; Højgaard, Liselotte; Beyer, Thomas; Holm, Søren

    2015-01-01

    Background CT-based attenuation correction (CT-AC) using contrast-enhancement CT impacts 111In-SPECT image quality and quantification. In this study we assessed and evaluated the effect. Methods A phantom (5.15 L) was filled with an aqueous solution of In-111. Three SPECT/CT scans were performed: (A) no IV contrast, (B) with 100-mL IV contrast, and (C) with 200-mL IV contrast added. Scan protocol included a localization CT, a low-dose CT (LD), and a full-dose CT (FD). Phantom, LD and FD scan ...

  19. CT-based attenuation correction in the calculation of semi-quantitative indices of [{sup 18}F]FDG uptake in PET

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D.; Costa, D.C.; Croasdale, I.; Bomanji, J.; Gacinovic, S.; Ell, P.J. [Institute of Nuclear Medicine, Royal Free and University College Medical School, Middlesex Hospital, Mortimer Street, W1T 3AA, London (United Kingdom); Lonn, A.H.R. [GE Medical Systems, Slough (United Kingdom)

    2003-03-01

    The introduction of combined PET/CT systems has a number of advantages, including the utilisation of CT images for PET attenuation correction (AC). The potential advantage compared with existing methodology is less noisy transmission maps within shorter times of acquisition. The objective of our investigation was to assess the accuracy of CT attenuation correction (CTAC) and to study resulting bias and signal to noise ratio (SNR) in image-derived semi-quantitative uptake indices. A combined PET/CT system (GE Discovery LS) was used. Different size phantoms containing variable density components were used to assess the inherent accuracy of a bilinear transformation in the conversion of CT images to 511 keV attenuation maps. This was followed by a phantom study simulating tumour imaging conditions, with a tumour to background ratio of 5:1. An additional variable was the inclusion of contrast agent at different concentration levels. A CT scan was carried out followed by 5 min emission with 1-h and 3-min transmission frames. Clinical data were acquired in 50 patients, who had a CT scan under normal breathing conditions (CTAC{sub nb}) or under breath-hold with inspiration (CTAC{sub insp}) or expiration (CTAC{sub exp}), followed by a PET scan of 5 and 3 min per bed position for the emission and transmission scans respectively. Phantom and patient studies were reconstructed using segmented AC (SAC) and CTAC. In addition, measured AC (MAC) was performed for the phantom study using the 1-h transmission frame. Comparing the attenuation coefficients obtained using the CT- and the rod source-based attenuation maps, differences of 3% and <6% were recorded before and after segmentation of the measured transmission maps. Differences of up to 6% and 8% were found in the average count density (SUV{sub avg}) between the phantom images reconstructed with MAC and those reconstructed with CTAC and SAC respectively. In the case of CTAC, the difference increased up to 27% with the

  20. Clinical impact of 99mTc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with 90Y-loaded microspheres

    International Nuclear Information System (INIS)

    Radioembolization with 90Y-loaded microspheres is increasingly used in the treatment of primary and secondary liver cancer. Technetium-99 m macroaggregated albumin (MAA) scintigraphy is used as a surrogate of microsphere distribution to assess lung or digestive shunting prior to therapy, based on tumoral targeting and dosimetry. To date, this has been the sole pre-therapeutic tool available for such evaluation. Several dosimetric approaches have been described using both glass and resin microspheres in hepatocellular carcinoma (HCC) and liver metastasis. Given that each product offers different specific activities and numbers of spheres injected, their radiobiological properties are believed to lightly differ. This paper summarizes and discusses the available studies focused on MAA-based dosimetry, particularly concentrating on potential confounding factors like clinical context, tumor size, cirrhosis, previous or concomitant therapy, and product used. In terms of the impact of tumoral dose in HCC, the results were concordant and a response relationship and tumoral threshold dose was clearly identified, especially in studies using glass microspheres. Tumoral dose has also been found to influence survival. The concept of treatment intensification has recently been introduced, yet despite several studies publishing interesting findings on the tumor dose-metastasis relationship, no consensus has been reached, and further clarification is thus required. Nor has the maximal tolerated dose to the liver been well documented, requiring more accurate evaluation. Lung dose was well described, despite recently identified factors influencing its evaluation, requiring further assessment. MAA SPECT/CT dosimetry is accurate in HCC and can now be used in order to achieve a fully customized approach, including treatment intensification. Yet further studies are warranted for the metastasis setting and evaluating the maximal tolerated liver dose. (orig.)

  1. Clinical impact of {sup 99m}Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with {sup 90}Y-loaded microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Garin, Etienne [Cancer Institute Eugene Marquis, Department of Nuclear Medicine, Rennes (France); University of Rennes 1, Rennes (France); INSERM, U-991, Liver Metabolisms and Cancer, Rennes (France); Rolland, Yan [Cancer Institute Eugene Marquis, Department of Medical Imaging, Rennes (France); Laffont, Sophie [University of Rennes 1, Rennes (France); Edeline, Julien [University of Rennes 1, Rennes (France); INSERM, U-991, Liver Metabolisms and Cancer, Rennes (France); Cancer Institute Eugene Marquis, Department of Medical Oncology, Rennes (France)

    2016-03-15

    Radioembolization with {sup 90}Y-loaded microspheres is increasingly used in the treatment of primary and secondary liver cancer. Technetium-99 m macroaggregated albumin (MAA) scintigraphy is used as a surrogate of microsphere distribution to assess lung or digestive shunting prior to therapy, based on tumoral targeting and dosimetry. To date, this has been the sole pre-therapeutic tool available for such evaluation. Several dosimetric approaches have been described using both glass and resin microspheres in hepatocellular carcinoma (HCC) and liver metastasis. Given that each product offers different specific activities and numbers of spheres injected, their radiobiological properties are believed to lightly differ. This paper summarizes and discusses the available studies focused on MAA-based dosimetry, particularly concentrating on potential confounding factors like clinical context, tumor size, cirrhosis, previous or concomitant therapy, and product used. In terms of the impact of tumoral dose in HCC, the results were concordant and a response relationship and tumoral threshold dose was clearly identified, especially in studies using glass microspheres. Tumoral dose has also been found to influence survival. The concept of treatment intensification has recently been introduced, yet despite several studies publishing interesting findings on the tumor dose-metastasis relationship, no consensus has been reached, and further clarification is thus required. Nor has the maximal tolerated dose to the liver been well documented, requiring more accurate evaluation. Lung dose was well described, despite recently identified factors influencing its evaluation, requiring further assessment. MAA SPECT/CT dosimetry is accurate in HCC and can now be used in order to achieve a fully customized approach, including treatment intensification. Yet further studies are warranted for the metastasis setting and evaluating the maximal tolerated liver dose. (orig.)

  2. Application of three-dimensional CT-based rapid prototyping technique in clinical mandibular reconstruction%基于三维CT重建的快速成型技术在下颌骨重建的临床应用

    Institute of Scientific and Technical Information of China (English)

    桑炜荣; 刘雁鸣; 严奉国

    2015-01-01

    Objective To evaluate the effects of the three-dimensional (3D)CT-based rapid prototyping technique on clinical man-dibular reconstruction. Methods Seven patients suffering from mandibular lesion were selected,and surgery was designed preoperative-ly on the 3-D model which was created by using the rapid prototyping technique and based on the 3-D CT scanning data. Guided by the preoperative design,the mandibular lesion was excised and the following bone defect was immediately reconstructed with a vascularized iliac osteomyocutaneous flap or a vascularized fibular flap,or just a simple reconstructive titanium plate. The patients were then followed up regularly. Results The mandibular defect was reconstructed with the vascularized iliac flap in three patients,with the vascularized fibular flap in three patients and with a simple titanium plate in one patient. The patients had been followed up for 6-24 months. The contour of the reconstructed mandible was symmetrical in all patients. No malocclusion or limitation of mouth opening was found. The postoperative functions of mastication and speech were satisfactory in all patients. Conclusions Reconstruction of mandibular defect can benefit from the application of the 3D CT-based rapid prototyping technique.%目的:评价基于三维CT 重建的快速成型技术在下颌骨重建中的作用。方法本组选取7例下颌骨病变病例,术前均采用基于三维CT 重建的快速成型技术,制作下颌骨实体模型,并在实体模型上设计下颌骨切骨范围和拟用髂骨瓣或腓骨瓣的骨量和形态。术中按拟定方案切除下颌骨病变,并同期以钛板、血管化游离腓骨瓣或髂骨瓣修复下颌骨缺损,术后定期观察随访。结果采用游离髂骨瓣移植修复者3例,游离腓骨瓣移植者3例,单纯以重建钛板固定者1例。移植骨块均顺利成活。已随访6个月~2年。下颌骨形态和面型基本对称,无下颌偏颌。余留牙咬合关

  3. Evaluation of CT-based SUV normalization

    Science.gov (United States)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show

  4. A novel energy mapping approach for CT-based attenuation correction in PET

    NARCIS (Netherlands)

    Teimourian, B.; Ay, M. R.; Zafarghandi, M. Shamsaie; Ghafarian, P.; Ghadiri, H.; Zaidi, H.

    2012-01-01

    Purpose: Dual-energy CT (DECT) is arguably the most accurate energy mapping technique in CT-based attenuation correction (CTAC) implemented on hybrid PET/CT systems. However, this approach is not attractive for clinical use owing to increased patient dose. The authors propose a novel energy mapping

  5. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    Science.gov (United States)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  6. Prospective validation of a risk calculator which calculates the probability of a positive prostate biopsy in a contemporary clinical cohort

    NARCIS (Netherlands)

    van Vugt, Heidi A.; Kranse, Ries; Steyerberg, Ewout W.; van der Poel, Henk G.; Busstra, Martijn; Kil, Paul; Oomens, Eric H.; de Jong, Igle J.; Bangma, Chris H.; Roobol, Monique J.

    2012-01-01

    Background: Prediction models need validation to assess their value outside the development setting. Objective: To assess the external validity of the European Randomised study of Screening for Prostate Cancer (ERSPC) Risk Calculator (RC) in a contemporary clinical cohort. Methods: The RC calculates

  7. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy;

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  8. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    Science.gov (United States)

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  9. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  10. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  11. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    Science.gov (United States)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  12. Do calculation errors by nurses cause medication errors in clinical practice? A literature review.

    Science.gov (United States)

    Wright, Kerri

    2010-01-01

    This review aims to examine the literature available to ascertain whether medication errors in clinical practice are the result of nurses' miscalculating drug dosages. The research studies highlighting poor calculation skills of nurses and student nurses have been tested using written drug calculation tests in formal classroom settings [Kapborg, I., 1994. Calculation and administration of drug dosage by Swedish nurses, student nurses and physicians. International Journal for Quality in Health Care 6(4): 389 -395; Hutton, M., 1998. Nursing Mathematics: the importance of application Nursing Standard 13(11): 35-38; Weeks, K., Lynne, P., Torrance, C., 2000. Written drug dosage errors made by students: the threat to clinical effectiveness and the need for a new approach. Clinical Effectiveness in Nursing 4, 20-29]; Wright, K., 2004. Investigation to find strategies to improve student nurses' maths skills. British Journal Nursing 13(21) 1280-1287; Wright, K., 2005. An exploration into the most effective way to teach drug calculation skills to nursing students. Nurse Education Today 25, 430-436], but there have been no reviews of the literature on medication errors in practice that specifically look to see whether the medication errors are caused by nurses' poor calculation skills. The databases Medline, CINAHL, British Nursing Index (BNI), Journal of American Medical Association (JAMA) and Archives and Cochrane reviews were searched for research studies or systematic reviews which reported on the incidence or causes of drug errors in clinical practice. In total 33 articles met the criteria for this review. There were no studies that examined nurses' drug calculation errors in practice. As a result studies and systematic reviews that investigated the types and causes of drug errors were examined to establish whether miscalculations by nurses were the causes of errors. The review found insufficient evidence to suggest that medication errors are caused by nurses' poor

  13. Calculation of the characteristics of clinical high-energy photon beams with EGS5-MPI

    International Nuclear Information System (INIS)

    A graphite calorimeter has been developed as a Japanese primary standard of absorbed dose to water in the high-energy photon beams from a clinical linac. To obtain conversion factors for the graphite calorimeter, the beam characteristics of the high-energy photon beams from the clinical linac at National Metrology Institute of Japan were calculated with the EGS5 Monte Carlo simulation code. To run the EGS5 code on High Performance Computing machines that have more than 1000 CPU cores, we developed the EGS5 parallelisation package 'EGS5-MPI' by implementing a message-passing interface. We calculated the photon energy spectra, which are in good agreement with those previously calculated by D. Sheikh-Bagheri and D. W. O. Rogers (Med. Phys. 29 3). We also estimated the percentage-depth-dose distributions of photon beams from the linac using the calculated photon energy spectra. These calculated percentage-depth-dose distributions were compared with our measured distributions and were found they are in good agreement as well. We will calculate conversion factors for the graphite calorimeter using our results.

  14. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields

    Directory of Open Access Journals (Sweden)

    Juan Fernando Mata Colodro

    2014-01-01

    Full Text Available It is widely accepted that a redundant independent dose calculation (RIDC must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT technique implies a comprehensive quality assurance (QA program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS, here in use. RIDC were performed with the commercial software; Diamond ® (PTW which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD. For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans.

  15. [Sample size calculation in clinical post-marketing evaluation of traditional Chinese medicine].

    Science.gov (United States)

    Fu, Yingkun; Xie, Yanming

    2011-10-01

    In recent years, as the Chinese government and people pay more attention on the post-marketing research of Chinese Medicine, part of traditional Chinese medicine breed has or is about to begin after the listing of post-marketing evaluation study. In the post-marketing evaluation design, sample size calculation plays a decisive role. It not only ensures the accuracy and reliability of post-marketing evaluation. but also assures that the intended trials will have a desired power for correctly detecting a clinically meaningful difference of different medicine under study if such a difference truly exists. Up to now, there is no systemic method of sample size calculation in view of the traditional Chinese medicine. In this paper, according to the basic method of sample size calculation and the characteristic of the traditional Chinese medicine clinical evaluation, the sample size calculation methods of the Chinese medicine efficacy and safety are discussed respectively. We hope the paper would be beneficial to medical researchers, and pharmaceutical scientists who are engaged in the areas of Chinese medicine research. PMID:22292397

  16. Comprehensive evaluation and clinical implementation of commercially available Monte Carlo dose calculation algorithm.

    Science.gov (United States)

    Zhang, Aizhen; Wen, Ning; Nurushev, Teamour; Burmeister, Jay; Chetty, Indrin J

    2013-01-01

    A commercial electron Monte Carlo (eMC) dose calculation algorithm has become available in Eclipse treatment planning system. The purpose of this work was to evaluate the eMC algorithm and investigate the clinical implementation of this system. The beam modeling of the eMC algorithm was performed for beam energies of 6, 9, 12, 16, and 20 MeV for a Varian Trilogy and all available applicator sizes in the Eclipse treatment planning system. The accuracy of the eMC algorithm was evaluated in a homogeneous water phantom, solid water phantoms containing lung and bone materials, and an anthropomorphic phantom. In addition, dose calculation accuracy was compared between pencil beam (PB) and eMC algorithms in the same treatment planning system for heterogeneous phantoms. The overall agreement between eMC calculations and measurements was within 3%/2 mm, while the PB algorithm had large errors (up to 25%) in predicting dose distributions in the presence of inhomogeneities such as bone and lung. The clinical implementation of the eMC algorithm was investigated by performing treatment planning for 15 patients with lesions in the head and neck, breast, chest wall, and sternum. The dose distributions were calculated using PB and eMC algorithms with no smoothing and all three levels of 3D Gaussian smoothing for comparison. Based on a routine electron beam therapy prescription method, the number of eMC calculated monitor units (MUs) was found to increase with increased 3D Gaussian smoothing levels. 3D Gaussian smoothing greatly improved the visual usability of dose distributions and produced better target coverage. Differences of calculated MUs and dose distributions between eMC and PB algorithms could be significant when oblique beam incidence, surface irregularities, and heterogeneous tissues were present in the treatment plans. In our patient cases, monitor unit differences of up to 7% were observed between PB and eMC algorithms. Monitor unit calculations were also preformed

  17. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2008-09-07

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical

  18. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    Science.gov (United States)

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. PMID:27139005

  19. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    Science.gov (United States)

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.

  20. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu; Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.

  1. Statistical Analysis of Clinical Data on a Pocket Calculator, Part 2 Statistics on a Pocket Calculator, Part 2

    CERN Document Server

    Cleophas, Ton J

    2012-01-01

    The first part of this title contained all statistical tests relevant to starting clinical investigations, and included tests for continuous and binary data, power, sample size, multiple testing, variability, confounding, interaction, and reliability. The current part 2 of this title reviews methods for handling missing data, manipulated data, multiple confounders, predictions beyond observation, uncertainty of diagnostic tests, and the problems of outliers. Also robust tests, non-linear modeling , goodness of fit testing, Bhatacharya models, item response modeling, superiority testing, variab

  2. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  3. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  4. Clinical audit for occupational therapy intervention for children with autism spectrum disorder: sampling steps and sample size calculation

    OpenAIRE

    Weeks, Scott; Atlas, Alvin

    2015-01-01

    A priori sample size calculations are used to determine the adequate sample size to estimate the prevalence of the target population with good precision. However, published audits rarely report a priori calculations for their sample size. This article discusses a process in health services delivery mapping to generate a comprehensive sampling frame, which was used to calculate an a priori sample size for a targeted clinical record audit. We describe how we approached methodological and defini...

  5. CT-based temperature monitoring during hepatic RF ablation : Feasibility in an animal model

    NARCIS (Netherlands)

    Bruners, Philipp; Pandeya, Ganga D.; Levit, Elena; Roesch, Eva; Penzkofer, Tobias; Isfort, Peter; Schmidt, Bernhardt; Greuter, Marcel J. W.; Oudkerk, Matthijs; Schmitz-Rode, Thomas; Kuhl, Christiane K.; Mahnken, Andreas H.

    2012-01-01

    Purpose: The aim of this paper was to establish non-invasive CT-based temperature monitoring during hepatic radiofrequency (RF) ablation in an ex vivo porcine model followed by transfer of the technique into a feasibility in vivo experiment. Materials and methods: Bipolar RF ablations were performed

  6. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    International Nuclear Information System (INIS)

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution

  7. Is CT-based perfusion and collateral imaging sensitive to time since stroke onset?

    Directory of Open Access Journals (Sweden)

    Smriti eAgarwal

    2015-04-01

    Full Text Available Abstract PurposeCT-based perfusion and collateral imaging is increasingly used in the assessment of patients with acute stroke. Time of stroke onset is a critical factor in determining eligibility for and benefit from thrombolysis. Animal studies predict that the volume of ischemic penumbra decreases with time. Here we evaluate if CT is able to detect a relationship between perfusion or collateral status, as assessed by CT and time since stroke onset.Materials and MethodsWe studied fifty-three consecutive patients with proximal vessel occlusions, mean (SD age of 71.3 (14.9 years at a mean (SD of 125.2 (55.3 minutes from onset, using whole-brain CT perfusion (CTp imaging. Penumbra was defined using voxel-based thresholds for cerebral blood flow (CBF and mean transit time (MTT; core was defined by cerebral blood volume (CBV. Normalized penumbra fraction was calculated as Penumbra volume /(Penumbra volume +Core volume for both CBF and MTT (PenCBF and PenMTT, respectively. Collaterals were assessed on CT angiography (CTA. CTp ASPECTS score was applied visually, lower scores indicating larger lesions. ASPECTS ratios were calculated corresponding to penumbra fractions.ResultsBoth PenCBF and PenMTT showed decremental trends with increasing time since onset (Kendall’s tau-b=-0.196, p=0.055, and -0.187, p=0.068, respectively. The CBF/CBV ASPECTS ratio, which showed a relationship to PenCBF (Kendall’s tau-b=0.190, p=0.070, decreased with increasing time since onset (Kendall’s tau-b=-0.265, p=0.006. Collateral response did not relate to time (Kendall’s tau-b=-0.039, p=0.724.ConclusionEven within 4.5hrs since stroke onset, a decremental relationship between penumbra and time, but not between collateral status and time, may be detected using perfusion CT imaging. The trends that we demonstrate merit evaluation in larger datasets to confirm our results, which may have potential wider applications e.g. in the setting of strokes of unknown onset time.

  8. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu [Ajou University School of Medicine, Seoul (Korea, Republic of); Kang, Seung Hee [Inje University, Ilsan Paik Hospital, Ilsan (Korea, Republic of)

    2010-11-15

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  9. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion.

    Science.gov (United States)

    Kung, J H; Zygmanski, P; Choi, N; Chen, G T Y

    2003-06-01

    The motion of lung tumors from respiration has been reported in the literature to be as large as 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). In Intensity Modulated Radiotherapy (IMRT), while such a margin is necessary, the margin may not be sufficient to avoid unintended high and low dose regions to the interior on moving CTV. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: (a) what is the dose error to a target volume without a gated IMRT treatment? (b) What is an acceptable gating window for such a treatment. In this study, we address these questions by proposing a novel technique for calculating the three-dimensional (3-D) dose error that would result if a lung IMRT plan were delivered without a gated linac beam. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumors were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map phi(x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasiperiodic motion z(t) does not receive phi(x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y) is

  10. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion

    International Nuclear Information System (INIS)

    The motion of lung tumors from respiration has been reported in the literature to be as large as 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). In Intensity Modulated Radiotherapy (IMRT), while such a margin is necessary, the margin may not be sufficient to avoid unintended high and low dose regions to the interior on moving CTV. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: (a) what is the dose error to a target volume without a gated IMRT treatment? (b) What is an acceptable gating window for such a treatment. In this study, we address these questions by proposing a novel technique for calculating the three-dimensional (3-D) dose error that would result if a lung IMRT plan were delivered without a gated linac beam. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumors were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map Φ(x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasiperiodic motion z(t) does not receive Φ(x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y) is input

  11. Clinical relevance of different dose calculation strategies for mediastinal IMRT in Hodgkin's disease

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, J.; Stieler, F.; Fleckenstein, J.; Wenz, F.; Lohr, F. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie; Abo-Madyan, Y. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie; Cairo Univ. (Egypt). Dept. of Radiation Oncology; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Kriz, J.; Mueller, R.P. [Klinikum der Universitaet zu Koeln (Germany). Universitaetsklinik und Poliklinik fuer Strahlentherapie

    2012-08-15

    Background and purpose: Conventional algorithms show uncertainties in dose calculation already for three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) might even increase these. We wanted to assess differences in dose distribution for pencil beam (PB), collapsed cone (CC), and Monte Carlo (MC) algorithm for both 3D-CRT and IMRT in patients with mediastinal Hodgkin lymphoma. Patients and methods: Based on 20 computed tomograph (CT) datasets of patients with mediastinal Hodgkin lymphoma, we created treatment plans according to the guidelines of the German Hodgkin Study Group (GHSG) with PB and CC algorithm for 3D-CRT and with PB and MC algorithm for IMRT. Doses were compared for planning target volume (PTV) and organs at risk. Results: For 3D-CRT, PB overestimated PTV{sub 95} and V{sub 20} of the lung by 6.9% and 3.3% and underestimated V{sub 10} of the lung by 5.8%, compared to the CC algorithm. For IMRT, PB overestimated PTV{sub 95}, V{sub 20} of the lung, V{sub 25} of the heart and V{sub 10} of the female left/right breast by 8.1%, 25.8%, 14.0% and 43.6%/189.1%, and underestimated V{sub 10} of the lung, V{sub 4} of the heart and V{sub 4} of the female left/right breast by 6.3%, 6.8% and 23.2%/15.6%, compared to MC. Conclusion: The PB algorithm underestimates low doses to the organs at risk and overestimates dose to PTV and high doses to the organs at risk. For 3D-CRT, a well-modeled PB algorithm is clinically acceptable; for IMRT planning, however, an advanced algorithm such as CC or MC should be used at least for part of the plan optimization. (orig.)

  12. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  13. Observation of Allende and Antarctic meteorites by monochromatic X-ray CT based on synchrotron radiation

    OpenAIRE

    Hirano,Tatsumi/Funaki,Minoru/Nagata,Takesi/Taguchi,Isamu/ Hamada,Hiroki/Usami,Katsuhisa/Hayakawa,Kazunobu

    1990-01-01

    Three-dimensional CT images of the Allende meteorite with a high resolution of 10μm have been obtained nondestructively by a monochromatic X-ray computed tomography (CT) based on synchrotron radiation (SR). The metallic minerals, matrix and chondrules can be clearly observed in the CT images. The CT values, which express the image intensity, allow a quantitative elemental analysis including such as difference in the metallic minerals, i. e., pentlandite and troilite, using the comparison of C...

  14. CT-based abdominal aortic calcification score as a surrogate marker for predicting the presence of asymptomatic coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    An, Chansik; Lee, Hye-Jeong; Ahn, Sung Soo; Choi, Byoung Wook; Kim, Myeong-Jin; Chung, Yong Eun [Severance Hospital, Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, 50 Yonsei-Ro, Seodaemun-Gu, Seoul (Korea, Republic of); Lee, Hye Sun [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Department of Research Affairs, Seoul (Korea, Republic of)

    2014-10-15

    To assess the value of a CT-based abdominal aortic calcification (AAC) score as a surrogate marker for the presence of asymptomatic coronary artery disease (CAD). The AAC scores of 373 patients without cardiac symptoms who underwent both screening coronary CT angiography and abdominal CT within one year were calculated according to the Agatston method. Logistic regression was used to derive two multivariate models from traditional cardiovascular risk factors, with and without AAC scores, to predict the presence of CAD. The AAC score and the two multivariate models were compared by calculating the area under the receiver operating characteristic curve (AUC) and the net reclassification improvement (NRI). The AAC score alone showed a marginally higher AUC (0.823 vs. 0.767, P = 0.061) and significantly better risk classification (NRI = 0.158, P = 0.048) than the multivariate model without AAC. The multivariate model using traditional factors and AAC did not show a significantly higher AUC (0.832 vs. 0.823, P = 0.616) or NRI (0.073, P = 0.13) than the AAC score alone. The optimal cutoff value of the AAC score for predicting CAD was 1025.8 (sensitivity, 79.5 %; specificity, 75.9 %). AAC scores may serve as a surrogate marker for the presence or absence of asymptomatic CAD. (orig.)

  15. First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning—new issues for clinical consideration

    Science.gov (United States)

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.; Shokrani, Parvaneh; Cygler, Joanna E.

    2006-06-01

    The purpose of this study is to present our experience of commissioning, testing and use of the first commercial macro Monte Carlo based dose calculation algorithm for electron beam treatment planning and to investigate new issues regarding dose reporting (dose-to-water versus dose-to-medium) as well as statistical uncertainties for the calculations arising when Monte Carlo based systems are used in patient dose calculations. All phantoms studied were obtained by CT scan. The calculated dose distributions and monitor units were validated against measurements with film and ionization chambers in phantoms containing two-dimensional (2D) and three-dimensional (3D) type low- and high-density inhomogeneities at different source-to-surface distances. Beam energies ranged from 6 to 18 MeV. New required experimental input data for commissioning are presented. The result of validation shows an excellent agreement between calculated and measured dose distributions. The calculated monitor units were within 2% of measured values except in the case of a 6 MeV beam and small cutout fields at extended SSDs (>110 cm). The investigation on the new issue of dose reporting demonstrates the differences up to 4% for lung and 12% for bone when 'dose-to-medium' is calculated and reported instead of 'dose-to-water' as done in a conventional system. The accuracy of the Monte Carlo calculation is shown to be clinically acceptable even for very complex 3D-type inhomogeneities. As Monte Carlo based treatment planning systems begin to enter clinical practice, new issues, such as dose reporting and statistical variations, may be clinically significant. Therefore it is imperative that a consistent approach to dose reporting is used.

  16. Clinical audit for occupational therapy intervention for children with autism spectrum disorder: sampling steps and sample size calculation.

    Science.gov (United States)

    Weeks, Scott; Atlas, Alvin

    2015-01-01

    A priori sample size calculations are used to determine the adequate sample size to estimate the prevalence of the target population with good precision. However, published audits rarely report a priori calculations for their sample size. This article discusses a process in health services delivery mapping to generate a comprehensive sampling frame, which was used to calculate an a priori sample size for a targeted clinical record audit. We describe how we approached methodological and definitional issues in the following steps: (1) target population definition, (2) sampling frame construction, and (3) a priori sample size calculation. We recommend this process for clinicians, researchers, or policy makers when detailed information on a reference population is unavailable. PMID:26122044

  17. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation

    OpenAIRE

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-01-01

    Background The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC alg...

  18. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation

    International Nuclear Information System (INIS)

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm3, the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  19. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations

    DEFF Research Database (Denmark)

    Knöös, Tommy; Wieslander, Elinore; Cozzi, Luca;

    2006-01-01

    correction-based equivalent path length algorithms to model-based algorithms. These were divided into two groups based on how changes in electron transport are accounted for ((a) not considered and (b) considered). Increasing the complexity from the relatively homogeneous pelvic region to the very...... to the fields. A Monte Carlo calculated algorithm input data set and a benchmark set for a virtual linear accelerator have been produced which have facilitated the analysis and interpretation of the results. The more sophisticated models in the type b group exhibit changes in both absorbed dose and its...

  20. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    CERN Document Server

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  1. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    Science.gov (United States)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  2. TH-E-BRE-07: Development of Dose Calculation Error Predictors for a Widely Implemented Clinical Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Egan, A [Oregon State University, Portland, OR (United States); Laub, W [Oregon Health and Science University (United States)

    2014-06-15

    Purpose: Several shortcomings of the current implementation of the analytic anisotropic algorithm (AAA) may lead to dose calculation errors in highly modulated treatments delivered to highly heterogeneous geometries. Here we introduce a set of dosimetric error predictors that can be applied to a clinical treatment plan and patient geometry in order to identify high risk plans. Once a problematic plan is identified, the treatment can be recalculated with more accurate algorithm in order to better assess its viability. Methods: Here we focus on three distinct sources dosimetric error in the AAA algorithm. First, due to a combination of discrepancies in smallfield beam modeling as well as volume averaging effects, dose calculated through small MLC apertures can be underestimated, while that behind small MLC blocks can overestimated. Second, due the rectilinear scaling of the Monte Carlo generated pencil beam kernel, energy is not properly transported through heterogeneities near, but not impeding, the central axis of the beamlet. And third, AAA overestimates dose in regions very low density (< 0.2 g/cm{sup 3}). We have developed an algorithm to detect the location and magnitude of each scenario within the patient geometry, namely the field-size index (FSI), the heterogeneous scatter index (HSI), and the lowdensity index (LDI) respectively. Results: Error indices successfully identify deviations between AAA and Monte Carlo dose distributions in simple phantom geometries. Algorithms are currently implemented in the MATLAB computing environment and are able to run on a typical RapidArc head and neck geometry in less than an hour. Conclusion: Because these error indices successfully identify each type of error in contrived cases, with sufficient benchmarking, this method can be developed into a clinical tool that may be able to help estimate AAA dose calculation errors and when it might be advisable to use Monte Carlo calculations.

  3. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadian, Alireza; Ay, Mohammad R.; Sarkar, Saeed [Medical Sciences/University of Tehran, Research Center for Science and Technology in Medicine, Tehran (Iran); Medical Sciences/University of Tehran, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran (Iran); Bidgoli, Javad H. [Medical Sciences/University of Tehran, Research Center for Science and Technology in Medicine, Tehran (Iran); East Tehran Azad University, Department of Electrical and Computer Engineering, Tehran (Iran); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine, Geneva (Switzerland)

    2008-10-15

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map ({mu}map), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated {mu}maps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique

  4. Implications for clinical treatment from the micrometer site dosimetric calculations in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Trent L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37901 (United States)], E-mail: tnichol2@utk.edu; Kabalka, George W. [Department of Chemistry, University of Tennessee, Knoxville, TN 37901 (United States); Miller, Laurence F. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN 37901 (United States); McCormack, Michael T. [Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920 (United States); Johnson, Andrew [Rush University Medical Center, Chicago, IL 60612 (United States)

    2009-07-15

    Boron neutron capture therapy has now been used for several malignancies. Most clinical trials have addressed its use for the treatment of glioblastoma multiforme. A few trials have focused on the treatment of malignant melanoma with brain metastases. Trial results for the treatment of glioblastoma multiforme have been encouraging, but have not achieved the success anticipated. Results of trials for the treatment of malignant melanoma have been very promising, though with too few patients for conclusions to be drawn. Subsequent to these trials, regimens for undifferentiated thyroid carcinoma, hepatic metastases from adenocarcinoma of the colon, and head and neck malignancies have been developed. These tumors have also responded well to boron neutron capture therapy. Glioblastoma is an infiltrative tumor with distant individual tumor cells that might create a mechanism for therapeutic failure though recurrences are often local. The microdosimetry of boron neutron capture therapy can provide an explanation for this observation. Codes written to examine the micrometer scale energy deposition in boron neutron capture therapy have been used to explore the effects of near neighbor cells. Near neighbor cells can contribute a significantly increased dose depending on the geometric relationships. Different geometries demonstrate that tumors which grow by direct extension have a greater near neighbor effect, whereas infiltrative tumors lose this near neighbor dose which can be a significant decrease in dose to the cells that do not achieve optimal boron loading. This understanding helps to explain prior trial results and implies that tumors with small, closely packed cells that grow by direct extension will be the most amenable to boron neutron capture therapy.

  5. Accuracy of CT-based patient-specific guides for total knee arthroplasty in patients with post-traumatic osteoarthritis.

    Science.gov (United States)

    Schotanus, M G M; van Haaren, E H; Hendrickx, R P M; Jansen, E J P; Kort, N P

    2015-12-01

    Published clinical trials who studied the accuracy of patient-specific guides (PSG) for total knee arthroplasty exclude patients with articular deformity of the knee joint. We prospectively analysed a series of 30 patients with post-traumatic osteoarthritis of the knee joint with use of PSG. At 1 year post-operative, the achieved biomechanical (HKA) axis and varus/valgus of the femur and tibia components were measured on anterior-posterior (AP) long-standing weight-bearing radiographs. Flexion/extension of the femoral and AP slope of the tibia component was measured on standard lateral radiographs. Percentages >3° deviation of the pre-operative planned HKA axis and individual implant components were considered as outliers. Approved and used implant size, median blood loss (ml) and operation time (min) were obtained from the operation records. Pre- and 1-year post-operative patient-reported outcome measures (PROMs) were performed. Eighty-three per cent of the patients had a HKA axis restored <3° of the pre-operative planned alignment. Varus/valgus outliers were 0.0 and 6.7 % for the femoral and tibial components, respectively. Percentages of outliers of flexion/extension were 36.7 % for the femoral component and 10.0 % for the AP slope of the tibial component. Median blood loss was 300 ml (50-700), while operation time was 67 min (44-144). In 20 % of all cases, the approved implant size was changed into one size smaller. One-year post-operative PROMs improved significantly. We conclude that the accuracy of CT-based PSG is not impaired in patients with post-traumatic osteoarthritis and this modality can restore biomechanical limb alignment. PMID:26265403

  6. Reduction of artefacts caused by hip implants in CT-based attenuation-corrected PET images using 2-D interpolation of a virtual sinogram on an irregular grid

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, Mehrsima; Jong, Johan R. de; Pruim, Jan; Dierckx, Rudi A.J.O. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Zaidi, Habib [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland)

    2011-12-15

    Metallic prosthetic replacements, such as hip or knee implants, are known to cause strong streaking artefacts in CT images. These artefacts likely induce over- or underestimation of the activity concentration near the metallic implants when applying CT-based attenuation correction of positron emission tomography (PET) images. Since this degrades the diagnostic quality of the images, metal artefact reduction (MAR) prior to attenuation correction is required. The proposed MAR method, referred to as virtual sinogram-based technique, replaces the projection bins of the sinogram that are influenced by metallic implants by a 2-D Clough-Tocher cubic interpolation scheme performed in an irregular grid, called Delaunay triangulated grid. To assess the performance of the proposed method, a physical phantom and 30 clinical PET/CT studies including hip prostheses were used. The results were compared to the method implemented on the Siemens Biograph mCT PET/CT scanner. Both phantom and clinical studies revealed that the proposed method performs equally well as the Siemens MAR method in the regions corresponding to bright streaking artefacts and the artefact-free regions. However, in regions corresponding to dark streaking artefacts, the Siemens method does not seem to appropriately correct the tracer uptake while the proposed method consistently increased the uptake in the underestimated regions, thus bringing it to the expected level. This observation is corroborated by the experimental phantom study which demonstrates that the proposed method approaches the true activity concentration more closely. The proposed MAR method allows more accurate CT-based attenuation correction of PET images and prevents misinterpretation of tracer uptake, which might be biased owing to the propagation of bright and dark streaking artefacts from CT images to the PET data following the attenuation correction procedure. (orig.)

  7. Effect of CT-based treatment planning on portal field size and outcome in radiation treatment of localized prostate cancer

    NARCIS (Netherlands)

    Mens, JWM; Slotman, BJ; Meijer, OWM; Langendijk, HA

    2000-01-01

    The portal field sizes of 361 consecutive patients treated with curative radiotherapy for localized prostate cancer were measured. The introduction of CT-based information resulted in a significant increase of field sizes, leading to an almost doubling of the treated volume, some increase in late re

  8. The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system

    Science.gov (United States)

    Wang, Lilie; Ding, George X.

    2014-07-01

    The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.

  9. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard

    Energy Technology Data Exchange (ETDEWEB)

    Littooij, Annemieke S. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); KK Women' s and Children' s Hospital, Department of Diagnostic and Interventional Imaging, Singapore (Singapore); Kwee, Thomas C.; Vermoolen, Malou A.; Keizer, Bart de; Beek, Frederik J.A.; Hobbelink, Monique G.; Nievelstein, Rutger A.J. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Barber, Ignasi; Enriquez, Goya [Hospital Materno-Infantil Vall d' Hebron, Department of Paediatric Radiology, Barcelona (Spain); Granata, Claudio [IRCCS Giannina Gaslini Hospital, Department of Radiology, Genoa (Italy); Zsiros, Jozsef [University of Amsterdam, Department of Paediatric Oncology, Emma Children' s Hospital, Academic Medical Centre, Amsterdam (Netherlands); Soh, Shui Yen [KK Women' s and Children' s Hospital, Haematology and Oncology service, Department of Paediatric Subspecialities, Singapore (Singapore); Bierings, Marc B. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Paediatric Haematology-Oncology, Utrecht (Netherlands); Stoker, Jaap [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2014-05-15

    To compare whole-body MRI, including diffusion-weighted imaging (whole-body MRI-DWI), with FDG-PET/CT for staging newly diagnosed paediatric lymphoma. A total of 36 children with newly diagnosed lymphoma prospectively underwent both whole-body MRI-DWI and FDG-PET/CT. Whole-body MRI-DWI was successfully performed in 33 patients (mean age 13.9 years). Whole-body MRI-DWI was independently evaluated by two blinded observers. After consensus reading, an unblinded expert panel evaluated the discrepant findings between whole-body MRI-DWI and FDG-PET/CT and used bone marrow biopsy, other imaging data and clinical information to derive an FDG-PET/CT-based reference standard. Interobserver agreement of whole-body MRI-DWI was good [all nodal sites together (κ = 0.79); all extranodal sites together (κ = 0.69)]. There was very good agreement between the consensus whole-body MRI-DWI- and FDG-PET/CT-based reference standard for nodal (κ = 0.91) and extranodal (κ = 0.94) staging. The sensitivity and specificity of consensus whole-body MRI-DWI were 93 % and 98 % for nodal staging and 89 % and 100 % for extranodal staging, respectively. Following removal of MRI reader errors, the disease stage according to whole-body MRI-DWI agreed with the reference standard in 28 of 33 patients. Our results indicate that whole-body MRI-DWI is feasible for staging paediatric lymphoma and could potentially serve as a good radiation-free alternative to FDG-PET/CT. (orig.)

  10. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    .86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy.

  11. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    .86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy. PMID:25370648

  12. Current concepts in F18 FDG PET/CT-based Radiation Therapy planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Percy eLee

    2012-07-01

    Full Text Available Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.

  13. Comparison of Airflows in Weibel-based and CT-based Human Lung Geometries

    Science.gov (United States)

    Lin, Ching-Long; Hoffman, Eric A.

    2004-11-01

    The need for patient specific lung geometry for study of pulmonary air flow and drug delivery has been emphasized recently due to the complexity of individual airway tree geometry. The objective of this paper is to assess the notion of patient specific geometry by comparing airflows in an idealized Weibel-based lung model and two realistic human lung geometries. The Weibel-based model is composed of cylinders of differing diameters for various branching and has been used extensively for modeling airflow in lungs. Here a 4-generation Weibel model is considered. The realistic lung geometries are segmented and reconstructured from computerized tomography (CT) images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The custom developed Taylor-Galerkin finite element code, which solves the incompressible Navier-Stokes equations, is applied to simulate airflows in these lung geometries. The velocity wave form recorded from a mechanical ventilator is adopted as the inlet pulsatile boundary condition. At the outlets, both the pressure and outflow boundary conditions are applied and compared. The counter-rotating vortices are observed in the Weibel model during both the inspiratory and expiratory cycles, being consistent with previous studies. The flow structures in the CT-based models are much more complicated and counter-rotating vortices are only evident in some regions.

  14. Effect of adult weight and CT-based selection on rabbit meat quality

    Directory of Open Access Journals (Sweden)

    Zsolt Szendrő

    2010-01-01

    Full Text Available This study compared the meat quality of different genotypes. Maternal (M; adult weight/AW/=4.0-4.5kg; selected for the number of kits born alive, Pannon White (P; AW=4.3-4.8kg and Large type (L; AW=4.8-5.4kg rabbits were analysed. P and L genotypes were selected for carcass traits based on CT/Computer tomography/data. Rabbits were slaughtered at 11wk of age and hindleg (HL meat and M. Longissimus dorsi (LD were analysed for proximate composition and fatty acid (FA profile. Proximate composition was unaffected by the selection programme, even though the meat of P rabbits was leaner and had higher ash content (P<0.10. The LD meat of P rabbits exhibited significantly lower MUFA contents compared to M and L rabbits (25.4 vs 28.0 vs 27.7%; P<0.01 and higher PUFA content compared to M rabbits (31.9 vs 24.9%; P<0.05. This study revealed that long-term CT-based selection is effective in increasing meat leanness and PUFA content.

  15. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  16. What is the benefit of CT-based attenuation correction in myocardial perfusion SPET?

    Science.gov (United States)

    Apostolopoulos, Dimitrios J; Savvopoulos, Christos

    2016-01-01

    In multimodality imaging, CT-derived transmission maps are used for attenuation correction (AC) of SPET or PET data. Regarding SPET myocardial perfusion imaging (MPI), however, the bene����t of CT-based AC (CT-AC) has been questioned. Although most attenuation-related artifacts are removed by this technique, new false defects may appear while some true perfusion abnormalities may be masked. The merits and the drawbacks of CT-AC in MPI SPET are reviewed and discussed in this editorial. In conclusion, CT-AC is most helpful in men, overweight in particular, and in those with low or low to intermediate pre-test probability of coronary artery disease (CAD). It is also useful for the evaluation of myocardial viability. In high-risk patients though, CT-AC may underestimate the presence or the extent of CAD. In any case, corrected and non-corrected images should be viewed side-by-side and both considered in the interpretation of the study.

  17. Image-based rendering method for mapping endoscopic video onto CT-based endoluminal views

    Science.gov (United States)

    Rai, Lav; Higgins, William E.

    2006-03-01

    One of the indicators of early lung cancer is a color change in airway mucosa. Bronchoscopy of the major airways can provide high-resolution color video of the airway tree's mucosal surfaces. In addition, 3D MDCT chest images provide 3D structural information of the airways. Unfortunately, the bronchoscopic video contains no explicit 3D structural and position information, and the 3D MDCT data captures no color or textural information of the mucosa. A fusion of the topographical information from the 3D CT data and the color information from the bronchoscopic video, however, enables realistic 3D visualization, navigation, localization, and quantitative color-topographic analysis of the airways. This paper presents a method for topographic airway-mucosal surface mapping from bronchoscopic video onto 3D MDCT endoluminal views. The method uses registered video images and CT-based virtual endoscopic renderings of the airways. The visibility and depth data are also generated by the renderings. Uniform sampling and over-scanning of the visible triangles are done before they are packed into a texture space. The texels are then re-projected onto video images and assigned color values based on depth and illumination data obtained from renderings. The texture map is loaded into the rendering engine to enable real-time navigation through the combined 3D CT surface and bronchoscopic video data. Tests were performed on pre-recorded bronchoscopy patient video and associated 3D MDCT scans. Results show that we can effectively accomplish mapping over a continuous sequence of airway images spanning several generations of airways.

  18. Evaluation of a μCT-based electro-anatomical cochlear implant model

    Science.gov (United States)

    Cakir, Ahmet; Dawant, Benoit M.; Noble, Jack H.

    2016-03-01

    Cochlear implants (CIs) are considered standard treatment for patients who experience sensory-based hearing loss. Although these devices have been remarkably successful at restoring hearing, it is rare to achieve natural fidelity, and many patients experience poor outcomes. Previous studies have shown that outcomes can be improved when optimizing CI processor settings using an estimation of the CI's neural activation patterns found by detecting the distance between the CI electrodes and the nerves they stimulate in pre- and post-implantation CT images. We call this method Image-Guided CI Programming (IGCIP). More comprehensive electro-anatomical models (EAMs) might better estimate neural activation patterns than using a distance-based estimate, potentially leading to selecting further optimized CI settings. Our goal in this study is to investigate whether μCT-based EAMs can accurately estimate neural stimulation patterns. For this purpose, we have constructed EAMs of N=9 specimens. We analyzed the sensitivity of our model to design parameters such as field-of-view, resolution, and tissue resistivity. Our results show that our model is stable to parameter changes. To evaluate the utility of patient-specific modeling, we quantify the difference in estimated neural activation patterns across specimens for identically located electrodes. The average computed coefficient of variation (COV) across specimens is 0.186, suggesting patient-specific models are necessary and that the accuracy of a generic model would be insufficient. Our results suggest that development of in vivo patient-specific EAMs could lead to better methods for selecting CI settings, which would ultimately lead to better hearing outcomes with CIs.

  19. Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching [Department of Medical Imaging and Radiological Sciences, Tzu Chi College of Technology, 880, Sec 2, Chien-Kuo Rd., Hualien, Taiwan (China); Yu, Jhih-An [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Taipei, Taiwan (China); Yang, Bang-Hung [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Taipei, Taiwan (China)

    2013-12-11

    We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kV{sub p} with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kV{sub p} HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kV{sub p} LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.

  20. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    Science.gov (United States)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  1. Uncertainty propagation for SPECT/CT-based renal dosimetry in (177)Lu peptide receptor radionuclide therapy.

    Science.gov (United States)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Gleisner, Katarina Sjögreen

    2015-11-01

    A computer model of a patient-specific clinical (177)Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of (177)Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity. PMID:26458139

  2. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide

    DEFF Research Database (Denmark)

    Korreman, Stine; Rasch, Coen; McNair, Helen;

    2010-01-01

    of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical...... and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources...... needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres...

  3. Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007

    International Nuclear Information System (INIS)

    This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350∼ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the

  4. Accelerated partial-breast irradiation with interstitial implants. The clinical relevance of the calculation of skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2007-08-15

    Purpose: To describe relative skin dose estimations and their impact on cosmetic outcome in interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 105 consecutive patients with early breast cancer were recruited in Erlangen, Germany, for this substudy of the German-Austrian APBI phase II trial. 51% (54/105) received pulsed-dose-rate (PDR), and 49% (51/105) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy every hour. Total treatment time was 3-4 days. With a wire cross on the skin surface during the brachytherapy-planning procedure the minimal, mean and maximal relative skin doses (SD{sub min%}, SD{sub max%}, SD{sub mean%}) were recorded. Endpoint of this evaluation was the cosmetic outcome in relation to the relative skin doses. Results: Median follow-up time was 38 months (range, 19-65 months). Cosmetic results for all patients were excellent in 57% (60/105), good in 36% (38/105), and fair in 7% (7/105). The SD{sub min%} (27.0% vs. 31.7%; p = 0.032), SD{sub mean%} (34.2% vs. 38.1%; p = 0.008), and SD{sub max%} (38.2% vs. 46.4%; p = 0.003) were significantly lower for patients with excellent cosmetic outcome compared to patients with a suboptimal outcome. SD{sub mean%} (37.6% vs. 34.2%; p = 0.026) and SD{sub max%} (45.4% vs. 38.2%; p = 0.008) were significantly higher for patients with good cosmetic outcome compared with the patients with excellent results. Conclusion: The appraisal of skin doses has been shown to be relevant to the achievement of excellent cosmetic outcome. Further investigations are necessary, especially on the basis of CT-based brachytherapy planning, to further improve the treatment results of multicatheter APBI. (orig.)

  5. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    Science.gov (United States)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Paulson, Erik K.; Samei, Ehsan

    2013-12-01

    be used to estimate organ dose, effective dose, and risk index in abdominopelvic CT based on the coefficients derived from a large population of pediatric and adult patients.

  6. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters

    International Nuclear Information System (INIS)

    To define a suitable threshold setting for gross tumor volume (GTV) when using 18Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC). Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax. Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R2 = 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R2 = 0.89). The sTL was not associated with the value of C-pGTVs. In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold

  7. Comparison of 2D radiography and a semi-automatic CT-based 3D method for measuring change in dorsal angulation over time in distal radius fractures

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, Albert; Larsson, Sune [Uppsala University, Department of Orthopaedics, Uppsala (Sweden); Nysjoe, Johan; Malmberg, Filip; Sintorn, Ida-Maria; Nystroem, Ingela [Uppsala University, Centre for Image Analysis, Uppsala (Sweden); Berglund, Lars [Uppsala University, Uppsala Clinical Research Centre, UCR Statistics, Uppsala (Sweden)

    2016-06-15

    The aim of the present study was to compare the reliability and agreement between a computer tomography-based method (CT) and digitalised 2D radiographs (XR) when measuring change in dorsal angulation over time in distal radius fractures. Radiographs from 33 distal radius fractures treated with external fixation were retrospectively analysed. All fractures had been examined using both XR and CT at six times over 6 months postoperatively. The changes in dorsal angulation between the first reference images and the following examinations in every patient were calculated from 133 follow-up measurements by two assessors and repeated at two different time points. The measurements were analysed using Bland-Altman plots, comparing intra- and inter-observer agreement within and between XR and CT. The mean differences in intra- and inter-observer measurements for XR, CT, and between XR and CT were close to zero, implying equal validity. The average intra- and inter-observer limits of agreement for XR, CT, and between XR and CT were ± 4.4 , ± 1.9 and ± 6.8 respectively. For scientific purpose, the reliability of XR seems unacceptably low when measuring changes in dorsal angulation in distal radius fractures, whereas the reliability for the semi-automatic CT-based method was higher and is therefore preferable when a more precise method is requested. (orig.)

  8. Comparison of 2D radiography and a semi-automatic CT-based 3D method for measuring change in dorsal angulation over time in distal radius fractures

    International Nuclear Information System (INIS)

    The aim of the present study was to compare the reliability and agreement between a computer tomography-based method (CT) and digitalised 2D radiographs (XR) when measuring change in dorsal angulation over time in distal radius fractures. Radiographs from 33 distal radius fractures treated with external fixation were retrospectively analysed. All fractures had been examined using both XR and CT at six times over 6 months postoperatively. The changes in dorsal angulation between the first reference images and the following examinations in every patient were calculated from 133 follow-up measurements by two assessors and repeated at two different time points. The measurements were analysed using Bland-Altman plots, comparing intra- and inter-observer agreement within and between XR and CT. The mean differences in intra- and inter-observer measurements for XR, CT, and between XR and CT were close to zero, implying equal validity. The average intra- and inter-observer limits of agreement for XR, CT, and between XR and CT were ± 4.4 , ± 1.9 and ± 6.8 respectively. For scientific purpose, the reliability of XR seems unacceptably low when measuring changes in dorsal angulation in distal radius fractures, whereas the reliability for the semi-automatic CT-based method was higher and is therefore preferable when a more precise method is requested. (orig.)

  9. {sup 32}P Brachytherapy Conformal Source Model RIC-100 for High-Dose-Rate Treatment of Superficial Disease: Monte Carlo Calculations, Diode Measurements, and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Gil' ad N., E-mail: coheng@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Munro, John J. [Montrose Technology, Inc, North Andover, Massachusetts (United States); Kirov, Assen; Losasso, Thomas [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yamada, Yoshiya [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Williamson, Matthew; Dauer, Lawrence T.; Zaider, Marco [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-03-01

    Purpose: A novel {sup 32}P brachytherapy source has been in use at our institution intraoperatively for temporary radiation therapy of the spinal dura and other localized tumors. We describe the dosimetry and clinical implementation of the source. Methods and Materials: Dosimetric evaluation for the source was done with a complete set of MCNP5 Monte Carlo calculations preceding clinical implementation. In addition, the depth dose curve and dose rate were measured by use of an electron field diode to verify the Monte Carlo calculations. Calibration procedures using the diode in a custom-designed phantom to provide an absolute dose calibration and to check dose uniformity across the source area for each source before treatment were established. Results: Good agreement was established between the Monte Carlo calculations and diode measurements. Quality assurance measurements results are provided for about 100 sources used to date. Clinical source calibrations were usually within 10% of manufacturer specifications. Procedures for safe handling of the source are described. Discussion: Clinical considerations for using the source are discussed.

  10. Clinical effectiveness and cost-effectiveness of HIV pre-exposure prophylaxis in men who have sex with men: risk calculators for real-world decision-making.

    Directory of Open Access Journals (Sweden)

    Anders Chen

    Full Text Available BACKGROUND: Oral pre-exposure prophylaxis (PrEP can be clinically effective and cost-effective for HIV prevention in high-risk men who have sex with men (MSM. However, individual patients have different risk profiles, real-world populations vary, and no practical tools exist to guide clinical decisions or public health strategies. We introduce a practical model of HIV acquisition, including both a personalized risk calculator for clinical management and a cost-effectiveness calculator for population-level decisions. METHODS: We developed a decision-analytic model of PrEP for MSM. The primary clinical effectiveness and cost-effectiveness outcomes were the number needed to treat (NNT to prevent one HIV infection, and the cost per quality-adjusted life-year (QALY gained. We characterized patients according to risk factors including PrEP adherence, condom use, sexual frequency, background HIV prevalence and antiretroviral therapy use. RESULTS: With standard PrEP adherence and national epidemiologic parameters, the estimated NNT was 64 (95% uncertainty range: 26, 176 at a cost of $160,000 (cost saving, $740,000 per QALY--comparable to other published models. With high (35% HIV prevalence, the NNT was 35 (21, 57, and cost per QALY was $27,000 (cost saving, $160,000, and with high PrEP adherence, the NNT was 30 (14, 69, and cost per QALY was $3,000 (cost saving, $200,000. In contrast, for monogamous, serodiscordant relationships with partner antiretroviral therapy use, the NNT was 90 (39, 157 and cost per QALY was $280,000 ($14,000, $670,000. CONCLUSIONS: PrEP results vary widely across individuals and populations. Risk calculators may aid in patient education, clinical decision-making, and cost-effectiveness evaluation.

  11. Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation

    Science.gov (United States)

    Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.

    2016-03-01

    The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.

  12. The surgical rate and recurrence rate in right colonic diverticulitis using the CT-based modified hinchey classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hwan; Kim, Hyuk Jung; Jang, Suk Ki; Yeon, Jae Woo [Dept. of Radiology, Daejin Medical Center Bundang Jesaeng General Hospital, Seongnam (Korea, Republic of); Ko, You Sun; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-08-15

    The purpose of this report is to retrospectively analyze the need for surgery, and the recurrence rate, using a CT-based method in patients with right colonic diverticulitis. For the purposes of our study, we included 416 patients with a mean age of 41.9 (238 of which were men), with a diagnosis of colonic diverticulitis that was based on CT findings. These findings were reviewed by two independent radiologists, who localized diverticulitis and determined it using a modified Hinchey classification. We were able to follow-up with 384 patients over a period of 30 months. Out of the 416 patients, 396 of them had right colonic diverticulitis. In right colonic diverticulitis, the κ value in determining the modified Hinchey classification was 0.80. 98.2% (389/396) of the patients with right colonic diverticulitis had stages Ia-II. The surgery rate was 4.6% (17/366) and 28% (5/18) for right and left colonic diverticulitis, respectively (p < 0.001). In the instances of right colonic diverticulitis, the surgery rate was 2.8% (10/359) for stages Ia-II, while all seven patients with stage III or IV underwent surgery. The recurrence rate was 6.5% (23/356) and 15% (2/13) for right and left colonic diverticulitis, respectively (p = 0.224). The CT-based modified Hinchey classification of right colonic diverticulitis showed good interobserver agreement. Most patients with right colonic diverticulitis had lower stages (Ia-II) at the point of CT, rarely needed surgery, and had a low recurrence rate.

  13. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.

    Science.gov (United States)

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this study, the high-frequency oscillatory flow is studied using a computational fluid dynamics analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds (Re) numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re (HFNR) case, and the HFOV case. The counter-flow structure is more evident in the HFNR case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  14. Numerical study of high frequency oscillatory air flow and convective mixing in a CT-based human airway model

    Science.gov (United States)

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    High frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this work, the high frequency oscillatory flow is studied using a computational fluid dynamics (CFD) analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed-tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re case, and the HFOV case. The counter-flow structure is more evident in the high-frequency-normal-Re case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  15. The surgical rate and recurrence rate in right colonic diverticulitis using the CT-based modified hinchey classification

    International Nuclear Information System (INIS)

    The purpose of this report is to retrospectively analyze the need for surgery, and the recurrence rate, using a CT-based method in patients with right colonic diverticulitis. For the purposes of our study, we included 416 patients with a mean age of 41.9 (238 of which were men), with a diagnosis of colonic diverticulitis that was based on CT findings. These findings were reviewed by two independent radiologists, who localized diverticulitis and determined it using a modified Hinchey classification. We were able to follow-up with 384 patients over a period of 30 months. Out of the 416 patients, 396 of them had right colonic diverticulitis. In right colonic diverticulitis, the κ value in determining the modified Hinchey classification was 0.80. 98.2% (389/396) of the patients with right colonic diverticulitis had stages Ia-II. The surgery rate was 4.6% (17/366) and 28% (5/18) for right and left colonic diverticulitis, respectively (p < 0.001). In the instances of right colonic diverticulitis, the surgery rate was 2.8% (10/359) for stages Ia-II, while all seven patients with stage III or IV underwent surgery. The recurrence rate was 6.5% (23/356) and 15% (2/13) for right and left colonic diverticulitis, respectively (p = 0.224). The CT-based modified Hinchey classification of right colonic diverticulitis showed good interobserver agreement. Most patients with right colonic diverticulitis had lower stages (Ia-II) at the point of CT, rarely needed surgery, and had a low recurrence rate

  16. Usefulness of standardized uptake value normalized by individual CT-based lean body mass in application of PET response criteria in solid tumors (PERCIST).

    Science.gov (United States)

    Narita, Atsushi; Shiomi, Susumu; Katayama, Yutaka; Yamanaga, Takashi; Daisaki, Hiromitsu; Hamada, Kazuo; Watanabe, Yasuyoshi

    2016-07-01

    Our aim in this study was to verify the usefulness of the standardized uptake value (SUV) normalized by individual CT-based lean body mass (LBMCT) in application of PET response criteria in solid tumors (PERCIST).We retrospectively investigated 14 patients (4 male and 10 female) with malignant lymphoma who were undergoing chemotherapy. (18)F-FDG PET/CT examinations were performed before and after chemotherapy. The LBMCT was calculated by estimation of fat weight from CT data (from skull base to pelvis). The mean ± standard deviation (SD) and the Bland-Altman plot were used for comparison among body weight, LBMCT, and LBM derived from a predictive equation (LBMPE). Indices for FDG uptake in the liver were: SUV, SUV based on LBMPE (SULPE), and SUV based on LBMCT (SULCT). Overall differences between the uptake values were analyzed by one-way ANOVA. If the ANOVA showed significance, differences between uptake values were investigated further by use of the Tukey-Kramer test. The mean values of body weight, LBMPE, and LBMCT were: 55.4 ± 14.9 (39.0-112.0), 43.0 ± 10.5 (31.3-75.2), and 35.3 ± 9.8 (23.4-75.8) kg, respectively. There was a wide dispersion between LBMPE and LBMCT (differences, 7.6 ± 3.6 kg; 95 % CI, 6.42-8.85). LBMPE was higher than LBMCT in all the cases except in Case 11. The mean uptake values significantly differed among SUV, SULPE, and SULCT (F = 68.3, p < 0.05). Whereas SULPE deviated from PERCIST criteria in seven patients, SULCT satisfied the criteria except in one case. These results suggest that liver SULCT is useful for application of PERCIST. PMID:26873140

  17. CT based computerized identification and analysis of human airways: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David [Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213 (United States); School of Computing, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Radiology, Henan Provincial People' s Hospital, Zhengzhou 450003 (China); Department of Medicine, University of Pittsburgh, 580 S. Aiken Avenue, Suite 400, Pittsburgh, Pennsylvania 15232 (United States); Department of Pharmacology and Chemical Biology, Hillman Cancer Center, Pittsburgh, Pennsylvania 15213 (United States); Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, PA 15213 (United States)

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  18. The rapid shallow breathing index as a predictor of successful mechanical ventilation weaning: clinical utility when calculated from ventilator data

    Science.gov (United States)

    de Souza, Leonardo Cordeiro; Lugon, Jocemir Ronaldo

    2015-01-01

    ABSTRACT OBJECTIVE: The use of the rapid shallow breathing index (RSBI) is recommended in ICUs, where it is used as a predictor of mechanical ventilation (MV) weaning success. The aim of this study was to compare the performance of the RSBI calculated by the traditional method (described in 1991) with that of the RSBI calculated directly from MV parameters. METHODS: This was a prospective observational study involving patients who had been on MV for more than 24 h and were candidates for weaning. The RSBI was obtained by the same examiner using the two different methods (employing a spirometer and the parameters from the ventilator display) at random. In comparing the values obtained with the two methods, we used the Mann-Whitney test, Pearson's linear correlation test, and Bland-Altman plots. The performance of the methods was compared by evaluation of the areas under the ROC curves. RESULTS: Of the 109 selected patients (60 males; mean age, 62 ± 20 years), 65 were successfully weaned, and 36 died. There were statistically significant differences between the two methods for respiratory rate, tidal volume, and RSBI (p < 0.001 for all). However, when the two methods were compared, the concordance and the intra-observer variation coefficient were 0.94 (0.92-0.96) and 11.16%, respectively. The area under the ROC curve was similar for both methods (0.81 ± 0.04 vs. 0.82 ± 0.04; p = 0.935), which is relevant in the context of this study. CONCLUSIONS: The satisfactory performance of the RSBI as a predictor of weaning success, regardless of the method employed, demonstrates the utility of the method using the mechanical ventilator. PMID:26785962

  19. Characterization of hepatocellular carcinoma (HCC) lesions using a novel CT-based volume perfusion (VPCT) technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, S., E-mail: sascha.kaufmann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076 Tübingen (Germany); Horger, T., E-mail: horger@ma.tum.de [Technische Universität München, Boltzmannstraße 3, 85748 Garching (Germany); Oelker, A., E-mail: oelker@ma.tum.de [Technische Universität München, Boltzmannstraße 3, 85748 Garching (Germany); Kloth, C., E-mail: christopher.kloth@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076 Tübingen (Germany); Nikolaou, K., E-mail: Konstantin.Nikolaou@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076 Tübingen (Germany); Schulze, M., E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076 Tübingen (Germany); Horger, M., E-mail: marius.horger@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Strasse 3, 72076 Tübingen (Germany)

    2015-06-15

    Highlights: • Quantification of perfusion with VPCT has great potential for functional imaging. • We present our preliminary results of perfusion parameters (Blood Flow, Blood Volume and kk-trans) of hepatocellular carcinoma (HCC) in terms of using VPCT and two different calculation methods, compare their results and look for correlation between tumor arterialization and lesion size. • VPCT can measure tumor volume perfusion non-invasively and enables quantification of the degree of HCC arterialization. Results are dependent on the technique used with best inter-method correlation for Blood Flow. • Tumor arterialization did not proved size-dependent. - Abstract: Objective: To characterize hepatocellular carcinoma (HCC) in terms of perfusion parameters using volume perfusion CT (VPCT) and two different calculation methods, compare their results, look for interobserver agreement of measurements and correlation between tumor arterialization and lesion size. Material and methods: This study was part of a prospective monitoring study in patients with HCC undergoing TACE, which was approved by the local Institutional Review Board. 79 HCC-patients (mean age, 64.7) with liver cirrhosis were enrolled. VPCT was performed for 40 s covering the involved liver (80 kV, 100/120 mAs) using 64 mm × 0.6 mm collimation, 26 consecutive volume measurements, 50 mL iodinated contrast IV and 5 mL/s flow rate. Mean/maximum blood flow (BF; ml/100 mL/min), blood volume (BV) and k-trans were determined both with the maximum slope + Patlak vs. deconvolution method. Additionally, the portal venous liver perfusion (PVP), the arterial liver perfusion (ALP) and the hepatic perfusion index (HPI) were determined for each tumor including size measurements. Interobserver agreement for all perfusion parameters was calculated using intraclass correlation coefficients (ICC). Results: The max. slope + Patlak method yielded: BFmean/max = 37.8/57 mL/100 g-tissue/′, BVmean/max = 9.8/11.1 mL/100 g

  20. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  1. Scatter correction method for cone-beam CT based on interlacing-slit scan

    Science.gov (United States)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  2. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants : a phantom study

    NARCIS (Netherlands)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F.

    2014-01-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of F-18-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom h

  3. Reduction of artefacts caused by hip implants in CT-based attenuation-corrected PET images using 2-D interpolation of a virtual sinogram on an irregular grid

    NARCIS (Netherlands)

    Abdoli, Mehrsima; de Jong, Johan R.; Pruim, Jan; Dierckx, Rudi A. J. O.; Zaidi, Habib

    2011-01-01

    Purpose Metallic prosthetic replacements, such as hip or knee implants, are known to cause strong streaking artefacts in CT images. These artefacts likely induce over-or underestimation of the activity concentration near the metallic implants when applying CT-based attenuation correction of positron

  4. Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm

    NARCIS (Netherlands)

    Abdoli, Mehrsima; Ay, Mohammad Reza; Ahmadian, Alireza; Dierckx, Rudi A. J. O.; Zaidi, Habib

    2010-01-01

    Purpose: The presence of metallic dental fillings is prevalent in head and neck PET/CT imaging and generates bright and dark streaking artifacts in reconstructed CT images. The resulting artifacts would propagate to the corresponding PET images following CT-based attenuation correction (CTAC). This

  5. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  6. SU-E-J-141: Comparison of Dose Calculation On Automatically Generated MRBased ED Maps and Corresponding Patient CT for Clinical Prostate EBRT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Schadewaldt, N; Schulz, H; Helle, M; Renisch, S [Philips Research Laboratories Hamburg, Hamburg (Germany); Frantzen-Steneker, M; Heide, U [The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2014-06-01

    Purpose: To analyze the effect of computing radiation dose on automatically generated MR-based simulated CT images compared to true patient CTs. Methods: Six prostate cancer patients received a regular planning CT for RT planning as well as a conventional 3D fast-field dual-echo scan on a Philips 3.0T Achieva, adding approximately 2 min of scan time to the clinical protocol. Simulated CTs (simCT) where synthesized by assigning known average CT values to the tissue classes air, water, fat, cortical and cancellous bone. For this, Dixon reconstruction of the nearly out-of-phase (echo 1) and in-phase images (echo 2) allowed for water and fat classification. Model based bone segmentation was performed on a combination of the DIXON images. A subsequent automatic threshold divides into cortical and cancellous bone. For validation, the simCT was registered to the true CT and clinical treatment plans were re-computed on the simCT in pinnacle{sup 3}. To differentiate effects related to the 5 tissue classes and changes in the patient anatomy not compensated by rigid registration, we also calculate the dose on a stratified CT, where HU values are sorted in to the same 5 tissue classes as the simCT. Results: Dose and volume parameters on PTV and risk organs as used for the clinical approval were compared. All deviations are below 1.1%, except the anal sphincter mean dose, which is at most 2.2%, but well below clinical acceptance threshold. Average deviations are below 0.4% for PTV and risk organs and 1.3% for the anal sphincter. The deviations of the stratifiedCT are in the same range as for the simCT. All plans would have passed clinical acceptance thresholds on the simulated CT images. Conclusion: This study demonstrated the clinical usability of MR based dose calculation with the presented Dixon acquisition and subsequent fully automatic image processing. N. Schadewaldt, H. Schulz, M. Helle and S. Renisch are employed by Phlips Technologie Innovative Techonologies, a

  7. Femoral head-neck offset in the Indian population: A CT based study

    Directory of Open Access Journals (Sweden)

    Rajesh Malhotra

    2012-01-01

    Full Text Available Background: Femoroacetabular impingement has been postulated as the important cause of primary osteoarthritis in non dysplastic hips. We postulated that the rarity of primary osteoarthritis of hip in Indian population could be attributable to morphological differences, specifically to a lower prevalence of abnormal head-neck morphology. We conducted an anthropometric study to evaluate the prevalence of abnormal head-neck offset in Indian population and to correlate it with the low prevalence of primary osteoarthrosis in the Indian population. Materials and Methods: The computed tomography (CT images of 85 apparently normal hips were analysed. An axial image was created parallel to the central axis of the femoral neck and passing through the center of the femoral head using coronal scout view. This image was then used to calculate alpha and beta angles and the head-neck offset ratio. The measurements were made by two independent observers on two different occasions. Results: The prevalence of abnormal head-neck offset ratio was 11.7% and the mean alpha and beta angles were 45.6° and 40.6°, respectively. Pearson correlation coefficients for intra-observer and inter-observer agreement were, respectively, 0.84 and 0.80 for alpha angle, 0.80 and 0.77 for beta angle and 0.78 and 0.75 for head-neck offset ratio. The values were similar to those reported in the western population. Conclusion: The differences in the prevalence of hip osteoarthritis in Indian and western populations are not attributable to variation in the prevalence of abnormal head-neck offset.

  8. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  9. A comparison of radiographers and radiologists in CT based measurements of abdominal aortic aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    England, Andrew, E-mail: a.england@liv.ac.u [Directorate of Medical Imaging and Radiotherapy, University of Liverpool, Johnston Building, Quadrangle, Brownlow Hill, Liverpool L69 3GB (United Kingdom); Best, Abigail; Friend, Charlotte [Directorate of Medical Imaging and Radiotherapy, University of Liverpool, Johnston Building, Quadrangle, Brownlow Hill, Liverpool L69 3GB (United Kingdom)

    2010-11-15

    Aim: To evaluate the variability of CT AAA measurements undertaken by radiologists and radiographers. Methods: 19 Observers (4 radiologists, 15 radiographers) were invited to independently measure maximum aneurysm diameter (Dmax) on ten CT scans. Each CT scan was presented randomly to each observer; four were duplicates testing intra-observer variability. All measurements were undertaken from axial CT images using electronic callipers, all observers were blinded to any previous measurements. Both the slice number and the maximum AAA diameter (in any plane) were recorded. Results: Intra-observer variability was lower for radiographers with a mean paired difference of -0.18 {+-} 2.6 mm compared to -2.1 {+-} 3.5 mm (P = 0.054). Inter-observer variability within each observer group was comparable, radiographers 0.1 {+-} 5.0 mm; radiologists -0.1 {+-} 3.1 mm (P = 0.680). When directly comparing between the two groups mean difference was -2.0 {+-} 4.0 mm with 43% of paired measurements {<=}2 mm or less and 78% {<=}5 mm. Slice selection was less variable between the two groups with 88% of repeat radiographer measurements within {+-}1 slice and 91% of radiologists measurements with {+-}1 slice (P = 0.228). Conclusion: The accuracy of radiographers in performing AAA CT measurements is encouraging. Variability exists for both professions, and in some instances may be clinically significant. Observers should be aware of measurement variability issues and have an understanding of the factors responsible. Careful and repeat measurements of AAAs around 5.5 cm are recommended in order to define treatment.

  10. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion.

    Science.gov (United States)

    Joseph, Jacob R; Smith, Brandon W; Patel, Rakesh D; Park, Paul

    2016-09-01

    OBJECTIVE Lateral lumbar interbody fusion (LLIF) is an increasingly popular technique used to treat degenerative lumbar disease. The technique of using an intraoperative cone-beam CT (iCBCT) and an image-guided navigation system (IGNS) for LLIF cage placement has been previously described. However, other than a small feasibility study, there has been no clinical study evaluating its accuracy or safety. Therefore, the purpose of this study was to evaluate the accuracy and safety of image-guided spinal navigation in LLIF. METHODS An analysis of a prospectively acquired database was performed. Thirty-one consecutive patients were identified. Accuracy was initially determined by comparison of the planned trajectory of the IGNS with post-cage placement intraoperative fluoroscopy. Accuracy was subsequently confirmed by postprocedural CT and/or radiography. Cage placement was graded based on a previously described system separating the disc space into quarters. RESULTS The mean patient age was 63.9 years. A total of 66 spinal levels were treated, with a mean of 2.1 levels (range 1-4) treated per patient. Cage placement was noted to be accurate using IGNS in each case, as confirmed with intraoperative fluoroscopy and postoperative imaging. Sixty-four (97%) cages were placed within Quarters 1 to 2 or 2 to 3, indicating placement of the cage in the anterior or middle portions of the disc space. There were no instances of misguidance by IGNS. There was 1 significant approach-related complication (psoas muscle abscess) that required intervention, and 8 patients with transient, mild thigh paresthesias or weakness. CONCLUSIONS LLIF can be safely and accurately performed utilizing iCBCT and IGNS. Accuracy is acceptable for multilevel procedures. PMID:27104283

  11. Highly conformal CT based surface mould brachytherapy for non-melanoma skin cancers of earlobe and nose

    Science.gov (United States)

    Kozłowski, Sławomir; Pietraszek, Andrzej; Pietrzykowska-Kuncman, Malwina; Danielska, Justyna; Sobotkowski, Janusz; Łuniewska-Bury, Jolanta; Fijuth, Jacek

    2016-01-01

    Purpose Brachytherapy (BT), due to rapid dose fall off and minor set-up errors, should be superior to external beam radiotherapy (EBRT) for treatment of lesions in difficult locations like nose and earlobe. Evidences in this field are scarce. We describe computed tomography (CT) based surface mould BT for non-melanoma skin cancers (NMSC), and compare its conformity, dose coverage, and tissue sparing ability to EBRT. Material and methods We describe procedure of preparation of surface mould applicator and dosimetry parameters of BT plans, which were implemented in 10 individuals with NMSC of nose and earlobe. We evaluated dose coverage by minimal dose to 90% of planning target volume (PTV) (D90), volumes of PTV receiving 90-150% of prescribed dose (PD) (VPTV90-150), conformal index for 90 and 100% of PD (COIN90, COIN100), dose homogeneity index (DHI), dose nonuniformity ratio (DNR), exposure of organs. Prospectively, we created CT-based photons and electrons plans. We compared conformity (COIN90, COIN100), dose coverage of PTV (D90, VPTV90, VPTV100), volumes of body receiving 10-90% of PD (V10-V90) of EBRT and BT plans. Results We obtained mean BT-DHI = 0.76, BT-DNR = 0.23, EBRT-DHI = 1.26. We observed no significant differences in VPTV90 and D90 between BT and EBRT. Mean BT-VPTV100 (89.4%) was higher than EBRT-VPTV100 (71.2%). Both COIN90 (BT-COIN90 = 0.46 vs. EBRT-COIN90 = 0.21) and COIN100 (BT-COIN100 = 0.52 vs. EBRT-COIN100 = 0.26) were superior for BT plans. We observed more exposure of normal tissues for small doses in BT plans (V10, V20), for high doses in EBRT plans (V70, V90). Conclusions Computed tmography-based surface mould brachytherapy for superficial lesions on irregular surfaces is a highly conformal method with good homogeneity. Brachytherapy is superior to EBRT in those locations in terms of conformity and normal tissue sparing ability in high doses. PMID:27504128

  12. Convex-hull mass estimates of the dodo (Raphus cucullatus): application of a CT-based mass estimation technique.

    Science.gov (United States)

    Brassey, Charlotte A; O'Mahoney, Thomas G; Kitchener, Andrew C; Manning, Phillip L; Sellers, William I

    2016-01-01

    The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758) has been a source of considerable intrigue, as contemporaneous accounts or depictions are rare. The body mass of the dodo has been particularly contentious, with the flightless pigeon alternatively reconstructed as slim or fat depending upon the skeletal metric used as the basis for mass prediction. Resolving this dichotomy and obtaining a reliable estimate for mass is essential before future analyses regarding dodo life history, physiology or biomechanics can be conducted. Previous mass estimates of the dodo have relied upon predictive equations based upon hind limb dimensions of extant pigeons. Yet the hind limb proportions of dodo have been found to differ considerably from those of their modern relatives, particularly with regards to midshaft diameter. Therefore, application of predictive equations to unusually robust fossil skeletal elements may bias mass estimates. We present a whole-body computed tomography (CT) -based mass estimation technique for application to the dodo. We generate 3D volumetric renders of the articulated skeletons of 20 species of extant pigeons, and wrap minimum-fit 'convex hulls' around their bony extremities. Convex hull volume is subsequently regressed against mass to generate predictive models based upon whole skeletons. Our best-performing predictive model is characterized by high correlation coefficients and low mean squared error (a = - 2.31, b = 0.90, r (2) = 0.97, MSE = 0.0046). When applied to articulated composite skeletons of the dodo (National Museums Scotland, NMS.Z.1993.13; Natural History Museum, NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of 8-10.8 kg. When accounting for missing soft tissues, this may equate to live masses of 10.6-14.3 kg. Mass predictions presented here overlap at the lower end of those previously published, and support recent suggestions of a relatively slim dodo. CT-based reconstructions provide a means of

  13. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18F radioactivity concentration of 1.86x105 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  14. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

    International Nuclear Information System (INIS)

    The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. The dosimetric impact on near-minimum PTV dose (D98%) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V20Gy and V5Gy in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V5Gy-cont was 35.6% for stage III patients. For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose

  15. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    Science.gov (United States)

    Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao

    2014-02-01

    demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.

  16. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    International Nuclear Information System (INIS)

    for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately. (paper)

  17. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    Science.gov (United States)

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.

  18. CT-based Evaluation of Axillary Sentinel Lymph Node Status in Breast Cancer: Value of Added Contrast-Enhanced Study

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, S.; Yamada, K.; Goto, M.; Sawai, K.; Nishimura, T. [Graduate School of Medical Science Kyoto Prefectural Univ. of Medicine (Japan). Dept. of Radiology and Dept. of Breast and Endocrine Surgery

    2004-11-01

    Purpose: To evaluate the diagnostic reliability of CT-based sentinel lymph node (SLN) size criteria for selecting the candidates for direct axillary dissection without SLN biopsy and to determine the value of added contrast-enhanced study. Material and Methods: Breast cancer patients (n=107) underwent triple phasic (1-min, 3-min, 8-min) contrast-enhanced 5 mm-computed tomography (CT) of the breasts and axillae. In the CT image, the most inferior lymph node in the axilla was designated the SLN. Axillary status was judged based on SLN size criteria. CT density, enhancement rate, and peak enhancement time of each SLN were correlated with histopathological results. Results: SLN size criteria demonstrated a sensitivity of 76% and a positive predictive value of 95% in predicting SLN metastasis. The density values at each scanning time-point were significantly different for metastatic and non-metastatic SLN. However, their enhancement rates differed significantly only at 1 min. Their peak enhancement occurred primarily at 1 min. The use of contrast-enhancement criteria improved the predictive sensitivity, but failed to decrease the false-positive rate of the SLN size criteria. Conclusion: The enhancement rate at 1 min proved to be the most useful parameter in contrast-enhanced CT studies; however, it failed in improving the accuracy of the SLN size criteria.

  19. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Mohammad R. [Geneva University Hospital, Division of Nuclear Medicine, Geneva (Switzerland); Zaidi, Habib

    2006-11-15

    Quantitative image reconstruction in positron emission tomography (PET) requires an accurate attenuation map of the object under study for the purpose of attenuation correction. Current dual-modality PET/CT systems offer significant advantages over stand-alone PET, including decreased overall scanning time and increased accuracy in lesion localisation and detectability. However, the contamination of CT data with scattered radiation and misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) are known to generate artefacts in the attenuation map and thus the resulting PET images. The purpose of this work was to quantitatively measure the impact of scattered radiation and contrast medium on the accuracy of CTAC. Our recently developed MCNP4C-based Monte Carlo X-ray CT simulator for modelling both fan- and cone-beam CT scanners and the Eidolon dedicated 3D PET Monte Carlo simulator were used to generate realigned PET/CT data sets. The impact of X-ray scattered radiation on the accuracy of CTAC was investigated through simulation of a uniform cylindrical water phantom for both a commercial fan-beam multi-slice and a prototype cone-beam flat panel detector-based CT scanner. The influence of contrast medium was studied by simulation of a cylindrical phantom containing different concentrations of contrast medium. Moreover, an experimental study using an anthropomorphic striatal phantom was conducted for quantitative evaluation of errors arising from the presence of contrast medium by calculating the apparent recovery coefficient (ARC) in the presence of different concentrations of contrast medium. The analysis of attenuation correction factors (ACFs) for the simulated cylindrical water phantom in both fan- and cone-beam CT scanners showed that the contamination of CT data with scattered radiation in the absence of scatter removal causes underestimation of the true ACFs, namely by 7.3% and 28.2% in the centre for the two

  20. Comparison of MR-based attenuation correction and CT-based attenuation correction of whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo-Garcia, David [Mount Sinai School of Medicine, Translational and Molecular Imaging Institute, New York, NY (United States); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Sawiak, Stephen J. [University of Cambridge, Wolfson Brain Imaging Centre, Cambridge (United Kingdom); Knesaurek, Karin; Machac, Joseph [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Narula, Jagat [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Fayad, Zahi A. [Mount Sinai School of Medicine, Translational and Molecular Imaging Institute, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States)

    2014-08-15

    The objective of this study was to evaluate the performance of the built-in MR-based attenuation correction (MRAC) included in the combined whole-body Ingenuity TF PET/MR scanner and compare it to the performance of CT-based attenuation correction (CTAC) as the gold standard. Included in the study were 26 patients who underwent clinical whole-body FDG PET/CT imaging and subsequently PET/MR imaging (mean delay 100 min). Patients were separated into two groups: the alpha group (14 patients) without MR coils during PET/MR imaging and the beta group (12 patients) with MR coils present (neurovascular, spine, cardiac and torso coils). All images were coregistered to the same space (PET/MR). The two PET images from PET/MR reconstructed using MRAC and CTAC were compared by voxel-based and region-based methods (with ten regions of interest, ROIs). Lesions were also compared by an experienced clinician. Body mass index and lung density showed significant differences between the alpha and beta groups. Right and left lung densities were also significantly different within each group. The percentage differences in uptake values using MRAC in relation to those using CTAC were greater in the beta group than in the alpha group (alpha group -0.2 ± 33.6 %, R{sup 2} = 0.98, p < 0.001; beta group 10.31 ± 69.86 %, R{sup 2} = 0.97, p < 0.001). In comparison to CTAC, MRAC led to underestimation of the PET values by less than 10 % on average, although some ROIs and lesions did differ by more (including the spine, lung and heart). The beta group (imaged with coils present) showed increased overall PET quantification as well as increased variability compared to the alpha group (imaged without coils). PET data reconstructed with MRAC and CTAC showed some differences, mostly in relation to air pockets, metallic implants and attenuation differences in large bone areas (such as the pelvis and spine) due to the segmentation limitation of the MRAC method. (orig.)

  1. Comparison of MR-based attenuation correction and CT-based attenuation correction of whole-body PET/MR imaging

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the performance of the built-in MR-based attenuation correction (MRAC) included in the combined whole-body Ingenuity TF PET/MR scanner and compare it to the performance of CT-based attenuation correction (CTAC) as the gold standard. Included in the study were 26 patients who underwent clinical whole-body FDG PET/CT imaging and subsequently PET/MR imaging (mean delay 100 min). Patients were separated into two groups: the alpha group (14 patients) without MR coils during PET/MR imaging and the beta group (12 patients) with MR coils present (neurovascular, spine, cardiac and torso coils). All images were coregistered to the same space (PET/MR). The two PET images from PET/MR reconstructed using MRAC and CTAC were compared by voxel-based and region-based methods (with ten regions of interest, ROIs). Lesions were also compared by an experienced clinician. Body mass index and lung density showed significant differences between the alpha and beta groups. Right and left lung densities were also significantly different within each group. The percentage differences in uptake values using MRAC in relation to those using CTAC were greater in the beta group than in the alpha group (alpha group -0.2 ± 33.6 %, R2 = 0.98, p 2 = 0.97, p < 0.001). In comparison to CTAC, MRAC led to underestimation of the PET values by less than 10 % on average, although some ROIs and lesions did differ by more (including the spine, lung and heart). The beta group (imaged with coils present) showed increased overall PET quantification as well as increased variability compared to the alpha group (imaged without coils). PET data reconstructed with MRAC and CTAC showed some differences, mostly in relation to air pockets, metallic implants and attenuation differences in large bone areas (such as the pelvis and spine) due to the segmentation limitation of the MRAC method. (orig.)

  2. Importance of the CT/MRI fusion method as a learning tool for CT-based postimplant dosimetry in prostate brachytherapy

    International Nuclear Information System (INIS)

    Background and purpose: To compare the CT-based and CT/MRI fusion-based postimplant dosimetry after permanent prostate brachytherapy and to evaluate the improvement in CT-based dosimetry by physicians with or without experience in using the CT/MRI fusion method. Patients and methods: Thirty-eight consecutive patients agreed to participate in a prospective study. The prostate contours from CT/MRI fusion are the gold standard for determining the prostate volume and dose volume histogram (DVH). CT-based postimplant dosimetries were performed by two physicians. Observer 1 was a radiologist who had never used CT/MRI fusion method for postimplant dosimetric analysis. Observer 2 was a radiation oncologist experienced in postimplant analysis using the CT/MRI fusion method. The prostate dosimetry was evaluated by prostate D90 and V100. Results: No significant difference was observed in the mean prostate volumes between the two observers and the CT/MRI fusion data. However, the correlation coefficient value for observer 2 (R 2 = 0.932) was greater than that for observer 1 (R 2 = 0.793). The D90 and V100 values as evaluated by the two observers were significantly underestimated in comparison to those evaluated using the CT/MRI fusion methods. The DVH related parameters were underestimated more frequently by observer 1 than by observer 2: (prostate D90: 99.56% for observer 1, 102.97% for observer 2, 109.37% for CT/MRI fusion. Prostate V100: 88.12% for observer 1, 90.14% for observer 2, 91.91% for CT/MRI fusion). Conclusions: The difference in the mean value in D90 and V100 by observer 1 was significantly greater than that for observer 2. These findings suggest that the CT/MRI fusion method provides accurate feedback which thereby improves CT-based postimplant dosimetry for prostate brachytherapy

  3. CT-based three-dimensional reconstruction navigation technique assisted pedicle screw placement in lumbar and sacral bone%腰骶骨椎弓根螺钉置入内固定:CT三维重建虚拟导航的辅助

    Institute of Scientific and Technical Information of China (English)

    陈晓明; 陈前芬; 肖增明; 宗少晖

    2015-01-01

      结果与结论:共置入腰骶椎椎弓根螺钉1088枚,其中1068枚螺钉位置为Ⅰ级,置钉准确率达98.2%。152例获得随访,随访时间12个月,无内固定物移位、断裂等并发症。术前CT三维重建虚拟导航技术能为腰骶骨椎弓根螺钉内固定提供三维立体的解剖信息,制定最优置钉计划,使置钉更加精确安全,从而提高整体的修复质量。%BACKGROUND:Pedicle screw fixation techniques have been widely used in the treatment of lumbar and sacral disease, such as trauma, deformity, tumor and degeneration. How to improve the accuracy of screw placement is a hot topic. CT-based three-dimensional reconstruction navigation technique provides real-time, multi-perspective, three-dimensional visualization of lumbar and sacral anatomy, and surgeons can perform the pedicle screw insertion procedures confidently with increase of accuracy and safety. OBJECTIVE:To study the clinical value of CT-based three-dimensional reconstruction navigation technique in the application of lumbar and sacral pedicle screw placement. METHODS:A total of 203 patients with lumbar and sacral diseases, including lumbar fracture, lumbar spondylolysis and lumbar spinal stenosis, were recruited from Department of Spine&Osteopathy, the First Affiliated Hospital of Guangxi Medical University between July 2008 and November 2014. Patients received pedicle screw placement in lumbar and sacral bone under the guidance of CT-based three-dimensional reconstruction navigation. Postoperative X-ray films and three-dimensional CT scan of lumbar bone were routinely examined in each patient. The accuracy of pedicle screw insertion was evaluated with postoperative CT scan according to Andrew classification. RESULTS AND CONCLUSION:A total of 1 088 screws were inserted in the lumbar and sacral bone. The accuracy of pedicle screw insertion was rated as grade I in 1 068 screws (98.2%) according to postoperative CT scan. 152 cases were fol owed

  4. Study on pedicle screw fixation of cervical spine assisted CT-based navigation system compared with the individual cervical peddle screws placement technique

    International Nuclear Information System (INIS)

    Objective: To explore a safe and effective method for placing the cervical pedicle screws. Methods: There were ten adult cadaver specimens of cervica spine (C1-C7) with intact structures including ligament and perivertebral muscles. The spiral computed tomography scan (Elscint CT Twin flash) at the section of 1 mm and three-dimensional reconstruction of all 10 cervical specimens were taken. By CT scan, the parameters of the cervical pedicles were measure,Then taking randomly 5 cervical specimens, according to the CT measurements, an appropriate screw was inserted into pedicle individually. In the other 5 human cadaver cervical vertebraes, Φ3.5 mm screws were inserted into the C2-C7 pedicles by assisted by CT-based navigation system. Cortical integrity of every sample was examined by anatomic dissection, the spiral computed tomography scan and arrows,and coronal reconstruction. Results: Sixty screws was inserted into pedicle individually, and the achievement ratio was 90%, the perfectness ratio was 75%, 60 screws was placed into pedicle assisted by CT-based navigation system, and the achievement ratio was 96.6%, the perfectness ratio was 90%. By chi-square test for statistical analysis, there were no statistical significance between the accuracy rate of two methods(P>0.05). However there was statistical significance between the perfectness ratio between two methods(P<0.05). Conclusion: Compared with the individual cervical peddle screws placement technique, the perfectness ratio of pedicle screw fixation of cervical spine assisted by CT-based navigation system is higher, but there are no significant difference in accuracy. (authors)

  5. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  6. Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study.

    Science.gov (United States)

    Yohannes, Indra; Prasetio, Heru; Kallis, Karoline; Bert, Christoph

    2016-01-01

    We report an investigation on the accuracy of dose calculation based on the cone-beam computed tomography (CBCT) images of the nonbowtie filter kV imaging system of the Vero linear accelerator. Different sets of materials and tube voltages were employed to generate the Hounsfield unit lookup tables (HLUTs) for both CBCT and fan-beam CT (FBCT) systems. The HLUTs were then implemented for the dose calculation in a treatment planning system (TPS). Dosimetric evaluation was carried out on an in-house-developed cube phantom that consists of water-equivalent slabs and inhomogeneity inserts. Two independent dosimeters positioned in the cube phantom were used in this study for point-dose and two-dimensional (2D) dose distribution measurements. The differences of HLUTs from various materials and tube voltages in both CT systems resulted in differences in dose calculation accuracy. We found that the higher the tube voltage used to obtain CT images, the better the point-dose calculation and the gamma passing rate of the 2D dose distribution agree to the values determined in the TPS. Moreover, the insert materials that are not tissue-equivalent led to higher dose-calculation inaccuracy. There were negligible differences in dosimetric evaluation between the CBCT- and FBCT-based treatment planning if the HLUTs were generated using the tissue-equivalent materials. In this study, the CBCT images of the Vero system from a complex inhomogeneity phantom can be applied for the TPS dose calculation if the system is calibrated using tissue-equivalent materials scanned at high tube voltage (i.e., 120 kV). PMID:27455496

  7. MEMS Calculator

    Science.gov (United States)

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  8. Clinical role of18F-FDG PET/CT-based simultaneous modulated accelerated radiotherapy treatment plan-ning for locally advanced nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jianshe Wang; Tianyou Tang Co-first author; Jing Xu; Andrew Z Wang; Liang Li; Junnian Zheng; Longzhen Zhang

    2015-01-01

    Objective The aim of this study was to compare the long-term local control, overal survival, and late toxicities of positron emission tomography/computed tomography (PET/CT)-guided dose escalation radio-therapy versus conventional radiotherapy in the concurrent chemoradiotherapy treatment of local y ad-vanced nasopharyngeal carcinoma (NPC). Methods A total of 48 patients with stage III–IVa NPC were recruited and randomly administered PET/CT-guided dose escalation chemoradiotherapy (group A) or conventional chemoradiotherapy (group B). The dose-escalation radiotherapy was performed using the simultaneous modulated accelerated radiotherapy technique at prescribed doses of 77 gray (Gy) in 32 fractions (f) to the gross target volume (GTV): planning target volume (PTV) 1 received 64 Gy/32 f, while PTV2 received 54.4 Gy/32 f. Patients in group B received uniform-dose intensity-modulated radiotherapy, PTV1 received 70 Gy/35 f and PTV2 received 58 Gy/29 f. Concurrent chemotherapy consisted of cisplatin [20 mg/m2 intravenous (IV) on days 1–4] and docetaxel (75 mg/m2 IV on days 1 and 8) administered during treatment weeks 1 and 4. Al patients received 2–4 cycles of adjuvant chemotherapy of the same dose and drug regimen. Results The use of fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT significantly reduced the treat-ment volume delineation of the GTV in 83.3% (20/24) of patients. The 5-year local recurrence-free survival rates of the two groups were 100% and 79.2%, respectively (P = 0.019). The 5-year disease free survival (DFS) rates were 95.8% and 75.0%, respectively (P = 0.018). The 5-year local progression-free survival and DFS rates were significantly dif erent. The 5-year overal survival (OS) rates were 95.8% and 79.2%, re-spectively. Dif erences in OS improvement were insignificant (P = 0.079). Late toxicities were similar in the two groups. The most common late toxicities of the two arms were grade 1–2 skin dystrophy, xerostomia, subcutaneous fibrosis, and hearing loss. There were no cases of grade 4 late toxicity. Conclusion The use of 18F-FDG PET/CT-guided dose escalation radiotherapy is wel tolerated and can reduce local recurrence rates for patients with local y advanced NPC compared to conventional chemora-diotherapy.

  9. Modeling of Non-Small Cell Lung Cancer Volume Changes during CT-Based Image Guided Radiotherapy: Patterns Observed and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Hiram A. Gay

    2013-01-01

    Full Text Available Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 were selected because they had lung lesions that could be easily distinguished. The time course of the tumor volume for each patient was individually analyzed using a computer program. Results. The model fits of group L (conventional fractionation patients were very close to experimental data, with a median Δ% (average percent difference between data and fit of 5.1% (range 3.5–10.2%. The fits obtained in group S (hypofractionation patients were generally good, with a median Δ% of 7.2% (range 3.7–23.9% for the best fitting model. Four types of tumor responses were observed—Type A: “high” kill and “slow” dying rate; Type B: “high” kill and “fast” dying rate; Type C: “low” kill and “slow” dying rate; and Type D: “low” kill and “fast” dying rate. Conclusions. The models used in this study performed well in fitting the available dataset. The models provided useful insights into the possible underlying mechanisms responsible for the RT tumor volume response.

  10. A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation - Cadaveric validation study Clinical diagnostics and imaging

    NARCIS (Netherlands)

    M.L. Röling (Maarten); M.I. Visser (Monique I); E.H.G. Oei (Edwin); P. Pilot (Peter); G.J. Kleinrensink (Gert Jan); R.M. Bloem (Rolf)

    2015-01-01

    textabstractBackground: Femoroacetabular impingement (FAI) is caused by an anatomic deviation of the acetabular rim or proximal femur, which causes chronic groin pain. Radiological identification of FAI can be challenging. Advances in imaging techniques with the use of computed tomography (CT) scan

  11. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...... complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested....

  12. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  13. Comparison between traditional laboratory tests, permeability measurements and CT-based fluid flow modelling for cultural heritage applications.

    Science.gov (United States)

    De Boever, Wesley; Bultreys, Tom; Derluyn, Hannelore; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-06-01

    In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications.

  14. Analyse of setup errors and margin for thoracic carcinoma radiotherapy with cone-beam CT-based image guidance

    International Nuclear Information System (INIS)

    Objective: To study the role of KV CBCT on the geometrical accuracy of three dimensional conformal radiotherapy (3DCRT) and to evaluate the margin of targets and peripheral OAR for thoracic carcinoma. Methods: 34 patients with thoracic carcinoma were enrolled.Varian-IX lilac with OBI system was used to acquire CBCT scans before delivery in 3DCRT. The left-right (x), superior-inferior (y), anterior-posterior (z) setup errors of patients can be obtained from the tomography images automatically restructured by the system. Results: According to 279 CBCT scans the systemic ± random error on x, y, z directions were (-0.16 ± 3.25) mm, (-1.36 ± 5.43) mm, (-2.43 ± 2.14) mm and (2.41 ± 2.18) mm, (4.27 ± 3.60) mm, (2.71 ± 1.77) mm respectively if we do not consider the direction of setup errors. The margins of targets were calculated as 2.68 mm, 7.19 mm and 7.57 mm respectively. Conclusions: Setup errors are unavoidable in thoracic carcinoma irradiation. We suggest a PTV margin of 2.68 mm, 7.19 mm and 7.57 mm in the left-right, superior-inferior and anterior-posterior directions respectively in our department. (authors)

  15. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  16. Burnout calculation

    International Nuclear Information System (INIS)

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended

  17. Clinical evaluation of fast electron Monte Carlo dose calculation algorithms for treatment planning systems validation with experimental measurements and EGSnrc Monte Carlo simulation

    OpenAIRE

    Edimo, Paul

    2012-01-01

    The present study is focused on the clinical validation of two electron Monte Carlo (eMC) based treatment planning systems (TPS), Oncentra MasterPlan TPS (OMTPS) and XiO eMC. We present a new approach on the commissioning process based on, (a) homogeneous water phantom validation, (b) heterogeneous phantom validation with film measurements and, (c) Full MC validation. As a first step, MC models of electron beams (4, 8, 12 and 18 MeV) from an Elekta SL25 medical linear accelerator were buil...

  18. Incorporating GSA-SPECT into CT-based dose-volume histograms for advanced hepatocellular carcinoma radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Shintaro; Shirai; Morio; Sato; Yasutaka; Noda; Yoshitaka; Kumayama; Noritaka; Shimizu

    2014-01-01

    In single photon emission computed tomography-based three-dimensional radiotherapy(SPECT-B-3DCRT), im-ages of Tc-99 m galactosyl human serum albumin(GSA), which bind to receptors on functional liver cells, are merged with the computed tomography simulation im-ages. Functional liver is defined as the area of normal liver where GSA accumulation exceeds that of hepato-cellular carcinoma(HCC). In cirrhotic patients with a gigantic, proton-beam-untreatable HCC of ≥ 14 cm in diameter, the use of SPECT-B-3DCRT in combination with transcatheter arterial chemoembolization achieved a 2-year local tumor control rate of 78.6% and a 2-year survival rate of 33.3%. SPECT-B-3DCRT was applied to HCC to preserve as much functional liver as possible. Sixty-four patients with HCC, including 30 with Child B liver cirrhosis, received SPECT-B-3DCRT and none ex-perienced fatal radiation-induced liver disease(RILD). The Child-Pugh score deteriorated by 1 or 2 in > 20% of functional liver volume that was irradiated with ≥ 20 Gy. The deterioration in the Child-Pugh score decreased when the radiation plan was designed to irradiate ≤ 20% of the functional liver volume in patients givendoses of ≥ 20 Gy(FLV20Gy). Therefore, FLV20 Gy ≤ 20% may represent a safety index to prevent RILD during 3DCRT for HCC. To supplement FLV20 Gy as a qualitative index, we propose a quantitative indicator, F 20 Gy, which was calculated as F 20 Gy = 100% ×(the GSA count in the area irradiated with ≥ 20 Gy)/(the GSA count in the whole liver).

  19. SU-E-J-240: The Impact On Clinical Dose-Distributions When Using MR-Images Registered with Stereotactic CT-Images in Gamma Knife Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Benmakhlouf, H; Kraepelien, T; Forander, P [Karolinska University Hospital, Stockholm (Sweden); Wangerid, T [Karolinska Institute, Stockholm (Sweden)

    2014-06-01

    Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images with stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the

  20. TU-F-18C-08: Micro-Calcification Detectability Using Spectral Breast CT Based On a Si Strip Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Ding, H; Molloi, S [University of California, Irvine, CA (United States); Barber, W; Iwanczyk, J [DxRay Inc., Northridge, CA (United States)

    2014-06-15

    Purpose: To investigate the feasibility of micro-calcification (μCa) detectability by using an energy-resolved photon-counting Si strip detector for spectral breast computed tomography (CT). Methods: A bench-top CT system was constructed using a tungsten anode x-ray source with a focal spot size of 0.8 mm and a single line 256-pixel Si strip photon counting detector with a pixel pitch of 100 μm. The slice thickness was 0.5 mm. Five different size groups of calcium carbonate grains, from 105 to 215 μm in diameter, were embedded in a cylindrical resin phantom with a diameter of 16 mm to simulate μCas. The phantoms were imaged at 65 kVp with an Entrance Skin Air Kerma (ESAK) of 1.2, 3, 6, and 8 mGy. The images were reconstructed using a standard filtered back projection (FBP) with a ramp filter. A total of 200 μCa images (5 different sizes of μCas × 4 different doses × 10 images for each setting) were combined with another 200 control images without μCas, to ultimately form 400 images for the reader study. The images were displayed in random order to three blinded observers, who were asked to give a binary score on each image regarding the presence of μCas. The μCa detectability for each image was evaluated in terms of binary decision theory metrics. The sensitivity, specificity, and accuracy were calculated to study the size and dose-dependence for μCa detectability. Additionally, the influence of the partial volume effect on the μCa detectability was investigated by simulation. Results: For a μCa larger than 140 μm in diameter, detection accuracy of above 90 % was achieved with the investigated prototype spectral CT system at ESAK of 1.2 mGy. Conclusion: The proposed Si strip detector is expected to offer superior image quality with the capability to detect μCas for low dose breast imaging.

  1. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments.

    Science.gov (United States)

    Held, Mareike; Cremers, Florian; Sneed, Penny K; Braunstein, Steve; Fogh, Shannon E; Nakamura, Jean; Barani, Igor; Perez-Andujar, Angelica; Pouliot, Jean; Morin, Olivier

    2016-01-01

    A clinical workflow was developed for urgent palliative radiotherapy treatments that integrates patient simulation, planning, quality assurance, and treatment in one 30-minute session. This has been successfully tested and implemented clinically on a linac with MV CBCT capabilities. To make this approach available to all clin-ics equipped with common imaging systems, dose calculation accuracy based on treatment sites was assessed for other imaging units. We evaluated the feasibility of palliative treatment planning using on-board imaging with respect to image quality and technical challenges. The purpose was to test multiple systems using their commercial setup, disregarding any additional in-house development. kV CT, kV CBCT, MV CBCT, and MV CT images of water and anthropomorphic phantoms were acquired on five different imaging units (Philips MX8000 CT Scanner, and Varian TrueBeam, Elekta VersaHD, Siemens Artiste, and Accuray Tomotherapy linacs). Image quality (noise, contrast, uniformity, spatial resolution) was evaluated and compared across all machines. Using individual image value to density calibrations, dose calculation accuracies for simple treatment plans were assessed for the same phantom images. Finally, image artifacts on clinical patient images were evaluated and compared among the machines. Image contrast to visualize bony anatomy was sufficient on all machines. Despite a high noise level and low contrast, MV CT images provided the most accurate treatment plans relative to kV CT-based planning. Spatial resolution was poorest for MV CBCT, but did not limit the visualization of small anatomical structures. A comparison of treatment plans showed that monitor units calculated based on a prescription point were within 5% difference relative to kV CT-based plans for all machines and all studied treatment sites (brain, neck, and pelvis). Local dose differences > 5% were found near the phantom edges. The gamma index for 3%/3 mm criteria was ≥ 95% in most

  2. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  3. Reliability calculations

    International Nuclear Information System (INIS)

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  4. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures

    International Nuclear Information System (INIS)

    Highlights: → Selective laser melting as a production tool for porous Ti6Al4V structures. → Significant mismatch between designed and as-produced properties. → Decreasing mismatch using a micro-CT-based protocol. → Mismatch of pore size decreased from 45% to 5%. → Increased morphological controllability increases mechanical controllability. - Abstract: Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.

  5. Emerging clinical applications of computed tomography

    Science.gov (United States)

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. PMID:26089707

  6. Computer-assisted radiographic calculation of spinal curvature in brachycephalic "screw-tailed" dog breeds with congenital thoracic vertebral malformations: reliability and clinical evaluation.

    Directory of Open Access Journals (Sweden)

    Julien Guevar

    Full Text Available The objectives of this study were: To investigate computer-assisted digital radiographic measurement of Cobb angles in dogs with congenital thoracic vertebral malformations, to determine its intra- and inter-observer reliability and its association with the presence of neurological deficits. Medical records were reviewed (2009-2013 to identify brachycephalic screw-tailed dog breeds with radiographic studies of the thoracic vertebral column and with at least one vertebral malformation present. Twenty-eight dogs were included in the study. The end vertebrae were defined as the cranial end plate of the vertebra cranial to the malformed vertebra and the caudal end plate of the vertebra caudal to the malformed vertebra. Three observers performed the measurements twice. Intraclass correlation coefficients were used to calculate the intra- and inter-observer reliabilities. The intraclass correlation coefficient was excellent for all intra- and inter-observer measurements using this method. There was a significant difference in the kyphotic Cobb angle between dogs with and without associated neurological deficits. The majority of dogs with neurological deficits had a kyphotic Cobb angle higher than 35°. No significant difference in the scoliotic Cobb angle was observed. We concluded that the computer assisted digital radiographic measurement of the Cobb angle for kyphosis and scoliosis is a valid, reproducible and reliable method to quantify the degree of spinal curvature in brachycephalic screw-tailed dog breeds with congenital thoracic vertebral malformations.

  7. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M. [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses

  8. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    Energy Technology Data Exchange (ETDEWEB)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  9. Comparison of CT versus MRI measurements of transverse atlantal ligament integrity in craniovertebral junction injuries. Part 2: A new CT-based alternative for assessing transverse ligament integrity.

    Science.gov (United States)

    Perez-Orribo, Luis; Kalb, Samuel; Snyder, Laura A; Hsu, Forrest; Malhotra, Devika; Lefevre, Richard D; Elhadi, Ali M; Newcomb, Anna G U S; Theodore, Nicholas; Crawford, Neil R

    2016-06-01

    OBJECTIVE The rule of Spence is inaccurate for assessing integrity of the transverse atlantal ligament (TAL). Because CT is quick and easy to perform at most trauma centers, the authors propose a novel sequence of obtaining 2 CT scans to improve the diagnosis of TAL impairment. The sensitivity of a new CT-based method for diagnosing a TAL injury in a cadaveric model was assessed. METHODS Ten human cadaveric occipitocervical specimens were mounted horizontally in a supine posture with wooden inserts attached to the back of the skull to maintain a neutral or flexed (10°) posture. Specimens were scanned in neutral and flexed postures in a total of 4 conditions (3 conditions in each specimen): 1) intact (n = 10); either 2A) after a simulated Jefferson fracture with an intact TAL (n = 5) or 2B) after a TAL disruption with no Jefferson fracture (n = 5); and 3) after TAL disruption and a simulated Jefferson fracture (n = 10). The atlantodental interval (ADI) and cross-sectional canal area were measured. RESULTS From the neutral to the flexed posture, ADI increased an average of 2.5% in intact spines, 6.25% after a Jefferson fracture without TAL disruption, 34% after a TAL disruption without fracture, and 25% after TAL disruption with fracture. The increase in ADI was significant with both TAL disruption and TAL disruption and fracture (p 0.6). Changes in spinal canal area were not significant (p > 0.70). CONCLUSIONS This novel method was more sensitive than the rule of Spence for evaluating the integrity of the TAL on CT and does not increase the risk of further neurological damage. PMID:26918571

  10. Cone-Beam CT-Based Delineation of Stereotactic Lung Targets: The Influence of Image Modality and Target Size on Interobserver Variability

    International Nuclear Information System (INIS)

    Purpose: It is generally agreed that the safe implementation of stereotactic body radiotherapy requires image guidance. The aim of this work was to assess interobserver variability in the delineation of lung lesions on cone-beam CT (CBCT) images compared with CT-based contouring for adaptive stereotactic body radiotherapy. The influence of target size was also evaluated. Methods and Materials: Eight radiation oncologists delineated gross tumor volumes in 12 patient cases (non–small cell lung cancer I–II or solitary metastasis) on planning CTs and on CBCTs. Cases were divided into two groups with tumor diameters of less than (Group A) or more than 2 cm (Group B). Comparison of mean volumes delineated by all observers and range and coefficient of variation were reported for each case and image modality. Interobserver variability was assessed by means of standard error of measurement, conformity index (CI), and its generalized observer-independent approach. The variance between single observers on CT and CBCT images was measured via interobserver reliability coefficient. Results: Interobserver variability on CT images was 17% with 0.79 reliability, compared with 21% variability on CBCT and 0.76 reliability. On both image modalities, values of the intraobserver reliability coefficient (0.99 for CT and 0.97 for CBCT) indicated high reproducibility of results. In general, lower interobserver agreement was observed for small lesions (CIgenA = 0.62 ± 0.06 vs. CIgenB = 0.70 ± 0.03, p < 0.05). The analysis of single patient cases revealed that presence of spicules, diffuse infiltrations, proximity of the tumors to the vessels and thoracic wall, and respiration motion artifacts presented the main sources of the variability. Conclusion: Interobserver variability for Stage I–II non–small cell lung cancer and lung metastasis was slightly higher on CBCT compared with CT. Absence of significant differences in interobserver variability suggests that CBCT imaging provides

  11. Realization of Micro-CT Based on a Lens-Coupled Detector and Calibration of Its Magnification%基于光耦探测器显微CT的实现及其放大倍数的标定

    Institute of Scientific and Technical Information of China (English)

    赵耕砚; 胡晓东; 邹晶; 赵金涛; 陈津平

    2013-01-01

    X射线显微CT因其较高的成像分辨率,被应用于微小样品内部精细结构的检测。分辨率是显微CT最受关注的指标之一,而实现其测量功能则是当今CT研究领域的前沿方向。为了提高分辨率,设计实现了一种基于光耦探测器的显微CT系统,对经过几何放大的图像再进行光学放大。由于对其放大倍数的准确标定是实现其测量功能的重要前提,研究提出了基于标准栅格板和标准球的标定方法,对基于光耦探测器的显微CT的光学放大倍数和几何放大倍数分别进行了标定。这样即使在实际测试中射线源、样品和探测器的位置发生改变,亦可直接算出总放大倍数。标定过程还使用了最小二乘法以提高标定精度。二维X射线投影图像测量实验和三维重建结果测量实验显示,此种放大倍数标定方法是准确、有效的。%X-ray computerized microtomography ( micro-CT ) is used to test tiny structures due to its high image resolution. Image resolution is one of its most important characteristics,and actualizing its measuring function is the cutting edge of CT research. To enhance its resolution,a micro-CT based on a lens-coupled detector was designed and actualized, which magnified samples optically besides geometric magnification. Since calibrating its magnification accurately is a premise to realize measurement with it,a calibration method using a grid pattern and a standard ball was proposed, which calibrated the optical magnification and the geometrical magnification respectively. Even if positions of the X-ray source,the sample and the detector are changed in later measurements, the total magnification can also be calculated. To increase calibrating precision,least square method was involved. Measurement experiments on 2 D projection images and a 3 D reconstruction result show that the calibration method is precise and valid.

  12. HENRY'S LAW CALCULATOR

    Science.gov (United States)

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  13. Preliminary experience on the implementation of computed tomography (CT)-based image guided brachytherapy (IGBT) of cervical cancer using high-dose-rate (HDR) Cobalt-60 source in University of Malaya Medical Centre (UMMC)

    Science.gov (United States)

    Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul

    2016-03-01

    This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.

  14. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    International Nuclear Information System (INIS)

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure was evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and

  15. SU-E-T-634: Analysis of Volume Based GYN HDR Brachytherapy Plans for Dose Calculation to Organs At Risk(OAR)

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M; Li, C; White, M; Davis, J [Joe Arrington Cancer Center, Lubbock, TX (United States)

    2014-06-15

    Purpose: We have analyzed the dose volume histogram of 140 CT based HDR brachytherapy plans and evaluated the dose received to OAR ; rectum, bladder and sigmoid colon based on recommendations from ICRU and Image guided brachytherapy working group for cervical cancer . Methods: Our treatment protocol consist of XRT to whole pelvis with 45 Gy at 1.8Gy/fraction followed by 30 Gy at 6 Gy per fraction by HDR brachytherapy in 2 weeks . The CT compatible tandem and ovoid applicators were used and stabilized with radio opaque packing material. The patient was stabilized using special re-locatable implant table and stirrups for reproducibility of the geometry during treatment. The CT scan images were taken at 3mm slice thickness and exported to the treatment planning computer. The OAR structures, bladder, rectum and sigmoid colon were outlined on the images along with the applicators. The prescription dose was targeted to A left and A right as defined in Manchester system and optimized on geometry . The dosimetry was compared on all plans using the parameter Ci.sec.cGy-1 . Using the Dose Volume Histogram (DVH) obtained from the plans the doses to rectum, sigmoid colon and bladder for ICRU defined points and 2cc volume were analyzed and reported. The following criteria were used for limiting the tolerance dose by volume (D2cc) were calculated. The rectum and sigmoid colon doses were limited to <75Gy. The bladder dose was limited to < 90Gy from both XRT and HDR brachytherapy. Results: The average total (XRT+HDRBT) BED values to prescription volume was 120 Gy. Dose 2cc to rectum was 70Gy +/− 17Gy, dose to 2cc bladder was 82+/−32 Gy. The average Ci.sec.cGy-1 calculated for the HDR plans was 6.99 +/− 0.5 Conclusion: The image based treatment planning enabled to evaluati volume based dose to critical structures for clinical interpretation.

  16. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Tokumaru, Sunao [Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Ohnishi, Yoshitaka [Department of Ophthalmology, Wakayama Medical University, Wakayama (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG.

  17. Distillation Calculations with a Programmable Calculator.

    Science.gov (United States)

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  18. Evaluation of a Monte Carlo calculation algorithm for clinical use extracranial stereotactic radiotherapy (SBRT); Evaluacion de un algoritmo de calculo Monte Carlo de uso clinico para radioterapia esterotaxica extracraneal (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zuca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.; Minambres Moro, A.

    2013-07-01

    At present it is not common to find commercial planning systems that incorporate dose calculation algorithms to do based on Monte Carlo [1,2] photons This paper summarizes the process followed in the evaluation of a dose calculation algorithm for MC beams of 6 MV photons from an accelerator dedicated to radiosurgery (SRS), cranial stereotactic radiotherapy (SRT) and extracranial (SBRT). (Author)

  19. Autistic Savant Calendar Calculators.

    Science.gov (United States)

    Patti, Paul J.

    This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…

  20. The advantage of deep-inspiration breath-hold and cone-beam CT based soft-tissue registration for locally advanced lung cancer radiotherapy

    DEFF Research Database (Denmark)

    Ottosson, Wiviann; Rahma, Fatma; Sjöström, David;

    2016-01-01

    were calculated. Results: For the spine, the smallest residual misalignments were observed in FB, independently of registration method. For GTV-T and GTV-N, soft-tissue registrations were superior to bony registration, independently of FB or DIBH. Compared to FB, PTV-Totals were during DIBH reduced...... uncertainties compared to FB, DIBH resulted in smaller PTV-Totals for all registration methods. Soft-tissue registrations were superior to bony registration, independently of FB and DIBH. During DIBH, undesirable arching of the back was identified. Daily CBCT pre-treatment target verification is advised....

  1. Calculation of LDL apoB

    NARCIS (Netherlands)

    Sniderman, A.D.; Tremblay, A.J.; Graaf, J. de; Couture, P.

    2014-01-01

    OBJECTIVES: This study tests the validity of the Hattori formula to calculate LDL apoB based on plasma lipids and total apoB. METHODS: In 2178 patients in a tertiary care lipid clinic, LDL apoB calculated as suggested by Hattori et al. was compared to directly measured LDL apoB isolated by ultracent

  2. Personal Finance Calculations.

    Science.gov (United States)

    Argo, Mark

    1982-01-01

    Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)

  3. Flexible Mental Calculation.

    Science.gov (United States)

    Threlfall, John

    2002-01-01

    Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…

  4. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation

    Science.gov (United States)

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-01

    significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be ~3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future. Part of this work was presented in 2006 Annual Meeting of American Association of Physicists in Medicine.

  5. Small dense LDL particles - a predictor of coronary artery disease evaluated by invasive and CT-based techniques: a case-control study

    Directory of Open Access Journals (Sweden)

    Andreasen Annette

    2011-01-01

    Full Text Available Abstract Background Coronary angiography is the current standard method to evaluate coronary atherosclerosis in patients with suspected angina pectoris, but non-invasive CT scanning of the coronaries are increasingly used for the same purpose. Low-density lipoprotein (LDL cholesterol and other lipid and lipoprotein variables are major risk factors for coronary artery disease. Small dense LDL particles may be of particular importance, but clinical studies evaluating their predictive value for coronary atherosclerosis are few. Methods We performed a study of 194 consecutive patients with chest pain, a priori considered of low to intermediate risk for significant coronary stenosis (>50% lumen obstruction who were referred for elective coronary angiography. Plasma lipids and lipoproteins were measured including the subtype pattern of LDL particles, and all patients were examined by coronary CT scanning before coronary angiography. Results The proportion of small dense LDL was a strong univariate predictor of significant coronary artery stenosis evaluated by both methods. After adjustment for age, gender, smoking, and waist circumference only results obtained by traditional coronary angiography remained statistically significant. Conclusion Small dense LDL particles may add to risk stratification of patients with suspected angina pectoris.

  6. Mathematical analysis of mandibular morphogenesis by micro-CT-based mouse and alizarin red S-stained-based human studies during development.

    Science.gov (United States)

    Rafiq, Ashiq Mahmood; Udagawa, Jun; Lundh, Torbjörn; Jahan, Esrat; Matsumoto, Akihiro; Sekine, Joji; Otani, Hiroki

    2012-02-01

    Prenatal development of the mandible is an important factor in its postnatal function. To examine quantitatively normal and abnormal developmental changes of the mandible, we here evaluated morphological changes in mineralizing mandibles by thin-plate spline (TPS) including bending energy (BE) and Procrustes distance (PD), and by Procrustes analyses including warp analysis, regression analysis, and discriminant function analysis. BE and PD were calculated from lateral views of the mandibles of mice or of human fetuses using scanned micro-computed tomography (CT) images or alizarin red S-stained specimens, respectively. BE and PD were compared (1) between different developmental stages, and further, to detect abnormalities in the data sets and to evaluate the deviation from normal development in mouse fetuses, (2) at embryonic day (E) 18.5 between the normal and deformed mandibles, the latter being caused by suturing the jaw at E15.5, (3) at E15.5 and E18.5 between normal and knockout mutant mice of receptor tyrosine kinase-like orphan receptor (Ror) 2. In mice, BE and PD were large during the prenatal period and small after postnatal day 3, suggesting that the mandibular shape changes rapidly during the prenatal and early postnatal periods. In humans, BE of the mandibles peaked at 16-19 weeks of gestation, suggesting the time-dependent change in the mandibular shape. TPS and Procrustes analyses statistically separated the abnormal mandibles of the sutured or Ror2 mutant mouse fetuses from the normal mandible. These results suggest that TPS and Procrustes analyses are useful for assessing the morphogenesis and deformity of the mandible.

  7. Diagnostic Performance of F-18 FDG PET/CT in Patients with Cancer of Unknown Primary: Additional Benefit over CT-Based Conventional Work up

    Directory of Open Access Journals (Sweden)

    Mehrdad Bakhshayeshkaram

    2016-01-01

    Full Text Available Background: In the era of well-developed site-specific treatment strategies in cancer, identification of occult primary is of paramount importance in CUP patients. Furthermore, exact determination of the extent of the disease may help in optimizing treatment planning. The aim of the present study was to investigate additional value of F-18 FDG PET/CT in patients with cancer of unknown primary (CUP as an appropriate imaging tool in early phase of initial standard work up.Materials and Methods: Sixty-two newly diagnosed CUP patients with inconclusive diagnostic CT scan of chest, abdomen and pelvis referring for F-18 FDG PET/CT were enrolled in this study. Standard of reference was defined as histopathology, other diagnostic procedures and a 3-month formal clinical follow up. The results of PET/CT were categorized as suggestion for primary site and additional metastasis and classified as true positive, false positive, false negative and true negative. The impact of additional metastasis revealed by F-18 FDG PET/CT on treatment planning and the time contribution of F-18 FDG PET/CT in diagnostic pathway was investigated.Results: Sixty-two patients with mean age of 62 (30 men, 32 women, PET/CT correctly identified primary origin in 32% with false positive rate of 14.8%. No primary lesion was detected after negative PET/CT according to standard of reference. Sensitivity, Specificity and accuracy were 100%, 78% and 85%, respectively. Additional metastatic site was found in 56% with 22% impact on treatment planning. Time contribution for PET/CT was 10% of total diagnostic pathway.Conclusion: Providing higher detection rate of primary origin with excellent diagnostic performance, shortening the diagnostic pathway and improving treatment planning, F-18 FDG PET/CT may play a major role in diagnostic work up of CUP patients and may be recommended as an alternative imaging tool in early phase of investigation.

  8. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  9. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: An experimental study in canines

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Han, Zong Hong; Zhou, Chang Sheng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Krazinski, Aleksander W.; Silverman, Justin R. [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China)

    2013-12-01

    Purpose: To evaluate the performance of dual-energy CT (DECT) based vascular iodine analysis for the detection of acute peripheral pulmonary thrombus (PE) in a canine model with histopathological findings as the reference standard. Materials and methods: The study protocol was approved by our institutional animal committee. Thrombi (n = 12) or saline (n = 4) were intravenously injected via right femoral vein in sixteen dogs, respectively. CT pulmonary angiography (CTPA) in DECT mode was performed and conventional CTPA images and DECT based vascular iodine studies using Lung Vessels application were reconstructed. Two radiologists visually evaluated the number and location of PEs using conventional CTPA and DECT series on a per-animal and a per-clot basis. Detailed histopathological examination of lung specimens and catheter angiography served as reference standard. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of DECT and CTPA were calculated on a segmental and subsegmental or more distal pulmonary artery basis. Weighted κ values were computed to evaluate inter-modality and inter-reader agreement. Results: Thirteen dogs were enrolled for final image analysis (experimental group = 9, control group = 4). Histopathological results revealed 237 emboli in 45 lung lobes in 9 experimental dogs, 11 emboli in segmental pulmonary arteries, 49 in subsegmental pulmonary arteries, 177 in fifth-order or more distal pulmonary arteries. Overall sensitivity, specificity, accuracy, PPV, and NPV for CTPA plus DECT were 93.1%, 76.9%, 87.8%, 89.4%, and 84.2% for the detection of pulmonary emboli. With CTPA versus DECT, sensitivities, specificities, accuracies, PPVs, and NPVs are all 100% for the detection of pulmonary emboli on a segmental pulmonary artery basis, 88.9%, 100%, 96.0%, 100%, and 94.1% for CTPA and 90.4%, 93.0%, 92.0%, 88.7%, and 94.1% for DECT on a subsegmental pulmonary artery basis; 23.8%, 96.4%, 50.4%, 93

  10. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: An experimental study in canines

    International Nuclear Information System (INIS)

    Purpose: To evaluate the performance of dual-energy CT (DECT) based vascular iodine analysis for the detection of acute peripheral pulmonary thrombus (PE) in a canine model with histopathological findings as the reference standard. Materials and methods: The study protocol was approved by our institutional animal committee. Thrombi (n = 12) or saline (n = 4) were intravenously injected via right femoral vein in sixteen dogs, respectively. CT pulmonary angiography (CTPA) in DECT mode was performed and conventional CTPA images and DECT based vascular iodine studies using Lung Vessels application were reconstructed. Two radiologists visually evaluated the number and location of PEs using conventional CTPA and DECT series on a per-animal and a per-clot basis. Detailed histopathological examination of lung specimens and catheter angiography served as reference standard. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of DECT and CTPA were calculated on a segmental and subsegmental or more distal pulmonary artery basis. Weighted κ values were computed to evaluate inter-modality and inter-reader agreement. Results: Thirteen dogs were enrolled for final image analysis (experimental group = 9, control group = 4). Histopathological results revealed 237 emboli in 45 lung lobes in 9 experimental dogs, 11 emboli in segmental pulmonary arteries, 49 in subsegmental pulmonary arteries, 177 in fifth-order or more distal pulmonary arteries. Overall sensitivity, specificity, accuracy, PPV, and NPV for CTPA plus DECT were 93.1%, 76.9%, 87.8%, 89.4%, and 84.2% for the detection of pulmonary emboli. With CTPA versus DECT, sensitivities, specificities, accuracies, PPVs, and NPVs are all 100% for the detection of pulmonary emboli on a segmental pulmonary artery basis, 88.9%, 100%, 96.0%, 100%, and 94.1% for CTPA and 90.4%, 93.0%, 92.0%, 88.7%, and 94.1% for DECT on a subsegmental pulmonary artery basis; 23.8%, 96.4%, 50.4%, 93

  11. What level of accuracy is achievable for preclinical dose painting studies on a clinical irradiation platform?

    Science.gov (United States)

    Trani, Daniela; Reniers, Brigitte; Persoon, Lucas; Podesta, Mark; Nalbantov, Georgi; Leijenaar, Ralph T H; Granzier, Marlies; Yaromina, Ala; Dubois, Ludwig; Verhaegen, Frank; Lambin, Philippe

    2015-05-01

    Advancements made over the past decades in both molecular imaging and radiotherapy planning and delivery have enabled studies that explore the efficacy of heterogeneous radiation treatment ("dose painting") of solid cancers based on biological information provided by different imaging modalities. In addition to clinical trials, preclinical studies may help contribute to identifying promising dose painting strategies. The goal of this current study was twofold: to develop a reproducible positioning and set-up verification protocol for a rat tumor model to be imaged and treated on a clinical platform, and to assess the dosimetric accuracy of dose planning and delivery for both uniform and positron emission tomography-computed tomography (PET-CT) based heterogeneous dose distributions. We employed a syngeneic rat rhabdomyosarcoma model, which was irradiated by volumetric modulated arc therapy (VMAT) with uniform or heterogeneous 6 MV photon dose distributions. Mean dose to the gross tumor volume (GTV) as a whole was kept at 12 Gy for all treatment arms. For the nonuniform plans, the dose was redistributed to treat the 30% of the GTV representing the biological target volume (BTV) with a dose 40% higher than the rest of the GTV (GTV - BTV) (~15 Gy was delivered to the BTV vs. ~10.7 Gy was delivered to the GTV - BTV). Cone beam computed tomography (CBCT) images acquired for each rat prior to irradiation were used to correctly reposition the tumor and calculate the delivered 3D dose. Film quality assurance was performed using a water-equivalent rat phantom. A comparison between CT or CBCT doses and film measurements resulted in passing rates >98% with a gamma criterion of 3%/2 mm using 2D dose images. Moreover, between the CT and CBCT calculated doses for both uniform and heterogeneous plans, we observed maximum differences of <2% for mean dose to the tumor and mean dose to the biological target volumes. In conclusion, we have developed a robust method for dose painting

  12. Electrical installation calculations basic

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo

  13. Electronics Environmental Benefits Calculator

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...

  14. Electrical installation calculations advanced

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio

  15. Methodology of assessment of the clinical and dosimetric impact of a change of dose calculation algorithm in radiotherapy; Methodologie d'evaluation de l'impact dosimetrique et clinique du changement d'algorithme de calcul de dose en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Chaikh, A.; Giraud, J.Y.; Balosso, J. [Centre hospitalier universitaire de Grenoble, Grenoble (France)

    2011-10-15

    The authors report the use of five dose calculation algorithms and the comparison of six treatment plans with identical configurations regarding patient, energy, and ballistics. Thirteen tumour locations have been compared (five in lungs, one in oesophagus, one in breast, three in ENT, two in brain, and one in prostate). The methodology is based on a dosimetric criterion (analysis related to the treatment dose, and to dose distribution) and on a statistic criterion. Short communication

  16. 灌注造影显微CT三维重建研究骨痂微血管新生%MicroCT based angiography for studying neovascularization of long bone fracture repair in a rat model

    Institute of Scientific and Technical Information of China (English)

    刘洪鹏; 宋祥胜; 周晓中; 顾军; 张戈; 佘昶; 秦岭; 董启榕

    2012-01-01

    Objective To explore microcomputed tomography (MicroCT) based angiography for exhibiting the neovascularization/angiogenesis of a callus on a rat femoral fracture model.Methods After a closed fracture establishment,60 nale SD rats were randomized into2 groups (30 in each group)and killed at the time point of 1,2,3,4 and 8 weeks The callus in experimental group were scanned by MieroCT and 3-D vasculature images were reconstructed.Vessel size distribution,total vessel volume and volume fraction were quantified.The callus in control group were assessed by using immunohistochemisty for observing the expression of vascular endothelial growth factor (VEGF) and VEGF receptor 2 ( VEGFR-2 ).Results MicroCT based angiography provided native 3-D vasculature images to iconicly reveal the states of neovascularization.And the total vessel volume and volume fraction peaked at 3 weeks ( P < 0.05 ):( 196.00 ± 20.33 ) mm3 and ( 6.70 ± 0.74 ) % respectively ; Immunohistochemistry of callus sections showed the expression of VEGF and VEGFR-2 occurred in the early stage of fracture healing and peaked at 2 weeks,the number of positive cells were ( 113.40 ± 9.17 ) and ( 51.80 ± 4.24 ) respectively ( P <0.05).Conclusion MicroCT based angiography atraumaticly provided high-resolution,quantitative,3-dimention,and objective data analysis.MicroCT based angiography is a robust methodology for evaluation of vascular networks in the callus of a small animal.%目的 探讨灌注造影显微CT(MicroCT)扫描三维重建在研究大鼠骨折愈合时骨痂微血管变化的可行性及意义.方法 60只雄性Sprague-Dawley( SD)大鼠,随机分为实验组及对照组(每组30只),制作标准的右侧股骨中段闭合骨折模型,术后1、2、3、4、8周处死大鼠.实验组大鼠行腹主动脉远端血管造影后,使用MicroCT断层扫描标本,并选取同一兴趣区测定血管体积、体积分数和血管平均直径.对照组骨痂通过免疫组织化学染色法测定血

  17. Calculators and Polynomial Evaluation.

    Science.gov (United States)

    Weaver, J. F.

    The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…

  18. Relativistic shell model calculations

    Science.gov (United States)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  19. Clinical evaluation of X-ray voxel Monte Carlo versus pencil beam-based dose calculation in stereotactic body radiotherapy of lung cancer under normal and deep inspiration breath hold.

    Science.gov (United States)

    Landoni, V; Borzì, G R; Strolin, S; Bruzzaniti, V; Soriani, A; D'Alessio, D; Ambesi, F; Di Grazia, A M; Strigari, L

    2015-06-01

    The purpose of this study is to evaluate the differences between dose distributions calculated with the pencil beam (PB) and X-ray voxel Monte Carlo (MC) algorithms for patients with lung cancer using intensity-modulated radiotherapy (IMRT) or HybridArc techniques. The 2 algorithms were compared in terms of dose-volume histograms, under normal and deep inspiration breath hold, and in terms of the tumor control probability (TCP). The dependence of the differences in tumor volume and location was investigated. Dosimetric validation was performed using Gafchromic EBT3 (International Specialty Products, ISP, Wayne, NJ). Forty-five Computed Tomography (CT) data sets were used for this study; 40 Gy at 8 Gy/fraction was prescribed with 5 noncoplanar 6-MV IMRT beams or 3 to 4 dynamic conformal arcs with 3 to 5 IMRT beams distributed per arc. The plans were first calculated with PB and then recalculated with MC. The difference between the mean tumor doses was approximately 10% ± 4%; these differences were even larger under deep inspiration breath hold. Differences between the mean tumor dose correlated with tumor volume and path length of the beams. The TCP values changed from 99.87% ± 0.24% to 96.78% ± 4.81% for both PB- and MC-calculated plans (P = .009). When a fraction of hypoxic cells was considered, the mean TCP values changed from 76.01% ± 5.83% to 34.78% ± 18.06% for the differently calculated plans (P < .0001). When the plans were renormalized to the same mean dose at the tumor, the mean TCP for oxic cells was 99.05% ± 1.59% and for hypoxic cells was 60.20% ± 9.53%. This study confirms that the MC algorithm adequately accounts for inhomogeneities. The inclusion of the MC in the process of IMRT optimization could represent a further step in the complex problem of determining the optimal treatment plan. PMID:25223324

  20. nuclear reactor design calculations

    International Nuclear Information System (INIS)

    In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations

  1. Large scale GW calculations

    International Nuclear Information System (INIS)

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons

  2. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  3. Handout on shielding calculation

    International Nuclear Information System (INIS)

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  4. Calculativeness and trust

    DEFF Research Database (Denmark)

    Frederiksen, Morten

    2014-01-01

    . Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs......Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...

  5. A Simple Calculator Algorithm.

    Science.gov (United States)

    Cook, Lyle; McWilliam, James

    1983-01-01

    The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)

  6. EFFECTIVE DISCHARGE CALCULATION GUIDE

    Institute of Scientific and Technical Information of China (English)

    D.S.BIEDENHARN; C.R.THORNE; P.J.SOAR; R.D.HEY; C.C.WATSON

    2001-01-01

    This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.

  7. Unit Cost Compendium Calculations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...

  8. Geometric unsharpness calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)

    2008-07-15

    The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)

  9. Scientific calculating peripheral

    Energy Technology Data Exchange (ETDEWEB)

    Ethridge, C.D.; Nickell, J.D. Jr.; Hanna, W.H.

    1979-09-01

    A scientific calculating peripheral for small intelligent data acquisition and instrumentation systems and for distributed-task processing systems is established with a number-oriented microprocessor controlled by a single component universal peripheral interface microcontroller. A MOS/LSI number-oriented microprocessor provides the scientific calculating capability with Reverse Polish Notation data format. Master processor task definition storage, input data sequencing, computation processing, result reporting, and interface protocol is managed by a single component universal peripheral interface microcontroller.

  10. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  11. Electrical installation calculations

    CERN Document Server

    Watkins, AJ

    2006-01-01

    Designed to provide a step by step guide to successful application of the electrical installation calculations required in day to day electrical engineering practice, the Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike.Now in its seventh edition, Volume 1 has been fully updated to meet the requirements of the 2330 Level 2 Certificate in Electrotechnical Technology from City & Guilds, and will also prove a vi

  12. CT-based Individualized Medical Implant Design

    Institute of Scientific and Technical Information of China (English)

    叶铭; 朱晓峰; 主成焘; 孙坚

    2003-01-01

    Most implantation cases are implemented using implants selected from the available standard set, but in some cases, only those implants conforming to individual patient's skeletal morphology can serve the purpose. This paper proposes a new approach to design and fabricate custom-made exact-fit medical implants. With a real surgical case as the example,technical design details are presented; and three algorithms are given respectively for segmentation based on object features, triangular mesh defragmentation and mesh cutting.

  13. Uncertainty calculations made easier

    Energy Technology Data Exchange (ETDEWEB)

    Hogenbirk, A.

    1994-07-01

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL).

  14. Uncertainty calculations made easier

    International Nuclear Information System (INIS)

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)

  15. Big Bang Nucleosynthesis Calculation

    CERN Document Server

    Kurki-Suonio, H

    2001-01-01

    I review standard big bang nucleosynthesis and some versions of nonstandard BBN. The abundances of the primordial isotopes D, He-3, and Li-7 produced in standard BBN can be calculated as a function of the baryon density with an accuracy of about 10%. For He-4 the accuracy is better than 1%. The calculated abundances agree fairly well with observations, but the baryon density of the universe cannot be determined with high precision. Possibilities for nonstandard BBN include inhomogeneous and antimatter BBN and nonzero neutrino chemical potentials.

  16. A clinical study of lung cancer dose calculation accuracy by using Monte Carlo simulation%蒙特卡罗系统验证PBC和CCC算法精确度的临床研究

    Institute of Scientific and Technical Information of China (English)

    赵艳群; 尹刚; 王先良; 王培; 祁国海; 吴大可; 肖明勇; 黎杰; 康盛伟

    2016-01-01

    .00,0.00,0.00,0.00,0.00),but the effect is not obvious in 3DCRT plans (P =0.18,0.08,0.62,0.08,0.97),similarly,the same effect was found in the differences between PBC and MC for IMRT plans,and the differences of dose volume are lager than that of CCC and MC.For the dose of ipsilateral lung,CCC algorithm overestimated dose for all lung,PBC algorithm overestimated V20(P=0.00,0.00),but underestimated V5(P=0.00,0.00),the difference of V10 have no statistical significant (P=0.47).Conclusions It is recommended that the treatment plan of lung cancer should be calculated by an advanced algorithm other than PBC.MC can calculate dose distribution of lung cancer accurately and can provide a very good tool for benchmarking the performance of other dose calculation algorithms.

  17. Dynamics Calculation of Spoke

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Compared with ellipse cavity, the spoke cavity has many advantages, especially for the low and medium beam energy. It will be used in the superconductor accelerator popular in the future. Based on the spoke cavity, we design and calculate an accelerator

  18. Daylight calculations in practice

    DEFF Research Database (Denmark)

    Iversen, Anne; Roy, Nicolas; Hvass, Mette;

    programs can give different results. This can be due to restrictions in the program itself and/or be due to the skills of the persons setting up the models. This is crucial as daylight calculations are used to document that the demands and recommendations to daylight levels outlined by building authorities...

  19. Languages for structural calculations

    International Nuclear Information System (INIS)

    The differences between human and computing languages are recalled. It is argued that they are to some extent structured in antagonistic ways. Languages in structural calculation, in the past, present, and future, are considered. The contribution of artificial intelligence is stressed

  20. Curvature calculations with GEOCALC

    Energy Technology Data Exchange (ETDEWEB)

    Moussiaux, A.; Tombal, P.

    1987-04-01

    A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.

  1. SU-E-J-175: Proton Dose Calculation On Scatter-Corrected CBCT Image: Feasibility Study for Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y; Winey, B; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: To demonstrate feasibility of proton dose calculation on scattercorrected CBCT images for the purpose of adaptive proton therapy. Methods: Two CBCT image sets were acquired from a prostate cancer patient and a thorax phantom using an on-board imaging system of an Elekta infinity linear accelerator. 2-D scatter maps were estimated using a previously introduced CT-based technique, and were subtracted from each raw projection image. A CBCT image set was then reconstructed with an open source reconstruction toolkit (RTK). Conversion from the CBCT number to HU was performed by soft tissue-based shifting with reference to the plan CT. Passively scattered proton plans were simulated on the plan CT and corrected/uncorrected CBCT images using the XiO treatment planning system. For quantitative evaluation, water equivalent path length (WEPL) was compared in those treatment plans. Results: The scatter correction method significantly improved image quality and HU accuracy in the prostate case where large scatter artifacts were obvious. However, the correction technique showed limited effects on the thorax case that was associated with fewer scatter artifacts. Mean absolute WEPL errors from the plans with the uncorrected and corrected images were 1.3 mm and 5.1 mm in the thorax case and 13.5 mm and 3.1 mm in the prostate case. The prostate plan dose distribution of the corrected image demonstrated better agreement with the reference one than that of the uncorrected image. Conclusion: A priori CT-based CBCT scatter correction can reduce the proton dose calculation error when large scatter artifacts are involved. If scatter artifacts are low, an uncorrected CBCT image is also promising for proton dose calculation when it is calibrated with the soft-tissue based shifting.

  2. Dual-Energy CT-based Display of Bone Marrow Edema in Osteoporotic Vertebral Compression Fractures: Impact on Diagnostic Accuracy of Radiologists with Varying Levels of Experience in Correlation to MR Imaging.

    Science.gov (United States)

    Kaup, Moritz; Wichmann, Julian L; Scholtz, Jan-Erik; Beeres, Martin; Kromen, Wolfgang; Albrecht, Moritz H; Lehnert, Thomas; Boettcher, Marie; Vogl, Thomas J; Bauer, Ralf W

    2016-08-01

    -23 to 2-10 patients). Considering the gain in true decisions with the virtual noncalcium technique on a patient level, between 12 (most experienced reader) and 17 (least experienced reader) MR examinations could have been avoided. Conclusion The DE CT-based virtual noncalcium technique may enable depiction of bone marrow edema in thoracolumbar vertebral compression fractures in patients with osteoporosis, with good accordance with MR imaging when images are read by experienced radiologists. Although less experienced readers improved their diagnostic performance to some degree, the experienced reader's diagnostic performance approached that with MR imaging. (©) RSNA, 2016. PMID:26928067

  3. Zero Temperature Hope Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task

  4. Linewidth calculations and simulations

    CERN Document Server

    Strandberg, Ingrid

    2016-01-01

    We are currently developing a new technique to further enhance the sensitivity of collinear laser spectroscopy in order to study the most exotic nuclides available at radioactive ion beam facilities, such as ISOLDE at CERN. The overall goal is to evaluate the feasibility of the new method. This report will focus on the determination of the expected linewidth (hence resolution) of this approach. Different effects which could lead to a broadening of the linewidth, e.g. the ions' energy spread and their trajectories inside the trap, are studied with theoretical calculations as well as simulations.

  5. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  6. Matlab numerical calculations

    CERN Document Server

    Lopez, Cesar

    2015-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. This book is designed for use as a scientific/business calculator so that you can get numerical solutions to problems involving a wide array of mathematics using MATLAB. Just look up the function y

  7. Calculating reliability measures for ordinal data.

    Science.gov (United States)

    Gamsu, C V

    1986-11-01

    Establishing the reliability of measures taken by judges is important in both clinical and research work. Calculating the statistic of choice, the kappa coefficient, unfortunately is not a particularly quick and simple procedure. Two much-needed practical tools have been developed to overcome these difficulties: a comprehensive and easily understood guide to the manual calculation of the most complex form of the kappa coefficient, weighted kappa for ordinal data, has been written; and a computer program to run under CP/M, PC-DOS and MS-DOS has been developed. With simple modification the program will also run on a Sinclair Spectrum home computer.

  8. Advantages of mesh tallying in MCNPX for 3D dose calculations in radiotherapy

    International Nuclear Information System (INIS)

    The energy deposition mesh tally option of MCNPX Monte Carlo code is very useful for 3-Dimentional (3D) dose calculations. In this study, the 3D dose calculation was done for CT-based Monte Carlo treatment planning in which the energy deposition mesh tally were superimposed on merged voxel model. The results were compared with those of obtained from the common energy deposition (*F8) tally method for all cells of non-merged voxel model. The results of these two tallies and their respective computational times are compared, and the advantages of the proposed method are discussed. For this purpose, a graphical user interface (GUI) application was developed for reading CT slice data of patient, creating voxelized model of patient, optionally merging adjacent cells with the same material to reduce the total number of cells, reading beam configuration from commercial treatment planning system transferred in DICOM-RT format, and showing the isodose distribution on the CT images. To compare the results of Monte Carlo calculated and TiGRT planning system (LinaTech LLC, USA), treatment head of the Siemens ONCOR Impression accelerator was also simulated and the phase-space data on the scoring plane just above the Y-jaws was created and used. The results for a real prostate intensity-modulated radiation therapy (IMRT) plan showed that the proposed method was fivefold faster while the precision was almost the same. (author)

  9. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem

  10. Multilayer optical calculations

    CERN Document Server

    Byrnes, Steven J

    2016-01-01

    When light hits a multilayer planar stack, it is reflected, refracted, and absorbed in a way that can be derived from the Fresnel equations. The analysis is treated in many textbooks, and implemented in many software programs, but certain aspects of it are difficult to find explicitly and consistently worked out in the literature. Here, we derive the formulas underlying the transfer-matrix method of calculating the optical properties of these stacks, including oblique-angle incidence, absorption-vs-position profiles, and ellipsometry parameters. We discuss and explain some strange consequences of the formulas in the situation where the incident and/or final (semi-infinite) medium are absorptive, such as calculating $T>1$ in the absence of gain. We also discuss some implementation details like complex-plane branch cuts. Finally, we derive modified formulas for including one or more "incoherent" layers, i.e. very thick layers in which interference can be neglected. This document was written in conjunction with ...

  11. Some calculations for TRISTAN

    International Nuclear Information System (INIS)

    I took only few topics to investigate, some on which I had some personal interest, and others that I felt rather crucial for the design. In this document I report my calculations on these various subjects. Therefore this document represents my tangible contribution to TRISTAN design. I give in the following the list of the topics which are discussed in this document. 1. Increase of the vertical betatron emmitance by skew quadrupoles in the electron storage ring. 2. Bremsstrahlung. 3. Dipole correcting system for electron ring. 4. Wigglers at low energies 5. Steady state compensation of beam loading in the single beam mode in the electron storage ring. 6. Coupled bunch longitudinal instability for electron ring. 7. Ion production and trapping in the electron storage ring for TRISTAN. 8. Estimate of the longitudinal impedance for the TRISTAN electron storage ring. (author)

  12. Assessment of the α-angle of femoral neck and morphological classification of the anterior femoral head-neck junction on CT-based images in normal Chinese adults

    International Nuclear Information System (INIS)

    Objective: To investigate the normal range of the femoral neck α-angle in normal Chinese adults and classify the morphology of the anterior femoral head-neck junction on CT-based images. Methods: Six hundred and fifty-two adult patients (Bilateral: 459 patients, unilateral: 193 patients) with the total of 1111 hips (552 left; 559 right, and 654 male, 457 female) without known diseases affecting the proximal femur or symptoms of femoroacetabular impingement (FAI) underwent 64- slice CT scanning for medical purpose with the hip included in the scan range. The volume CT data was used for further analysis in this study. Oblique sagittal plane images paralleling to the axis of the femoral neck were reconstructed with the volume CT data, the image through the middle of the femoral neck was chosen to measure α-angle with AutoCAD2006 software. The morphology of the anterior femoral head-neck junction was classified. Analysis of variance and t-test were performed with SPSS 15.0. Results: The mean value of a-angle of all 1111 hips was 38.2°±5.3°. The normal range of α-angle in Chinese adults was 28° to 49°. The mean value of left and right α-angles were 38.0°±5.3° and 38.4°±5.3°,respectively, and there was no statistically significant difference between both sides (t=-1.231, P>0.05 ). Males have greater α- angles than females 39.2°±5.8 vs 36.8°±4.1°, with t=-8.180, P0.05). In all 1111 proximal femora, 168 were classified as concave type, accounting for 15.1%, with a mean a-angle of 31.2°±2.0°, 726 were smooth type, accounting for 65.4%, with a mean α-angle of 37.4°±2.4°, and 217 were flat type, accounting for 19.5%, with a mean a-angle of 46.4°±3.8°. The differences of the α-angles of the three groups reached statistical significance (F=1636.107, P<0.01). Conclusions: The morphology of anterior femoral head-neck junction can be classified into three types: concave type (type Ⅰ), smooth type (type Ⅱ) and fiat type (type Ⅲ). This

  13. Impact Cratering Calculations

    Science.gov (United States)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  14. Parallel nearest neighbor calculations

    Science.gov (United States)

    Trease, Harold

    We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.

  15. Considerations on the calculation of volumes in two planning systems

    International Nuclear Information System (INIS)

    The discrepancies in the calculation of the same volume between different planning systems impact on dose-volume histograms and therefore clinical assessment of dosimetry for patients. The transfer, by a local network, tomographic study (CT) and contours of critical organs of patients, between our two planning systems allows us to evaluate the calculation of identical volumes.

  16. Emerging clinical applications of computed tomography

    Directory of Open Access Journals (Sweden)

    Liguori C

    2015-06-01

    Full Text Available Carlo Liguori,1 Giulia Frauenfelder,2 Carlo Massaroni,3 Paola Saccomandi,3 Francesco Giurazza,4 Francesca Pitocco,4 Riccardo Marano,5 Emiliano Schena,3 1Radiology Unit, AORN A Cardarelli, 2Radiology Unit, AOU Federico II, Naples, 3Measurement and Biomedical Instrumentation Unit, 4Radiology Unit, Università Campus Bio-Medico di Roma, 5Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, A Gemelli University Hospital, Rome, Italy Abstract: X-ray computed tomography (CT has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. Keywords: computed tomography, X-ray, thermometry, dual-energy, ultrafast scanner, guidance, photon-counting technology

  17. Surface retention capacity calculation

    Science.gov (United States)

    David, Vaclav; Dostal, Tomas

    2010-05-01

    Flood wave transformation in the floodplain is the phenomenon which is researched within interdisciplinary project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase. The project focuses on broad range of floodplain ecosystem services and mitigation of flooding is one of them. Despite main influence on flood wave transformation is due to flow retardation, retention in surface depressions within floodplain has been analyzed to get better overview of whole transformation process. Detail digital relief model (DRM) has been used for given purposes to be able to analyze terrain depressions volumes. The model was developed with use of stereophotogrammetric evaluation of airborne images with high resolution of 10 cm. It was essential for purposes of presented analysis not to apply pit removal routines which are often used for generation of DRM for hydrological modelling purposes. First, the methodology of analysis was prepared and tested on artificial surface. This surface was created using random raster generation, filtration and resampling with final resolution of 1000 x 1000 units and height of maximum 10 units above datum. The methodology itself is based on analysis of areas inundated by water at different elevation levels. Volume is than calculated for each depression using extraction of terrain elevations under corresponding water level. The method was then applied on the area of Lužnice River floodplain section to assess retention capacity of real floodplain. The floodplain had to be cut into sections perpendicular to main river orientation for analyses as the method was tested for square shaped area without any significant inclination. Results obtained by mentioned analysis are presented in this paper. Acknowledgement Presented research was accomplished within national project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase, nr. QH82078. The project is funded by Ministry of Agriculture of

  18. The rating reliability calculator

    Directory of Open Access Journals (Sweden)

    Solomon David J

    2004-04-01

    Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.

  19. CLINICAL BIOCHEMISTRY

    Science.gov (United States)

    Assessment of the health status of animals through measurement of cellular, biochemical, and macromolecular constituents in blood, secretions, and excretions has been variously referred to as clinical chemistry, clinical biochemistry, or clinical pathology. he genesis of this dis...

  20. Considering alternative calculations of weight suppression.

    Science.gov (United States)

    Schaumberg, Katherine; Anderson, Lisa M; Reilly, Erin E; Gorrell, Sasha; Anderson, Drew A; Earleywine, Mitch

    2016-01-01

    Weight suppression (WS)--the difference between an individual's highest adult weight and current weight-relates to eating pathology and weight gain; however, there are several methodological issues associated with its calculation. The current study presents four alternative methods of calculating WS and tests whether these methods differentially relate to maladaptive outcomes. Alternative methods of calculation included: (1) change in BMI units; (2) BMI category change; (3) percent change in weight; and (4) two different uses of regression residuals. A sample of undergraduate students (N=631) completed self-report measures of eating pathology, current and past weight, and teasing. Measures included the Eating Disorder Examination-Questionnaire and the Perceptions of Teasing Scale. Results indicated that components of WS, current weight and highest weight, were strongly related in the present sample. The traditional method of calculating WS was related to eating pathology, binge eating and teasing for both males and females. However, WS indices orthogonal to the highest weight did not correlate with eating pathology and teasing in both males and females; for females, WS indices orthogonal to current weight were also unrelated to eating pathology. Findings suggest that the link between WS and eating pathology is mitigated after accounting for an individual's highest weight. Future research should continue to assess the reliability and clinical utility of this construct and consider using alternative WS calculations. PMID:26643591

  1. Paramedics’ Ability to Perform Drug Calculations

    Directory of Open Access Journals (Sweden)

    Eastwood, Kathyrn J

    2009-11-01

    Full Text Available Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations.Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved.Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects.Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.[WestJEM. 2009;10:240-243.

  2. Calculation of multiphoton ionization processes

    Science.gov (United States)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  3. Clinical biophysics

    Energy Technology Data Exchange (ETDEWEB)

    Anbar, M.; Spangler, R.A.; Scott, P.

    1985-01-01

    Chapters are included on clinical decision making, principles of biomedical engineering, computers and their medical uses, clinical radiobiology, diagnostic x-ray radiology, clinical applications of ultrasonics, nuclear medicine, NMR imaging, diagnostic imaging, bioelectric techniques in diagnosis and therapy, biophysical aspects of the clinical laboratory, and biophysical aspects of modern surgery.

  4. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams

    International Nuclear Information System (INIS)

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue’s RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT. (paper)

  5. Self-Adaption Fusion Algorithm of PET/CT Based on Dual-Tree Complex Wavelet Transform%基于双树复小波变换的PET/CT自适应融合算法

    Institute of Scientific and Technical Information of China (English)

    魏兴瑜; 周涛; 陆惠玲; 王文文

    2015-01-01

    PET/CT医学图像融合对于图像分析及临床诊断具有重要的应用价值,通过融合PET/CT图像,可以丰富图像的信息量,提高信息准确度。针对PET/CT融合问题,提出了一个基于双树复小波的PET/CT自适应融合算法。对已配准的PET和CT图像进行双树复小波变换(dual-tree complex wavelet transform,DTCWT),得到低频分量和高频分量;根据低频图像集中了大部分源图像能量及决定了图像轮廓的特点,采用了自适应高斯隶属度函数的融合规则;在高频图像部分,考虑了图像相邻像素之间的相关性和模糊性问题,在第一层的高频分量上采用了高斯隶属度函数和3×3领域窗口相结合的融合规则,在第二层高频分量上采用了区域方差的融合规则。最后,为了验证算法的有效性和可行性,做了3个方面的实验,分别是该算法和其他像素级融合算法的比较实验,利用信息熵、均值、标准方差和互信息的融合效果评价实验,双树复小波变换中不同融合规则的比较实验。实验结果表明,该算法信息熵提高了7.23%,互信息提高了17.98%,说明该算法是一种有效的多模态医学影像融合方法。%PET/CT medical image fusion has very important application value for medical image analysis and diseases diagnosis. It is useful to improve the image content and accuracy by fusing PET/CT images. Aiming at PET/CT fusion problem, this paper proposes a self-adaption fusion algorithm of PET/CT based on dual-tree complex wavelet trans-form. Firstly, source PET and CT images after registration are decomposed low and high frequency sub-images using dual-tree complex wavelet transform (DTCWT). Secondly, according to the characteristics of low frequency sub-images concentrating the majority energy of the source image and determining the image contour, a fusion rule based on self-adaption Gaussian membership function is adopted in low

  6. A comparison of carbon calculators

    International Nuclear Information System (INIS)

    International attention to carbon dioxide emissions is turning to an individual's contribution, or 'carbon footprint.' Calculators that estimate an individual's CO2 emissions have become more prevalent on the internet. Even with similar inputs, however, these calculators can generate varying results, often by as much as several metric tons per annum per individual activity. This paper examines the similarities and differences among ten US-based calculators. Overall, the calculators lack consistency, especially for estimates of CO2 emissions from household electricity consumption. In addition, most calculators lack information about their methods and estimates, which impedes comparison and validation. Although carbon calculators can promote public awareness of carbon emissions from individual behavior, this paper reveals the need for improved consistency and transparency in the calculators

  7. Clinical reasoning as social deliberation

    DEFF Research Database (Denmark)

    2014-01-01

    In this paper I will challenge the individualistic model of clinical reasoning. I will argue that sometimes clinical practice is rather machine-like, and information is called to mind and weighed, but the clinician is not just calculating how to use particular means to reach fixed ends. Often the...

  8. IOL Power Calculation after Corneal Refractive Surgery

    Directory of Open Access Journals (Sweden)

    Maddalena De Bernardo

    2014-01-01

    Full Text Available Purpose. To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL power in patients that underwent corneal refractive surgery (CRS. Methods. A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. Results. A total of 33 peer reviewed articles dealing with methods that try to overcome the problem of calculating the IOL power in patients that underwent CRS were found. According to the information needed to try to overcome this problem, the methods were divided in two main categories: 18 methods were based on the knowledge of the patient clinical history and 15 methods that do not require such knowledge. The first group was further divided into five subgroups based on the parameters needed to make such calculation. Conclusion. In the light of our findings, to avoid postoperative nasty surprises, we suggest using only those methods that have shown good results in a large number of patients, possibly by averaging the results obtained with these methods.

  9. Global nuclear-structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.; Nix, J.R.

    1990-04-20

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.

  10. Global nuclear-structure calculations

    International Nuclear Information System (INIS)

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε2 and ε4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  11. CALCULATION OF LASER CUTTING COSTS

    Directory of Open Access Journals (Sweden)

    Bogdan Nedic

    2016-09-01

    Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.

  12. Mediastinal Hodgkin lymphomas in computertomography: exact CT-based volume assessment and approximations with simple geometric models; Mediastinale Hodgkin-Lymphone in der Computertomographie. Vergleich von exakter CT-gestuetzter Volumetrie und Volumenabschaetzung mit Hilfe einfacher geometrischer Modelle

    Energy Technology Data Exchange (ETDEWEB)

    Battmann, A. [Marburg Univ. (Germany). Abt. fuer Strahlendiagnostik; Dieckmann, K.; Resch, A.; Poetter, R. [Allgemeines Krankenhaus, Wien (Austria). Universitaetsklinik Strahlentherapie und Strahlenbiologie; Battmann, A. [Giessen Univ. (Germany). Zentrum fuer Pathologie

    2001-03-01

    Background: The importance of the size of the primary tumor in lymphomas and its size after treatment is still uncertain. Assuming a prognostic relevance, an assessment of tumor volume before and after induction of chemotherapy has been performed in the pediatric Hodgkin's disease study (HD-90). Since an exact CT-scan-based volumetric tumor assessment is time-consuming and in some centers not possible, the tumor volume is often estimated based on simple geometric approximations. Aim of this study was the development of an easy to apply and nearly exact model of volume estimation compared to CT-scan-based tumor volume measurements. Material and Methods: thirty computed tomographies (CT) of mediastinal Hodgkin lymphomas of children aged 5 to 16 years have been examined. The CT scans were digitalized using a CCD camera combined with a frame grabber. Applying the Global Lab image software, the true tumor volume was determined excluding local organs, which did not belong to the lymphoma. Subsequently, volumes were assessed using simple geometric models (block, ellipsoid, octaeder) by using the maximum diameters of the tumor. The differences between the volume of the geometric models and the true volume, based on the CT scan evaluation, were compared. Results: the maximum diameters of a tumor can be used to calculate its volume based on simple geometric models. The model 'block' overestimates the volume by 89 to 268%. The model 'ellipsoid' overestimates the volume on average by 29%. The model 'octaeder' underestimates the volume on average by 18%. A division of the block volume by 2.3 approximated the geometric closest to the true volume: the average volume was overestimated by 2% in tumors with a volume larger than 20 ml. No model was sufficient to approximate tumors with a volume of less than 20 ml. Conclusions: for the estimation of tumor volumes in mediastinal Hodgkin lumphomas exceeding 20 ml, the formula 'block /2.3&apos

  13. Clinical Trials

    Science.gov (United States)

    Clinical trials are research studies that test how well new medical approaches work in people. Each study answers ... prevent, screen for, diagnose, or treat a disease. Clinical trials may also compare a new treatment to a ...

  14. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    Science.gov (United States)

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology. PMID:25991115

  15. Calculation of Spectra of Solids:

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1975-01-01

    The Gilat-Raubenheimer method simplified to tetrahedron division is used to calculate the real and imaginary part of the dynamical response function for electrons. A frequency expansion for the real part is discussed. The Lindhard function is calculated as a test for numerical accuracy. The condu...

  16. Calculation of two Belyi pairs

    OpenAIRE

    Dremov, V. A.

    2008-01-01

    We calculate two Belyi pairs using the properties of Mulase-Penkava differential. Details are provided including accurate construction of coordinates, variables and equations. The calculation is a part of the work which results in a catalogue arXiv:0710.2658

  17. Deconstructing Calculation Methods: Part 1

    Science.gov (United States)

    Thompson, Ian

    2007-01-01

    The aim of this series of four articles is to look critically, and in some detail, at the primary strategy approach to written calculation, as set out on pages 5 to 16 of the "Guidance paper" "Calculation." The underlying principle of that approach is that children should use mental methods whenever they are appropriate, whereas for calculations…

  18. Calculations of effective atomic number

    Energy Technology Data Exchange (ETDEWEB)

    Kaliman, Z. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia); Orlic, N. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)], E-mail: norlic@ffri.hr; Jelovica, I. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)

    2007-09-21

    We present and discuss effective atomic number (Z{sub eff}) obtained by different methods of calculations. There is no unique relation between the computed values. This observation led us to the conclusion that any Z{sub eff} is valid only for given process. We illustrate calculations for different subshells of atom Z=72 and for M3 subshell of several other atoms.

  19. Calculator. Owning a Small Business.

    Science.gov (United States)

    Parma City School District, OH.

    Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…

  20. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol; Eine einfache Methode zur Abschaetzung der effektiven Dosis bei Dental-CT. Konversionsfaktoren und exemplarische Berechnung fuer ein klinisches Low-Dose-Protokoll

    Energy Technology Data Exchange (ETDEWEB)

    Homolka, P.; Kudler, H.; Nowotny, R. [Inst. fuer Biomedizinische Technik und Physik, Univ. Wien (Austria); Gahleitner, A. [Wien Univ. (Austria). Abt. fuer Osteologie; Wien Univ. (Austria). Zahn-, Mund- und Kieferheilkunde

    2001-06-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 {mu}Sv can be achieved, which compares to values typically obtained with panoramic radiography (26 {mu}Sv). A CT scan of the mandible, respectively, gives 123 {mu}Sv comparable to a full mouth survey with intraoral films (150 {mu}Sv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 {mu}Sv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [German] Eine Methode, die eine einfache Bestimmung der effektiven Dosis bei Dental-CT unter Beruecksichtigung der Strahlensensitivitaet der Gl. parotis und der Gl. submandibularis - sowohl bei Standard- als auch bei dosisreduzierten Protokollen - ermoeglicht, wird beschrieben. Weiters wird die effektive Dosis eines klinisch verwendeten Low-Dose-Protokolles abgeschaetzt und mit den haeufigsten dentalradiologischen Untersuchungsverfahren verglichen. Methoden: Aus publizierten effektiven Dosen fuer Maxilla und Mandibula Scans wurden Konversionsfaktoren ermittelt, mit deren Hilfe fuer abweichende

  1. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  2. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  3. Closure and Sealing Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    T. Lahnalampi; J. Case

    2005-08-26

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post

  4. Clinical Research and Clinical Trials

    Science.gov (United States)

    ... Meetings, Conferences & Events Partnering & Donating to the NICHD Staff Directory ... Clinical Research Skip sharing on social media links Share this: Page Content Clinical research is research that directly involves a ...

  5. Practical astronomy with your calculator

    CERN Document Server

    Duffett-Smith, Peter

    1989-01-01

    Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr

  6. Relativistic calculations of atomic structure

    OpenAIRE

    Fricke, Burkhard

    1984-01-01

    A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.

  7. Calculations of turbulent separated flows

    Science.gov (United States)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.

  8. Transfer Area Mechanical Handling Calculation

    Energy Technology Data Exchange (ETDEWEB)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use

  9. Quantitative calculation of dislocation mobility

    Energy Technology Data Exchange (ETDEWEB)

    Swaminarayan, S.; Preston, D.L.

    1999-07-01

    The authors present a new method to calculate the response of dislocations to applied stress. This new method, called the dislocation treadmill, can be used to study the effect of vacancies, interstitials, stresses, strain rate, temperature, etc., on the steady state velocity of the dislocation. The authors demonstrate the use of the method by calculating the response of a dislocation to a constant applied shear stress.

  10. The calculation of pressure vessels

    International Nuclear Information System (INIS)

    The calculation guidelines of the Arbeitsgemeinschaft Druckbehaelter (task group for pressure vessels) have been revised with the following objective: conversion to international standards (SI), adaption to the latest state of guidelines for production and testing, revision of the contents of individual regulations. Another target of the cooperating interest groups of producers, operators, and supervisory bodies was a harmonization of the approaches for calculation with other German guidelines, in particular the Technische Regeln fuer Dampfkessel (technical regulations for steam boilers). (orig./RW)

  11. Flexible mental calculation and "Zahlenblickschulung"

    OpenAIRE

    Rechtsteiner-Merz, Charlotte; Rathgeb-Schnierer, Elisabeth

    2015-01-01

    International audience; The study focuses on the development of mental calculation of elementary students who show difficulties in learning math. In total, 20 children in 8 classes were observed during their first year at school. The math education of five classes was based on a special approach called “Zahlenblickschulung”, whereas three classes experienced more regular lessons. The collected data allowed a development of a typology of flexibility in mental calculation. Additionally, it was ...

  12. Multifragmentation calculated with relativistic forces

    International Nuclear Information System (INIS)

    A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density dependence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 - 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. (orig.)

  13. Hydraulic calculation of pressure pipes

    OpenAIRE

    Mikhalev, M. A.

    2012-01-01

    In the present time there is only one classic method for hydraulic calculation of pressure pipes. In it fluid flow velocity and pipeline diameter are considered as given values.The paper proposes a procedure for physical modeling and hydraulic calculation of pressure pipes, based on the theory of similarity. Methods for obtaining similarity criteria from combinations of similarity numbers were discussed. Similarity numbers and criteria and criteria equations were defined.

  14. Study of dose calculation on breast brachytherapy using prism TPS

    Science.gov (United States)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  15. Study of dose calculation on breast brachytherapy using prism TPS

    International Nuclear Information System (INIS)

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy

  16. The Dental Trauma Internet Calculator

    DEFF Research Database (Denmark)

    Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg;

    2012-01-01

    Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide......) in the period between 1972 and 1991. Subgroup analyses and estimates of event probabilities were based on the Kaplan-Meier and the Aalen-Johansen method. Results The Internet risk calculator shows individualized prognoses for the short and long-term healing outcome of traumatized teeth with the following...... were based on the tooth’s root development stage and other risk factors at the time of the injury. Conclusions This article explains the data base, the functionality and the statistical approach of the Internet risk calculator....

  17. Insertion device calculations with mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)

    1995-02-01

    The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.

  18. Canister Transfer Facility Criticality Calculations

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  19. Verification of Internal Dose Calculations.

    Science.gov (United States)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous

  20. Molecular calculations with B functions

    CERN Document Server

    Steinborn, E O; Ema, I; López, R; Ramírez, G

    1998-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.

  1. Ab Initio Calculations of Oxosulfatovanadates

    DEFF Research Database (Denmark)

    Frøberg, Torben; Johansen, Helge

    1996-01-01

    Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...

  2. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B;

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  3. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  4. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  5. Clinical Research

    DEFF Research Database (Denmark)

    Christensen, Irene

    2016-01-01

    for years to come. This paper seeks to provide insights into ramp-up management studies through providing an agenda for conducting collaborative clinical research and extend this area by proposing how clinical research could be designed and executed in the Ramp- up management setting.......This paper is about the logic of problem solving and the production of scientific knowledge through the utilisation of clinical research perspective. Ramp-up effectiveness, productivity, efficiency and organizational excellence are topics that continue to engage research and will continue doing so...

  6. Quality Research in Radiation Oncology Analysis of Clinical Performance Measures in the Management of Gastric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Khalid, Najma [Quality Research in Radiation Oncology, American College of Radiology Clinical Research Center, Philadelphia, Pennsylvania (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston University Medical Center, Boston, Massachusetts (United States); Minsky, Bruce D. [Department of Radiation Oncology, University of Texas MD, Anderson Cancer Center, Houston, Texas (United States); Crozier, Cheryl; Owen, Jean B. [Quality Research in Radiation Oncology, American College of Radiology Clinical Research Center, Philadelphia, Pennsylvania (United States); Devlin, Phillip M. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Thomas, Charles R. [Department of Radiation Medicine, Knight Cancer Institute at the Oregon Health and Science University, Portland, Oregon (United States)

    2013-02-01

    Background: The specific aim was to determine national patterns of radiation therapy (RT) practice in patients treated for stage IB-IV (nonmetastatic) gastric cancer (GC). Methods and Materials: A national process survey of randomly selected US RT facilities was conducted which retrospectively assessed demographics, staging, geographic region, practice setting, and treatment by using on-site record review of eligible GC cases treated from 2005 to 2007. Three clinical performance measures (CPMs), (1) use of computed tomography (CT)-based treatment planning; (2) use of dose volume histograms (DVHs) to evaluate RT dose to the kidneys and liver; and (3) completion of RT within the prescribed time frame; and emerging quality indicators, (i) use of intensity modulated RT (IMRT); (ii) use of image-guided tools (IGRT) other than CT for RT target delineation; and (iii) use of preoperative RT, were assessed. Results: CPMs were computed for 250 eligible patients at 45 institutions (median age, 62 years; 66% male; 60% Caucasian). Using 2000 American Joint Committee on Cancer criteria, 13% of patients were stage I, 29% were stage II, 32% were stage IIIA, 10% were stage IIIB, and 12% were stage IV. Most patients (43%) were treated at academic centers, 32% were treated at large nonacademic centers, and 25% were treated at small to medium sized facilities. Almost all patients (99.5%) underwent CT-based planning, and 75% had DVHs to evaluate normal tissue doses to the kidneys and liver. Seventy percent of patients completed RT within the prescribed time frame. IMRT and IGRT were used in 22% and 17% of patients, respectively. IGRT techniques included positron emission tomography (n=20), magnetic resonance imaging (n=1), respiratory gating and 4-dimensional CT (n=22), and on-board imaging (n=10). Nineteen percent of patients received preoperative RT. Conclusions: This analysis of radiation practice patterns for treating nonmetastatic GC indicates widespread adoption of CT-based

  7. Dead reckoning calculating without instruments

    CERN Document Server

    Doerfler, Ronald W

    1993-01-01

    No author has gone as far as Doerfler in covering methods of mental calculation beyond simple arithmetic. Even if you have no interest in competing with computers you'll learn a great deal about number theory and the art of efficient computer programming. -Martin Gardner

  8. Professional Growth & Support Spending Calculator

    Science.gov (United States)

    Education Resource Strategies, 2013

    2013-01-01

    This "Professional Growth & Support Spending Calculator" helps school systems quantify all current spending aimed at improving teaching effectiveness. Part I provides worksheets to analyze total investment. Part II provides a system for evaluating investments based on purpose, target group, and delivery. In this Spending Calculator…

  9. Quasiclassical Calculations in Beam Dynamics

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2000-01-01

    We present some applications of general harmonic/wavelet analysis approach (generalized coherent states, wavelet packets) to numerical/analytical calculations in (nonlinear) quasiclassical/quantum beam dynamics problems. (Naive) deformation quantization, multiresolution representations and Wigner transform are the key points.

  10. ITER Port Interspace Pressure Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan J [ORNL; Van Hove, Walter A [ORNL

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  11. Relativistic multiple scattering Xα calculations

    International Nuclear Information System (INIS)

    A one component relativistic theory has recently been developed and tested on isolated atoms and on molecules through the molecular scattered-wave formalism of Johnson, while its application to energy-band calculations (through a relativistic augmented-plane-wave program) has also been considered

  12. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  13. Clinical photography.

    Science.gov (United States)

    Jakowenko, Janelle

    2009-01-01

    Digital cameras, when used correctly, can provide the basis for telemedicine services. The increasing sophistication of digital cameras, combined with the improved speed and availability of the Internet, make them an instrument that every health-care professional should be familiar with. Taking satisfactory images of patients requires clinical photography skills. Photographing charts, monitors, X-ray films and specimens also requires expertise. Image capture using digital cameras is often done with insufficient attention, which can lead to inaccurate study results. The procedures in clinical photography should not vary from camera to camera, or from country to country. Taking a photograph should be a standardised process. There are seven main scenarios in clinical photography and health professionals who use cameras should be familiar with all of them. Obtaining informed consent prior to photography should be a normal part of the clinical photography routine.

  14. Clinical supervision.

    Science.gov (United States)

    Goorapah, D

    1997-05-01

    The introduction of clinical supervision to a wider sphere of nursing is being considered from a professional and organizational point of view. Positive views are being expressed about adopting this concept, although there are indications to suggest that there are also strong reservations. This paper examines the potential for its success amidst the scepticism that exists. One important question raised is whether clinical supervision will replace or run alongside other support systems.

  15. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  16. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm2 applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield

  17. 4D-CT-based plan target volume (PTV)definition compared with conventional PTV definition using general margin in radiotherapy for lung cancer%肺癌放疗中四维CT技术与传统方法勾画靶区计划比较

    Institute of Scientific and Technical Information of China (English)

    鞠潇; 李明辉; 周宗玫; 张可; 韩伟; 符贵山; 曹莹; 王绿化

    2014-01-01

    process compared with conventional PTV definition using general margin in radiotherapy of lung cancer.Methods A set of 4D-CT images and multiphase helical CT scans were obtained in 10 patients with lung cancer.The radiotherapeutic plans based on PTV determined by 4D-CT and in addition of general margin were performed,respectively.The 3D motion of the centroid of GTV and the 3D spatial motion vectors were calculated.The differences of the two kinds of PTVs,mean lung dose (MLD),V5,V10,V15,V20 of total lung,mean heart dose (MHD),V30 and V40 of heart,D99 and D95 were compared,and the correlation between them and the 3D spatial motion vector was analyzed.Results The PTV4D in eight patients were smaller than PTV with a mean reduction of (13.0 ± 8.0) % (P =0.018).In other two patients,whose respiration motion was great,PTV4D was larger than PTVconv.The mean 3D spatial motion vector of GTV centroid was (0.78 ± 0.72) cm.By using 4D-CT,the mean reduction of MLD was (8.6 ±9.9) % (P =0.037) o V5,V10,V15,V20 of total lung were decreased averagely by (7.2 ± 10.5) %,(5.5±8.9)%,(6.5 ±8.4)% and (5.7 ±7.4)%,respectively (P<0.05 for all).There was a significant positive correlation between PTV4D/PTV and the 3D spatial motion vector of the GTV centroid (P =0.008).A significant inverse correlation was found between D994D/D99 and the 3D spatial motion vector of the GTV centroid (P =0.002).Dg94D/D99,(MLD-MLD4D)/MLD total lung (V5conv-V54D)/V5,total lung (V10-V104D)/V10,(MHD-MHD4D)/MHD heart (V30-V304D)/V30 were inversely correlated with PTV4D/PTVconv (P < 0.05 for all).Conclusions 4D-CT can be used to evaluate the respiration motion of lung tumor accurately.The 4D-CT-based PTV definition and radiotherapeutic planing can reduce the volume of PTV in patients with small respiration motion,increase the intra-target dose,and decrease the dose of normal tissue sequentially.For patients with large respiration motion,especially those more than 1.5-2 cm,this method can avoid

  18. CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION

    Directory of Open Access Journals (Sweden)

    Franica Trojanović

    1989-12-01

    Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.

  19. Automatic segmentation of lung parenchyma from thoracic CT based on image resampling%基于重采样的胸部CT图像肺实质自动分割

    Institute of Scientific and Technical Information of China (English)

    司广磊; 齐守良; 岳勇; Han J.W.van Triest; 康雁

    2012-01-01

    Automatic lung parenchyma segmentation is one of the most important steps in the computer aided diagnosis (CAD) of the lung. To increase segmentation speed, an algorithm based on resampling of the image data is proposed and implemented. Methods The algorithm firstly resamples and extracts a small part (1/8 ) of the original CT images data. Several steps are implemented to get preliminary segmentation with the resampled data, which include simple threshold segmentation, body region elimination, trachea extraction, removal of interior cavities, left-right lung separation and lung nodule filling. The final results are obtained after projecting the preliminary segmentation to the original dataset and morphology smoothing. The proposed algorithm is applied to 20 patients' data (2556 slices) , and the results are compared to the manual segmentations. Results The algorithm can get accurate results with an average area overlapped ratio 99. 02% to the manual segmentation by the radiologist, and works well for the abnormal cases (right-left connected, with nodules and uncompleted views) . Through resampling, the time consumption of the algorithm is shortened significantly, typically by 50%, and the processing for one slice image is less than 0. 25 s. Conclusions The proposed automatic lung parenchyma segmentation algorithm with excellent robustness and high speed, can get accurate result and satisfy the requirements of current clinical applications.%目的 胸部CT图像的肺实质自动分割是肺部疾病计算机辅助检测的重要基础.为提高分割速度,本文提出并实现了一种基于重采样的分割算法.方法 首先对数据重采样,提取部分(1/8)体数据.再基于重采样体数据,通过阈值分割、胸腔提取、气管剔除、血管填充、左右肺分离和肺壁结节填充等步骤,得到初步分割结果.然后将该结果还原到完整数据体上,形态学平滑后即完成最终分割.最后将算法应用于20

  20. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  1. Verification of Oncentra brachytherapy planning using independent calculation

    Science.gov (United States)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  2. Electronics reliability calculation and design

    CERN Document Server

    Dummer, Geoffrey W A; Hiller, N

    1966-01-01

    Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea

  3. Rate calculation with colored noise

    CERN Document Server

    Bartsch, Thomas; Benito, R M; Borondo, F

    2016-01-01

    The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a new method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.

  4. Calculation of transonic aileron buzz

    Science.gov (United States)

    Steger, J. L.; Bailey, H. E.

    1979-01-01

    An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.

  5. Digital calculations of engine cycles

    CERN Document Server

    Starkman, E S; Taylor, C Fayette

    1964-01-01

    Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var

  6. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  7. Atomic physics: computer calculations and theoretical analysis

    OpenAIRE

    Drukarev, E. G.

    2004-01-01

    It is demonstrated, how the theoretical analysis preceding the numerical calculations helps to calculate the energy of the ground state of helium atom, and enables to avoid qualitative errors in the calculations of the characteristics of the double photoionization.

  8. Clinical cases

    International Nuclear Information System (INIS)

    This presentation is about clinical cases and the contribution of the PET - CT Fag application in the diagnosis and treatment of different types of cancer. The cases presented were: neck diseases, epidermoid carcinoma, liver damage and metastasize, lymphoma, thrombosis, colonic cancer and lung disease

  9. Calculation of sound propagation in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....

  10. [Clinical pathology].

    Science.gov (United States)

    Dimitrijević, Jovan

    2006-05-01

    This work describes the basic elements of pathology used in clinical practice. Pathology plays an important role in clinical and scientific work, but only a few areas of pathology will be covered. Although the contribution of oncological and surgical pathology to therapy is the most well known, the cases chosen here will involve infectious pathology, diseases of the kidney and the liver, autoimmune diseases, as well as organ transplantation. Especially important is the description of methods that enable more accurate morphological diagnoses, such as histochemistry, immunohistochemistry, immunofluorescence, and electronic microscopy. Previous experience and joint work with clinical doctors have enabled the definition of significant morphological elements as well as of essential methods of pathohistological diagnosis. Besides, as is often the case, although disease symptoms are difficult to discern and biochemical results do not show significant changes compared to normal values, the results of biopsy come as a surprise to clinical doctors. For example, in virus hepatitis B involving so-called asymptomatic HBsAg carriers, we discovered every morphological form of hepatitis, from minimal lesions to chronic, persistent, and active hepatitis. With hepatitis C, certain morphological lesions point to the etiopathogenesis of this disease and thus help to confirm the diagnosis and to instigate therapy on time. Another significant experience involves kidney biopsies in cases when clinical findings are asymptomatic. Often, in such cases, morphological findings point to glomerulonephritis and glomerulopathy at different stages. Timely and subtle morphological diagnostics offer a more precise explanation for the pathological injury of tissues than other diagnostic methods. In this way, by adopting new methods, the work of pathologists is included more and more in everyday clinical practice. The inclusion of pathologists in a transplantation team makes sure a proper selection of

  11. Flow Field Calculations for Afterburner

    Institute of Scientific and Technical Information of China (English)

    ZhaoJianxing; LiuQuanzhong; 等

    1995-01-01

    In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.

  12. Light Pipe Energy Savings Calculator

    Science.gov (United States)

    Owens, Erin; Behringer, Ernest R.

    2009-04-01

    Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.

  13. Comparison between calculation methods of dose rates in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    In treatments with radiations for gynecologic tumors is necessary to evaluate the quality of the results obtained by different calculation methods for the dose rates on the points of clinical interest (A, rectal, vesicle). The present work compares the results obtained by two methods. The Manual Calibration Method (MCM) tri dimensional (Vianello E., et.al. 1998), using orthogonal radiographs for each patient in treatment, and the Theraplan/T P-11 planning system (Thratonics International Limited 1990) this last one verified experimentally (Vianello et.al. 1996). The results show that MCM can be used in the physical-clinical practice with a percentile difference comparable at the computerized programs. (Author)

  14. Study of dose calculation on breast brachytherapy using prism TPS

    Energy Technology Data Exchange (ETDEWEB)

    Fendriani, Yoza; Haryanto, Freddy [Nuclear Physics and Biophysics Research Division, FMIPA Institut Teknologi Bandung, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  15. Langage C++ et calcul scientifique

    OpenAIRE

    Saramito, Pierre

    2005-01-01

    La simulation numérique est devenue essentielle dans de nombreux domaines tels que la mécanique des fluides et des solides, la météo, l'évolution du climat, la biologie ou les semi-conducteurs. Elle permet de comprendre, de prévoir, d'accéder là où les instruments de mesures s'arrêtent. Ce livre présente des méthodes performantes du calcul scientifique : matrices creuses, résolution efficace des grands systèmes linéaires, ainsi que de nombreuses applications à la résolution par éléments fini...

  16. Painless causality in defect calculations

    CERN Document Server

    Cheung, C; Cheung, Charlotte; Magueijo, Joao

    1997-01-01

    Topological defects must respect causality, a statement leading to restrictive constraints on the power spectrum of the total cosmological perturbations they induce. Causality constraints have for long been known to require the presence of an under-density in the surrounding matter compensating the defect network on large scales. This so-called compensation can never be neglected and significantly complicates calculations in defect scenarios, eg. computing cosmic microwave background fluctuations. A quick and dirty way to implement the compensation are the so-called compensation fudge factors. Here we derive the complete photon-baryon-CDM backreaction effects in defect scenarios. The fudge factor comes out as an algebraic identity and so we drop the negative qualifier ``fudge''. The compensation scale is computed and physically interpreted. Secondary backreaction effects exist, and neglecting them constitutes the well-defined approximation scheme within which one should consider compensation factor calculatio...

  17. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    ‘Systems Biocatalysis’ is a term describing multi-enzyme processes in vitro for the synthesis of chemical products. Unlike in-vivo systems, such an artificial metabolism can be controlled in a highly efficient way in order to achieve a sufficiently favourable conversion for a given target product...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  18. FLAG-SGH Sedov calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-25

    We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).

  19. Clinical biochemistry

    Science.gov (United States)

    Alexander, W. C.; Leach, C. S.; Fischer, C. L.

    1975-01-01

    The objectives of the biochemical studies conducted for the Apollo program were (1) to provide routine laboratory data for assessment of preflight crew physical status and for postflight comparisons; (2) to detect clinical or pathological abnormalities which might have required remedial action preflight; (3) to discover as early as possible any infectious disease process during the postflight quarantine periods following certain missions; and (4) to obtain fundamental medical knowledge relative to man's adjustment to and return from the space flight environment. The accumulated data presented suggest that these requirements were met by the program described. All changes ascribed to the space flight environment were subtle, whereas clinically significant changes were consistent with infrequent illnesses unrelated to the space flight exposure.

  20. Calculating the GONG Leakage Matrix

    Science.gov (United States)

    Hill, F.; Howe, R.

    Since spherical harmonics do not form a complete orthonormal basis set over a portion of a sphere, helioseismic spectra computed for a specific target mode with degree ellt and azimuthal degree mt also contain modes with nearby ell'' and m''. These spatial leaks greatly increase the complexity of the observed spectrum, complicating the spectral fitting and degrading the resulting mode parameter estimates. This is particularly true where the target mode and the leaks have similar frequencies. Some strategies for fitting helioseismic spectra explicitly include the leakage matrix which estimates the relative strength of a mode (ell'' and m'') in the spectrum at (ellt,mt). Since the fitting methods assume that the matrix is correct and apply it as a constraint, an inaccurate matrix introduces systematic errors in the estimated mode parameters. It is thus important to have as accurate a matrix as possible. Here we report on the calculation of the leakage matrix for the GONG observations. The matrix elements are essentially the integrals (over the observed portion of the solar surface) of the crossproducts of the two spherical harmonics. However, several effects have been included to increase the accuracy of the matrix. These include the projection factor of the observable (velocity, intensity, modulation), the spatial apodization applied to the data, the finite rectangular pixel dimensions of the observations, and possible errors in the estimated image geometry. Other factors to be incorporated are the observed MTF, the merging of the GONG images, and the horizontal components of the oscillatory velocity field. We will compare the latest calculation with the observed spectrum and assess the relative importance of the input factors. We will also compare the leakage matrices for velocity and intensity to estimate their contribution to the large apparent differences in the helioseismic spectra obtained from these observables.

  1. Dyscalculia and the Calculating Brain.

    Science.gov (United States)

    Rapin, Isabelle

    2016-08-01

    Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals. PMID:27515455

  2. Quantification of Proton Dose Calculation Accuracy in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Grassberger, Clemens, E-mail: Grassberger.Clemens@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Center for Proton Radiotherapy, Paul Scherrer Institute, Villigen (Switzerland); Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  3. On Calculation of Amplitudes in Quantum Electrodynamics

    OpenAIRE

    Karplyuk, Kostyantyn; Zhmudsky, Oleksandr

    2012-01-01

    A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.

  4. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing; Zhao, Lina [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Amy [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Yupeng [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Applied Research, Varian Medical Systems, Palo Alto, California (United States); Sahoo, Narayan; Poenisch, Falk [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wu, Richard; Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Xiaodong, E-mail: xizhang@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the

  5. Fast Electron Beam Simulation and Dose Calculation

    CERN Document Server

    Trindade, A; Peralta, L; Lopes, M C; Alves, C; Chaves, A

    2003-01-01

    A flexible multiple source model capable of fast reconstruction of clinical electron beams is presented in this paper. A source model considers multiple virtual sources emulating the effect of accelerator head components. A reference configuration (10 MeV and 10x10 cm2 field size) for a Siemens KD2 linear accelerator was simulated in full detail using GEANT3 Monte Carlo code. Our model allows the reconstruction of other beam energies and field sizes as well as other beam configurations for similar accelerators using only the reference beam data. Electron dose calculations were performed with the reconstructed beams in a water phantom and compared with experimental data. An agreement of 1-2% / 1-2 mm was obtained, equivalent to the accuracy of full Monte Carlo accelerator simulation. The source model reduces accelerator simulation CPU time by a factor of 7500 relative to full Monte Carlo approaches. The developed model was then interfaced with DPM, a fast radiation transport Monte Carlo code for dose calculati...

  6. Factors affecting calculation of L

    Science.gov (United States)

    Ciotola, Mark P.

    2001-08-01

    A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient

  7. Feasibility study of small animal imaging using clinical PET/CT scanner

    Science.gov (United States)

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  8. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy - Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, Neamat [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Dept. of Clinical Oncology, Medical Univ. of Alexandria, Alexandria (Egypt); Poetter Rickard; Kirisits, Christian [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. Vienna (Austria); Berger, Daniel; Federico, Mario; Sturdza, Alina; Nesvacil, Nicole [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria)], e-mail: nicole.nesvacil@meduniwien.ac.at

    2013-10-15

    Purpose: The aim of the study was to improve computed tomography (CT)-based high-risk clinical target volume (HR CTV) delineation protocols for cervix cancer patients, in settings without any access to magnetic resonance imaging (MRI) at the time of brachytherapy. Therefore the value of a systematic integration of comprehensive three-dimensional (3D) documentation of repetitive gynecological examination for CT-based HR CTV delineation protocols, in addition to information from FIGO staging, was investigated. In addition to a comparison between reference MRI contours and two different CT-based contouring methods (using complementary information from FIGO staging with or without additional 3D clinical drawings), the use of standardized uterine heights was also investigated. Material and methods: Thirty-five cervix cancer patients with CT- and MR-images and 3D clinical drawings at time of diagnosis and brachytherapy were included. HR CTV{sub stage} was based on CT information and FIGO stage. HR CTV{sub stage} {sub +3Dclin} was contoured on CT using FIGO stage and 3D clinical drawing. Standardized HR CTV heights were: 1/1, 2/3 and 1/2 of uterine height. MRI-based HR CTV was delineated independently. Resulting widths, thicknesses, heights, and volumes of HR CTV{sub stage}, HR CTV{sub stage+3Dclin} and MRI-based HR CTV contours were compared. Results: The overall normalized volume ratios (mean{+-}SD of CT/MRI{sub ref} volume) of HR CTV{sub stage} and HR{sub stage+3Dclin} were 2.6 ({+-}0.6) and 2.1 ({+-}0.4) for 1/1 and 2.3 ({+-}0.5) and 1.8 ({+-}0.4), for 2/3, and 1.9 ({+-}0.5) and 1.5 ({+-}0.3), for 1/2 of uterine height. The mean normalized widths were 1.5{+-}0.2 and 1.2{+-}0.2 for HR CTV{sub stage} and HR CTV{sub stage+3Dclin}, respectively (p < 0.05). The mean normalized heights for HR CTV{sub stage} and HR CTV{sub stage+3Dclin} were both 1.7{+-}0.4 for 1/1 (p < 0.05.), 1.3{+-}0.3 for 2/3 (p < 0.05) and 1.1{+-}0.3 for 1/2 of uterine height. Conclusion: CT-based HR

  9. Participating in Clinical Trials

    Science.gov (United States)

    ... this page please turn Javascript on. Participating in Clinical Trials About Clinical Trials A Research Study With Human Subjects A clinical ... to treat or cure a disease. Phases of Clinical Trials Clinical trials of drugs are usually described based ...

  10. CT-based manual segmentation and evaluation of paranasal sinuses.

    Science.gov (United States)

    Pirner, S; Tingelhoff, K; Wagner, I; Westphal, R; Rilk, M; Wahl, F M; Bootz, F; Eichhorn, Klaus W G

    2009-04-01

    Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots' workspace definition. A total of 50 preselected CT datasets were each segmented in 150-200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8-10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm(3), left side 17.9 cm(3), right frontal sinus 4.2 cm(3), left side 4.0 cm(3), total frontal sinuses 7.9 cm(3), sphenoid sinus right side 5.3 cm(3), left side 5.5 cm(3), total sphenoid sinus volume 11.2 cm(3). Our manually segmented 3D-models present the patient's individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot's maximum distance to the segmented border can be adjusted according to the differently colored areas.

  11. FDG-PET/CT based response-adapted treatment

    DEFF Research Database (Denmark)

    de Geus-Oei, Lioe-Fee; Vriens, Dennis; Arens, Anne I J;

    2012-01-01

    chemotherapy and the risk of toxic death. The trials provide a model for designing response-guided treatment algorithms in other malignancies. PET-guided treatment algorithms are the promise of the near future; the choice of therapy, its intensity, and its duration will become better adjusted to the biology...... of the individual patient. Today's major challenge is to investigate the impact on patient outcome of personalized response-adapted treatment concepts....

  12. Benchmark calculations for EGS5

    International Nuclear Information System (INIS)

    In the past few years, EGS4 has undergone an extensive upgrade to EGS5, in particularly in the areas of low-energy electron physics, low-energy photon physics, PEGS cross section generation, and the coding from Mortran to Fortran programming. Benchmark calculations have been made to assure the accuracy, reliability and high quality of the EGS5 code system. This study reports three benchmark examples that show the successful upgrade from EGS4 to EGS5 based on the excellent agreements among EGS4, EGS5 and measurements. The first benchmark example is the 1969 Crannell Experiment to measure the three-dimensional distribution of energy deposition for 1-GeV electrons shower in water and aluminum tanks. The second example is the 1995 Compton-scattered spectra measurements for 20-40 keV, linearly polarized photon by Namito et. al., in KEK, which was a main part of the low-energy photon expansion work for both EGS4 and EGS5. The third example is the 1986 heterogeneity benchmark experiment by Shortt et. al., who used a monoenergetic 20-MeV electron beam to hit the front face of a water tank containing both air and aluminum cylinders and measured spatial depth dose distribution using a small solid-state detector. (author)

  13. Calculating system reliability with SRFYDO

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory

    2010-01-01

    SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.

  14. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  15. RTU Comparison Calculator Enhancement Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  16. RTU Comparison Calculator Enhancement Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  17. Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution

    DEFF Research Database (Denmark)

    Fog, Agner

    2008-01-01

    conditional distribution of independent binomial variates given their sum. No reliable calculation method for Wallenius' noncentral hypergeometric distribution has hitherto been described in the literature. Several new methods for calculating probabilities from Wallenius' noncentral hypergeometric...

  18. Dynamics Calculation of Travel Wave Tube

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient

  19. A New Approach for Calculating Vacuum Susceptibility

    Institute of Scientific and Technical Information of China (English)

    宗红石; 平加伦; 顾建中

    2004-01-01

    Based on the Dyson-Schwinger approach, we propose a new method for calculating vacuum susceptibilities. As an example, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is presented.

  20. Pressure Vessel Calculations for VVER-440 Reactors

    Science.gov (United States)

    Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.

    2003-06-01

    Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.

  1. Classification of non-aneurysmal subarachnoid haemorrhage: CT correlation to the clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S., E-mail: sanjeevnayak@hotmail.co [Department of Neuroradiology, University Hospital of North Staffordshire, North Staffordshire Royal Infirmary, Princes Road, Stoke-on-Trent, Staffordshire, ST4 7LN (United Kingdom); Kunz, A.B.; Kieslinger, K. [University Clinic of Neurology, Paracelsus Medical University Salzburg (Austria); Ladurner, G.; Killer, M. [University Clinic of Neurology, Paracelsus Medical University Salzburg (Austria); Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University Salzburg (Austria)

    2010-08-15

    Aim: To propose a new computed tomography (CT)-based classification system for non-aneurysmal subarachnoid haemorrhage (SAH), which predicts patients' discharge clinical outcome and helps to prioritize appropriate patient management. Methods and materials: A 5-year, retrospective, two-centre study was carried out involving 1486 patients presenting with SAH. One hundred and ninety patients with non-aneurysmal SAH were included in the study. Initial cranial CT findings at admission were correlated with the patients' discharge outcomes measured using the Modified Rankin Scale (MRS). A CT-based classification system (type 1-4) was devised based on the topography of the initial haemorrhage pattern. Results: Seventy-five percent of the patients had type 1 haemorrhage and all these patients had a good clinical outcome with a discharge MRS of {<=}1. Eight percent of the patients presented with type 2 haemorrhage, 62% of which were discharged with MRS of {<=}1 and 12% of patients had MRS 3 or 4. Type 3 haemorrhage was found in 10%, of which 16% had good clinical outcome, but 53% had moderate to severe disability (MRS 3 and 4) and 5% were discharged with severe disability (MRS 5). Six percent of patients presented with type 4 haemorrhage of which 42% of the patients had moderate to severe disability (MRS 3 and 4), 42% had severe disability and one-sixth of the patients died. Highly significant differences were found between type 1(1a and 1b) and type 2 (p = 0.003); type 2 and type 3 (p = 0.002); type 3 and type 4 (p = 0.001). Conclusion: Haemorrhages of the type 1 category are usually benign and do not warrant an extensive battery of clinical and radiological investigations. Type 2 haemorrhages have a varying prognosis and need to be investigated and managed along similar lines as that of an aneurysmal haemorrhage with emphasis towards radiological investigation. Type 3 and type 4 haemorrhages need to be extensively investigated to find an underlying cause.

  2. Classification of non-aneurysmal subarachnoid haemorrhage: CT correlation to the clinical outcome

    International Nuclear Information System (INIS)

    Aim: To propose a new computed tomography (CT)-based classification system for non-aneurysmal subarachnoid haemorrhage (SAH), which predicts patients' discharge clinical outcome and helps to prioritize appropriate patient management. Methods and materials: A 5-year, retrospective, two-centre study was carried out involving 1486 patients presenting with SAH. One hundred and ninety patients with non-aneurysmal SAH were included in the study. Initial cranial CT findings at admission were correlated with the patients' discharge outcomes measured using the Modified Rankin Scale (MRS). A CT-based classification system (type 1-4) was devised based on the topography of the initial haemorrhage pattern. Results: Seventy-five percent of the patients had type 1 haemorrhage and all these patients had a good clinical outcome with a discharge MRS of ≤1. Eight percent of the patients presented with type 2 haemorrhage, 62% of which were discharged with MRS of ≤1 and 12% of patients had MRS 3 or 4. Type 3 haemorrhage was found in 10%, of which 16% had good clinical outcome, but 53% had moderate to severe disability (MRS 3 and 4) and 5% were discharged with severe disability (MRS 5). Six percent of patients presented with type 4 haemorrhage of which 42% of the patients had moderate to severe disability (MRS 3 and 4), 42% had severe disability and one-sixth of the patients died. Highly significant differences were found between type 1(1a and 1b) and type 2 (p = 0.003); type 2 and type 3 (p = 0.002); type 3 and type 4 (p = 0.001). Conclusion: Haemorrhages of the type 1 category are usually benign and do not warrant an extensive battery of clinical and radiological investigations. Type 2 haemorrhages have a varying prognosis and need to be investigated and managed along similar lines as that of an aneurysmal haemorrhage with emphasis towards radiological investigation. Type 3 and type 4 haemorrhages need to be extensively investigated to find an underlying cause.

  3. 40 CFR 89.207 - Credit calculation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 89.207 Section 89... Trading Provisions § 89.207 Credit calculation. (a) Requirements for calculating NO X credits from Tier 1 engines rated at or above 37 kW. (1) For each participating engine family, emission credits (positive...

  4. Thermohydraulic calculation of WWER-type NPP

    International Nuclear Information System (INIS)

    Technique of thermohydraulic calculation of the WWER-type NPP in unsteady processes is described. Effective algorithm for solving hydrodynamics equations without regard for acoustic effects permitting to use enough large time integration step is given. Calculation of two-dimensional temperature fields in fuel element is considered. Method for calculating a pressurizer, steam generators and pumps is described as well

  5. 10 CFR 766.102 - Calculation methodology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy... ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a) Calculation of Domestic Utilities' Annual Assessment Ratio to the Fund. Domestic utilities shall be...

  6. 7 CFR 760.1106 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1106 Section 760.1106 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Preliminary, unadjusted LCP payments are calculated for a producer by...

  7. 7 CFR 1416.104 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.104 Section 1416.104 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Livestock Compensation Program § 1416.104 Payment calculation. (a) LCP payments are calculated...

  8. 7 CFR 1416.504 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.504 Section 1416.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Tropical Fruit Disaster Program § 1416.504 Payment calculation. (a) Payments are calculated...

  9. 40 CFR 1065.650 - Emission calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission calculations. 1065.650 Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.650 Emission calculations....

  10. Three-dimensional rf structure calculations

    International Nuclear Information System (INIS)

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs

  11. Quantum Transport Calculations Using Periodic Boundary Conditions

    OpenAIRE

    Wang, Lin-Wang

    2004-01-01

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculations, thus is makes accurate quantum transport calculations for large systems possible.

  12. 47 CFR 1.1623 - Probability calculation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number...

  13. Comparison of dose calculation methods for brachytherapy of intraocular tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Chiu-Tsao, Sou-Tung; Finger, Paul T.; Meigooni, Ali S.; Melhus, Christopher S.; Mourtada, Firas; Napolitano, Mary E.; Rogers, D. W. O.; Thomson, Rowan M.; Nath, Ravinder [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Quality MediPhys LLC, Denville, New Jersey 07834 (United States); New York Eye Cancer Center, New York, New York 10065 (United States); Department of Radiation Oncology, Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Department of Radiation Physics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030 (United States) and Department of Experimental Diagnostic Imaging, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Physics, Elekta Inc., Norcross, Georgia 30092 (United States); Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States)

    2011-01-15

    Purpose: To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using {sup 125}I or {sup 103}Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). Methods: Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. Results: For the homogeneous water medium case, agreement was within {approx}2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific {sup 125}I and {sup 103}Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off

  14. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction; Cambio de paradigma en SBRT pulmonar asociada al calculo de dosis con correccion de heterogeneidad

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-07-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  15. Comparison of the clinical accuracy of cervical (C2-C7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional C-arm navigation

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-jun; TIAN Wei; LIU Bo; LI Qin; HU Lin; LI Zhi-yu; YUAN Qiang; L(U) Yan-wei; SUN Yu-zhen

    2010-01-01

    -fluoroscopy and CT-based navigation systems in future clinical applications.

  16. A slide rule for calculating the power of an intraocular lens.

    Science.gov (United States)

    Wang, G J; Pomerantzeff, O; Miao, T Y

    1983-01-01

    We have designed a slide rule to calculate the emmetropizing and iseikonizing power of an intraocular lens (IOL). Like the dial biometer currently used for these calculations, the slide rule is inexpensive, easy to use, simple, and a compact pocket size. It can, however, also be used to calculate postoperative refractive error, corneal power when various keratometers are used, and conversion of refractive correction at the spectacle frame to that at the cornea, or vice versa. All the calculated data are within the accuracy suitable for clinical work. PMID:6630016

  17. Maths anxiety and medication dosage calculation errors: A scoping review.

    Science.gov (United States)

    Williams, Brett; Davis, Samantha

    2016-09-01

    A student's accuracy on drug calculation tests may be influenced by maths anxiety, which can impede one's ability to understand and complete mathematic problems. It is important for healthcare students to overcome this barrier when calculating drug dosages in order to avoid administering the incorrect dose to a patient when in the clinical setting. The aim of this study was to examine the effects of maths anxiety on healthcare students' ability to accurately calculate drug dosages by performing a scoping review of the existing literature. This review utilised a six-stage methodology using the following databases; CINAHL, Embase, Medline, Scopus, PsycINFO, Google Scholar, Trip database (http://www.tripdatabase.com/) and Grey Literature report (http://www.greylit.org/). After an initial title/abstract review of relevant papers, and then full text review of the remaining papers, six articles were selected for inclusion in this study. Of the six articles included, there were three experimental studies, two quantitative studies and one mixed method study. All studies addressed nursing students and the presence of maths anxiety. No relevant studies from other disciplines were identified in the existing literature. Three studies took place in the U.S, the remainder in Canada, Australia and United Kingdom. Upon analysis of these studies, four factors including maths anxiety were identified as having an influence on a student's drug dosage calculation abilities. Ultimately, the results from this review suggest more research is required in nursing and other relevant healthcare disciplines regarding the effects of maths anxiety on drug dosage calculations. This additional knowledge will be important to further inform development of strategies to decrease the potentially serious effects of errors in drug dosage calculation to patient safety. PMID:27589091

  18. Maths anxiety and medication dosage calculation errors: A scoping review.

    Science.gov (United States)

    Williams, Brett; Davis, Samantha

    2016-09-01

    A student's accuracy on drug calculation tests may be influenced by maths anxiety, which can impede one's ability to understand and complete mathematic problems. It is important for healthcare students to overcome this barrier when calculating drug dosages in order to avoid administering the incorrect dose to a patient when in the clinical setting. The aim of this study was to examine the effects of maths anxiety on healthcare students' ability to accurately calculate drug dosages by performing a scoping review of the existing literature. This review utilised a six-stage methodology using the following databases; CINAHL, Embase, Medline, Scopus, PsycINFO, Google Scholar, Trip database (http://www.tripdatabase.com/) and Grey Literature report (http://www.greylit.org/). After an initial title/abstract review of relevant papers, and then full text review of the remaining papers, six articles were selected for inclusion in this study. Of the six articles included, there were three experimental studies, two quantitative studies and one mixed method study. All studies addressed nursing students and the presence of maths anxiety. No relevant studies from other disciplines were identified in the existing literature. Three studies took place in the U.S, the remainder in Canada, Australia and United Kingdom. Upon analysis of these studies, four factors including maths anxiety were identified as having an influence on a student's drug dosage calculation abilities. Ultimately, the results from this review suggest more research is required in nursing and other relevant healthcare disciplines regarding the effects of maths anxiety on drug dosage calculations. This additional knowledge will be important to further inform development of strategies to decrease the potentially serious effects of errors in drug dosage calculation to patient safety.

  19. A simplified analytical random walk model for proton dose calculation

    Science.gov (United States)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.

  20. Supporting the development of calculating skills in nurses.

    Science.gov (United States)

    Wright, Kerri

    This article discusses a well-known model in mathematical problem solving developed by Polya (1957) and suggests that this could be a beneficial framework to support the development of medication calculation skills. The model outlines four stages to problem solving: understanding the problem, devising a plan, carrying out the plan and examining the solution. These four stages are discussed in relation to the teaching and assessing of medication skills, drawing on literature from nursing, mathematics education and cognitive psychology. The article emphasizes the importance of clinical experience and knowledge and the cognitive structures that support the development of medication skills. This is the first part of a three-part series. Part two will examine the different methods that can be used to solve medication calculations and part three the resources that are required to support use of these methods.

  1. Calculation of rotational deformity in pediatric supracondylar humerus fractures

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Eric R.; Egol, Kenneth A.; Bosse, Harold J.P. van; Schweitzer, Mark E.; Pettrone, Sarah K. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, David S. [NYU Hospital for Joint Diseases, New York, NY (United States); NYU Hospital for Joint Diseases, Pediatric Orthopaedic Surgery, Center for Children, New York, NY (United States)

    2007-03-15

    Supracondylar humerus fractures (SCHF) are common in the pediatric population. Cubitus varus deformity (CVD) is the most common long-term complication of SCHFs and may lead to elbow instability and deficits in throwing or extension. Distal fragment malrotation in the axial plane disposes to fragment tilt and CVD; however, no simple method of assessing fracture malrotation exists. This study tested a mathematical method of measuring axial plane malrotation in SCHFs based on plain radiographs. A pediatric SCHF model was made, and x-rays were taken at known intervals of rotation. Five independent, blinded observers measured these films. Calculated rotation for each data set was compared to the known rotation. The identical protocol was performed for an aluminum phantom. The reliability and agreement of the rotation values were good for both models. This method is a reliable, accurate, and cost-effective means of calculating SCHF distal fragment malrotation and warrants clinical application. (orig.)

  2. Challenges and approaches in modern biometry and IOL calculation.

    Science.gov (United States)

    Haigis, Wolfgang

    2012-01-01

    The introduction of new intraocular lenses (IOLs), industry marketing to the public and patient expectations has warranted increased accuracy of IOL power calculations. Toric IOLs, multifocal IOLs, aspheric IOLs, phakic lenses, accommodative lenses, cases of refractive lens exchange and eyes that have undergone previous refractive surgery all require improved clinical measurements and IOL prediction formulas. Hence, measurement techniques and IOL calculation formulas are essential factors that affect the refractive outcome. Measurement with ultrasound has been the historic standard for measurement of ocular parameters for IOL calculation. However the introduction of optical biometry using partial coherence interferometry (PCI) has steadily established itself as the new standard. Additionally, modern optical instruments such as Scheimpflug cameras and optical coherence tomographers are being used to determine corneal power that was normally the purview of manual keratometry and topography. A number of methods are available to determine the IOL power including the empirical, analytical, numerical or combined methods. Ray tracing techniques or paraxial approximation by matrix methods or classical analytical 'IOL formulas' are actively used in for the prediction of IOL power. There is no universal formula for all cases - phakic and pseudophakic cases require different approaches, as do short eyes, long eyes, astigmatic eyes or post-refractive surgery eyes. Invariably, IOLs are characterized by different methods and lens constants, which require individual optimization. This review describes the current methods for biometry and IOL calculation. PMID:23960962

  3. Argosy 4 - A programme for lattice calculations

    International Nuclear Information System (INIS)

    This report contains a detailed description of the methods of calculation used in the Argosy 4 computer programme, and of the input requirements and printed results produced by the programme. An outline of the physics of the Argosy method is given. Section 2 describes the lattice calculation, including the burn up calculation, section 3 describes the control rod calculation and section 4 the reflector calculation. In these sections the detailed equations solved by the programme are given. In section 5 input requirements are given, and in section 6 the printed output obtained from an Argosy calculation is described. In section 7 are noted the principal differences between Argosy 4 and earlier versions of the Argosy programme

  4. Clinical significance of geographic miss when using conventional four field radiotherapy technique in treatment of locally advanced carcinoma cervix

    Directory of Open Access Journals (Sweden)

    A Gulia

    2016-01-01

    Full Text Available Background: Although conventional four- field radiotherapy based on bony landmarks has been traditionally used, areas of geographical miss due to individual variation in pelvic anatomy have been identified with advanced imaging techniques. AIMS: The primary aim of this study is to evaluate the geographical miss in patientswhen using the conventional four-field planningplanning and to find out the impact of 3-D conformal CT based in patients with locally advanced carcinoma cervix.Materials and Methods: In 50 patients, target volume delineation was done on planning computed tomography (CT scans, according to guidelines by Taylor et al. Patients were treated with modified four field plan, except for the superior, where field border was kept at L4-L5 interspace A dosimetric comparison was done between the conventional four-field based on bony landmarks and the target volume delineated on computed tomography. The disease free survival, pelvic and para aortic nodal free survival, distant failures free survival were calculated using Kaplan Meir Product Limit Method. Results: Patients were followed-up for a median period of 11 months. The median V95 for conventional and modified extended four field plans were 89.4% and 91.3% respectively. Patients with V95 for modified extended pelvic fields less than 91.3% had a trend toward inferior disease free survival (mean DFS 9.8 vs. 13.9 months though the difference was not statistically significant log rank test.Conclusions: Our preliminary data shows trend toward lower DFS in patients with inadequate target volume coverage. We recommend routine use of CT based planning for four field technique.

  5. Multilinguals’ language choice for mental calculation

    OpenAIRE

    Dewaele, Jean-Marc

    2007-01-01

    The present study investigates self-reported language choice for mental calculations among 1,454 adult multilinguals from a variety of linguistic, social and ethnic backgrounds. As mental calculation is a complex cognitive operation involving both language-dependent and language independent processes, we sought to establish a baseline of first language (L1) or foreign language(s) (LX) use for mental calculation and identify the factors that influence multilinguals’ choice of...

  6. Comparison of methods for calculating water erosion

    OpenAIRE

    Svobodová, Pavlína

    2011-01-01

    Bachelor thesis presents a comparison of methods for calculating water erosion. The aim is to summarize available evidence concerning the problems of water erosion. There are presented some methods how to calculate average annual erosion of soils, and selected models for calculating the erosion immediately. There are also listed possible erosion control measures through which we can at least slow the effects of erosion, rather than stop completely.

  7. Calculation of plasma characteristics of the sun

    Institute of Scientific and Technical Information of China (English)

    Muhammad Abbas Bari; Zhong Jia-Yong; Chen Miu; Zhao Jing; Zhang Jie

    2006-01-01

    The ionization level and free electron density of most abundant elements (C, N, O, Mg, Al, Si, S, and Fe) in the sun are calculated from the centre of the sun to the surface of the photosphere. The model and computations are made under the assumption of local thermodynamic equilibrium (LTE). The Saha equation has been used to calculate the ionization level of elements and the electron density. Temperature values for calculations along the solar radius are taken from referebces.

  8. Some Calculations for Cold Fusion Superheavy Elements

    OpenAIRE

    X. H. Zhong; Li, L.; Ning, P. Z.

    2004-01-01

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  9. Handbook for the calculation of reactor protections

    International Nuclear Information System (INIS)

    This note constitutes the first edition of a Handbook for the calculation of reactor protections. This handbook makes it possible to calculate simply the different neutron and gamma fluxes and consequently, to fix the minimum quantities of materials necessary under general safety conditions both for the personnel and for the installations. It contains a certain amount of nuclear data, calculation methods, and constants corresponding to the present state of our knowledge. (authors)

  10. Dynamic calculations of pressurized water reactor internals

    International Nuclear Information System (INIS)

    A mathematical model is briefly described for the calculation of oscillations in the WWER-440 reactor internals. The model was developed for improved safety of the type of reactors. It allows calculating vibrations resistance of reactor components, mainly during accidents, such as loss of coolant accidents. Some results are given of the calculation of forces acting in the rupture of the reactor inlet and outlet pipes. (Z.M.)

  11. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił

    2015-12-01

    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  12. Evaluating Energy Sector Investments: Calculating Volatility

    Directory of Open Access Journals (Sweden)

    Edson de Oliveira Pamplona

    2013-01-01

    Full Text Available A major task in assessing risks of investment projects is defining the approach to calculating the project’s volatility. Looking at assorted estimation techniques, this paper calculates their volatilities. The techniques originate from authors in the area and involve project-specific variables of uncertainty. These techniques are applied to a case of electricity distribution through real options. Results are then compared. The difference between the calculated volatilities was low, leaving, in the case of the project evaluated here, the decision unchanged. The paper’s contribution consists of providing a detailed presentation of calculating volatility by the methods cited and by comparing the results obtained by its application.

  13. The conundrum of calculating carbon footprints

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Erichsen, Anders Christian; Gausset, Quentin

    2016-01-01

    A pre-condition for reducing global warming is to minimise the emission of greenhouse gasses (GHGs). A common approach to informing people about the link between behaviour and climate change rests on developing GHG calculators that quantify the ‘carbon footprint’ of a product, a sector or an actor....... There is, however, an abundance of GHG calculators that rely on very different premises and give very different estimates of carbon footprints. In this chapter, we compare and analyse the main principles of calculating carbon footprints, and discuss how calculators can inform (or misinform) people who wish...

  14. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  15. Comparison of estimates and calculations of risk of coronary heart disease by doctors and nurses using different calculation tools in general practice: cross sectional study.

    NARCIS (Netherlands)

    McManus, R.J.; Mant, J.; Meulendijks, C.F.M.; Salter, R.A.; Pattison, H.M.; Roalfe, A.K.; Hobbs, F.D.

    2002-01-01

    OBJECTIVE: To assess the effect of using different risk calculation tools on how general practitioners and practice nurses evaluate the risk of coronary heart disease with clinical data routinely available in patients' records. DESIGN: Subjective estimates of the risk of coronary heart disease and r

  16. Unravelling the Mysteries of Expert Mental Calculation.

    Science.gov (United States)

    Hope, Jack A.

    1985-01-01

    The processes and procedures used by expert mental calculators are identified from a literature review. Experts are characterized by knowledge of a variety of methods, ability to recall numerical equivalents, and ability to remember the numbers involved in various stages of calculations. (MNS)

  17. 40 CFR 91.1307 - Credit calculation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 91.1307 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1307 Credit calculation. For each participating engine family, emission credits (positive or...

  18. Calculation of resonance integral for fuel cluster

    International Nuclear Information System (INIS)

    The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV

  19. Calculated LET-Spectrum of Antiprotons

    DEFF Research Database (Denmark)

    Bassler, Niels

    -LET components resulting from the annihilation. Though, the calculations of dose-averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity. Materials and Methods Monte Carlo simulations using FLUKA were performed for calculating...

  20. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...

  1. Stability Test for Transient-Temperature Calculations

    Science.gov (United States)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  2. 7 CFR 760.406 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.406 Section 760.406 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Under this subpart, separate payment rates for eligible livestock owners and...

  3. CO2 calculator

    DEFF Research Database (Denmark)

    Nielsen, Claus Werner; Nielsen, Ole-Kenneth

    2009-01-01

    Many countries are in the process of mapping their national CO2 emissions, but only few have managed to produce an overall report at municipal level yet. Denmark, however, has succeeded in such a project. Using a new national IT-based calculation model, municipalities can calculate the extent of...

  4. 7 CFR 760.909 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.909 Section 760.909 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Under this subpart separate payment rates are established for eligible...

  5. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  6. 7 CFR 1416.704 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.704 Section 1416.704 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS 2005 Hurricane Tree Assistance Program § 1416.704 Payment calculation. (a) An approved...

  7. 7 CFR 760.307 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.307 Section 760.307 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) An eligible livestock producer will be eligible to receive payments for grazing losses...

  8. 7 CFR 760.1203 - Payment calculation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1203 Section 760.1203 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Producers must be paid for feed losses of higher costs only for one of the three years,...

  9. 30 CFR 5.30 - Fee calculation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fee calculation. 5.30 Section 5.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FEES FOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS § 5.30 Fee calculation....

  10. 47 CFR 65.306 - Calculation accuracy.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculation accuracy. 65.306 Section 65.306 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.306 Calculation...

  11. Calculating the Greeks by Cubature formulas

    OpenAIRE

    Teichmann, Josef

    2004-01-01

    We provide cubature formulas for the calculation of derivatives of expected values in the spririt of Terry Lyons and Nicolas Victoir. In financial mathematics derivatives of option prices with respect to initial values, so called Greeks, are of particular importance as hedging parameters. Cubature formulas allow to calculate these quantities very quickly. Simple examples are added to the theoretical exposition.

  12. 40 CFR 1065.850 - Calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...

  13. Data base to compare calculations and observations

    Energy Technology Data Exchange (ETDEWEB)

    Tichler, J.L.

    1985-01-01

    Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)

  14. Calculation of Temperature Rise in Calorimetry.

    Science.gov (United States)

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  15. Atomic Structure Calculations for Neutral Oxygen

    OpenAIRE

    Alonizan, Norah; Qindeel, Rabia; Ben Nessib, Nabil

    2016-01-01

    Energy levels and oscillator strengths for neutral oxygen have been calculated using the Cowan (CW), SUPERSTRUCTURE (SS), and AUTOSTRUCTURE (AS) atomic structure codes. The results obtained with these atomic codes have been compared with MCHF calculations and experimental values from the National Institute of Standards and Technology (NIST) database.

  16. Calculating "g" from Acoustic Doppler Data

    Science.gov (United States)

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  17. Investment Return Calculations and Senior School Mathematics

    Science.gov (United States)

    Fitzherbert, Richard M.; Pitt, David G. W.

    2010-01-01

    The methods for calculating returns on investments are taught to undergraduate level business students. In this paper, the authors demonstrate how such calculations are within the scope of senior school students of mathematics. In providing this demonstration the authors hope to give teachers and students alike an illustration of the power and the…

  18. Modeling tire deformation for power loss calculations

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, D.; Rohde, S.M.

    1981-01-01

    A combined thermo-mechanical model for calculating tire power loss has been developed at GMR. This paper presents the techniques for developing the realistic finite element models needed in both the thermal and deformation portions of the combined model. It also describes the techniques used in calculating deformed tire shapes. First, procedures are outlined for automatically generating a finite element discretization of a tire. Then, this discretization, together with information about the properties of tire materials, is used to develop a finite element model of the tire. This model is used in MSC NASTRAN to calculate compliances, i.e., the response of the tire to inflation and to unit loads applied at points on the tire surface. These compliances are then used in an algorithm which calculates the deformed shape of a tire loaded against the pavement surface. Sample results are presented to show the agreement between calculated and measured tire deformation.

  19. Semantic Similarity Calculation of Chinese Word

    Directory of Open Access Journals (Sweden)

    Liqiang Pan

    2014-08-01

    Full Text Available This paper puts forward a two layers computing method to calculate semantic similarity of Chinese word. Firstly, using Latent Dirichlet Allocation (LDA subject model to generate subject spatial domain. Then mapping word into topic space and forming topic distribution which is used to calculate semantic similarity of word(the first layer computing. Finally, using semantic dictionary "HowNet" to deeply excavate semantic similarity of word (the second layer computing. This method not only overcomes the problem that it’s not specific enough merely using LDA to calculate semantic similarity of word, but also solves the problems such as new words (haven’t been added in dictionary and without considering specific context when calculating semantic similarity based on semantic dictionary "HowNet". By experimental comparison, this thesis proves feasibility,availability and advantages of the calculation method.

  20. Tools for calculations in color space

    CERN Document Server

    Sjodahl, Malin

    2013-01-01

    Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.

  1. Radiation therapy calculations using an on-demand virtual cluster via cloud computing

    CERN Document Server

    Keyes, Roy W; Arnold, Dorian; Luan, Shuang

    2010-01-01

    Computer hardware costs are the limiting factor in producing highly accurate radiation dose calculations on convenient time scales. Because of this, large-scale, full Monte Carlo simulations and other resource intensive algorithms are often considered infeasible for clinical settings. The emerging cloud computing paradigm promises to fundamentally alter the economics of such calculations by providing relatively cheap, on-demand, pay-as-you-go computing resources over the Internet. We believe that cloud computing will usher in a new era, in which very large scale calculations will be routinely performed by clinics and researchers using cloud-based resources. In this research, several proof-of-concept radiation therapy calculations were successfully performed on a cloud-based virtual Monte Carlo cluster. Performance evaluations were made of a distributed processing framework developed specifically for this project. The expected 1/n performance was observed with some caveats. The economics of cloud-based virtual...

  2. Participating in Clinical Trials

    Medline Plus

    Full Text Available ... Participating in Clinical Trials: About Clinical Trials In This Topic About Clinical Trials Risks and Benefits Terms ... with Your Doctor Taking Medicines The information in this topic was provided by the National Library of ...

  3. Participating in Clinical Trials

    Medline Plus

    Full Text Available ... Participating in Clinical Trials About Clinical Trials A Research Study With Human Subjects A clinical trial is a research study that involves human subjects. The purpose of ...

  4. Participating in Clinical Trials

    Medline Plus

    Full Text Available ... Clinical Trials In This Topic About Clinical Trials Risks and Benefits Terms to Know Finding a Clinical ... researchers may gather information about experimental treatments, their risks, and how well they work compare existing therapies ...

  5. Participating in Clinical Trials

    Medline Plus

    Full Text Available Home > Health topics A-Z > Participating in Clinical Trials: About Clinical Trials In This Topic About Clinical Trials Risks ... centers across the country. The National Institutes of Health funds much of this basic research. Screening Trials ...

  6. Participating in Clinical Trials

    Medline Plus

    Full Text Available ... on. Participating in Clinical Trials About Clinical Trials A Research Study With Human Subjects A clinical trial is a research study that involves human subjects. The purpose ...

  7. Benchmark calculations of sodium fast critical experiments

    International Nuclear Information System (INIS)

    The high expectations from fast critical experiments impose the additional requirements on reliability of final reconstructed values, obtained in experiments at critical facility. Benchmark calculations of critical experiments are characterized by impossibility of complete experiment reconstruction, the large amounts of input data (dependent and independent) with very different reliability. It should also take into account different sensitivity of the measured and appropriate calculated characteristics to the identical changes of geometry parameters, temperature, and isotopic composition of individual materials. The calculations of critical facility experiments are produced for the benchmark models, generated by the specific reconstructing codes with its features when adjusting model parameters, and using the nuclear data library. The generated benchmark model, providing the agreed calculated and experimental values for one or more neutronic characteristics can lead to considerable differences for other key characteristics. The sensitivity of key neutronic characteristics to the extra steel allocation in the core, and ENDF/B nuclear data sources is performed using a few calculated models of BFS-62-3A and BFS1-97 critical assemblies. The comparative analysis of the calculated effective multiplication factor, spectral indices, sodium void reactivity, and radial fission-rate distributions leads to quite different models, providing the best agreement the calculated and experimental neutronic characteristics. This fact should be considered during the refinement of computational models and code-verification purpose. (author)

  8. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    International Nuclear Information System (INIS)

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported by R.G. Fairchild. This beam has already been used for animal irradiations. The authors anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values

  9. Upper Subcritical Calculations Based on Correlated Data

    Energy Technology Data Exchange (ETDEWEB)

    Sobes, Vladimir [ORNL; Rearden, Bradley T [ORNL; Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Scaglione, John M [ORNL; Dunn, Michael E [ORNL

    2015-01-01

    The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.

  10. Using Inverted Indices for Accelerating LINGO Calculations

    DEFF Research Database (Denmark)

    Kristensen, Thomas Greve; Nielsen, Jesper; Pedersen, Christian Nørgaard Storm

    2011-01-01

    The ever growing size of chemical data bases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating the...... queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialised hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices it is possible to calculate LINGOsim...

  11. The WFIRST Galaxy Survey Exposure Time Calculator

    Science.gov (United States)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  12. Calculation of external dose from distributed source

    International Nuclear Information System (INIS)

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail

  13. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author)

  14. Hamming generalized corrector for reactivity calculation

    Energy Technology Data Exchange (ETDEWEB)

    Suescun-Diaz, Daniel; Ibarguen-Gonzalez, Maria C.; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas

    2014-06-15

    This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h{sup 5}, where h is the time step. (orig.)

  15. Assessment of seismic margin calculation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  16. Stopping-power calculations for semiconductors

    International Nuclear Information System (INIS)

    The method developed by Brandt and Reinheimer which explicitly includes the effect of the semiconductor gap has been used to calculate the proton and α-particle stopping powers of the valence-electron gas of C (diamond), ZnTe, and U. These values, as well as those existing for Si and Ge, have been combined with the stopping contribution of the electronic core obtained from the statistical atomic model of Bonderup. Stopping powers have also been calculated using the statistical model alone. The calculated curves, which are valid for all incident projectile energies, reproduce the overall features of the semiempirical slowing-down curves, but not always the absolute values

  17. Note about socio-economic calculations

    DEFF Research Database (Denmark)

    Landex, Alex; Andersen, Jonas Lohmann Elkjær; Salling, Kim Bang

    2006-01-01

    for socio-economic calculations within the transportation area (Ministry of Traffic, 2003). The note also explains the theory of socio-economic calculations – reference is here made to ”Road Infrastructure Planning – a Decision-oriented approach” (Leleur, 2000). Socio-economic evaluations of infrastructure......This note gives a short introduction of how to make socio-economic evaluations in connection with the teaching at the Centre for Traffic and Transport (CTT). It is not a manual for making socio-economic calculations in transport infrastructure projects – in this context we refer to the guidelines...

  18. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  19. Ti-84 Plus graphing calculator for dummies

    CERN Document Server

    McCalla

    2013-01-01

    Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl

  20. Energy of plate tectonics calculation and projection

    Directory of Open Access Journals (Sweden)

    N. H. Swedan

    2013-02-01

    Full Text Available Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.

  1. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  2. Pairing schemes for HFB calculations of nuclei

    CERN Document Server

    Duguet, T; Bonche, P

    2005-01-01

    Several pairing schemes currently used to describe superfluid nuclei through Hartree-Fock-Bogolyubov (HFB) calculations are briefly reviewed. We put a particular emphasis on the regularization recipes used in connection with zero-range forces and on the density dependence which usually complement their definition. Regarding the chosen regularization process, the goal is not only to identify the impact it may or may not have on pairing properties of nuclei through spherical 1D HFB calculations but also to assess its tractability for systematic axial 2D and 3D mean-field and beyond-mean-field calculations.

  3. RA-0 reactor. New neutronic calculations

    International Nuclear Information System (INIS)

    An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core's interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author)

  4. Pressure vessel calculations for VVER-440 reactors.

    Science.gov (United States)

    Hordósy, G; Hegyi, Gy; Keresztúri, A; Maráczy, Cs; Temesvári, E; Vértes, P; Zsolnay, E

    2005-01-01

    For the determination of the fast neutron load of the reactor pressure vessel a mixed calculational procedure was developed. The procedure was applied to the Unit II of Paks NPP, Hungary. The neutron source on the outer surfaces of the reactor was determined by a core design code, and the neutron transport calculations outside the core were performed by the Monte Carlo code MCNP. The reaction rate in the activation detectors at surveillance positions and at the cavity were calculated and compared with measurements. In most cases, fairly good agreement was found.

  5. Assessment of seismic margin calculation methods

    International Nuclear Information System (INIS)

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs

  6. Semidirect algorithms in electron propagator calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-12-31

    Electron propagator calculations have been executed with a semi-direct algorithm that generates only a subset of transformed electron repulsion integrals and that takes advantage of Abelian point group symmetry. Diagonal self-energy expressions that are advantageous for large molecules are employed. Illustrative calculations with basis sets in excess of 200 functions include evaluations of the ionization energies of C{sup 2{minus}}{sub 7} and Zn(C{sub 5}H{sub 5}){sub 2}. In the former application, a bound dianion is obtained for a D{sub 3h} structure. In the latter, many final states of the same symmetry are calculated without difficulty.

  7. Benchmarking analytical calculations of proton doses in heterogeneous matter.

    Science.gov (United States)

    Ciangaru, George; Polf, Jerimy C; Bues, Martin; Smith, Alfred R

    2005-12-01

    A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall

  8. Future requirements. Clinical investigations

    DEFF Research Database (Denmark)

    Qvist, V.

    2002-01-01

    Biocompatability, Cariology, Clinical trials, Dental materials, Helath services research, Human, Pedodontics......Biocompatability, Cariology, Clinical trials, Dental materials, Helath services research, Human, Pedodontics...

  9. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J; Lee, J [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Kim, H [Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, I [Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, S [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2015-06-15

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.

  10. 46 CFR 170.090 - Calculations.

    Science.gov (United States)

    2010-10-01

    ... necessary to compute and plot any of the following curves as part of the calculations required in this subchapter, these plots must also be submitted: (1) Righting arm or moment curves. (2) Heeling arm or...

  11. Large Numbers and Calculators: A Classroom Activity.

    Science.gov (United States)

    Arcavi, Abraham; Hadas, Nurit

    1989-01-01

    Described is an activity demonstrating how a scientific calculator can be used in a mathematics classroom to introduce new content while studying a conventional topic. Examples of reading and writing large numbers, and reading hidden results are provided. (YP)

  12. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  13. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author)

  14. Reactor physics calculations in the Nordic countries

    International Nuclear Information System (INIS)

    The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented

  15. Slide Rule For Calculating Curing Schedules

    Science.gov (United States)

    Heater, Don

    1995-01-01

    Special-purpose slide rule devised for calculating schedules for storing and curing adhesives, sealants, and other materials characterized by known curing times and shelf lives. Prevents mistakes commonly made in determining storage and curing schedules.

  16. Quasiclassical Calculations for Wigner Functions via Multiresolution

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2001-01-01

    We present the application of variational-wavelet analysis to numerical/analytical calculations of Wigner functions in (nonlinear) quasiclassical beam dynamics problems. (Naive) deformation quantization and multiresolution representations are the key points.

  17. Temperature calculation in fire safety engineering

    CERN Document Server

    Wickström, Ulf

    2016-01-01

    This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...

  18. Risk calculation method for complex engineering system

    Directory of Open Access Journals (Sweden)

    Li-ping WANG

    2011-09-01

    Full Text Available This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM, which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.

  19. Spreadsheet Templates for Chemical Equilibrium Calculations.

    Science.gov (United States)

    Joshi, Bhairav D.

    1993-01-01

    Describes two general spreadsheet templates to carry out all types of one-equation chemical equilibrium calculations encountered by students in undergraduate chemistry courses. Algorithms, templates, macros, and representative examples are presented to illustrate the approach. (PR)

  20. 76 FR 71431 - Civil Penalty Calculation Methodology

    Science.gov (United States)

    2011-11-17

    ... Uniform Fine Assessment (UFA) algorithm, which FMCSA currently uses for calculation of civil penalties... penalty is less than $2,000, however. In such cases, the UFA algorithm may generate a gross revenue...

  1. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  2. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  3. Modified equipartition calculation for supernova remnants

    CERN Document Server

    Arbutina, B; Andjelic, M M; Pavlovic, M Z; Vukotic, B

    2011-01-01

    Determination of the magnetic field strength in the interstellar medium is one of the most complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Besides Zeeman effect and Faraday rotation, the equipartition or the minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. Despite of its approximate character, it remains a useful tool, especially when there is no other data about the magnetic field in a source. In this paper we give a modified calculation which we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). Finally, we present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The web application for calculation of the mag...

  4. Representation and calculation of economic uncertainties

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2002-01-01

    Management and decision making when certain information is available may be a matter of rationally choosing the optimal alternative by calculation of the utility function. When only uncertain information is available (which is most often the case) decision-making calls for more complex methods...... of representation and calculation and the basis for choosing the optimal alternative may become obscured by uncertainties of the utility function. In practice, several sources of uncertainties of the required information impede optimal decision making in the classical sense. In order to be able to better handle...... to uncertain economic numbers are discussed. When solving economic models for decision-making purposes calculation of uncertain functions will have to be carried out in addition to the basic arithmetical operations. This is a challenging numerical problem since improper methods of calculation may introduce...

  5. Relativistic Calculations for Be-like Iron

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Hui; LI Ping; ZHANG Jian-Ping; LI Hui-Li

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s22s2, 1s22s3l (l=s,p,d) and 1s22p3l (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable.

  6. Direct calculation of wind turbine tip loss

    DEFF Research Database (Denmark)

    Wood, D.H.; Okulov, Valery; Bhattacharjee, D.

    2016-01-01

    The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio....... We develop three methods for the direct calculation of the tip loss. The first is the computationally expensive calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite sums of products of Bessel functions. The second uses the asymptotic evaluation...... of those sums by Kawada. The third uses the approximation due to Okulov which avoids the sums altogether. These methods are compared to the tip loss determined independently and exactly for an ideal three-bladed rotor at tip speed ratios between zero and 15. Kawada's asymptotic approximation and Okulov...

  7. Fair and Reasonable Rate Calculation Data

    Data.gov (United States)

    Department of Transportation — This dataset provides guidelines for calculating the fair and reasonable rates for U.S. flag vessels carrying preference cargoes subject to regulations contained at...

  8. Limit calculation in MSSM Higgs boson searches

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joram; Caspart, Rene; Colombo, Fabio; Boer, Wim de; Frensch, Felix; Friese, Raphael; Gilbert, Andrew; Mueller, Thomas; Quast, Guenter; Treiber, Benjamin; Wolf, Roger [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)

    2015-07-01

    After run one of the LHC Supersymmetry still remains one of the favorite theories for physics beyond the Standard Model. In the minimal realization of Supersymmetry, the minimal supersymmetric Standard Model, five Higgs bosons exist. In my presentation I present limit calculation approaches for MSSM Higgs boson searches. The talk focuses on model dependent limit calculation by combining different charged and neutral MSSM Higgs boson searches.

  9. Software Metrics: Calculation and Optimization of Thresholds

    OpenAIRE

    Abhishek Kumar Maheswari

    2011-01-01

    In this article, we present a algorithmic method for the calculation of thresholds (the starting point for a new state) for a software metric set. To this aim, machine learning and data mining techniques are utilized. We define a data-driven methodology that can be used for efficiency optimization of existing metric sets, for the simplification of complex classification models, and for the calculation of thresholds for a metric set in an environment where no metric set yet exists. The methodo...

  10. Energy of plate tectonics calculation and projection

    OpenAIRE

    N. H. Swedan

    2013-01-01

    Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the...

  11. Calculation of the resonant ionization of helium

    International Nuclear Information System (INIS)

    Autoionizing resonances in the compound system of an electron and a helium ion are observed in kinematically-complete ionization experiments for electrons on helium atoms. The differential cross section is calculated for comparison with these experiments in an equivalent-local form of the distorted-wave impulse approximation. Resonant scattering amplitudes are calculated by a six-state momentum-space coupled-channels method. 10 refs., 1 tab., 2 figs

  12. Making calculated energy certificate for choosen building

    OpenAIRE

    Hafner, Rok

    2015-01-01

    The graduation thesis addresses four given energy efficiency certificates for the preschool in Škofja Loka, calculated according to the valid legislation and work methodology. The building in question was built in the seventies of last century and had it's efficiency improved in 2014. The state of the building before improvements has both measured and calculated efficiency certificates made using the KI Energija 2014 program, while the two energy efficiency certificates for the...

  13. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  14. Efficient Finite Element Calculation of Nγ

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.

    2007-01-01

    This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....

  15. Users enlist consultants to calculate costs, savings

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-24

    Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)

  16. INTERNAL CALCULATION IN TERM BUSINESS DECISION MAKING

    OpenAIRE

    Jugoslav Aničić, Miloje Jelić, Jasmina M. Đurović, Srećko Radoičić, Živojin B. Prokopović

    2014-01-01

    Business-financial decision making represent prime activity of top management. Growing complexity in the business ,market and rapid technological change require fast and appropriate answer of top management. Confident and efficient system of internal calculation gives confident base, for making financial decision and strategic as well. Companies of industrial sector in Serbia can significantly improve their business performance by improving internal calculation systems. The preservation and s...

  17. Calculation Methodology for Flexible Arithmetic Processing

    OpenAIRE

    García Chamizo, Juan Manuel; Mora Pascual, Jerónimo Manuel; Mora Mora, Higinio; Signes Pont, María Teresa

    2003-01-01

    A new operation model of flexible calculation that allows us to adjust the operation delay depending on the available time is presented. The operation method design uses look-up tables and progressive construction of the result. The increase in the operators’ granularity opens up new possibilities in calculation methods and microprocessor design. This methodology, together with the advances in technology, enables the functions of an arithmetic unit to be implemented on the basis of techniques...

  18. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  19. PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION

    Directory of Open Access Journals (Sweden)

    Marian ŢAICU

    2014-11-01

    Full Text Available Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to meet the information needs of management.

  20. VVER-related burnup credit calculations

    International Nuclear Information System (INIS)

    The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)

  1. Realistic level density calculation for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)

    1994-12-31

    A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.

  2. Green's function calculations of light nuclei

    Science.gov (United States)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  3. PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION

    OpenAIRE

    Marian ŢAICU

    2014-01-01

    Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to me...

  4. Reciprocity Theorems for Ab Initio Force Calculations

    CERN Document Server

    Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.

  5. Providing driving rain data for hygrothermal calculations

    DEFF Research Database (Denmark)

    Kragh, Mikkel Kristian

    1996-01-01

    Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....

  6. A Java Interface for Roche Lobe Calculations

    Science.gov (United States)

    Leahy, D. A.; Leahy, J. C.

    2015-09-01

    A JAVA interface for calculating various properties of the Roche lobe has been created. The geometry of the Roche lobe is important for studying interacting binary stars, particularly those with compact objects which have a companion which fills the Roche lobe. There is no known analytic solution to the Roche lobe problem. Here the geometry of the Roche lobe is calculated numerically to high accuracy and made available to the user for arbitrary input mass ratio, q.

  7. Validation of fluorescence transition probability calculations

    OpenAIRE

    M. G. PiaINFN, Sezione di Genova; P. Saracco(INFN, Sezione di Genova); Manju Sudhaka(INFN, Sezione di Genova)

    2015-01-01

    A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimen...

  8. Full CI benchmark calculations on CH3

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1987-01-01

    Full CI calculations have been performed on the CH3 radical. The full CI results are compared to those obtained using CASSCF/multireference CI and coupled-pair functional methods, both at the equilibrium CH distance and at geometries with the three CH bonds extended. In general, the performance of the approximate methods is similar to that observed in calculations on other molecules in which one or two bonds were stretched.

  9. Characteristic parameters of drift chambers calculation

    International Nuclear Information System (INIS)

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs

  10. Calculation of mixed core safety parameters

    International Nuclear Information System (INIS)

    The purpose of this presentation is the reactor physics explanation of the most important nuclear safety parameters in mixed TRIGA cores as well as their calculation methods and appropriate computer codes. Nuclear core parameters, such as power density peaking factors and temperature reactivity coefficients are considered. The computer codes adapted, tested and widely available for TRIGA nuclear calculations are presented. Thermal-hydraulics aspects of safety analysis are not treated

  11. R-matrix calculation for photoionization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We have employed the R-matrix method to calculate differe ntial cross sections for photoionization of helium leaving helium ion in an exci ted state for incident photon energy between the N=2 and N=3 thresholds (69~73 eV) of He+ ion. Differential cross sections for photoionization in the N=2 level at emission angle 0° are provide. Our results are in good agreem ent with available experimental data and theoretical calculations.

  12. Clinical application of fast neutrons

    International Nuclear Information System (INIS)

    The results of treatments and clinical experiments with neutrons (from a medical d+T neutron generator with an output of 1012 neutrons per second) are reported and discussed. Data on RBE values are presented after single doses and multiple fractions of neutrons and 60Co-gamma rays on pulmonary metastases. The results of pilot studies on head and neck tumours, brain tumours and pelvic tumours are discussed. The accuracy of the calculated dose is tested with some in-vivo experiments during neutron irradiation of the pelvis. Estimations of RBE values for tumour control, skin damage and intestinal damage after fractionated neutron therapy are dealt with and the results obtained in treatment of sarcomas are discussed. The preliminary results are given of some clinical trials in Amsterdam. Also some data from other centres are reviewed. From these data some remarks about the future of neutron therapy are made. (Auth.)

  13. Application of backtracking algorithm to depletion calculations

    International Nuclear Information System (INIS)

    Based on the theory of linear chain method for analytical depletion calculations, the burn-up matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths of the nuclide and search the paths automatically according to to problem description and precision restrictions should be sought. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to search and calculate the linear chains using Depth First Search (DFS) method. The depletion program can solve the depletion problem adaptively and with high fidelity. The solution space and time complexity of the program were analyzed. The new developed depletion program was coupled with Monte Carlo program MCMG-II to calculate the benchmark burn-up problem of the first core of China Experimental Fast Reactor (CEFR). The initial verification and validation of the program was performed by the calculation. (author)

  14. Likelihood ratios: Clinical application in day-to-day practice

    Directory of Open Access Journals (Sweden)

    Parikh Rajul

    2009-01-01

    Full Text Available In this article we provide an introduction to the use of likelihood ratios in clinical ophthalmology. Likelihood ratios permit the best use of clinical test results to establish diagnoses for the individual patient. Examples and step-by-step calculations demonstrate the estimation of pretest probability, pretest odds, and calculation of posttest odds and posttest probability using likelihood ratios. The benefits and limitations of this approach are discussed.

  15. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    CERN Document Server

    Yepes, Pablo P; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomic areas, like the thorax. Monte Carlo techniques provide superior accuracy, however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the Fast Dose Calculator for proton radiotherapy on a card equipped with graphics processor units (GPU) rather than a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, w...

  16. PET-Based Personalized Management in Clinical Oncology: An Unavoidable Path for the Foreseeable Future.

    Science.gov (United States)

    Basu, Sandip; Alavi, Abass

    2016-07-01

    It is imperative that the thrust of clinical practice in the ensuing years would be to develop personalized management model for various disorders. PET-computed tomography (PET-CT) based molecular functional imaging has been increasingly utilized for assessment of tumor and other nonmalignant disorders and has the ability to explore disease phenotype on an individual basis and address critical clinical decision making questions related to practice of personalized medicine. Hence, it is essential to make a concerted systematic effort to explore and define the appropriate place of PET-CT in personalized clinical practice in each of malignancies, which would strengthen the concept further. The potential advantages of PET based disease management can be classified into broad categories: (1) Traditional: which includes assessment of disease extent such as initial disease staging and restaging, treatment response evaluation particularly early in the course and thus PET-CT response adaptive decision for continuing the same regimen or switching to salvage schedules; there has been continuous addition of newer application of PET based disease restaging in oncological parlance (eg, Richter transformation); (2) Recent and emerging developments: this includes exploring tumor biology with FDG and non-FDG PET tracers. The potential of multitracer PET imaging (particularly new and novel tracers, eg, 68Ga-DOTA-TOC/NOC/TATE in NET, 68Ga-PSMA and 18F-fluorocholine in prostate carcinoma, 18F-fluoroestradiol in breast carcinoma) has provided a scientific basis to stratify and select appropriate targeted therapies (both radionuclide and nonradionuclide treatment), a major boost for individualized disease management in clinical oncology. Integrating the molecular level information obtained from PET with structural imaging further individualizing treatment plan in radiation oncology, precision of interventions and biopsies of a particular lesion and forecasting disease prognosis.

  17. PET-Based Personalized Management in Clinical Oncology: An Unavoidable Path for the Foreseeable Future.

    Science.gov (United States)

    Basu, Sandip; Alavi, Abass

    2016-07-01

    It is imperative that the thrust of clinical practice in the ensuing years would be to develop personalized management model for various disorders. PET-computed tomography (PET-CT) based molecular functional imaging has been increasingly utilized for assessment of tumor and other nonmalignant disorders and has the ability to explore disease phenotype on an individual basis and address critical clinical decision making questions related to practice of personalized medicine. Hence, it is essential to make a concerted systematic effort to explore and define the appropriate place of PET-CT in personalized clinical practice in each of malignancies, which would strengthen the concept further. The potential advantages of PET based disease management can be classified into broad categories: (1) Traditional: which includes assessment of disease extent such as initial disease staging and restaging, treatment response evaluation particularly early in the course and thus PET-CT response adaptive decision for continuing the same regimen or switching to salvage schedules; there has been continuous addition of newer application of PET based disease restaging in oncological parlance (eg, Richter transformation); (2) Recent and emerging developments: this includes exploring tumor biology with FDG and non-FDG PET tracers. The potential of multitracer PET imaging (particularly new and novel tracers, eg, 68Ga-DOTA-TOC/NOC/TATE in NET, 68Ga-PSMA and 18F-fluorocholine in prostate carcinoma, 18F-fluoroestradiol in breast carcinoma) has provided a scientific basis to stratify and select appropriate targeted therapies (both radionuclide and nonradionuclide treatment), a major boost for individualized disease management in clinical oncology. Integrating the molecular level information obtained from PET with structural imaging further individualizing treatment plan in radiation oncology, precision of interventions and biopsies of a particular lesion and forecasting disease prognosis. PMID

  18. Accurate free energy calculation along optimized paths.

    Science.gov (United States)

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  19. Good Practices in Free-energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher

    2013-01-01

    As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.

  20. Comparison of Polar Cap (PC) index calculations.

    Science.gov (United States)

    Stauning, P.

    2012-04-01

    The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.

  1. Pressure Profile Calculation with Mesh Ewald Methods.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2016-09-13

    The importance of calculating pressure profiles across liquid interfaces is increasingly gaining recognition, and efficient methods for the calculation of long-range contributions are fundamental in addressing systems with a large number of charges. Here, we show how to compute the local pressure contribution for mesh-based Ewald methods, retaining the typical N log N scaling as a function of the lattice nodes N. This is a considerable improvement on existing methods, which include approximating the electrostatic contribution using a large cutoff and the, much slower, Ewald calculation. As an application, we calculate the contribution to the pressure profile across the water/vapor interface, coming from different molecular layers, both including and removing the effect of thermal capillary waves. We compare the total pressure profile with the one obtained using the cutoff approximation for the calculation of the stresses, showing that the stress distributions obtained using the Harasima and Irving-Kirkwood path are quite similar and shifted with respect to each other at most 0.05 nm. PMID:27508458

  2. Effective action calculation in lattice QCD

    International Nuclear Information System (INIS)

    A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)

  3. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  4. Nursing students’ perspectives on clinical education

    Directory of Open Access Journals (Sweden)

    MOHAMMAD REZA HEIDARI

    2015-01-01

    Full Text Available Introduction: The importance of optimal clinical nursing education in professional skills development is undeniable. In clinical education, nursing students are often faced with problems. Recognizing nursing students’ perception on clinical education is the first step to remove the barriers of this challenge. Methods: This descriptive cross-sectional study was conducted to determine the nursing students’ perspectives on clinical education. 150 nursing students were selected randomly from nursing and midwifery schools (Tehran. Data collection instrument was a researcher made questionnaire consisting of five domains: objective and curricula, instructor, feedback to student in clinical field, clinical environment, supervision and evaluation. Mean and standard deviation were calculated for each item, using SPSS, ver. 14. Chi-square test was used to compare the nursing students’ perspectives on clinical education based on age, sex and the work experience. The significance level was considered 0.05. Results: Mean age of the students was 21.58±26.97 students (66% were male. 44 students (30.1% had work experience (3.58±6.48 month. Male and female students had different perceptions in domains of clinical education (p<0.05. Nursing student had different perceptions as to objectives and curricula (p=0.039, how to deal with students in the clinical environment (p=0.032, supervision, and evaluation (p<0.001 with respect to their work experience duration. The most positive responses were in clinical instructor (81.5% and the most negative ones were the clinical environment (33.66%, respectively. Conclusion: Providing an optimal clinical environment and improving the supervision and evaluation of student practice should prioritized in schools of nursing and midwifery.

  5. Numerical inductance calculations based on first principles.

    Science.gov (United States)

    Shatz, Lisa F; Christensen, Craig W

    2014-01-01

    A method of calculating inductances based on first principles is presented, which has the advantage over the more popular simulators in that fundamental formulas are explicitly used so that a deeper understanding of the inductance calculation is obtained with no need for explicit discretization of the inductor. It also has the advantage over the traditional method of formulas or table lookups in that it can be used for a wider range of configurations. It relies on the use of fast computers with a sophisticated mathematical computing language such as Mathematica to perform the required integration numerically so that the researcher can focus on the physics of the inductance calculation and not on the numerical integration.

  6. Calculation of electric fields in imperfect dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A.A.

    1985-07-01

    No existing numerical method of calculating electric fields in kinetical form allows simultaneous consideration of bias current and conductivity current. This article suggests a modification of the method of integral equations allowing computation of the field in imperfect media. The use of the method is said to be more effective than the method of equivalent discharges. The method suggested allows computation of the field while simultaneously considering conductivity current and permeability current. It also allows determination of the frequency characteristics of high voltage apparatus. Furthermore, it can be used to calculate various transient processes if the applied voltage is expanded into a Fourier series and calculations are performed individually for each member of the series.

  7. Calculations of Polar Ozone Loss Rates

    Science.gov (United States)

    Dessler, A. E.; Wu, J.

    1999-01-01

    We calculate vortex-averaged ozone loss rates at 465-K potential temperature during the Aug.-Sept. time period in the southern hemisphere and Feb.-Mar. time period in the northern hemisphere. Ozone loss rates are calculated two ways. First, from the time series of measurements of 03. Second, from measurements of ClO, from which ozone loss is inferred based on our theories of Cl-catalyzed ozone destruction. Both measurement sets are from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) instrument. We find good agreement between vortex-averaged ozone loss rates calculated from these methods. Our analysis provides no support for recent work suggesting that current theories of Cl-catalyzed ozone loss underestimate the observed decrease in polar ozone during the ozone "hole" period.

  8. Challenges in Large Scale Quantum Mechanical Calculations

    CERN Document Server

    Ratcliff, Laura E; Huhs, Georg; Deutsch, Thierry; Masella, Michel; Genovese, Luigi

    2016-01-01

    During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.

  9. Automated one-loop calculations with GOSAM

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-11-15

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  10. New tool for standardized collector performance calculations

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus;

    2011-01-01

    A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...... on the basis of parameters from collector tests performed according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that intend to use it for conversion of collector model parameters derived from performance tests, into a more...... user friendly quantity: the annual energy output. The energy output calculated by the tool can be expressed either per square meter or per collector module....

  11. Calculation system analysis for radiation shielding

    International Nuclear Information System (INIS)

    This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs

  12. FURNACE calculations for JET neutron diagnostics

    International Nuclear Information System (INIS)

    Neutron transport calculations have been performed for the JET-torus, using the two-dimensional toroidal geometry transport code system FURNACE, to predict the response of the time integrated neutron yield monitors on the variation of the plasma conditions. Calculations have been performed for the full aperture D-shaped and circular plasmas, for DD-operation and for DT-operation. For the neutron source distribution a simple model was used based on plasma-plasma interaction. For the torus rotation symmetry around the main torus axis was assumed. Curves have been produced that give the radial plasma shift as function of the ratio of the foil activations measured. It is shown that these curves are sufficiently accurate for application in the DT-phase. For application in the DD-phase, however, the flux of neutrons backscattered from the massive torus needs to be calculated more accurately. (Auth.)

  13. Parallel scalability of Hartree–Fock calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edmond, E-mail: echow@cc.gatech.edu; Liu, Xing [School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0765 (United States); Smelyanskiy, Mikhail; Hammond, Jeff R. [Parallel Computing Lab, Intel Corporation, Santa Clara, California 95054-1549 (United States)

    2015-03-14

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree–Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  14. Resolving resonances in R-matrix calculations

    International Nuclear Information System (INIS)

    We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)

  15. Cosmology calculations almost without general relativity

    CERN Document Server

    Jordan, T F

    2003-01-01

    The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...

  16. Dose calculations for intakes of ore dust

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.S

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these `ores` contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another `parent` radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures. 15 refs., 14 tabs., 3 figs.

  17. Benchmarking calculations of excitonic couplings between bacteriochlorophylls

    CERN Document Server

    Kenny, Elise P

    2015-01-01

    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...

  18. Multiloop Calculations In Perturbative Quantum Field Theory

    CERN Document Server

    Blokland, I R

    2004-01-01

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for proble...

  19. KENO-IV code benchmark calculation, (6)

    International Nuclear Information System (INIS)

    A series of benchmark tests has been undertaken in JAERI in order to examine the capability of JAERI's criticality safety evaluation system consisting of the Monte Carlo calculation code KENO-IV and the newly developed multigroup constants library MGCL. The present report describes the results of a benchmark test using criticality experiments about Plutonium fuel in various shape. In all, 33 cases of experiments have been calculated for Pu(NO3)4 aqueous solution, Pu metal or PuO2-polystyrene compact in various shape (sphere, cylinder, rectangular parallelepiped). The effective multiplication factors calculated for the 33 cases distribute widely between 0.955 and 1.045 due to wide range of system variables. (author)

  20. Perturbation calculation of thermodynamic density of states.

    Science.gov (United States)

    Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M

    2011-12-01

    The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.

  1. Daylight calculations using constant luminance curves

    Energy Technology Data Exchange (ETDEWEB)

    Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda

    2005-02-01

    This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)

  2. Multiloop calculations in perturbative quantum field theory

    Science.gov (United States)

    Blokland, Ian Richard

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.

  3. Willow growing - Methods of calculation and profitability

    International Nuclear Information System (INIS)

    The calculation method presented here makes it possible to conduct profitability comparisons between annual and perennial crops and in addition take the planning situation into account. The method applied is a modified total step calculation. The difference between a traditional total step calculation and the modified version is the way in which payments and disbursements are taken into account over a period of several years. This is achieved by combining the present value method and the annuity method. The choice of interest rate has great bearing on the result in perennial calculations. The various components influencing the interest rate are analysed and factors relating to the establishment of the interest rate in different situations are described. The risk factor can be an important variable component of the interest rate calculation. Risk is also addressed from an approach in accordance with portfolio theory. The application of the methods sheds light on the profitability of Salix cultivation from the viewpoint of business economics, and also how different factors influence the profitability of Salix cultivation. Aspects studied are harvesting intervals, the importance of yield level, the competitiveness of Salix versus grain cultivation, the influence of income taxes on profitability etc. Methods for evaluation of activities concerning cultivation of a perennial crop are described and also involve the application of nitrogen fertilization to Salix cultivation. Studies have been performed using these methods to look into nitrogen fertilizer profitability in Salix cultivation during the first rotation period. Nitrogen fertilizer profitability has been investigated involving both production functions and cost calculations, taking the year fertilization into consideration. 72 refs., 2 figs., 52 tabs

  4. Calculation of electron-helium scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n {<=}3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3{sup 3} D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs.

  5. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  6. Radiological Dose Calculations for Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  7. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  8. Pumping slots: Coupling impedance calculations and estimates

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.

    1993-08-01

    Coupling impedances of small pumping holes in vacuum-chamber walls have been calculated at low frequencies, i.e., for wavelengths large compared to a typical hole size, in terms of electric and magnetic polarizabilities of the hole. The polarizabilities can be found by solving and electro- or magnetostatic problem and are known analytically for the case of the elliptic shape of the hole in a thin wall. The present paper studies the case of pumping slots. Using results of numerical calculations and analytical approximations of polarizabilities, we give formulae for practically important estimates of slot contribution to low-frequency coupling impedances.

  9. Conductance calculations with a wavelet basis set

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel

    2003-01-01

    We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...

  10. Improving on calculation of martensitic phenomenological theory

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.

  11. Ammonia synthesis from first principles calculations

    DEFF Research Database (Denmark)

    Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis;

    2005-01-01

    . When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...

  12. CALCULATION OF CONTACT STRESS OF PLASTIC GEARS

    Institute of Scientific and Technical Information of China (English)

    陈其泰

    1995-01-01

    A calculation method of contact problem of plastic gears based on three parameter model of viscoelasticity material is presented. In this calculation method, the influence of temperature upon the property of plastics is considered and an iteration process of temperature-elasticity module-friction coefficient is proposed. From the rolling contact problem of two viscoelastic cylinders with parallel axis, a set of normal-tangential contact coupled integral equations is obtained. Through numerical treatment and normal-tangental iteration, the normal contact stress, tangential stress and contact width of plastic gears are acquired.

  13. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method is...

  14. Local orbitals in electron scattering calculations*

    Science.gov (United States)

    Winstead, Carl L.; McKoy, Vincent

    2016-05-01

    We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  15. Calculated molecular properties of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.; Simonsick, W.J. Jr.

    1987-01-01

    This volume contains a compilation of calculated molecular properties for 272 polycyclic aromatic hydrocarbons (PAH) and monomethylated PAH, listed in sequence according to their increasing molecular weight. The Chemical Abstracts Registry number is also included for easy reference. The molecular properties were calculated using the semiempirical MDCO method with geometric optimization. These parameters include the heats of formation, the frontier orbital energies, the electronic and nuclear energies, the dipole moment, and the net atomic charges on each atom. The shape parameter and the length/breadth ratio from the optimized geometries is also computed.

  16. BEGAFIP. Programming service, development and benchmark calculations

    International Nuclear Information System (INIS)

    This report summarizes improvements to BEGAFIP (the Swedish equivalent to the Oak Ridge computer code ORIGEN). The improvements are: addition of a subroutine making it possible to calculate neutron sources, exchange of fission yields and branching ratios in the data library to those published by Meek and Rider in 1978. In addition, BENCHMARK-calculations have been made with BEGAFIP as well as with ORIGEN regarding the build-up of actinides for a fuel burnup of 33 MWd/kg U. The results were compared to those arrived upon from the more sophisticated code CASMO. (author)

  17. Relaxation Method For Calculating Quantum Entanglement

    CERN Document Server

    Tucci, R R

    2001-01-01

    In a previous paper, we showed how entanglement of formation can be defined as a minimum of the quantum conditional mutual information (a.k.a. quantum conditional information transmission). In classical information theory, the Arimoto-Blahut method is one of the preferred methods for calculating extrema of mutual information. We present a new method akin to the Arimoto-Blahut method for calculating entanglement of formation. We also present several examples computed with a computer program called Causa Comun that implements the ideas of this paper.

  18. A method for tokamak neutronics calculations

    International Nuclear Information System (INIS)

    This paper presents a new method for neutron transport calculation in tokamak fusion reactors. The computational procedure is based on the solution of the even-parity transport equation in a toroidal geometry. The angular neutron distribution is treated by even-parity spherical harmonic expansion, while the spatial dependence is approximated by using R-function finite elements that are defined for regions of arbitrary geometric shape. In order to test the method, calculation of a simplified tokamak model is carried out. The results are compared with the results from the literature and for the same order of accuracy a reduction of the number of spatial unknowns is shown. (author)

  19. Calculation methods for compressible turbulent boundary layers

    Science.gov (United States)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  20. Transmission pipeline calculations and simulations manual

    CERN Document Server

    Menon, E Shashi

    2014-01-01

    Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f