WorldWideScience

Sample records for climatology

  1. Preciptation Climatologies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the mid-1970s, the National Climate Center used precipitation data to calculate various climatology products, studying the climatic probability of precipitation....

  2. Urban Climatology

    Science.gov (United States)

    Brazel, Anthony J.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2002-01-01

    This section on Urban Climates provides a basic understanding of what comprises the urban climate and what factors control the overall development of the urban climate. We also discuss in this section, methods for evaluating urban climate characteristics and forcing functions as well as how the urban heat island effect comes into play as a dynamic influence on urban climatology. Additionally, we examine and discuss the major radiation and energy balance of city (i.e., shortwave and longwave radiation, albedo, net all-wave radiation, total energy balance, and sensible latent, and storage heat) and the interactions of these energy balances with the lower atmosphere. The use of remote sensing to measure urban surface temperatures as a driving force in the development of the urban heat island effect is presented. We also discuss how the overall moisture, precipitation, humidity, and air movement in cities (i,e,, wind speeds and wind direction) and wind environment of the city affects urban climatology.

  3. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in...

  4. Preliminary Monthly Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary Local Climatological Data, recorded since 1970 on Weather Burean Form 1030 and then National Weather Service Form F-6. The preliminary climate data...

  5. Climatological Data National Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDNS was published from 1950 - 1980. Monthly and annual editions contain summarized climatological information from the following publications: Local...

  6. Historical Climatology Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Climatology Series (HCS) is a set of climate-related publications published by NOAA's National Climatic Data Center beginning in 1978. HCS is...

  7. Climatological Services Memorandums

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological Services Memorandums were a series of memoranda issued by the Weather Bureau for the purpose of keeping all stations informed on the status and...

  8. OW Levitus Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of global temperature and salinity climatologies with a spatial resolution of 1x1 degree, and consists of 19 levels (surface - 5000m). It was...

  9. Global Synoptic Climatology Network

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global Synoptic Climatology Network is a digital data set archived at the National Climatic Data Center (NCDC). This record combines the various types of data that...

  10. Local Climatological Data ACSII Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Comma-delimited text files used to create the Local Climatological Data PDF files found in the Local Climatological Data library. Period of record begins in 1998,...

  11. Hydro-climatology

    DEFF Research Database (Denmark)

    The hydro-climatological approach of this volume illustrates the scientific and practical value of considering hydrological phenomena and processes in a climate context to improve understanding of controls, process interaction, and past and future variability/change. Contributions deal with under...

  12. Situational Lightning Climatologies

    Science.gov (United States)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  13. Applications of climatological measurements

    International Nuclear Information System (INIS)

    More than 18 years of meteorological data have been collected by the Meteorological Group at the Argonne National Laboratory. These data have been useful in the day-to-day operations of the Laboratory and in the preparation of reactor hazard reports as well as in support of atmospheric research projects, such as our radon, wind profile, plume rise and smoke diffusion studies. A climatological report, covering 15 years of data, has been prepared and will be published soon. A summary of a study of the meteorological conditions giving rise to dew point inversions (moisture content increasing with height near the ground) is given as an example of the type of studies that can be made with these data. (author)

  14. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  15. Local Climatological Data (LCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) contains summaries from major airport weather stations that include a daily account of temperature extremes, degree days,...

  16. U.S. Local Climatological Data (LCD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The...

  17. Active Learning in Introductory Climatology.

    Science.gov (United States)

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  18. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  19. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  20. Climatological features of blocking anticyclones

    International Nuclear Information System (INIS)

    Several climatological studies have been previously performed using large observational data sets (i.e., 10 years or longer) in order to determine the predominant characteristics of blocking anticyclones, including favored development regions, duration, preferred seasonal occurrence, and frequency of occurrence. These studies have shown that blocking anticyclones occur most frequently from October to April over the eastern Atlantic and Pacific oceans downstream from both the North American and Asian continental regions and the storm track regions to the east of these continents. Some studies have also revealed the presence of a third region block formation in western Russia near 40 degrees E which is associated with another storm track region over the Mediterranean and western Asia

  1. Alpine cloud climatology: regional effects

    Science.gov (United States)

    Kaestner, Martina; Kriebel, Karl T.

    1996-12-01

    The present understanding of moist atmospheric processes and the role of clouds in the hydrologic cycle shows severe gaps of knowledge. Water vapor plays an essential part in atmospheric dynamics. For example, the release of large amounts of latent heat, due to the condensation in convective clouds, plays an important role in the general circulation. Knowledge of the distribution of clouds and its transport is essential to understand atmospheric dynamics. Clouds can have a positive as well as a negative contribution to the greenhouse effect. A cloud cover climatology in a 15 km grid resolution has been retrieved by means of the APOLLO algorithm using the 5 calibrated AVHRR channels. The monthly means of total cloud cover are about 15 percent too high compared to conventional data, the standard deviation is +/- 12 percent. The high resolution cloud cover maps show topometeorological features like 'Fohn' on single days but not in monthly means, because these events are too rare. But increased cloud cover in the luff regions are detected in monthly means as well as some cloud sparse regions like Lake Garda, Ticino or the Swiss Rhone valley. The different annual cycles of cloud cover show the different climatic regions, which are temperate, Alpine, and Mediterranean climate. This is indicated, for example, by the remarkably smaller cloud cover in the Alpine region in winter as compared to the northern and southern forelands.

  2. Northwest Atlantic Regional Climatology (NCEI Accession 0155889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Northwest Atlantic Ocean, NCEI Regional Climatology Team...

  3. Quality Controlled Local Climatological Data (QCLCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quality Controlled Local Climatological Data (QCLCD) contains summaries from major airport weather stations that include a daily account of temperature extremes,...

  4. U.S. Annual Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of...

  5. Global Daily Climatology Network: Kazakhstan subset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily meteorological observations for Kazakhstan within the framework of joint efforts to create Global Daily Climatology...

  6. Climatology of ionospheric slab thickness

    Directory of Open Access Journals (Sweden)

    B. Jayachandran

    2004-01-01

    Full Text Available The ionospheric slab thickness τ defined as a ratio of the total electron content (TEC to the F-region peak electron density (NmF2 has been analysed during the solar maximum (1981 and minimum (1985 phases of an intense, the 21st, solar cycle. Hourly values of TEC and NmF2 collected at Hawaii (low-latitude, Boulder (mid-latitude and Goosebay (high-latitude are used in the study. Climatology of the slab thickness is described by the diurnal, seasonal, solar and magnetic activity variations of τ for the different latitude zones. It is found that, for magnetically quiet days of solar maximum, increased ionization of NmF2 and TEC during the daytime is accompanied by an increased thickness of the ionosphere compared to the night-time for non-auroral latitudes. However, the reverse is found to be true during the solar minimum compensating TEC against a weak night-time ionization of NmF2. For the high-latitude the night-time slab thickness is higher compared to the daytime for both the solar phases. Ratios of daily peak to minimum values of slab thickness vary from 1.3 to 3.75 with the peaks of τ often observed at pre-sunrise and post-sunset hours. The average night-to-day ratios of τ vary from 0.68 to 2.23. The day-to-day variability of τ, expressed in percentage standard deviation, varies from 10% by day (equinox, high-latitude to 67% by night (summer, mid-latitude during solar minimum and from 10% by day (winter and equinox, mid-latitude to 56% by night (equinox, high-latitude during solar maximum. A comprehensive review of slab thickness related literature is given in the paper.

    Key words. Ionospheric physics

  7. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  8. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  9. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  10. SPARC Intercomparison of Middle Atmosphere Climatologies

    Science.gov (United States)

    Randel, William; Fleming, Eric; Geller, Marvin; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2002-01-01

    This atlas presents detailed incomparisons of several climatological wind and temperature data sets which cover the middle atmosphere (over altitudes approx. 10-80 km). A number of middle atmosphere climatologies have been developed in the research community based on a variety of meteorological analyses and satellite data sets. Here we present comparisons between these climatological data sets for a number of basic circulation statistics, such as zonal mean temperature, winds and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. We also include comparisons between the global climatologies and historical rocketsonde wind and temperature measurements, and also with more recent lidar temperature data. These comparisons highlight differences and uncertainties in contemporary middle atmosphere data sets, and allow biases in particular analyses to be isolated. In addition, a brief atlas of zonal mean temperature and wind statistics is provided to highlight data availability and as a quick-look reference. This technical report is intended as a companion to the climatological data sets held in archive at the SPARC Data Center (http://www.sparc.sunysb.edu).

  11. Gulf of Mexico Regional Climatology (NCEI Accession 0123320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico Regional Climatology is a set of objectively analyzed climatological fields of temperature, salinity, oxygen, phosphate, silicate, and nitrate at...

  12. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopaus

  13. A new evaporation duct climatology over the South China Sea

    Science.gov (United States)

    Shi, Yang; Yang, Kunde; Yang, Yixin; Ma, Yuanliang

    2015-10-01

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state-of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

  14. Regional and applied climatology-contributions

    International Nuclear Information System (INIS)

    The first three articles of this book, which is dedicated to Wolfgang Weischet, are closely related to his work on unban climatology: - A comprehensive research programme on urban climatology for the example of a medium-sized Swiss town; - A wind tunnel test in preparation of a large-scale urban construction project; - Modelling of human thermal comfort in different urban environments on the basis of comprehensive data sets of geofactors. At the same time, they provide a survey of the status and methods of modern urban climate research. The second group of contributions comprises texts which discuss the effects of individual climate elements in the biosphere and pedosphere. The third group consists of two contributions on the stability of tropical environments. Both of them discuss the semiarid regions of northern Kenia. Finally, there is a group of contributions stimulated and influenced by W. Weischet's work in Latin America. (orig./KW)

  15. The SPARC Intercomparison of Middle Atmosphere Climatologies

    Science.gov (United States)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  16. Recent Progresses on Ionospheric Climatology Investigations

    Institute of Scientific and Technical Information of China (English)

    LIU Libo; WAN Weixing; CHEN Yiding; LE Huijun; ZHAO Biqiang

    2012-01-01

    The ionosphere varies over multiple time scales, which are classified into two categories: the climatology and weather variations. In this national report, we give a brief summary of recent progresses in ionospheric climatology with focus on (i) the seasonal variations, (2) solar cycle effects, and (3) empirical modeling of the ionosphere. The seasonal variations of the ionosphere have been explored in many works to give a more detailed picture with regional and global features at various altitudes by analyzing the observation data from various sources and models. Moreover, a series of studies reported the response of the ionosphere to solar cycle variations, which revealed some novel and detailed features of solar activity dependence of ionospheric parameters at different altitudes. These investigations have improved our understanding on the states of the ionosphere and underlying fundamental processes, provided clues to future studies on ionospheric weather, and guided ionospheric modeling, forecasting and related applications.

  17. Climatology of local flow patterns around Basel

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Recently a method has been developed to classify local-scale flow patterns from the wind measurements at a dense network of stations. It was found that in the MISTRAL area around Basel a dozen characteristic flow patterns occur. However, as the dense network of stations ran only during one year, no reliable climatology can be inferred from these data, especially the annual cycle of the flow patterns is not well determined from a single year of observations. As there exist several routinely operated stations in and near the MISTRAL area, a method was searched to identify the local flow patterns from the observations at the few routine stations. A linear discriminant analysis turned out to be the best method. Based of data from 11 stations which were simultaneously operated during 1990-1995 a six-year climatology of the flow patterns could be obtained. (author) 1 fig., 1 tab., 3 refs.

  18. Results of large scale wind climatologically estimations

    Directory of Open Access Journals (Sweden)

    Andrea Kircsi

    2008-05-01

    Full Text Available The aim of this article is to describe theparticular field of climatology which analyzes airmovement characteristics regarding utilization of windfor energy generation. The article describes features ofwind energy potential available in Hungary compared towind conditions in other areas of the northern quartersphere in order to assist the wind energy use developmentin Hungary. Information on wind climate gives a solidbasis for financial and economic decisions ofstakeholders in the field of wind energy utilization.

  19. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  20. Mesospheric Temperature Climatology and Comparisons Above the Rocky Mountains

    OpenAIRE

    Herron, Joshua P.

    2004-01-01

    A Rayleigh-scatter lidar has been operated by the Center for Atmospheric and Space Sciences (CASS) at Utah State University (USU) since 1993. The lidar measures atmospheric temperatures between 45 and 90 km which are important for understanding the physics and chemistry of the middle atmosphere. The temperature profiles were used to create a multi-year temperature climatology. This climatology was used for comparisons with the temperature climatology from the Purple Crow Lidar at the Universi...

  1. NASA GLDAS Evapotranspiration Data and Climatology

    Science.gov (United States)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  2. A climatological analysis of Saharan cyclones

    Science.gov (United States)

    Ammar, K.; El-Metwally, Mossad; Almazroui, Mansour; Abdel Wahab, M. M.

    2014-07-01

    In this study, the climatology of Saharan cyclones is presented in order to understand the Saharan climate, its variability and its changes. This climatology includes an analysis of seasonal and interannual variations, the identification and classification of cyclone tracks, and a presentation of their chief characteristics. The data used are drawn from the 1980-2009, 2.5° × 2.5°, NCEP/NCAR reanalysis (NNRP I) dataset. It is found that cyclone numbers increase in September-October-November (SON) at 4.9 cyclones per decade, while they decrease in June-July-August at 12.3 cyclones per decade. The identification algorithm constructed 562 tracks, which are categorized into 12 distinct clusters. Around 75 % of the Saharan cyclones originate south of the Atlas Mountains. The percentage of tracks that move over the Sahara is around 48 %. The eastern Mediterranean receives 27 % of the Saharan tracks, while the western basin receives only 17 and 8 % of all the Saharan cyclones decay over the Arabian Peninsula. The maximum cyclonic activity occurs in April. There is a general decrease in the number of tracks in all categories between 1993 and 2009, compared with the period between 1980 and 1992. About 72 % of the Saharan cyclones do not live more than 3 days, and about 80 % of the cyclones in the tracks never reach central pressures 1,000 hPa during their lifetimes. The maximum deepening in the tracks occurs over the western Mediterranean and over northern Algeria.

  3. A climatology of visible surface reflectance spectra

    Science.gov (United States)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  4. Hanford Site Climatological Data Summary 1998

    Energy Technology Data Exchange (ETDEWEB)

    DJ Hoitink; JV Ramsdell; KW Burk

    1999-05-26

    This document presents the climatological data measured at the U.S. Department of Energy's Hanford Site for calendar year 1998. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature; precipitation, normal and extreme values of temperature and precipitation and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, Appendix B--Wind Climatology (1994) is excluded. 1998 was much warmer than normal, tying 1992 as the warmest year on record. The average temperature was 56.4 F, 3.1 F above normal (53.3 F). The highest July temperature ever recorded was 112 F on July 27, 1998. The first week in May, three daily temperature records were broken or tied. November 1998 was the third warmest on record. For the year 1998, there were 73 days with maximum temperature >90 F, the third highest on record. For the 12-month period, 11 months were warmer than normal and 1 was cooler than normal. The summer (June, July, and August) and autumn (September, October, and November) of 1998 were the fourth warmest on record. 1998 was slightly wetter than normal. Precipitation totaled 6.45 in., 103% of normal (6.26 in.); snow-fall totaled 7.2 in., compared to the normal of 13.8 in. There were eight thunderstorms recorded at Hanford Meteorological Station in July 1998, tying 1983 for the most thunderstorms in July. The average wind speed during 1998 was 7.9 mph, 0.2 mph above normal (7.7 mph). There were 32 days with peak gusts {ge}40 mph, compared to a yearly average of 26 mph. The peak gust during the year was 56 mph from the south-southwest on November 21. November 1998 had a record number of days (10) with wind gusts {ge}40 mph. The heating-degree days for 1997-1998 were 4,523 (14% below the 5

  5. A hemispheric climatology of monsoon depressions

    Science.gov (United States)

    Hurley, J. V.; Boos, W.

    2012-12-01

    Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.

  6. Lightning climatology in the Congo Basin

    Science.gov (United States)

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.

    2016-09-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  7. Sprite Climatology in the Eastern Mediterranean Region

    Science.gov (United States)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  8. Dispersion climatology in a coastal zone

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Gryning, Sven-Erik

    1986-01-01

    A crosswind integrated K-model with wind- and K-profiles described by Monin-Obukhov similarity expressions is solved for a continuous surface release to yield the vertical spread of the plume as a function of the surface roughness z0 and the Monin-Obukhov length L for a given downwind distance....... The vertical spread of the plume is translated into σz, and lines were traced in a (z0, L−) plane for which the σz of the K-model matched the corresponding σz of Pasquill's system. By this technique a new classification scheme is constructed. Knowing z0 and L, the scheme tells which σz curve in the Pasquill...... system should be used to describe the dispersion. This dispersion classification scheme is used to organize 3 years of data from two meteorological masts, one placed directly at a shoreline and the other roughly 1 km inland. Differences in the dispersion climatology over land and water are studied...

  9. Int'l meeting on statistical climatology convenes in Beijing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Sponsored by the CAS Institute of Atmospheric Physics (IAP), the 10th International Meeting on Statistical Climatology, (10IMSC) was held from 20 to 24 August in Beijing, bringing together nearly 120 participants from about 30 countries and regions.

  10. Teaching a Model-based Climatology Using Energy Balance Simulation.

    Science.gov (United States)

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  11. Global Precipitation Climatology Project (GPCP) - Daily, Version 1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 1.2 Daily product covers the period October 1998 to the present,...

  12. Global Precipitation Climatology Project (GPCP) - Monthly, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products with the two primary products being the monthly satellite-gauge and associated...

  13. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  14. Global Historical Climatology Network - Monthly (GHCN-M), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since the early 1990s the Global Historical Climatology Network-Monthly (GHCN-M) dataset has been an internationally recognized source of data for the study of...

  15. Historical Climatology In Europe. The State Of The Art

    Energy Technology Data Exchange (ETDEWEB)

    Brazdil, R. [Institute of Geography, Masaryk University, Kotlarska 2, CZ-611 37 Brno (Czech Republic); Pfister, C. [Institute of History/NCCR Climate, University of Bern, Unitobler, CH-3000 Bern 9 (Switzerland); Wanner, H.; Luterbacher, J. [NCCR Climate, University of Bern, Hallerstrasse 12, CH-3012 Bern (Switzerland); Von Storch, H. [GKSS-Research-Center, Max Planck Strasse 1, D-21502 Geesthacht (Germany)

    2005-06-01

    This paper discusses the state of European research in historical climatology. This field of science and an overview of its development are described in detail. Special attention is given to the documentary evidence used for data sources, including its drawbacks and advantages. Further, methods and significant results of historical-climatological research, mainly achieved since 1990, are presented. The main focus concentrates on data, methods, definitions of the 'Medieval Warm Period' and the 'Little Ice Age', synoptic interpretation of past climates, climatic anomalies and natural disasters, and the vulnerability of economies and societies to climate as well as images and social representations of past weather and climate. The potential of historical climatology for climate modelling research is discussed briefly. Research perspectives in historical climatology are formulated with reference to data, methods, interdisciplinarity and impacts.

  16. AFSC/ABL: Auke Bay Climatology 1959-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set includes available climatological and related physical environmental records for Auke Bay, Auke Creek and Auke Lake beginning in 1959. Daily high and low...

  17. Global Precipitation Climatology Project (GPCP) - Pentad, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 2.2 Pentad product covers the period January 1979 to the present,...

  18. Hanford Site Climatological Summary 2004 with Historical Data

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

    2005-06-03

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

  19. Snow density climatology across the former USSR

    Directory of Open Access Journals (Sweden)

    X. Zhong

    2013-07-01

    Full Text Available Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for retrieving snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density climatology and its spatiotemporal variations across the former Soviet Union (USSR from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.194 ± 0.046 g cm−3 over the study area. The maximum and minimum monthly mean snow density was ∼ 0.295 g cm−3 in June, and 0.135 g cm−3 in October, respectively. Maritime snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, in Arctic Russia, and in some regions of the Russian Far East, and the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966–2008 monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. Snow density decreased with elevation, at about 0.004 g cm−3 per 100 m increase in elevation. This same relationship existed for all snow classes except for maritime and ephemeral snow.

  20. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  1. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  2. Towards a generalization procedure for WRF mesoscale wind climatologies

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Casso, P.; Campmany, E.;

    We present a method for generalizing wind climatologies generated from mesoscale model output (e.g. the Weather, Research and Forecasting (WRF) model.) The generalization procedure is based on Wind Atlas framework of WAsP and KAMM/WAsP, and been extensively in wind resources assessment in DTU Wind...... generalized wind climatologies estimated by the microscale model WAsP and the methodology presented here. For the Danish wind measurements the mean absolute error in the ‘raw’ wind speeds is 9.2%, while the mean absolute error in the generalized wind speeds is 4.1%. The generalization procedure has been...

  3. Some Spatial Aspects of Southeastern United States Climatology.

    Science.gov (United States)

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  4. Are climatological correlations with the Hale double sunspot cycle meaningful

    International Nuclear Information System (INIS)

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A.D. is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepency can be resolved by suitable observations during the upcoming half decade

  5. A climatological description of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  6. The modification of the typhoon rainfall climatology model in Taiwan

    Directory of Open Access Journals (Sweden)

    C.-S. Lee

    2013-01-01

    Full Text Available This study is focused on the modification of a typhoon rainfall climatological model, by using the dataset up to 2006 and including data collected from rain gauge stations established after the 921 earthquake (1999. Subsequently, the climatology rainfall models for westward- and northward-moving typhoons are established by using the typhoon track classification from the Central Weather Bureau. These models are also evaluated and examined using dependent cases collected between 1989 and 2006 and independent cases collected from 2007 to 2011. For the dependent cases, the average total rainfall at all rain gauge stations forecasted using the climatology rainfall models for westward- (W-TRCM12 and northward-moving (N-TRCM12 typhoons is superior to that obtained using the original climatological model (TRCM06. Model W-TRCM12 significantly improves the precipitation underestimation of model TRCM06. The independent cases show that model W-TRCM12 provides better accumulated rainfall forecasts and distributions than model TRCM06. A climatological model for accompanied northeastern monsoons (A-TRCM12 for special typhoon types has also been established. The current A-TRCM12 model only contains five historical cases and various typhoon combinations can cause precipitation in different regions. Therefore, precipitation is likely to be significantly overestimated and high false alarm ratios are likely to occur in specific regions. For example, model A-TRCM12 significantly overestimates the rainfall forecast for Typhoon Mitag, an independent case from 2007. However, it has a higher probability of detection than model TRCM06. From a disaster prevention perspective, a high probability of detection is much more important than a high false alarm ratio. The modified models can contribute significantly to operational forecast.

  7. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  8. Clear sky atmosphere at cm-wavelengths from climatology data

    CERN Document Server

    Lew, Bartosz

    2015-01-01

    We utilise ground-based, balloon-born and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to numerically solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at the centimetre wavelengths. We validate the reconstruction by comparing the model column PWV, with photometric measurements of PWV, performed in the clear sky conditions towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of the Polish 32-metre radio telescope, and characterise $T_{\\rm atm}$ and $\\tau$ year-round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss shortcomings of using planar, single-layer, and optically thin atmospheric model approxima...

  9. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael

    2016-01-01

    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  10. ENSO impact on simulated South American hydro-climatology

    Directory of Open Access Journals (Sweden)

    J. Stuck

    2006-01-01

    Full Text Available The variability of the simulated hydro-climatology of the WaterGAP Global Hydrology Model (WGHM is analysed. Main object of this study is the ENSO-driven variability of the water storage of South America. The horizontal model resolution amounts to 0.5 degree and it is forced with monthly climate variables for 1961-1995 of the Tyndall Centre Climate Research Unit dataset (CRU TS 2.0 as a representation of the observed climate state. Secondly, the model is also forced by the model output of a global circulation model, the ECHAM4-T42 GCM. This model itself is driven by observed monthly means of the global Sea Surface Temperatures (SST and the sea ice coverage for the period of 1903 to 1994 (GISST. Thus, the climate model and the hydrological model represent a realistic simulated realisation of the hydro-climatologic state of the last century. Since four simulations of the ECHAM4 model with the same forcing, but with different initial conditions are carried out, an analysis of variance (ANOVA gives an impression of the impact of the varying SST on the hydro-climatology, because the variance can be separated into a SST-explained and a model internal variability (noise. Also regional multivariate analyses, like Empirical Orthogonal Functions (EOF and Canonical Correlation Analysis (CCA provide information of the complex time-space variability. In particular the Amazon region and the South of Brazil are significantly influenced by the ENSO-variability, but also the Pacific coastal areas of Ecuador and Peru are affected. Additionally, different ENSO-indices, based on SST anomalies (e.g. NINO3.4, NINO1+2, and its influence on the South American hydro-climatology are analysed. Especially, the Pacific coast regions of Ecuador, Peru and Chile show a very different behaviour dependant on those indices.

  11. DETERMINATION OF ATMOSPHERIC TURBIDITY AND ITS CORRELATION WITH CLIMATOLOGICALLY PARAMETERS

    OpenAIRE

    U. Ali Rahoma; Hassan, A. H.

    2012-01-01

    Study of Atmospheric turbidity is important for purposes of meteorology, ecology, climatology and monitoring of atmospheric pollution. Linke Turbidity factor (LT) is commonly used to model the attenuation of solar radiation in the atmosphere. The probable dependence on the water vapor content of the relationship linking LT to Angstromâs turbidity coefficient B, is discussed. In this study, a procedure for calculation of Linke turbidity factor is adopted using pyrheliometric measurements by Eg...

  12. A New Global Climatology of Annual Land Surface Temperature

    OpenAIRE

    Benjamin Bechtel

    2015-01-01

    Land surface temperature (LST) is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC) is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual...

  13. Clear sky atmosphere at cm-wavelengths from climatology data

    OpenAIRE

    Lew, Bartosz; Uscka-Kowalkowska, Joanna

    2015-01-01

    We utilise ground-based, balloon-borne and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at centimetre wavelengths. We validate the reconstruction by comparing the model column PWV with photometric measurements of PWV, performed in clear sky conditions point...

  14. Ozonesonde climatology between 1995 and 2009: description, evaluation and applications

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2011-10-01

    Full Text Available An ozone climatology based on ozone soundings for the last 15 years has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 41 stations around the globe have been compiled and averaged for the years 1980–1994 and 1995–2009. The climatology provides information about the median and the width of the ozone probability distribution function, as well as interannual variability of ozone between 1995 and 2009, in pressure and tropopause-referenced altitudes. In addition to single stations, regional aggregates are presented, combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to compare the variability of ozone distributions within each region and used for model evaluation purposes. This measure compares not only the mean, but also the shape of distributions. The representativeness of regional aggregates is discussed using independent observations from surface stations and MOZAIC aircraft data. Ozone from all of these data sets show an excellent agreement within the range of the interannual variability, especially if a sufficient number of measurements are available, as is the case for West Europe. Within the climatology, a significant longitudinal variability of ozone in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The climatology is used to evaluate results from two model intercomparison activities, HTAP for the troposphere and CCMVal2 for the tropopause region and the stratosphere. HTAP ozone is in good agreement with observations in the troposphere within their range of uncertainty, but ozone peaks too early in the Northern Hemisphere spring. The strong gradients of ozone around the tropopause are less well captured by many models. Lower stratospheric ozone is overestimated for all regions by the multi-model mean of CCMVal2 models. Individual models also show major shortcomings in

  15. Scintillations climatology over low latitudes: statistical analysis and WAM modelling

    OpenAIRE

    Spogli, Luca; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Alfonsi, Lucilla; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Materassi, Massimo; Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche; Wernik, Andrzej W.; Space Research Center, Polish Academy of Sciences

    2010-01-01

    Attempts of reconstructing the spatial and temporal distribution of the ionospheric irregularities have been conducted developing a scintillation “climatology” technique, which was very promising in characterizing the plasma conditions triggering L-band scintillations at high latitudes ([1.],[2.]) and further analysis on bipolar high sampling rate (50 Hz) GPS data are currently in progress for deeper investigations. The core of the scintillation climatology technique is represente...

  16. Mars Orbiter Camera climatology of textured dust storms

    Science.gov (United States)

    Guzewich, Scott D.; Toigo, Anthony D.; Kulowski, Laura; Wang, Huiqun

    2015-09-01

    We report the climatology of "textured dust storms", those dust storms that have visible structure on their cloud tops that are indicative of active dust lifting, as observed in Mars Daily Global Maps produced from Mars Orbiter Camera wide-angle images. Textured dust storms predominantly occur in the equinox seasons while both solstice periods experience a planet-wide "pause" in textured dust storm activity. These pauses correspond to concurrent decreases in global atmospheric dust opacity. Textured dust storms most frequently occur in Acidalia Planitia, Chryse Planitia, Arcadia Planitia, and Hellas basin. To examine the nature of the link between textured dust storms and atmospheric dust opacity, we compare the textured dust storm climatology with a record of atmospheric dust opacity and find a peak global correlation coefficient of approximately 0.5 with a lag of 20-40° in solar longitude in the opacity compared to the solar climatology. This implies that textured dust storms observed at 1400 local time by MOC are responsible for a large fraction of atmospheric dust opacity and that other mechanisms (e.g., dust devil lifting or storm-scale lifting not observed in this study) may supply a comparable amount of dust.

  17. Hanford Site climatological data summary 1995 with historical data

    International Nuclear Information System (INIS)

    This document presents the climatological data measured at the US Department of Energy's Hanford Site for calendar year 1995. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995); however, Appendix B--Wind Climatology (1994) is excluded. 1995 was warmer than normal, averaging 54.7 F, 1.4 F above normal (53.3 F). For the 12-month period, 8 months were warmer than normal, and 4 were cooler than normal. 1995 was the wettest year on record. Precipitation totaled 12.31 in., 197% of normal (6.26 in.); snowfall totaled 7.7 in., compared to the normal of 13.8 in. The average wind speed during 1995 was 7.8 mph, 0.1 mph above normal (7.7 mph). The peak gust during the year was 61 mph from the south-southwest on December 12. There were 27 days with peak gusts ≥ 40 mph, compared to a yearly average of 26

  18. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  19. Climatology of salt transitions and implications for stone weathering

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Brimblecombe, P. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Menendez, B. [Geosciences et Environnement Cergy, Universite de Cergy-Pontoise 95031 Cergy-Pontoise cedex (France); Benavente, D. [Lab. Petrologia Aplicada, Unidad Asociada UA-CSIC, Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante 03080 (Spain); Harris, I. [Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Deque, M. [Meteo-France/CNRM, CNRS/GAME, 42 Avenue Coriolis, F-31057 Toulouse, Cedex 01 (France)

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: {yields} We introduce the notion of salt climatology for heritage conservation. {yields} Climate affects salt thermodynamics on building materials. {yields} We associate Koeppen-Geiger climate types with potential salt weathering. {yields} We offer future projections of salt damage in Western Europe due to climate change. {yields} Humid

  20. Mars Geoscience Climatology Orbiter (MGCO) extended study: Technical volume

    Science.gov (United States)

    1983-01-01

    The FLTSATCOM Earth orbiting communications satellite is a prominent candidate to serve as the Mars Geoscience Climatology Orbiter (MGCO) spacecraft. Major aspects directly applicable are: (1) the incorporation of solid orbit insertion motor; (2) the ability to cruise to Mars in the spin-stabilized mode; (3) ample capability for payload mass and power; (4) attitude control tried to nadir and orbit plane coordinates; (5) exemplary Earth orbital performance record and projected lifetime; and (6) existence of an on-going procurement into the MGCO time period.

  1. Statistical examination of climatological data relevant to global temperature variation

    Energy Technology Data Exchange (ETDEWEB)

    Gray, H.L.; Gunst, R.F.; Woodward, W.A.

    1992-01-01

    The research group at Southern Methodist University has been involved in the examination of climatological data as specified in the proposal. Our efforts have resulted in three papers which have been submitted to scholarly journals, as well as several other projects which should be completed either during the next six months or next year. In the following, we discuss our results to date along with projected progress within the next six months. Major topics discussed in this progress report include: testing for trend in the global temperature data; (2) defining and estimating mean global temperature change; and, (3) the effect of initial conditions on autoregressive models for global temperature data.

  2. Climatology of early night equatorial spread F over Jicamarca

    OpenAIRE

    Chapagain, N. P.; Fejer, Bela G.

    2009-01-01

    [1] We use radar observations from 1996 to 2006 to study the climatology of postsunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show that the spread F onset times do not change with solar flux and that their onset heights, which occur near the altitude of the evening F region velocity vortex, increase linearly from about 260 to 400 km from solar minimum to solar maximum. Higher onset heights generally lead to stronger radar echoes. During the equinox, sprea...

  3. ?Strange Attractors (chaos) in the hydro-climatology of Colombia?

    International Nuclear Information System (INIS)

    Inter annual hydro-climatology of Colombia is strongly influenced by extreme phases of ENSO, a phenomenon exhibiting many features of chaotic non-linear system. The possible chaotic nature of Colombian hydrology is examined by using time series of monthly precipitation at Bogota (1866-1992) and Medellin (1908-1995), and average stream flows of the Magdalena River at Puerto Berrio. The power spectrum, the Haussdorf-Besikovich (fractal) dimension, the correlation dimension, and the largest Lyapunov exponent are estimated for the time series. Ideas of hydrologic forecasting and predictability are discussed in the context of nonlinear dynamical systems exhibit chaotic behavior

  4. Global Warming - Myth or Reality?, The Erring Ways of Climatology

    Science.gov (United States)

    Leroux, Marcel

    In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.

  5. CLIMATOLOGICAL DIAGNOSIS OF WINTER TEMPERATURE VARIATIONS IN GUANGDONG

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using the monthly mean and minimum temperature data of the 36 observation stations in Guangdong, the climatological features of the temperatures have been analyzed, including characteristics of trends, abrupt changes and periods. And the possible affecting factors on the winter warming in Guangdong have been discussed. The results show that the winter temperatures, particularly the monthly mean minimum temperatures in Guangdong, have a warming trend. The rise of the winter minimum temperatures in Guangdong began in the second half of 1960's and the warming was more evident since the 1980's.

  6. A New Global Climatology of Annual Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Benjamin Bechtel

    2015-03-01

    Full Text Available Land surface temperature (LST is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual cycle parameters (ACP has been proposed before but so far not been tested on larger scale. In this study, a new global climatology of annual LST based on daily 1 km MODIS/Terra observations was processed and evaluated. The derived global parameters were robust and free of missing data due to clouds. They allow estimating LST patterns under largely cloud-free conditions at different scales for every day of year and further deliver a measure for its accuracy respectively variability. The parameters generally showed low redundancy and mostly reflected real surface conditions. Important influencing factors included climate, land cover, vegetation phenology, anthropogenic effects, and geology which enable numerous potential applications. The datasets will be available at the CliSAP Integrated Climate Data Center pending additional processing.

  7. Characteristics of cyclone climatology and variability in the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    WEI Lixin; QIN Ting

    2016-01-01

    A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979–2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55°–67°S, and cyclone density has generally increased in north of this band for 1979–2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979–2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45°–55°S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.

  8. Climatology of salt transitions and implications for stone weathering.

    Science.gov (United States)

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). PMID:21514627

  9. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  10. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2016-01-01

    Full Text Available We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a

  11. Deuterium excess in precipitation and its climatological significance

    International Nuclear Information System (INIS)

    The climatological significance of the deuterium excess parameter for tracing precipitation processes is discussed with reference to data collected within the IAEA/WMO Global Network for Isotopes in Precipitation (GNIP) programme. Annual and monthly variations in deuterium excess, and their primary relationships with δ18O, temperature, vapour pressure and relative humidity are used to demonstrate fundamental controls on deuterium excess for selected climate stations and transects. The importance of deuterium excess signals arising from ocean sources versus signals arising from air mass modification during transport over the continents is reviewed and relevant theoretical development is presented. While deuterium excess shows considerable promise as a quantitative index of precipitation processes, the effectiveness of current applications using GNIP is largely dependent on analytical uncertainty (∼2.1 per mille), which could be improved to better than 1 per mille through basic upgrades in routine measurement procedures for deuterium analysis. (author)

  12. Eight-year Climatology of Dust Optical Depth on Mars

    CERN Document Server

    Montabone, L; Millour, E; Wilson, R J; Lewis, S R; Cantor, B A; Kass, D; Kleinboehl, A; Lemmon, M; Smith, M D; Wolff, M J

    2014-01-01

    We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced, but possibly incomplete, spatio-temporal grid, using an iterative procedure weighted in space, time, and retrieval uncertainty. In order to evaluate strengths and weaknesses of the resulting gridded maps, we validat...

  13. The Mars Geoscience/Climatology Orbiter 1990 mission

    Science.gov (United States)

    Low, G. D.; Stuart, J. R.; Palluconi, F. D.; Blume, W. H.; Erickson, K. D.

    1984-01-01

    The fundamental objectives of the Mars Geoscience/Climatology Orbiter (MGCO) 1990 mission are related to the determination of the surface composition and topography of the planet Mars, its gravitational and intrinsic magnetic fields, and the seasonal behavior of volatiles, dust, and the atmosphere of Mars. These objectives would be achieved through a global mapping of the planet over a Martian year. For the baseline mission, a single spacecraft would be launched in August 1990, arrive at Mars in August 1991, and map the planet from a Sun-synchronous, near-circular, polar orbit for one Martian year. Attention is given to a science rationale and objectives, a mission description, the flight system, and mission operations.

  14. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  15. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  16. The Global Precipitation Climatology Centre (GPCC) - in situ observation based precipitation climatology on regional and global scale

    Science.gov (United States)

    Fuchs, T.; Schneider, U.; Rudolf, B.

    2009-04-01

    The Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de) provides global monthly precipitation analyses for monitoring and research of the earth's climate. The centre is a German contribution to the World Climate Research Programme (WCRP), to the Global Climate Observing System (GCOS), and to the Global Earth Observation System of Systems (GEOSS). It contributes to water resources assessments, flood and drought monitoring, climate variability and trend analyses. GPCC published in year 2008 a new global precipitation climatology as well as a reanalysis of its full data base for all months of the period 1901-2007. The GPCC data base comprises monthly precipitation totals from more than 70 000 different stations in the world. It produces gridded data sets of monthly precipitation on the earth's land surface derived from raingauge based observation data. Intensive quality control of observation data and station metadata ensures a high analysis quality. The different GPCC products are adjusted to different user needs. It routinely produces 2 near real-time precipitation monitoring products. Its 2 non real-time products are updated at irregular time intervals after significant updates of its observation station database. All GPCC products can be visualised and accessed free of charge via Internet from http://gpcc.dwd.de. The GPCC First Guess Product of the monthly precipitation anomaly is based on synoptic weather reports (SYNOP) from about 6,300 stations worldwide received near real-time via the WMO Global Telecommunication System (GTS). The product is available within 5 days after end of an observation month. Main application purpose is near real-time drought monitoring. The product uses since mid 2008 the new GPCC monthly precipitation climatology as analysis background. Spatial product resolution: 1.0° and 2.5°. The GPCC Monitoring Product of monthly precipitation is based on SYNOP and monthly CLIMAT reports received near real-time via GTS from about

  17. Revisiting the Climatology of Atmospheric Blocking in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    Ho Nam CHEUNG; ZHOU Wen; Hing Yim MOK; Man Chi WU; Yaping SHAO

    2013-01-01

    In addition to the occurrence of atmospheric blocking,the climatology of the characteristics of blocking events,including duration,intensity,and extension,in four seasons over the Northern Hemisphere was analyzed for the period 1950-2009.The seasonality and spatial variations of these characteristics were studied according to their longitudinal distributions.In general,there were sharp discrepancies in the blocking characteristics between winter and summer,and these differences were more prominent over the Atlantic and Pacific Oceans.The blocking not only occurred more frequently but also underwent stronger amplification in winter; likewise,the blocking occurred less frequently and underwent weaker amplification in summer.There are very strong interrelationships among different blocking characteristics,suggesting that they are supported by similar physical factors.In addition,the relationship between blocking over different regions and East Asian circulation was examined.Ural-Siberia is a major blocking formation region in all seasons that may exert a downstream impact on East Asia.The impact is generally weak in summer,which is due to its lower intensity and smaller duration.However,the extratropical circulation over East Asia in summer can be disturbed persistently by the frequent occurrence of blocking over the Asian continent or the Western Pacific.In particular,the blocking frequency over the Western Pacific significantly increased during the study period.This climatological information provides a background for studying the impact of blocking on East Asian circulation under both present and future climate conditions.

  18. Lightning climatology in the Congo Basin: detailed analysis

    Science.gov (United States)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  19. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  20. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  1. Climatological/meteorological and hydrological disasters and the insurance sector

    Directory of Open Access Journals (Sweden)

    Murat Türkeş

    2010-11-01

    Full Text Available Climate change is a continual fact during the Earth’s history. There had been many significant changes in the Earth’s climate during its evolutionary history and a lot of ecosystems had been affected by these changes. Especially the industrialization process showing rapid movement after industrial revolution has put serious pressure on the present and future climate. Human activities such as increased fossil fuel usage with the industrialization process, land-use changes, industrial processes and deforestation have increased atmospheric accumulation up of the various greenhouse gases such as carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O. On the other hand, increase in frequency and severity of natural disasters can be explained mostly by the increase of the probability of extreme events due to the climate change. Increased numbers of people have been affected by climatological and meteorological catastrophes in every year. Various actions and activities such as disaster preparedness, mitigation, reduction and prevention of the impacts and early warnings are considerable with respect to the insurance sector. These activities and actions should be implemented in the frame of contemporary and comprehensive disaster management planes. Scope of the natural disaster should be expanded particularly in the countries and regions that are vulnerable to the impacts of the climate change and variability including drought events and/or natural disasters. Moreover, drought events should also be accepted as one of the severe natural disasters, and sustainable and applicable drought management plans should be developed in order to mitigate these disasters. In this context, main purpose of the study is to classify and shortly assess the climatological and meteorological disasters, and to attract attention necessity of a new disaster insurance system containing these disasters.

  2. Available climatological and oceanographical data for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, S.; Ambjoern, C.; Juhlin, B.; Larsson-McCann, S.; Lindquist, K. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2000-03-15

    Information on available data, measurements and models for climate, meteorology, hydrology and oceanography for six communities have been analysed and studied. The six communities are Nykoeping, Oesthammar, Oskarshamn, Tierp, Hultsfred and Aelvkarleby all of them selected by Svensk Kaernbraenslehantering AB, SKB, for a pre-study on possibilities for deep disposal of used nuclear fuel. For each of them a thorough and detailed register of available climatological data together with appropriate statistical properties are listed. The purpose is to compare the six communities concerning climatological and oceanographical data available and analyse the extent of new measurements or model applications needed for all of the selected sites. Statistical information on precipitation, temperature and runoff has good coverage in all of the six communities. If new information concerning any of these variables is needed in sites where no data collection exist today new installation can be made. Data on precipitation in form of snow and days with snow coverage is also available but to a lesser extent. This concerns also days with ground frost and average ground frost level where there is no fully representation of data. If more information is wanted concerning these variables new measurements or model calculations must be initiated. Data on freeze and break-up of ice on lakes is also insufficient but this variable can be calculated with good result by use of one-dimensional models. Data describing air pressure tendency and wind velocity and direction is available for all communities and this information should be sufficient for the purpose of SKB. This is also valid for the variables global radiation and duration of sunshine where no new data should be needed. Measured data on evaporation is normally not available in Sweden more than in special research basins. Actual evaporation is though a variable that easily can be calculated by use of models. There are many lakes in the six

  3. Climatological context for large-scale coral bleaching

    Science.gov (United States)

    Barton, A. D.; Casey, K. S.

    2005-12-01

    Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will

  4. The climatology of dust aerosol over the arabian peninsula

    Directory of Open Access Journals (Sweden)

    A. Shalaby

    2015-01-01

    Full Text Available Dust storms are considered to be a natural hazard over the Arabian Peninsula, since they occur all year round with maximum intensity and frequency in Spring and Summer. The Regional Climate Model version 4 (RegCM4 has been used to study the climatology of atmospheric dust over the Arabian Peninsula from 1999 to 2012. This relatively long simulation period samples the meteorological conditions that determine the climatology of mineral dust aerosols over the Arabian Peninsula. The modeled Aerosol Optical Depth (AOD has been compared against ground-based observations of three Aerosol Robotic Network (AERONET stations that are distributed over the Arabian Peninsula and daily space based observations from the Multi-angle Imaging SpectroRadiometer (MISR, the Moderate resolution Imaging SpectroRadimeter (MODIS and Ozone Monitoring Instrument (OMI. The large scale atmospheric circulation and the land surface response that lead to dust uplifting have been analyzed. While the modeled AOD shows that the dust season extends from March to August with two pronounced maxima, one over the northern Arabian Peninsula in March with AOD equal to 0.4 and one over the southern Arabian Peninsula in July with AOD equal to 0.7, the observations show that the dust season extends from April to August with two pronounced maxima, one over the northern Arabian Peninsula in April with AOD equal to 0.5 and one over the southern Arabian Peninsula in July with AOD equal to 0.5. In spring a high pressure dominates the Arabian Peninsula and is responsible for advecting dust from southern and western part of the Arabian Peninsula to northern and eastern part of the Peninsula. Also, fast developed cyclones in northern Arabian Peninsula are responsible for producing strong dust storms over Iraq and Kuwait. However, in summer the main driver of the surface dust emission is the strong northerly wind ("Shamal" that transport dust from the northern Arabian Peninsula toward south parallel

  5. A Precipitation Climatology of the Snowy Mountains, Australia

    Science.gov (United States)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2014-05-01

    The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale

  6. Climatology of damage-causing hailstorms over Germany

    Science.gov (United States)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  7. Situational Lightning Climatologies for Central Florida: Phase V

    Science.gov (United States)

    Bauman, William H., III

    2011-01-01

    The AMU added three years of data to the POR from the previous work resulting in a 22-year POR for the warm season months from 1989-2010. In addition to the flow regime stratification, moisture and stability stratifications were added to separate more active from less active lighting days within the same flow regime. The parameters used for moisture and stability stratifications were PWAT and TI which were derived from sounding data at four Florida radiosonde sites. Lightning data consisted of NLDN CG lightning flashes within 30 NM of each airfield. The AMU increased the number of airfields from nine to thirty-six which included the SLF, CCAFS, PAFB and thirty-three airfields across Florida. The NWS MLB requested the AMU calculate lightning climatologies for additional airfields that they support as a backup to NWS TBW which was then expanded to include airfields supported by NWS JAX and NWS MFL. The updated climatologies of lightning probabilities are based on revised synoptic-scale flow regimes over the Florida peninsula (Lambert 2007) for 5-, 10-, 20- and 30-NM radius range rings around the thirty-six airfields in 1-, 3- and 6-hour increments. The lightning, flow regime, moisture and stability data were processed in S-PLUS software using scripts written by the AMU to automate much of the data processing. The S-PLUS data files were exported to Excel to allow the files to be combined in Excel Workbooks for easier data handling and to create the tables and charts for the Gill. The AMU revised the Gill developed in the previous phase (Bauman 2009) with the new data and provided users with an updated HTML tool to display and manipulate the data and corresponding charts. The tool can be used with most web browsers and is computer operating system independent. The AMU delivered two Gills - one with just the PWAT stratification and one with both the PWAT and TI stratifications due to insufficient data in some of the PWATITI stratification combinations. This will allow

  8. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  9. Updated population metadata for United States historical climatology network stations

    Science.gov (United States)

    Owen, T.W.; Gallo, K.P.

    2000-01-01

    The United States Historical Climatology Network (HCN) serial temperature dataset is comprised of 1221 high-quality, long-term climate observing stations. The HCN dataset is available in several versions, one of which includes population-based temperature modifications to adjust urban temperatures for the "heat-island" effect. Unfortunately, the decennial population metadata file is not complete as missing values are present for 17.6% of the 12 210 population values associated with the 1221 individual stations during the 1900-90 interval. Retrospective grid-based populations. Within a fixed distance of an HCN station, were estimated through the use of a gridded population density dataset and historically available U.S. Census county data. The grid-based populations for the HCN stations provide values derived from a consistent methodology compared to the current HCN populations that can vary as definitions of the area associated with a city change over time. The use of grid-based populations may minimally be appropriate to augment populations for HCN climate stations that lack any population data, and are recommended when consistent and complete population data are required. The recommended urban temperature adjustments based on the HCN and grid-based methods of estimating station population can be significantly different for individual stations within the HCN dataset.

  10. TRMM's Contribution to Our Knowledge of Climatology, Storms and Floods

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has successfully completed nearly ten years in orbit. A brief review of the history and accomplishments of this joint mission between the U.S. and Japan is presented. Research highlights will focus on the seasonal cycle of a TRMM-based rainfall climatology, which takes advantage of the multiple rain estimates available from TRMM. Examples will be given of the use of TRMM data to diagnose the impact of man on precipitation patterns through urbanization and the effect of pollution. Use of TRMM data for tropical cyclone operational analysis in the U.S. will also be shown. Methods for generating 3-hourly rainfall information from multiple satellites using TRMM to calibrate all the information will be described as will application of such information to study extreme rainfall events and associated floods and landslides. These results will emphasize the breadth of science success achieved with the 10-year record of observations from the only rain radar and passive microwave instrument combination in space. The outlook for continued operation of the TRMM satellite and progress in TRMM science and applications will be addressed.

  11. Steps Toward an EOS-Era Aerosol Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  12. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    Science.gov (United States)

    Arkin, Phillip A.; Xie, Pingping

    1994-01-01

    The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.

  13. DETERMINATION OF ATMOSPHERIC TURBIDITY AND ITS CORRELATION WITH CLIMATOLOGICALLY PARAMETERS

    Directory of Open Access Journals (Sweden)

    U. Ali Rahoma

    2012-01-01

    Full Text Available Study of Atmospheric turbidity is important for purposes of meteorology, ecology, climatology and monitoring of atmospheric pollution. Linke Turbidity factor (LT is commonly used to model the attenuation of solar radiation in the atmosphere. The probable dependence on the water vapor content of the relationship linking LT to Angstrom’s turbidity coefficient B, is discussed. In this study, a procedure for calculation of Linke turbidity factor is adopted using pyrheliometric measurements by Egyptian Typical Meteorological Year (ETMY at a Thirteen stations at Egypt, during (from 1969 to 2006. Monthly variations of the LT turbidity factor are found in the three studied months, with a maximum in August and a minimum in July. Detailed studies on the effect of urbanization and industrialization on global solar radiation and the percentage values of radiation loss in the atmosphere, at Egypt, have been performed. The high values of LT (5-6 and B (0.48-0.52 lies between Lat. 28°N-30°N, low values of LT<3.5 and B<0.3 below of Lat. 26°N. 8 cities of the thirteen city used in the study are located in the maximum values of this period is the most civilized cities and concentrated a large part of the population which constitutes a danger to the health of the population and the spread of diseases resulting from atmospheric turbidity.

  14. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    and internal density field on the dynamical balance of circulation in the western tropical Indian Ocean is explained. The climatological temperature and salinity data used to drive the model is found to be hydrodynamically adjusted with surface wind, flow field...

  15. SST Anomaly, NOAA POES AVHRR, Casey and Cornillon Climatology, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes SST anomaly data using a combination of the POES AVHRR Global Area Coverage data, and data from a climatological database by Casey and...

  16. Monthly Summaries of the Global Historical Climatology Network - Daily (GHCN-D)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly Summaries of Global Historical Climatology Network (GHCN)-Daily is a dataset derived from GHCN-Daily. The data are produced by computing simple averages or...

  17. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective

    OpenAIRE

    Liu, J.; D. W. Tarasick; V. E. Fioletov; Mclinden, C.; Zhao, T.; Gong, S.; C. Sioris; J. J. Jin; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008) are used, from which forward and backward trajectories are calculated from meteorological reanalysis data, to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five decades fr...

  18. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective

    OpenAIRE

    Liu, J.; D. W. Tarasick; V. E. Fioletov; Mclinden, C.; Zhao, T.; Gong, S.; C. Sioris; J. J. Jin; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008) are used, from which forward and backward trajectories are calculated from meteorological reanalysis data to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five ...

  19. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    OpenAIRE

    Zhou, Y.; P. Stammes; Brunner, D.; Wang, P.; Popp, C; M. Grzegorski

    2011-01-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) ...

  20. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    OpenAIRE

    Zhou, Y.; P. Stammes; Brunner, D.; Wang, P.; Popp, C; M. Grzegorski

    2010-01-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) ...

  1. A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean

    OpenAIRE

    Twigg, Katherine L.

    2007-01-01

    Surface electromagnetic propagation over the ocean is highly sensitive to near-surface atmospheric variability, particularly the height of the evaporation duct. Seasonal variation in near-surface meterological factors and sea surface temperatures impact the evaporation duct height (EDH). Present U.S. Navy EDH climatology is based on sparse ship observations over a relatively short time period and an outdated evaporation duct (ED) model. This EDH climatology does not utilize smart, or modern, ...

  2. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea

    OpenAIRE

    Lipizer, M.; Partescano, E.; A. Rabitti; A. Giorgetti; Crise, A.

    2014-01-01

    An updated climatology, based on a comprehensive dataset (1911–2009) of temperature, salinity and dissolved oxygen, has been produced for the whole Adriatic Sea with the Variational Inverse Method using the DIVA software. Climatological maps were produced at 26 levels and validated with Ordinary Cross Validation and with real vs. synthetic Temperature–Salinity diagram intercomparison. The concept of Climatology–Observation Misfit (COM) has been introduced as...

  3. Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012

    OpenAIRE

    Mulder, Kelsey J.; Schultz, David M.

    2015-01-01

    A climatology is developed for tornadoes during 1980–2012 in the British Isles, defined in this article as England, Scotland, Wales, Northern Ireland, Republic of Ireland, Channel Islands, and the Isle of Man. The climatology includes parent storm type, interannual variability, annual and diurnal cycles, intensities, oc- currence of outbreaks (defined as three or more tornadoes in the same day), geographic distribution, and environmental conditions derived from proximity soundings of tornadoe...

  4. Global dust altitude climatology based on CALIPSO observations

    Science.gov (United States)

    Tsamalis, C.; Chedin, A.; Peyridieu, S.

    2011-12-01

    seasonal climatology with both day and night time data during the last 5 years (June 2006 - May 2011) with a horizontal resolution of 1 degree. Two classes of aerosols are used from the L2 product: dust and polluted dust. It is known that the polluted dust class may also contain smoke or polluted continental aerosols, but the results on the regions possibly contaminated by these aerosols are treated with caution and generally avoided. Results show that both dust mean altitude (a.s.l.) and geometrical thickness present an obvious seasonal dependence with lower values during winter and higher values during summer. Also, there is a contrast land-sea, especially for the geometrical thickness, with higher values, more dispersed, above continents. For the dust belt the altitude is ~2 km during winter, while it reaches ~3 km during summer; the dust geometrical thickness goes from about 2 km in the Sahel region during winter to its maximum of ~3 km above Sahara and the Arabian Peninsula during summer. Above the desert regions of central Asia, altitudes over 5.5 km are observed during spring, with the subsequent long-range transport at ~4.5 km towards North America. The results are, in general, coherent with ECMWF ERA-Interim climatological wind data during the CALIPSO measurement period.

  5. Climatological analysis of precipitation patterns over Mount Baldo (Southern Alps)

    Science.gov (United States)

    Poletti, G.; Zardi, D.; de Franceschi, M.

    2010-09-01

    The mountain range of Mount Baldo is an elongated chain in the southern Prealps. Bounded on the western side by Lake Garda, and on the eastern side by the parallel-running deep furrow of the River Adige Valley, the whole Mount Baldo range stretches in the direction southwest-northeast for about 40 km, from the southern highlands of Caprino Veronese up to the elevated saddle joining the surroundings of Rovereto (in the Adige Valley) to the plain of Nago-Torbole (northern shore of Lake Garda). Mount Baldo displays for most of its length a sharp and uninterrupted crest ridge, mostly running over 2000 m MSL. Its surface covers a variety of altitudinal ranges, from 65 m MSL at the mountain feet, along the Lake Garda shores, to 2,218 m MSL at its highest peak (Cima Valdritta). Furthermore the particular layout of being the southernmost alpine headland, projecting as a balcony over the Po Plain, makes it exposed to the climatic influence of the larger Mediterranean basin. All of these factors concurred to develop a remarkable variety of local microclimates, geographical characters and ecosystems. In particular Mount Baldo is well known for its varied flora, whence it has been named, since 16th century, Hortus Europae (Europe Garden). Precipitation is one of the key factors characterising the peculiar local climates of Mount Baldo. Various precipitation features can be produced by a variety of processes, including both orographic uplift of moist air advected by synoptic systems, and evaporation and up-slope advection of moist air from Lake Garda or from the Po Plain. Furthermore these effects may variously develop, and even combine, under different meteorological scenarios. In the present contribution the preliminary results are shown from a research work aiming at retrieving, collecting in a homogeneous dataset and analysing data from 18 weather stations disseminated on Mount Baldo, in order to produce a climatological analysis of precipitation in the area. The whole

  6. An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors

    Science.gov (United States)

    Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.; Kaufman, Yoram J.; Tanre, Didier; Mattoo, Shana; Martins, J. Vandelei; Ichoku, Charles; Koren, Ilan; Hongbin, Yu; Holben, Brent N.

    2008-01-01

    The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea.

  7. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  8. Mapping Atmospheric Moisture Climatologies across the Conterminous United States.

    Science.gov (United States)

    Daly, Christopher; Smith, Joseph I; Olson, Keith V

    2015-01-01

    Spatial climate datasets of 1981-2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981-2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981-2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4

  9. Mapping Atmospheric Moisture Climatologies across the Conterminous United States.

    Directory of Open Access Journals (Sweden)

    Christopher Daly

    Full Text Available Spatial climate datasets of 1981-2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m resolution. Interpolation of long-term averages (twelve monthly values per variable was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model. Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981-2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI was used, in which the 1981-2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and

  10. Understanding the Rainfall Daily Climatology of Northwestern Mexico

    Science.gov (United States)

    Brito-Castillo, L.

    2007-05-01

    Maximum monthly precipitation (MMP) over northwestern Mexico is not concurrent because it occurs in different months from July through September. However, instead of occurring progressively from one month to the next as latitude increases, as it might be logic since rains move progressively from south to north as monsoon develops, MMP occurs in July in latitudes of Jalisco state, then MMP shifts to August more to the north in latitudes of Nayarit state and along the eastern coast of the Gulf of California, then it occurs in July in higher latitudes through the main axis of the Sierra Madre Occidental (SMO), and finally MMP shifts to September to the west in the California Peninsula. The maximum monthly streamflow occurs in a similar pattern as MMP does but one month later. When daily rainfall climatology of the region is calculated, i.e. the long-term mean per day from stations with more than 20 years of data between 1940 and 2004, it is possible to understand why the behavior of MMP occurs in a July-August-July pattern from south to north. Preliminary results indicate that at latitudes of Nayarit state normal frequent storms with abundant rains develop at the end of July and through the August. These rains sum to the rains that move from the south to the north, as monsoon develops increasing the volume of precipitations at those latitudes in August. To the east crossing the SMO through northwestern Zacatecas state maximum volume of precipitations also is observed in August. However, in higher latitudes it is not observed any increment of rains in August and consequently maximum volume of precipitations occurs in July. To understand the dynamics of the rains at the latitudes of Nayarit state it results necessary to investigate the source of these local rains and explain why the increase of precipitations in August is limited at those latitudes.

  11. UK tornado climatology and the development of simple prediction tools

    Science.gov (United States)

    Holden, J.; Wright, A.

    2004-04-01

    The principle features of tornado climatology in the UK are presented based on the 5-year period from January 1995. Just over one third of reported tornadoes occurred in the south-east region of England, and most tornado activity took place during the spring and summer while the least activity occurred during autumn. This was different to the seasonal distribution for the period from 1960 to 1989 when autumn had the greatest number of tornadoes. The reported tornado distribution was shown to be significantly affected by topography and the density of potential observers. Of the ground-based meteorological variables tested, air temperature was most closely related to tornado occurrence with a peak at 13 deg;C. An equation incorporating air temperature, dew-point temperature, wind speed and pressure was shown to predict a tornado day with an accuracy of 86. 2%. The probability that a tornado would occur on a predicted day was 81. 2%. The model was used to predict actual tornado occurrences across England, Wales and Scotland during the 5-year study period, and it was estimated that just over five-times as many tornadoes occurred than were reported. The model results suggest that the bias induced by population density was not greater than the combined influence of topography and spatial setting. This is important in the UK, because most tornadoes are reported in lowland areas which are heavily populated and it has been difficult until now to determine the extent to which tornado reports are biased by the density of potential observers.

  12. Climatology and a dynamical investigation of tropical cyclogenesis

    Science.gov (United States)

    Asaadi, Ali; Brunet, Gilbert; Yau, Peter M. K.

    2014-05-01

    In general, observation has indicated that only a small fraction of the easterly waves occur in a single hurricane season contribute to tropical cyclogenesis. However, this small fraction includes a large portion of named storms. In addition, it has recently been shown that named storms in the Atlantic and eastern Pacific basins are almost all associated with a cyclonic Kelvin cat's eye of a tropical easterly wave critical layer, located equatorward of the easterly jet axis. Therefore, to better understand the dynamics involved in tropical cyclogenesis, it is desirable to investigate the flow characteristics and the physical mechanism for an easterly wave to form a cat's eye. We have chosen the simplest of all scenarios to present the fundamental concepts of tropical cyclogenesis in a tropical wave critical layer. Our methodology involves performing a climatological study of developing easterly waves covering the 1998-2001 hurricane seasons using ERA-Interim 6-hourly reanalysis data. Spatial and temporal filtering is applied to decompose the desired fields, and time-lagged composites are obtained in a translating reference frame following the disturbances. The stability analysis of the basic state flow has been investigated. The composite basic state zonal wind profiles indicate a cyclonic critical layer at cat's eye formation region. Composite perturbation potential vorticity showed a wave-like pattern, which is in agreement with typical characteristics of easterly waves. Statistical analysis is also used to determine the levels of confidence in the composite fields to assess the reliability of the results. In addition, the total potential vorticity diagnostics show a closed pattern only for one of the easterly wave troughs within the domain, the one associated with the tropical storms, and seem to be a better approach to distinguish developing vs. non-developing disturbances.

  13. The Global Precipitation Climatology Project (GPCP): Results, Status and Future

    Science.gov (United States)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is one of a number of long-term, satellite-based, global analyses routinely produced under the auspices of the World Climate Research Program (WCRP) and its Global Energy and Watercycle EXperiment (GEWEX) program. The research quality analyses are produced a few months after real-time through the efforts of scientists at various national agencies and universities in the U.S., Europe and Japan. The primary product is a monthly analysis of surface precipitation that is globally complete and spans the period 1979-present. There are also pentad analyses for the same period and a daily analysis for the 1997-present period. Although generated with somewhat different data sets and analysis schemes, the pentad and daily data sets are forced to agree with the primary monthly analysis on a grid box by grid box basis. The primary input data sets are from low-orbit passive microwave observations, geostationary infrared observations and surface raingauge information. Examples of research with the data sets are discussed, focusing on tropical (25N-25s) rainfall variations and possible long-term changes in the 28-year (1979-2006) monthly dataset. Techniques are used to discriminate among the variations due to ENSO, volcanic events and possible long-term changes for rainfall over both land and ocean. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% maximum reduction in tropical rainfall during each event. Although the global change of precipitation in the data set is near zero, a small upward linear change over tropical ocean (0.06 mm/day/l0yr) and a slight downward linear change over tropical land (-0.03 mm/day/l0yr) are examined to understand the impact of the inhomogeneity in the data record and the length of the data set. These positive changes correspond to about a 5% increase (ocean) and 3% increase (ocean plus land) during this time period. Relations between variations in

  14. Nature and climatology of Pfänderwind

    Directory of Open Access Journals (Sweden)

    Alexander Gohm

    2015-04-01

    Full Text Available The characteristics and climatology of Pfänderwind, a largely unknown downslope windstorm near the town of Bregenz (Austria at the entrance of the Rhine Valley, are investigated based on an eleven-year dataset of weather station observations and ERA-Interim reanalyses. The goal is to clarify the inconsistency in the definition of this phenomenon, to illuminate its dynamics, and to quantify its frequency of occurrence. It is shown that Pfänderwind has similarities to foehn but does occur for different synoptic-scale conditions. Moreover, two types of Pfänderwind have to be distinguished: Type 1, or classical Pfänderwind, is associated with easterly to northeasterly large-scale flow that crosses the Pfänder mountain range, descends in a foehn-like manner and causes moderate to strong winds in the town of Bregenz and its vicinity. The temperature anomaly induced at the surface by adiabatic warming is small as a result of weak low-level stability. Type-1 events occur on average 12 times per year, preferentially in spring, and most frequently between the afternoon and midnight. Type 2, or southeast Pfänderwind, is associated with westerly to southwesterly ambient winds near the main Alpine crest level. The Rhine valley is filled with cold air and in most cases south foehn is not present. However, the synoptic and meso-scale pressure gradient favours southerly ageostrophic flow in the Rhine Valley especially near the top of the cold-air pool. This flow passes the Gebhardsberg, the southwestern extension of the Pfänder mountain range, descends on its leeward side and causes strong foehn-like warming at the surface. However, southerly to southeasterly near-surface winds at Bregenz are rather weak. Type-2 events occur on average 40 times per year, most frequently between the evening and the early morning, and exhibit a weak seasonal dependence. More than half of all type-1 and type-2 events last only one or two hours.

  15. A Climatological Investigation of the Activity of Summer Subtropical Vortices

    Institute of Scientific and Technical Information of China (English)

    LUO Zhexian; DAI Kan

    2008-01-01

    By applying a new vortex detection method to the ECMWF 40-yr reanalysis (ERA40) data from 1985 to 2002, the climatology of summer vortices has been investigated in five subtropical regions, i.e., the northwestern Pacific, northeastern Pacific, northwestern Atlantic, northeastern Atlantic, and Australia-South Pacific, followed by validation with NCEP/NCAR reanalysis data. Results are as follows: (1) The spatial distributions of ERA40 vortex activities (VAC) were well consistent with those of NCEP/NCAR reanalysis (NRA) results in all regions, especially in northwestern Pacific. (2) Because of different model resolutions, both the number and intensity of vortices obtained from NRA were significantly weaker thanERA40's. (3) Vortices mainly cruised in coasts and the adjacent seas, from where to the land or the open sea vortex activities were gradually decreased. (4) There were two active centers in the northwestern Pacific:one was located in South China Sea and the other, as the largest center of the five regions, spread from the east side of the Philippines to Japan. (5) Over the northwestern Atlantic, most vortices occurred in Panama and its west-side offshore. (6) The spatial distributions of vortices were alike between the northeastern Pacific and northeastern Atlantic, both spreading from coasts to the west-side sea at 5°-20°N. (7) In the Anstralia-South Pacific, vortices were not as active as those in the other four regions, and mostly took place in the equator-side of near ocean areas. (8) Except the northwestern Pacific and northwestern Atlantic, the VAC interannual variations in the other three regions were different between ERA40 and NRA data. (9)In the northwestern Pacific and northwestern Atlantic, the VAC interannual variation could be separated to several distinct stages. (10) Since the mid 1980s, mean vortex intensity was getting increased in the northwestern Pacific, which was most significant in the subtropical areas on a global basis. In the western

  16. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  17. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-06-01

    Full Text Available This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008 are used, from which forward and backward trajectories are calculated from meteorological reanalysis data, to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s on a~grid of 5° × 5° × 1 km (latitude, longitude, and altitude, from the surface to 26 km altitude. It is also archived yearly from 1965 to 2008. The climatology is validated at 20 selected ozonesonde stations by comparing the actual ozone sounding profile with that derived through trajectory mapping of ozone sounding data from all stations except the one being compared. The two sets of profiles are in good agreement, both individually with correlation coefficients (r between 0.975 and 0.998 and root mean square (RMS differences of 87 to 482 ppbv, and overall with r = 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE and the Optical Spectrography and InfraRed Imager System (OSIRIS. The ozone climatology compares well with SAGE and OSIRIS data in both seasonal and zonal means. The mean differences are generally quite small, with maximum differences of 20% above 15 km. The agreement is better in the Northern Hemisphere, where there are more ozonesonde stations, than in the Southern Hemisphere; it is also better in the middle and high latitudes than in the tropics where reanalysis winds are less accurate. This ozone climatology captures known features in the stratosphere, as well as seasonal and decadal variations of these features. Compared to current satellite data, it offers more complete high latitude coverage as well as a much

  18. On the climatological probability of the vertical propagation of stationary planetary waves

    Science.gov (United States)

    Karami, Khalil; Braesicke, Peter; Sinnhuber, Miriam; Versick, Stefan

    2016-07-01

    We introduce a diagnostic tool to assess a climatological framework of the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) reanalysis data we derive probability density functions (PDFs) of positive vertical wave number as a function of zonal and meridional wave numbers. We contrast this quantity with classical climatological means of the vertical wave number. Introducing a membership value function (MVF) based on fuzzy logic, we objectively generate a modified set of PDFs (mPDFs) and demonstrate their superior performance compared to the climatological mean of vertical wave number and the original PDFs. We argue that mPDFs allow an even better understanding of how background conditions impact wave propagation in a climatological sense. As expected, probabilities are decreasing with increasing zonal wave numbers. In addition we discuss the meridional wave number dependency of the PDFs which is usually neglected, highlighting the contribution of meridional wave numbers 2 and 3 in the stratosphere. We also describe how mPDFs change in response to strong vortex regime (SVR) and weak vortex regime (WVR) conditions, with increased probabilities of the wave propagation during WVR than SVR in the stratosphere. We conclude that the mPDFs are a convenient way to summarize climatological information about planetary wave propagation in reanalysis and climate model data.

  19. A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2

    Science.gov (United States)

    Lauvset, Siv K.; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; Jutterström, Sara; Steinfeldt, Reiner; Jeansson, Emil; Ishii, Masao; Perez, Fiz F.; Suzuki, Toru; Watelet, Sylvain

    2016-08-01

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972-2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).

  20. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    Science.gov (United States)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  1. Water mass census in the Nordic seas using climatological and observational data sets

    International Nuclear Information System (INIS)

    We have compared and evaluated the water mass census in the Greenland-Iceland-Norwegian (Gin) Sea area from climatologies, observational data sets and model output. The four climatologies evaluated were: the 1998 and 2001 versions of the World Ocean Atlas (WOA98, WOA01), and the United States Navy's GDEM90 (Generalized Digital Environmental Model) and MODAS01 (Modular Ocean Data Assimilation System) climatologies. Three observational data sets were examined: the multidecadal (1965-1995) set contained on the National Oceano- graphic Data Centre's (NODC) WOD98 (World Ocean Data) Cd-Rom, and two seasonal data sets extracted from observations taken on six cruises by the SACLANT Research Center (SACLANTCEN) of NATO/Italy between 1986-1989. The model data is extracted from a global model run at 1/3 degree resolution for the years 1983-1997, using the Pop (Parallel Ocean Program) model of the Los Alamos National Laboratory. The census computations focused on the Norwegian Sea, in the southern part of the Gin Sea, between 100W-100E and 600N-700N, especially for comparisons with the hydro casts and the model. Cases of such evaluation computations included: (a) short term comparisons with quasi-synoptic CTD surveys carried out over a 4-year period in the southeastern Gin Sea; (b) climatological comparisons utilizing all available casts from the WOD98 Cd-Rom, with four climatologies; and (c) a comparison between the WOA01 climatology and the Pop model output ending in 1997. In this region in the spring, the fraction of ocean water that has salinity above 34.85 is ∼94%, and that has temperatures above 00C is ∼33%. Three principal water masses dominated the census: the Atlantic water A W, the deep water D W and an intermediate water mass defined as Lower Arctic Intermediate Water (LAIW). Besides these classes, both the climatologies and the observations exhibited the significant presence of deep water masses with T-S characteristics that do not fall into the named varieties

  2. The Increasing Use of Remote Sensing Data in Studying the Climatological Impacts on Public Health

    Science.gov (United States)

    Kempler, Steven; Benedict, Karl; Ceccato, Pietro; Golden, Meredith; Maxwell, Susan; Morian, Stan; Soebiyanto, Radina; Tong, Daniel

    2011-01-01

    One of the more fortunate outcomes of the capture and transformation of remote sensing data into applied information is their usefulness and impacts to better understanding climatological impacts on public health. Today, with petabytes of remote sensing data providing global coverage of climatological parameters, public health research and policy decision makers have an unprecedented (and growing) data record that relates the effects of climatic parameters, such as rainfall, heat, soil moisture, etc. to incidences and spread of disease, as well as predictive modeling. In addition, tools and services that specifically serve public health researchers and respondents have grown in response to needs of the these information users.

  3. A Meso-Climatology Study of the High-Resolution Tower Network Over the Florida Spaceport

    Science.gov (United States)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the US Air Force 45th Weather Squadron (45 WS) use wind and temperature data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria and to issue and verify temperature and wind advisories, watches, and warnings for ground operations. The Spaceflight Meteorology Group at the Johnson Space Center in Houston, TX also uses these data when issuing forecasts for shuttle landings at the KSC Shuttle Landing Facility. Systematic biases in these parameters at any of the towers could adversely affect an analysis, forecast, or verification for all of these operations. In addition, substantial geographical variations in temperature and wind speed can occur under specific wind directions. Therefore, the Applied Meteorology Unit (AMU), operated by ENSCO Inc., was tasked to develop a monthly and hourly climatology of temperatures and winds from the tower network, and identify the geographical variation, tower biases, and the magnitude of those biases. This paper presents a sub-set of results from a nine-year climatology of the KSC/CCAFS tower network, highlighting the geographical variations based on location, month, times of day, and specific wind direction regime. Section 2 provides a description of the tower mesonetwork and instrumentation characteristics. Section 3 presents the methodology used to construct the tower climatology including QC methods and data processing. The results of the tower climatology are presented in Section 4 and Section 5 summarizes the paper.

  4. Uncertainty in Climatology-Based Estimates of Soil Water Infiltration Losses

    Science.gov (United States)

    Local climatology is often used to estimate infiltration losses at the field scale. The objective of this work was to assess the uncertainty associated with such estimates. We computed infiltration losses from the water budget of a soil layer from monitoring data on water flux values at the soil su...

  5. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete;

    2015-01-01

    The offshore wind climatology in the Northern European seas is analysed from ten years of Envisat synthetic aperture radar (SAR) images using a total of 9256 scenes, ten years of QuikSCAT and two years of ASCAT gridded ocean surface vector wind products and high-quality wind observations from four...

  6. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Li, Z.; Yu, W.; Li, T.; Murty, V.S.N.; Fredolin, T.

    for cyclogenesis is in different ocean basins. This motivates us to examine the caps of background vertical wind shear in the four basins. Fig. 4 shows the climatologic mean annual cycle of the vertical shear, together with the scattering diagrams of all...

  7. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  8. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  9. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  10. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    Science.gov (United States)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  11. Flux Footprint Climatology Estimated by Three Analytical Models over a Subtropical Coniferous Plantation in Southeast China

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Spatial heterogeneity poses a major challenge for the appropriate interpretation of eddy covariance data. The quantification of footprint climatology is fundamental to improving our understanding of carbon budgets, assessing the quality of eddy covariance data, and upscaling the representativeness of a tower fl ux to regional or global scales. In this study, we elucidated the seasonal variation of fl ux footprint climatologies and the major factors that infl uence them using the analytical FSAM (Flux Source Area Model), KM (Kormann and Meixner, 2001), and H (Hsieh et al., 2000) models based on eddy covariance measurements at two and three times the canopy height at the Qianyanzhou site of ChinaFLUX in 2003. The diff erences in footprints among the three models resulted from diff erent underlying theories used to construct the models. A comparison demonstrated that atmospheric stability was the main factor leading to diff erences among the three models. In neutral and stable conditions, the KM and FSAM values agreed with each other, but they were both lower than the H values. In unstable conditions, the agreement among the three models for rough surfaces was better than that for smooth surfaces, and the models showed greater agreement for a low measurement height than for a high measurement height. The seasonal fl ux footprint climatologies were asymmetrically distributed around the tower and corresponded well to the prevailing wind direction, which was north-northwest in winter and south-southeast in summer. The average sizes of the 90% fl ux footprint climatologies were 0.36–0.74 and 1.5–3.2 km2 at altitudes of two and three times the canopy height, respectively. The average sizes were ranked by season as follows: spring > summer > winter >autumn. The footprint climatology depended more on atmospheric stability on daily scale than on seasonal scale, and it increased with the increasing standard deviation of the lateral wind fl uctuations.

  12. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    Science.gov (United States)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-06-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE. The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster's spatial domain and used to estimate climatological values of key optical and microphysical parameters. The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  13. Climatological Analysis of the Exclusive Economic Zone of Mexico Based on 10 Years of Satellite Imagery

    Science.gov (United States)

    Gonzalez Rodriguez, E.; Trasviña-Castro, A.; Aguirre Bahena, F.

    2013-05-01

    To visualize the variability of inorganic carbon in the waters of the Exclusive Economic Zone of Mexico we analysed over 10 years of monthly data 4-km resolution from the MODIS-AQUA satellite. This sensor provides various types of information and for this discussion we selected particulate organic carbon, sea surface temperature and euphotic zone depth. We constructed climatological maps for each month of the year to show the average, maximum, minimum and standard deviation of the three variables. The result of the average particulate organic carbon climatology indicates that the main areas of inorganic carbon production (> 200 mg m3) are the Gulf of California, the west coast of the peninsula of Baja California, the coast of Colima, the Gulf of Tehuantepec and in the Gulf of Mexico the coasts of Yucatan, Tabasco and Tamaulipas. The months presenting higher production occur between December and April. In comparison, lowest climatological mean sea surface temperature (below 14 oC) occurs on the west coast of the Baja California peninsula and it is observed associated with the highest mean particulate organic carbon (>250 mg m-3). Climatological mean sea surface temperature on the coast of Colima, Yucatan, Tabasco and Tamaulipas are about 25 °C and coincide with high values of particulate organic carbon (> 200 mg m-3). The climatological mean euphotic zone depth show lowest values (zone. The oceanic region shows maximum values for both sea surface temperatures and depth of the euphotic zone as is to be expected in oligotrophic regions of the sea. Anomalies for all three variables will also shown to discuss the interannual variability of this 10-years period of study.

  14. Climatology of middle atmospheric water vapour above the ALOMAR observatory in northern Norway

    Directory of Open Access Journals (Sweden)

    K. Hallgren

    2012-12-01

    Full Text Available We have been observing the water vapour line at 22.235 GHz above ALOMAR in northern Norway (69° N, 16° E since early 1996 with ground-based microwave spectrometers (WASPAM and cWASPAM and will here describe a climatology based on these observations. Maintenance, different spectrometers and upgrades of the hardware have slightly changed the instruments. Therefore great care has been taken to make sure the different datasets are compatible with each other. In order to maximise the sensitivity at high altitude for the older instrument a long integration time (168 h was chosen. The complete dataset was thereafter recompiled into a climatology which describes the yearly variation of water vapour at polar latitudes on a weekly basis. The atmosphere is divided into 16 layers between 40–80 km, each 2.5 km thick. The dataset, spanning 15 yr from 1996 to 2010, enabled us to investigate the long-term behaviour of water vapour at these latitudes. By comparing the measurements from every year to the climatological mean we were also able to look for indications of trends in the dataset at different altitudes during the time period of our observations. In general there is a weak negative trend which differs slightly at different altitudes. There are however no drifts in the annual variation of water vapour from the point of view of onset of summer and winter. We compare our climatology to the reference water vapour profiles from AFGL, a free and easy accessible reference atmosphere. There are strong deviations between our observations and the reference profile, therefore we publish our climatological dataset in a table in the paper.

  15. A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2

    Science.gov (United States)

    Lauvset, Siv K.; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; Jutterström, Sara; Steinfeldt, Reiner; Jeansson, Emil; Ishii, Masao; Perez, Fiz F.; Suzuki, Toru; Watelet, Sylvain

    2016-08-01

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972-2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; http://dx.doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2" target="_blank">doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).

  16. Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model

    Directory of Open Access Journals (Sweden)

    B. Scherllin-Pirscher

    2011-05-01

    Full Text Available Due to the measurement principle of the radio occultation (RO technique, RO data are highly suitable for climate studies. Single RO profiles can be used to build climatological fields of different atmospheric parameters like bending angle, refractivity, density, pressure, geopotential height, and temperature. RO climatologies are affected by random (statistical errors, sampling errors, and systematic errors, yielding a total climatological error. Based on empirical error estimates, we provide a simple analytical error model for these error components, which accounts for vertical, latitudinal, and seasonal variations. The vertical structure of each error component is modeled constant around the tropopause region. Above this region the error increases exponentially, below the increase follows an inverse height power-law. The statistical error strongly depends on the number of measurements. It is found to be the smallest error component for monthly mean 10° zonal mean climatologies with more than 600 measurements per bin. Due to smallest atmospheric variability, the sampling error is found to be smallest at low latitudes equatorwards of 40°. Beyond 40°, this error increases roughly linearly, with a stronger increase in hemispheric winter than in hemispheric summer. The sampling error model accounts for this hemispheric asymmetry. However, we recommend to subtract the sampling error when using RO climatologies for climate research since the residual sampling error remaining after such subtraction is estimated to be 50 % of the sampling error for bending angle and 30 % or less for the other atmospheric parameters. The systematic error accounts for potential residual biases in the measurements as well as in the retrieval process and generally dominates the total climatological error. Overall the total error in monthly means is estimated to be smaller than 0.07 % in refractivity and 0.15 K in temperature at low to mid latitudes, increasing towards

  17. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    Science.gov (United States)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  18. Toward the climatological study of polar lows over the Japan Sea

    Science.gov (United States)

    Yanase, Wataru

    2014-05-01

    Satellite imagery shows that meso-alpha-scale polar lows develop over the Japan Sea during cold air outbreaks in winter, which usually occur to the west of synoptic-scale extratropical cyclones. To understand the climatology of polar lows over the Japan Sea, we use satellite imagery and a reanalysis dataset. We used nephanalysis charts of the Japan Meteorological Agency, which shows 3-hourly locations of lower-tropospheric meso-scale vortices. For 6 winter seasons (Dec. 1997 - Feb. 2003), 81 polar low candidates are detected over the Japan Sea. We will show the geographical distribution and some remarkable polar low cases. We also examine whether the Japanese 55-year reanalysis (JRA-55) is useful for the climatological study of polar lows. The sea level pressure field of JRA-55 represents signals of intense polar lows. The spatial filter for meso-scale cyclones and tracking algorithm of Hodges (1995) successfully detected intense polar lows over the Japan Sea.

  19. The International Satellite Cloud Climatology Project (ISCCP) - The first project of the World Climate Research Programme

    Science.gov (United States)

    Schiffer, R. A.; Rossow, W. B.

    1983-01-01

    The first project of the World Climate Research Program is the International Satellite Cloud Climatology Project, (ISCCP) whose objective is the collection and analysis of satellite radiance data in order to infer the global distribution of cloud radiative properties and improve the modeling of cloud effects on climate. The operational component of ISCCP takes advantage of the global coverage provided by the current and planned international array of geostationary and polar-orbiting meteorological satellites in the 1980s. It will produce a five-year global radiance and cloud data set. The research component of ISCCP will coordinate studies to validate climatology, improve cloud analysis algorithms, improve cloud effects modelling, and investigate the role of clouds in the atmospheric radiation budget and hydrologic cycle.

  20. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data

    Science.gov (United States)

    Smirnova, Julia E.; Golubkin, Pavel A.; Bobylev, Leonid P.; Zabolotskikh, Elizaveta V.; Chapron, Bertrand

    2015-07-01

    A new climatology of polar lows over the Nordic and Barents seas for 14 seasons (1995/1996-2008/2009) is presented. For the first time in climatological studies of polar lows an approach based on satellite passive microwave data was adopted for polar low identification. A total of 637 polar lows were found in 14 extended winter seasons by combining total atmospheric water vapor content and sea surface wind speed fields retrieved from Special Sensor Microwave/Imager data. As derived, the polar low activity in the Norwegian and Barents Seas is found to be almost equal, and the main polar low genesis area is located northeastward of the North Cape. For the Barents Sea, a significant correlation is found between the number of polar lows and mean sea ice extent. Individual indicative polar low characteristics (i.e., diameter, lifetime, distance traveled, translation speed, and maximum wind speed) are also presented.

  1. Quality Control of ARGO Data Based on Climatological T-S Models

    Institute of Scientific and Technical Information of China (English)

    纪风颖; 林绍花

    2004-01-01

    By implementing the ARGO program, a large number of T-S profiles can be observed in the world ocean. However, it is very difficult to examine changes of the sensitivity of the sensors equipped at the ARGO floats, because it is difficult to understand their condition in the sea and the reliability of the data. Quality control must be done in order to avoid the wrong conclusion deduced from the wrong data.One of the realistic methods for quality control of the ARGO data is the comparison with the local climatology. High quality climatological T-S models in northwest Pacific have been built based on the Nansen bottle data and CTD data for the quality control in NMDIS. The models are used to check the ARGO data in this area and have got good result.

  2. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  3. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    Science.gov (United States)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  4. Sound speed in the Mediterranean Sea: an analysis from a climatological data set

    OpenAIRE

    S. Salon; A. Crise; P. Picco; Marinis, E; O. Gasparini

    2003-01-01

    This paper presents an analysis of sound speed distribution in the Mediterranean Sea based on climatological temperature and salinity data. In the upper layers, propagation is characterised by upward refraction in winter and an acoustic channel in summer. The seasonal cycle of the Mediterranean and the presence of gyres and fronts create a wide range of spatial and temporal variabilities, with relevant differences between the western and eastern basins. It is shown tha...

  5. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  6. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    OpenAIRE

    Liu, G; Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; J. J. Jin; O. Moeni; Liu, X.; C. E. Sioris

    2013-01-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other loc...

  7. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    Directory of Open Access Journals (Sweden)

    G. Liu

    2013-05-01

    Full Text Available A global three-dimensional (i.e. latitude, longitude, altitude climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.

  8. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    Science.gov (United States)

    Liu, G.; Liu, J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeini, O.; Liu, X.; Sioris, C. E.; Osman, M.

    2013-11-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal and annual averages can provide a global view of tropospheric ozone changes, although uncertainties with regard to the performance of older sonde types, as well as more recent variations in operating procedures, need to be taken into account.

  9. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    OpenAIRE

    Liu, G; Liu, J; Tarasick, D. W.; Fioletov, V. E.; J. J. Jin; Moeini, O.; Liu, X.; C. E. Sioris; Osman, M

    2013-01-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations,...

  10. Estimating local records for Northern and Central Italy from a sparse secular temperature network and from 1961–1990 climatologies

    Directory of Open Access Journals (Sweden)

    M. Brunetti

    2009-04-01

    Full Text Available The paper presents monthly 30-arc-second-resolution Northern and Central Italy temperature climatologies and discusses the procedure we adopt to superimpose the information of temperature secular records onto these climatologies. The climatologies are obtained by means of a step-wise linear regression method which aims at determining the temperature dependence on geographical and morphological variables. Such a method is applied to a database of about 800 monthly 1961–1990 temperature normals. In the first regression (temperature vs. elevation the recorded data are considered; the further regressions concern the residuals obtained after taking into account the effect of each variable, in order of importance. An estimated secular anomaly record can be obtained for each point of the climatology grid by means of a distance-weighted average of the temperature anomaly records of the stations surrounding the grid point.

  11. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    Science.gov (United States)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  12. Sound speed in the Mediterranean Sea: an analysis from a climatological data set

    Directory of Open Access Journals (Sweden)

    S. Salon

    Full Text Available This paper presents an analysis of sound speed distribution in the Mediterranean Sea based on climatological temperature and salinity data. In the upper layers, propagation is characterised by upward refraction in winter and an acoustic channel in summer. The seasonal cycle of the Mediterranean and the presence of gyres and fronts create a wide range of spatial and temporal variabilities, with relevant differences between the western and eastern basins. It is shown that the analysis of a climatological data set can help in defining regions suitable for successful monitoring by means of acoustic tomography. Empirical Orthogonal Functions (EOF decomposition on the profiles, performed on the seasonal cycle for some selected areas, demonstrates that two modes account for more than 98% of the variability of the climatological distribution. Reduced order EOF analysis is able to correctly represent sound speed profiles within each zone, thus providing the a priori knowledge for Matched Field Tomography. It is also demonstrated that salinity can affect the tomographic inversion, creating a higher degree of complexity than in the open oceans.

    Key words. Oceanography: general (marginal and semi-enclosed seas; ocean acoustics

  13. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2006-01-01

    Full Text Available IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC of World Meteorological Organisation (WMO Regional Association I (Africa. The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe, organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  14. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    Science.gov (United States)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  15. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  16. Joint statistical correction of clutters, spokes and beam height for a radar derived precipitation climatology in southern Germany

    OpenAIRE

    Wagner, A; Seltmann, J.; Kunstmann, H.

    2012-01-01

    First results of radar derived climatology have emerged over the last years, as datasets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as continuous storage of radar data was often not achieved before. This kind of climatology demands a high level of data quality. Small deviations or minor systematic under- or overestimations in single radar images become a major cause of error in statistical analysis. Extensive correc...

  17. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    OpenAIRE

    V. Pappas; N. Hatzianastassiou; C. Papadimas; Matsoukas, C.; Kinne, S.; Vardavas, I.

    2013-01-01

    The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (MODerate resolution Imaging Spectroradiometer, Collection 5, 2000–2007) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization, Level 2-Version 3, 2006–2011) retrievals. The HAC aerosol optical depth (AOD) values are larger than MODIS in heavy aerosol load conditions (over land) and lower over oceans. Agreement between HAC and MODIS is better over land and for low AOD. Hemispherica...

  18. 30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies

    Science.gov (United States)

    de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.

    2013-12-01

    The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be

  19. Dynamic Adjustment of Climatological Ozone Boundary Conditions for Air-Quality Forecasts

    Directory of Open Access Journals (Sweden)

    P. A. Makar

    2010-06-01

    Full Text Available Ten different approaches for applying lateral and top climatological boundary conditions for ozone have been evaluated using the off-line regional air-quality model AURAMS. All ten approaches employ the same climatological ozone profiles, but differ in the manner in which they are applied, via the inclusion or exclusion of (i a dynamic adjustment of the climatological ozone profile in response to the model-predicted tropopause height, (ii a sponge zone for ozone on the model top, (iii upward extrapolation of the climatological ozone profile, and (iv different mass consistency corrections. The model performance for each approach was evaluated against North American surface ozone and ozonesonde observations from the BAQS-Met field study period in the summer of 2007. The original daily one-hour maximum surface ozone biases of about +15 ppbv were greatly reduced (halved in some simulations using alternative methodologies. However, comparisons to ozonesonde observations showed that the reduction in surface ozone bias sometimes came at the cost of significant positive biases in ozone concentrations in the free troposphere and upper troposphere. The best overall performance throughout the troposphere was achieved using a methodology that included dynamic tropopause height adjustment, no sponge zone at the model top, extrapolation of ozone when required above the limit of the climatology, and no mass consistency corrections (global mass conservation was still enforced. The simulation using this model version had a one-hour daily maximum surface ozone bias of +8.6 ppbv, with small reductions in model correlation, and the best comparison to ozonesonde profiles. This recommended and original methodologies were compared for two further case studies: a high-resolution simulation of the BAQS-Met measurement intensive, and a study of the downwind region of the Canadian Rockies. Significant improvements were noted for the high resolution simulations during the

  20. Tropopause referenced ozone climatology and inter-annual variability (1994–2003 from the MOZAIC programme

    Directory of Open Access Journals (Sweden)

    Thouret

    2006-01-01

    Full Text Available The MOZAIC programme collects ozone and water vapour data using automatic equipment installed on board five long-range Airbus A340 aircraft flying regularly all over the world since August 1994. Those measurements made between September 1994 and August 1996 allowed the first accurate ozone climatology at 9–12 km altitude to be generated. The seasonal variability of the tropopause height has always provided a problem when constructing climatologies in this region. To remove any signal from the seasonal and synoptic scale variability in tropopause height we have chosen in this further study of these and subsequent data to reference our climatology to the altitude of the tropopause. We define the tropopause as a mixing zone 30 hPa thick across the 2 pvu potential vorticity surface. A new ozone climatology is now available for levels characteristic of the upper troposphere (UT and the lower stratosphere (LS regardless of the seasonal variations of the tropopause over the period 1994–2003. Moreover, this new presentation has allowed an estimation of the monthly mean climatological ozone concentration at the tropopause showing a sine seasonal variation with a maximum in May (120 ppbv and a minimum in November (65 ppbv. Besides, we present a first assessment of the inter-annual variability of ozone in this particular critical region. The overall increase in the UTLS is about 1%/yr for the 9 years sampled. However, enhanced concentrations about 10–15 % higher than the other years were recorded in 1998 and 1999 in both the UT and the LS. This so-called '1998–1999 anomaly' may be attributed to a combination of different processes involving large scale modes of atmospheric variability, circulation features and local or global pollution, but the most dominant one seems to involve the variability of the North Atlantic Oscillation (NAO as we find a strong positive correlation (above 0.60 between ozone recorded in the upper troposphere and the NAO

  1. Building a flood climatology and rethinking flood risk at continental scales

    Science.gov (United States)

    Andreadis, Konstantinos; Schumann, Guy; Stampoulis, Dimitrios; Smith, Andrew; Neal, Jeffrey; Bates, Paul; Sampson, Christopher; Brakenridge, Robert; Kettner, Albert

    2016-04-01

    Floods are one of the costliest natural disasters and the ability to understand their characteristics and their interactions with population, land cover and climate changes is of paramount importance. In order to accurately reproduce flood characteristics such as water inundation and heights both in the river channels and floodplains, hydrodynamic models are required. Most of these models operate at very high resolutions and are computationally very expensive, making their application over large areas very difficult. However, a need exists for such models to be applied at regional to global scales so that the effects of climate change with regards to flood risk can be examined. We use the a modeling framework that includes the VIC hydrologic and the LISFLOOD-FP hydrodynamic model to simulate a 40-year history of flood characteristics at the continental scale, particularly Australia. In order to extend the simulated flood climatology to 50-100 years in a consistent manner, reanalysis datasets have to be used as meteorological forcings to the models. The objective of this study is the evaluation of multiple atmospheric reanalysis datasets (ERA, NCEP, MERRA, JRA) as inputs to the VIC/LISFLOOD-FP model. Comparisons of the simulated flood characteristics are made with both satellite observations of inundation and a benchmark simulation of LISFLOOD-FP being forced by observed flows. The implications of having a climatology of flood characteristics are discussed, and in particular We found the magnitude and timing of floodplain water storage to significantly differ from streamflow in terms of their distribution. Furthermore, floodplain volume gave a much sharper discrimination of high hazard and low hazard periods than discharge, and using the latter can lead to significant overestimation. These results demonstrate that global streamflow statistics or precipitation should not be used to infer flood hazard and risk, but instead a flood inundation climatology is necessary.

  2. Constraining the climatology of CO2 ocean surface flux for North Atlantic and the Arctic

    Science.gov (United States)

    Wróbel, Iwona; Piskozub, Jacek

    2015-04-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, constraining the net flux into the ocean sink is crucial for understanding the global carbon cycle. The air-sea interface flux is calculated from millions of measurements of CO2 partial pressures. However the regional and temporal means depend on parametrization of gas transfer velocity as well as on the wind/waves fields used for calculations. A recently developed tool, FluxEngine, created within the ESA funded (SOLAS related) OceanFlux Greenhouse Gases project, creates an opportunity to create an ensemble of regional CO2 flux climatologies for the North Atlantic and Arctic waters using multiple combinations of forcing fields and gas transfer velocity parameterizations. The aim of the study is to provide constraints on the regional monthly averages for the chosen area for the whole "climatology ensemble". This approach is similar to the one used by IPCC for the whole model ensemble used for modeling of the climate. Doing a regional study provides an additional test of the parameterizations because the local flux averages may differ even for parameterizations giving similar global averages. We present the methodology and CO2 flux climatology constrains for selected regions and seasons, the preliminary results of a study which aim is to cover the whole North Atlantic and ice-free areas of Arctic Ocean. The study is done within the new ESA funded OceanFlux Evolution project we are part of and at the same time is part of a PhD thesis funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science).

  3. Monthly Climatology of Thermospheric Zonal and Meridional Winds Obtained from a Kalman Filter Model

    Science.gov (United States)

    Scherliess, L.; Lomidze, L.

    2015-12-01

    Knowledge of the thermospheric neutral wind and its meridional and zonal components is critical for an improved understanding of the low- and mid-latitude F-region dynamics and morphology. To date, the reliable estimation of the wind and its components remains a challenge because of difficulties in both measurement and modeling. Previous methods that use ionospheric measurements to deduce winds provide their values only in the direction of the magnetic meridian. We will present the monthly climatology of the zonal and meridional components of thermospheric neutral wind at low and mid-latitudes obtained by a Kalman Filter technique. First, the climatology of the magnetic meridional wind is obtained by assimilating monthly maps of F-region ionosphere peak parameters (NmF2 and hmF2), obtained from COSMIC radio occultation data, into the Global Assimilation of Ionospheric Measurements Full Physics (GAIM-FP) model. The model provides the 3-D electron density throughout the ionosphere, together with the magnetic meridional wind. Next, the estimation of the global zonal and meridional wind components is performed using the newly developed Thermospheric Wind Assimilation Model (TWAM). TWAM combines magnetic meridional wind data obtained from GAIM-FP with a physics-based 3-D thermospheric neutral wind model using an implicit Kalman Filter technique. The ionospheric drag and ion diffusion velocities, needed for the wind calculation, are also taken from the GAIM-FP model. We present the monthly climatology of our wind estimation and compare individual horizontal wind components to their corresponding empirical model values and to measurements made by interferometers.

  4. Climatology and trends of summer high temperature days in India during 1969–2013

    Indian Academy of Sciences (India)

    A K Jaswal; P C S Rao; Virendra Singh

    2015-02-01

    Based on the daily maximum air temperature data from 176 stations in India from 1969 to 2013, the climatological distribution of the number of days with high temperature (HT) defined as days with maximum temperature higher than 37°C during summer season (March–June) are studied. With a focus on the regional variability and long-term trends, the impacts of HT days are examined by dividing the country into six geographical regions (North, West, North-central, East, South-central and South). Although the long-term (1969–2013) climatological numbers of HT days display well-defined spatial patterns, there is clear change in climatological mean and coefficient of variation of HT days in a recent period (1991–2013). The long period trends indicate increase in summer HT days by 3%, 5%, and 18% in north, west, and south regions, respectively and decrease by 4% and 9% in north-central and east regions respectively. However, spatial variations in HT days exist across different regions in the country. The data analysis shows that 2010 was the warmest summer year and 2013 was the coolest summer year in India. Comparison of spatial distributions of trends in HT days for 1969–1990 and 1991–2013 periods reveal that there is an abrupt increase in the number of HT days over north, west and north-central regions of India probably from mid 1990s. A steep increase in summer HT days in highly populated cities of Mumbai, New Delhi, Chennai, Jaipur, and Visakhapatnam is noticed during the recent period of 1991–2013. The summer HT days over southern India indicate significant positive correlation with Nino 3.4 index for three months’ running mean (December–January–February, January–March, February–April, March–May and April–June).

  5. The Martian Dust Chronicle: Eight Years of Reconstructed Climatology from Spacecraft Observations

    Science.gov (United States)

    Montabone, Luca; Forget, François; Millour, Ehouarn; Wilson, R. John; Lewis, Stephen R.; Kass, David; Kleinboehl, Armin; Lemmon, Mark T.; Smith, Michael D.; Wolff, Mike J.

    2014-05-01

    We have reconstructed the climatology of airborne dust from Martian years (MY) 24 to 31 using multiple datasets of retrieved or estimated column optical depth. The datasets are based on observations of the Martian atmosphere from March 1999 to July 2013 by different orbiting instruments: the Thermal Emission Spectrometer (TES) on board Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) on board Mars Odyssey, and the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists in gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates weighted averages on a regular but likely incomplete spatial grid, using an iterative procedure with weights in space, time, and retrieval uncertainty. The derived product consists of daily synoptic gridded maps of CDOD at a resolution of 6 degree longitude x 3 degree latitude for MY 24-26, and 6 degree longitude x 5 degree latitude for MY 27-31. We have statistically analyzed the gridded maps to present an overview of the dust climatology on Mars over eight years, specifically in relation to its intraseasonal and interannual variability. Finally, we have produced complete daily maps of CDOD by spatially interpolating the available incomplete gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and should be useful for many other applications. The maps for the eight available Martian years are publicly available and distributed with open access, under Creative Commons Attribution-ShareAlike 3.0 Unported License. The current version and future updates can be downloaded from the MCD website at the Laboratoire de Meteorologie Dynamique: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/

  6. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer dataset

    Directory of Open Access Journals (Sweden)

    A. Jones

    2011-11-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry Climate Model validation activity. The ACE-FTS climatological dataset is available through the ACE website.

  7. Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2012-08-01

    Full Text Available An ozone climatology based on ozonesonde measurements taken over the last 17 yr has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 42 stations around the globe have been compiled for the period 1995–2011, in pressure and tropopause-referenced altitudes. For each profile, the mean, standard deviation, median, the half-width are provided, as well as information about interannual variability. Regional aggregates are formed in combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to identify stations that describe similar shapes of ozone probability distribution functions (PDFs. In this way, 12 regions were selected covering at least 2 stations and the variability among those stations is discussed. Significant variability with longitude of ozone distributions in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The representativeness of regional aggregates is discussed for high northern latitudes, Western Europe, Eastern US, and Japan, using independent observations from surface stations and MOZAIC aircraft data. Good agreement exists between ozonesondes and aircraft observations in the mid-troposphere and between ozonesondes and surface observations for Western Europe. For Eastern US and high northern latitudes, surface ozone values from ozonesondes are biased 10 ppb high compared to independent measurements. An application of the climatology is presented using the NCAR CAM-Chem model. The climatology allows evaluation of the model performance regarding ozone averages, seasonality, interannual variability, and the shape of ozone distributions. The new assessment of the key features of ozone distributions gives deeper insights into the performance of models.

  8. Global climatology of surface water temperatures of large lakes by remote sensing

    OpenAIRE

    Layden, Aisling; Merchant, Christopher; MacCallum, Stuart

    2015-01-01

    Lake surface water temperatures (LSWTs) of 246 globally distributed large lakes were derived from Along-Track Scanning Radiometers (ATSR) for the period 1991–2011. The climatological cycles of mean LSWT derived from these data quantify on a global scale the responses of large lakes' surface temperatures to the annual cycle of forcing by solar radiation and the ambient meteorological conditions. LSWT cycles reflect the twice annual peak in net solar radiation for lakes between 1°S to 12°N. For...

  9. Statistical examination of climatological data relevant to global temperature variation. Progress report, July 1991--January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gray, H.L.; Gunst, R.F.; Woodward, W.A.

    1992-01-01

    The research group at Southern Methodist University has been involved in the examination of climatological data as specified in the proposal. Our efforts have resulted in three papers which have been submitted to scholarly journals, as well as several other projects which should be completed either during the next six months or next year. In the following, we discuss our results to date along with projected progress within the next six months. Major topics discussed in this progress report include: testing for trend in the global temperature data; (2) defining and estimating mean global temperature change; and, (3) the effect of initial conditions on autoregressive models for global temperature data.

  10. A global climatology of stratospheric OClO derived from GOMOS measurement

    Directory of Open Access Journals (Sweden)

    C. Tétard

    2013-04-01

    Full Text Available The Global Ozone Monitoring by Occultation of Stars (GOMOS instrument on board the European platform ENVISAT was dedicated to the study of the atmosphere of the Earth using the stellar occultation technique. The spectral range of the GOMOS spectrometer extends from the UV to the near infrared, allowing for the retrieval of species such as O3, NO2, NO3, H2O, O2, air density, aerosol extinction and OClO. Nevertheless, OClO can not be retrieved using a single GOMOS measurement because of the weak signal-to-noise ratio and the small optical thickness associated with this molecule. We present here the method used to detect this molecule by using several GOMOS measurements. It is based on a two-step approach. First, several co-located measurements are combined in a statistical way to build an averaged measurement with a higher signal-to-noise ratio. Then, a Differential Optical Absorption Spectroscopy (DOAS method is applied to retrieve OClO slant column densities. The statistics of the sets of GOMOS measurements used to build the averaged measurement and the spectral window selection are analyzed. The obtained retrievals are compared to results from two balloon-borne instruments. It appears that the inter-comparisons of OClO are generally satisfying. Then, two nighttime climatologies of OClO slant column densities based on GOMOS averaged measurements are presented. The first depicts annual global pictures of OClO from 2003 to 2011. From this climatology, the presence of an OClO layer in the equatorial region at about 35 km is confirmed and strong concentrations of OClO in both polar regions are observed, a sign of chlorine activation. The second climatology is a monthly time series. It clearly shows the chlorine activation of the lower stratosphere during winter. Moreover the equatorial OClO layer is observed during all the years without any significant variations. Finally, the anti-correlation between OClO and NO2 is highlighted. This very promising

  11. A 2003 stratospheric aerosol extinction and PSC climatology from GOMOS measurements on Envisat

    Directory of Open Access Journals (Sweden)

    F. Vanhellemont

    2005-02-01

    Full Text Available Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic 5 and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present an aerosol/PSC climatology that was constructed from this data set, together with a discussion of the results.

  12. An updated analysis of the Lucas Heights Climatology - 1975 to 1996

    International Nuclear Information System (INIS)

    Meteorological data collected from 1975 to 1996 in the Lucas Heights region have been summarised to provide an update on the climatology. Initially data were recorded in analogue form but since 1991 advanced digital recording systems have allowed more accurate and extensive statistics to be analysed. Since 1993 a network of meteorological stations has been installed through the surrounding area to investigate the influence of complex terrain on wind flow and atmospheric dispersion patterns. A large data volumes is presented together with some initial interpretation of these complex terrain influences on the Lucas Heights region climatolology

  13. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    Science.gov (United States)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  14. Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements

    Science.gov (United States)

    Mehta, Amita V.; Yang, Song

    2008-01-01

    Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

  15. A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments

    Science.gov (United States)

    Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte

    2016-03-01

    Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°×1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32±5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. The results are publically accessible via

  16. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  17. Reference Solar Radiation Year and Some Climatology Aspects of East Coast of West Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul M. Muzathik

    2010-01-01

    Full Text Available Problem statement: This study examined in detail some aspects of radiation climatology for Terengganu state in Malaysia. The geographical co-ordinates of the site are 5°10’N latitude 103°06’E longitude and 5.2 m altitude. Approach: The data used in the present study were taken from a recording data station installed at site by the Malaysian Meteorology Department (2004. In addition to this, wind speed, solar radiation and air temperature data taken from University Malaysia Terengganu Renewable Energy Station were also analyzed. The averaged solar radiation year for Terengganu is generated from mid-term daily global solar radiation data. The averaged data of the daily global solar radiation for the locations considered are presented in a tabular form for a complete year. Results: The highest daily and monthly mean global solar irradiation values were 7560 and 6566 Wh m-2 day-1, respectively. The highest hourly average solar irradiance intensity was 1139 W m-2 during this study period. Yearly average daily solar energy was 18.92 MJ m-2 day-1. Besides the global solar radiation, the clearness indexes, wind speed and air temperature variation are discussed. Conclusion/Recommendations: The results in this study will fill the gap that complete and detailed reference solar radiation and climatologically data, which are not available for Terengganu state of Malaysia and will be useful to the designers of solar energy conversion and utilization devices.

  18. Evaluation of East Asian Climatology as Simulated by Seven Coupled Models

    Institute of Scientific and Technical Information of China (English)

    JIANG Dabang; WANG Huijun; LANG Xianmei

    2005-01-01

    Using observation and reanalysis data throughout 1961-1990, the East Asian surface air temperature,precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely CCSR/NIES, CGCM2, CSIRO-Mk2, ECHAM4/OPYC3, GFDL-R30, HadCM3, and NCARPCM, are systematically evaluated in this study. It is indicated that the above models can successfully reproduce the annual and seasonal surface air temperature and precipitation climatology in East Asia, with relatively good performance for boreal autumn and annual mean. The models' ability to simulate surface air temperature is more reliable than precipitation. In addition, the models can dependably capture the geographical distribution pattern of annual, boreal winter, spring and autumn sea level pressure in East Asia. In contrast, relatively large simulation errors are displayed when simulated boreal summer sea level pressure is compared with reanalysis data in East Asia. It is revealed that the simulation errors for surface air temperature, precipitation and sea level pressure are generally large over and around the Tibetan Plateau. No individual model is best in every aspect. As a whole, the ECHAM4/OPYC3 and HadCM3 performances are much better, whereas the CGCM2 is relatively poorer in East Asia. Additionally, the seven-model ensemble mean usually shows a relatively high reliability.

  19. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  20. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    Science.gov (United States)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  1. Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere——A Climatological Analysis

    Institute of Scientific and Technical Information of China (English)

    Olivia MARTIUS; Cornelia SCHWIERZ; Michael SPRENGER

    2008-01-01

    This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemi sphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year clima tology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause. A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia. The paper also describes links between the frequency of PV streamers in the extra-tropical and sub tropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.

  2. Exploratory study on the influence of climatological parameters on Mycoplasma hyopneumoniae infection dynamics

    Science.gov (United States)

    Segalés, Joaquim; Valero, Oliver; Espinal, Anna; López-Soria, Sergio; Nofrarías, Miquel; Calsamiglia, Maria; Sibila, Marina

    2012-11-01

    The objective of the present work was to elucidate the potential relationship between Mycoplasma hyopneumoniae infection and seroconversion dynamics and climatological conditions in four groups of pigs from the same farm born in different seasons of the year. Nasal swabs and blood samples were taken from 184 pigs at 1, 3, 6, 9, 12, 15, 18, 22 and 25 (slaughter age) weeks of age. Outside climatologic parameters, including temperature (°C), relative humidity (%), precipitation (l/m2) and wind speed (m/s) were recorded weekly from January 2003 to June 2004. Percentage of nPCR detection of M. hyopneumoniae in nasal swabs was associated significantly with the weekly precipitation rate [ P = 0.0018, OR = 1.31 (IC = 1.11-1.55)]; the higher the precipitation rate, the higher the probability of being M. hyopneumoniae nPCR-positive. On the other hand, the percentage of seropositive pigs had a significant association with mean weekly temperature rate [ P = 0.0012, OR = 0.89 [IC = 0.84-0.95]); the lower the temperature, the higher the probability of being M. hyopneumoniae seropositive. Animals born in autumn (when higher precipitations rates were recorded), entering finishing units in winter (when lower temperatures were recorded), and reaching slaughter in spring, had the highest probability of being infected by M. hyopneumoniae and the highest probability of being M. hyopneumoniae seropositive.

  3. Objective identification of multiple large fire climatologies: an application to a Mediterranean ecosystem

    Science.gov (United States)

    Ruffault, J.; Moron, V.; Trigo, R. M.; Curt, T.

    2016-07-01

    There is growing evidence that the climatic conditions favorable to the occurrence of large fires (LFs) might not be unique within a homogeneous biogeographic area. But the identification of these coexistent multi-scalar climatologies often relies on empirical observations. Here we classify summer LFs (>120 ha) in Mediterranean France for the period 1973 to 2012, according to their local-scale weather conditions (i.e. temperature, relative humidity, wind speed and fuel moisture proxies). Three distinct climatologies were identified, and were referred as fire weather types (FWTs). (i) One of them is associated with near-normal atmospheric conditions. (ii) A heat-driven (HD) type is mostly discriminated by warm anomalies. (iii) A wind-driven (WD) type is mostly discriminated by faster winds, but cooler anomalies than usual. The frequency of WD and near-normal LFs sharply decreased in southern France over the last decades while the frequency of HD fires remained unchanged. In addition the current increase in HD potential fire days indicates a potential shift in the dominant FWT for this region. This approach offers a better understanding of the variations in fire activity and fire spread patterns in the context of contemporaneous global changes.

  4. The New 20-Year Global Precipitation Climatology Project (GPCP) Merged Satellite and Rainguage Monthly Analysis

    Science.gov (United States)

    Adler, Robert; Huffman, George; Xie, Ping Ping; Rudolf, Bruno; Gruber, Arnold; Janowiak, John

    1999-01-01

    A new 20-year, monthly, globally complete precipitation analysis has been completed as part of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP). This Version 2 of the community generated data set is a result of combining the procedures and data sets as described. The global, monthly, 2.5x 2.5 degree latitude-longitude product utilizes precipitation estimates from low-orbit microwave sensors (SSM/1) and geosynchronous IR sensors and raingauge information over land. The low-orbit microwave estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. In the 1986-present period TOVS-based precipitation estimates are adjusted to GPCP fields and used in polar regions to produce globally-complete results. The extension back to 1979 utilizes the procedures of Xie and Arkin and their OLR Precipitation Index (OPI). The 20-year climatology of the Version 2 GPCP analysis indicates the expected features of a very strong Pacific Ocean ITCZ and SPCZ with maximum 20-year means approaching 10 mm/day. A similar strength maximum over land is evident over Borneo. Weaker maxima in the tropics occur in the Atlantic ITCZ and over South America and Africa. In mid-latitudes of the Northern Hemisphere the Western Pacific and Western Atlantic maxima have values of approximately 7 mm/day, while in the Southern Hemisphere the mid-latitude maxima are located southeast of Africa, in mid-Pacific as an extension of the SPCZ and southeast of South America. In terms of global totals the GPCP analysis shows 2.7 mm/day (3.0 mm/day over ocean; 2.1 mm/day over land), similar to the Jaeger climatology, but not other climatologies. Zonal averages peak at 6 mm/day at 7*N with mid-latitude peaks of about 3 mm/day at 40-45* latitude

  5. Diva software, a tool for European regional seas and Ocean climatologies production

    Science.gov (United States)

    Ouberdous, M.; Troupin, C.; Barth, A.; Alvera-Azcàrate, A.; Beckers, J.-M.

    2012-04-01

    Diva (Data-Interpolating Variational Analysis) is a software based on a method designed to perform data-gridding (or analysis) tasks, with the assets of taking into account the intrinsic nature of oceanographic data, i.e., the uncertainty on the in situ measurements and the anisotropy due to advection and irregular coastlines and topography. The Variational Inverse Method (VIM, Brasseur et al., 1996) implemented in Diva consists in minimizing a variational principle which accounts for the differences between the observations and the reconstructed field, the influence of the gradients and variability of the reconstructed field. The resolution of the numerical problem is based on finite-element method, which allows a great numerical efficiency and the consideration of complicated contours. Along with the analysis, Diva provides also error fields (Brankart and Brasseur, 1998; Rixen et al., 2000) based on the data coverage and noise. Diva is used for the production of climatologies in the pan-European network SeaDataNet. SeaDataNet is connecting the existing marine data centres of more than 30 countries and set up a data management infrastructure consisting of a standardized distributed system. The consortium has elaborated integrated products, using common procedures and methods. Among these, it uses the Diva software as reference tool for climatologies computation for various European regional seas, the Atlantic and the global ocean. During the first phase of the SeaDataNet project, a number of additional tools were developed to make easier the climatologies production for the users. Among these tools: the advection constraint during the field reconstruction through the specification of a velocity field on a regular grid, forcing the analysis to align with the velocity vectors; the Generalized Cross Validation for the determination of analysis parameters (signal-to-noise ratio); the creation of contours at selected depths; the detection of possible outliers; the

  6. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2011-03-01

    Full Text Available A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm. To date, a relatively coarse resolution (1° × 1° surface reflectance dataset from GOME (Global Ozone Monitoring Experiment Lambert-equivalent reflectivity (LER is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80 and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006 of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric

  7. A global drought climatology for the 3rd edition of the World Atlas of Desertification (WAD)

    Science.gov (United States)

    Spinoni, Jonathan; Carrao, Hugo; Naumann, Gustavo; Antofie, Tiberiu; Barbosa, Paulo; Vogt, Jürgen

    2013-04-01

    A new version of the World Atlas of Desertification (WAD) is being compiled in the framework of cooperation between the Joint Research Centre (JRC) of the European Commission and the United Nations Environment Programme (UNEP). This initiative aims at mapping the global land degradation and desertification, as well as introducing the reader with complex interactions of geo-physical, socio-economic, and political aspects that affect the environmental sustainability. Recurrent extreme events resulting from climate change, such as more severe droughts, combined with non-adapted land use practices can affect the resilience of ecosystems tipping them into a less productive state. Thus, to describe the effects of climatological hazards on land degradation and desertification processes, we computed a World drought climatology that will be part of the 3rd edition of the WAD and will replace and update to 2010 the results presented in the 2nd edition in 1997. This paper presents the methodology used to compute three parameters included in the WAD drought climatology, i.e. drought frequency, intensity and duration, and discusses their spatio-temporal patterns both at global and continental scales. Because drought is mainly driven and triggered by a rainfall deficit, we chose the Standardized Precipitation Index (SPI) as the drought indicator to estimate our climatological parameters. The SPI is a statistical precipitation-based drought indicator widely used in drought-related studies. We calculated the SPI on three different accumulation periods: 3 months (SPI-3), 6 months (SPI-6), and 12 months (SPI-12), in order to take into account meteorological, agricultural, and hydrological drought-related features. Each quantity has been calculated on a monthly basis using the baseline period between January 1951 and December 2010. As data input, we used the Full Data Reanalysis Version 6.0 (0.5˚x0.5˚) of gridded monthly precipitation provided by the Global Precipitation

  8. Quantifying uncertainty in precipitation climatology, twenty-first century change, and teleconnections in global climate models

    Science.gov (United States)

    Langenbrunner, Baird Grant

    The ability of global climate models (GCMs) to simulate climatological precipitation and other features of the hydrological cycle accurately is acceptable by some metrics, especially at large scales. Regionally, however, there can be substantial discrepancy in a multi-model ensemble, both in the annual or seasonal historical precipitation climatology as well as in end-of-century changes. Characterizing this intermodel spread and identifying leading uncertainty patterns and underlying physical pathways is important in constraining climatological biases and projections of future change. This dissertation looks at three aspects of precipitation uncertainty in ensembles. First, El Nino-Southern Oscillation (ENSO) teleconnections are analyzed in an atmosphere-only ensemble to gauge the ability of atmospheric components of GCMs to reproduce ENSO precipitation teleconnections. This serves as a test for how well models simulate the atmospheric response to sea surface temperature forcing in the immediate ENSO vicinity, as well as how accurately they reproduce the large-scale tropical-to-midlatitude dynamics leading to teleconnected precipitation. While individual models have difficulty in simulating the exact spatial pattern of teleconnections, they demonstrate skill in regional amplitude measures and sign agreement of the precipitation teleconnections at the grid point level, which lends value to the use of such measures in global warming projections. Next, objective spatial analysis techniques are applied to a fully-coupled GCM ensemble in order to visualize patterns of uncertainty in end-of-century precipitation changes and in the historical climatology. Global patterns are considered first, with the tropics exerting a clear dominance in intermodel spread, mainly within zones of deep convection or along convective margins. Regional domains are considered second, with a focus on the wintertime midlatitude Pacific storm track. A key region of end-of-century precipitation

  9. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    Science.gov (United States)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  10. Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2014-06-01

    Full Text Available Chlorofluorocarbons (CFCs play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their global loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11 and CF2Cl2 (CFC-12. We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 yr for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS, the HIgh Resolution Dynamics Limb Sounder (HIRDLS, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 111(96–132 yr for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 112(97–133 yr for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 112(96–135 yr for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.47±0.04 and the CFC-12 lifetime estimate is 112(102–123 yr. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC reassessment, which recommends lifetimes of 52(43–67 yr and 102(88–122 yr, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95–129 yr, based on

  11. Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2014-11-01

    Full Text Available Chlorofluorocarbons (CFCs play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer–tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11 and CF2Cl2 (CFC-12. We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 years for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS, the HIgh Resolution Dynamics Limb Sounder (HIRDLS, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 112(96–133 years for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 113(97–134 years for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 114(98–136 years for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46±0.04 and the CFC-12 lifetime estimate is 113(103–124 years. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC reassessment, which recommends lifetimes of 52(43–67 years and 102(88–122 years, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime

  12. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  13. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (< 10%) and small sampling frequency (< 0.1% of the time fly over tropics) by satellites. Therefore, we firstly examine in situ lightning data based on SYNOP observed by the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) because lightning is quite local and sporadic phenomena. We've started to analyze lightning characteristics over Jakarta region based on SYNOP as the ground truth data and GSMaP. Variability of lightning frequency around Jakarta was affected much by local conditions, e.g., topography (elevation) and proximity to the coastline. We confirmed the lightning frequency and its diurnal variation around Jakarta were much

  14. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  15. Land surface skin temperature climatology: benefitting from the strengths of satellite observations

    International Nuclear Information System (INIS)

    Surface skin temperature observations (Tskin), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (Tair) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05 deg. latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for Tskin variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface Tair in terms of both physical meaning and magnitude. Therefore, the two temperatures (Tskin and Tair) are complementary in their contribution of valuable information to the study of climate change.

  16. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  17. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  18. An updated analysis of the Lucas Heights climatology 1991-2003

    International Nuclear Information System (INIS)

    Meteorological data collected from 1991 to 2003 in the Lucas Heights region have been summarised to provide an update on the climatology. This report represents analysis of data collected at the Lucas Heights Science and Technology Centre since 1991 when an advanced digital recording system was installed. The small network of meteorological stations installed in the surrounding region since 1993 has allowed an investigation of the influence of complex terrain on wind flow and atmospheric dispersion patterns. For a period between 1999 and 2001 a Bureau of Meteorology disdrometer was installed at Lucas Heights to investigate raindrop size distributions. A large number of statistical summaries for all meteorological data are presented in in two appendices at the end of the report as a resource for reference purposes

  19. The temporal and spatial relationship between NDVI and climatological parameters in Colorado

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes the spatial and temporal relationship between AVHRR/NDVI (Normalized Difference Vegetation Index) and climatological parameters (temperature and precipitation), which, in some sense, is influenced by topographical factors and land-cover types in Colorado. The correlation coefficients and partial correlation coefficients have been computed pixel by pixel over Colorado in order to analyze the relationship. The temporal variation and correlation of AVHRR/NDVI, temperature and precipitation were analyzed with a sampling method. The study reveals that there exists a close correspondence between monthly NDVI and temperature, which has strong impact from temperature on the changes of NDVI in Colorado. The spatial changes of NDVI are not influenced obviously by the precipitation since these two variables are different from each other in time series in Colorado. The study clearly revealed the spatial variation and its distribution patterns of relationship between NDVI and climatic parameters (temperature and precipitation) in Colorado.

  20. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  1. A combined microwave/infrared algorithm for estimating rainfall during the GPCP. [Global Precipitation Climatology Project

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.

    1990-01-01

    The paper presents results of a satellite algorithm intercomparison of monthly precipitation, which was organized by the World Climate Research Program's Global Precipitation Climatology Project (GPCP). Special attention is given to the techniques used in the projects and the type of data provided in the study (mainly by Japan's GMS visible and IR sensors and the USA's Special Sensor Microwave/Imager). The results of rainfall estimates obtained by Negri et al. (1994) and Adler and Negri (1988) techniques are compared with estimates made with the threshold technique of Arkin (1979, 1983). Results obtained by various techniques are presented for both the instantaneous estimates and for total rain accumulations over an area including Japan for a 24-hr period on June 22, 1989.

  2. Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies

    Science.gov (United States)

    Hoffmann, Lars; Hoppe, Charlotte; Müller, Rolf; Dutton, Geoffrey S.; Gille, John C.; Griessbach, Sabine; Jones, Ashley; Meyer, Catrin I.; Spang, Reinhold; Volk, C. Michael; Walker, Kaley A.

    2015-04-01

    Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present new estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 yr for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47 ± 0.08 and a CFC-12 lifetime of 112(96 - 133) yr for ACE-FTS, a ratio of 0.46 ± 0.07 and a lifetime of 113(97 - 134) yr for HIRDLS, and a ratio of 0.46 ± 0.08 and a lifetime of 114(98 - 136) yr for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46 ± 0.04 and the CFC-12 lifetime estimate is 113(103 - 124) yr. These results are in excellent agreement with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43 - 67) yr for CFC-11 and 102(88 - 122) yr for CFC-12, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled EMAC/CLaMS model we found a CFC-11/CFC-12 lifetime ratio

  3. Climatology and Predictability of Atmospheric Rivers in the GFDL FLOR Model

    Science.gov (United States)

    Kapnick, S. B.; Delworth, T. L.; Vecchi, G. A.

    2014-12-01

    Some of the heaviest precipitation events over the western United States and the United Kingdom are caused by storms known as atmospheric rivers (ARs). Like hurricanes, ARs are long-lived and originate in the tropics before moving poleward until they make landfall. These moisture-laden storms produce significant precipitation over a few days, which can cause potentially devastating flooding. Despite their destructive power, these storms are also an important component of regional water supply. The positive and negative societal influences of ARs make sound scientific predictions of these storms of great value. We assess the climatology and predictability of these storms globally using the GFDL FLOR coupled model. This high-resolution global model has 50 km resolution in the atmosphere and land surface. Two experiments have been conducted: (1) control simulation with prescribed 1990 radiative forcing and land-use conditions and (2) annual forecast simulations from 1981-2013 that are initialized monthly.

  4. Operational planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    Science.gov (United States)

    O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe

    2016-05-01

    The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.

  5. MOCHA: A three dimensional climatology of salinity and temperature of the Middle Atlantic Bight

    Science.gov (United States)

    Fleming, N. E.; Wilkin, J. L.

    2013-05-01

    A 3-D climatology of the salinity and temperature of the Middle Atlantic Bight (MAB) is developed to provide a synthesis of observations and a tool for understanding the heat and freshwater budgets, and dynamics, of this area. 150 years of historical data are quality controlled and combined by weighted least squares to a 3-D grid encompassing the Middle Atlantic Bight and the Gulf of Maine, including Chesapeake Bay, Delaware Bay, and the Hudson River Estuary. Half degree grid spacing, along with weighted fitting in horizontal distance, vertical distance, time and bathymetry provide highly resolved maps for each month of the year that compare well to independent data sets. Features such as the MAB "Cold Pool", and the seasonal cycle of heating and cooling are clearly visible throughout the months.

  6. Lightning climatology of exoplanets and brown dwarfs guided by Solar System data

    CERN Document Server

    Hodosán, Gabriella; Asensio-Torres, Rubén; Vorgul, Irena; Rimmer, Paul B

    2016-01-01

    Clouds form on extrasolar planets and brown dwarfs where lightning could occur. Lightning is a tracer of atmospheric convection, cloud formation and ionization processes as known from the Solar System, and may be significant for the formation of prebiotic molecules. We study lightning climatology for the different atmospheric environments of Earth, Venus, Jupiter and Saturn. We present lightning distribution maps for Earth, Jupiter and Saturn, and flash densities for these planets and Venus, based on optical and/or radio measurements from the WWLLN and STARNET radio networks, the LIS/OTD satellite instruments, the Galileo, Cassini, New Horizons and Venus Express spacecraft. We also present flash densities calculated for several phases of two volcano eruptions, Eyjafjallaj\\"okull's (2010) and Mt Redoubt's (2009). We estimate lightning rates for sample, transiting and directly imaged extrasolar planets and brown dwarfs. Based on the large variety of exoplanets, six categories are suggested for which we use the ...

  7. Physical approach to air pollution climatological modelling in a complex site

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G. (Torino, Universita; CNR, Istituto di Cosmo-Geofisica, Turin, Italy); Longhetto, A. (Ente Nazionale per l' Energia Elettrica, Centro di Ricerca Termica e Nucleare, Milan; CNR, Istituto di Cosmo-Geofisica, Turin, Italy); Runca, E. (International Institute for Applied Systems Analysis, Laxenburg, Austria)

    1980-09-01

    A Gaussian climatological model which takes into account physical factors affecting air pollutant dispersion, such as nocturnal radiative inversion and mixing height evolution, associated with land breeze and sea breeze regimes, has been applied to the topographically complex area of La Spezia. The measurements of the dynamic and thermodynamic structure of the lower atmosphere obtained by field experiments are utilized in the model to calculate the SO/sub 2/ seasonal average concentrations. The model has been tested on eight three-monthly periods by comparing the simulated values with the ones measured at the SO/sub 2/ stations of the local air pollution monitoring network. Comparison of simulated and measured values was satisfactory and proved the applicability of the model for urban planning and establishment of air quality strategies.

  8. Physical approach to air pollution climatological modelling in a complex site

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G. (Turin Univ. (Italy). Ist. di Fisica); Longhetto, A. (Ente Nazionale per l' Energia Elettrica, Milan (Italy). Centro di Ricerca Termica e Nucleare); Runca, E. (International Inst. for Applied Systems Analysis, Laxenburg (Austria))

    A Gaussian climatological model which takes into account physical factors affecting air pollutant dispersion, such as nocturnal radiative inversion and mixing height evolution, associated with land breeze and sea breeze regimes, respectively, has been applied to the topographically complex area of La Spezia (a basin surrounded by hilly terrain, located on the Italian coast). Results from the measurements of the dynamic and thermodynamic structure of the lower atmosphere, obtained by a series of field experiments, are utilized in the model to calculate SO/sub 2/ seasonal average concentrations. The model has been tested on eight three-monthly periods by comparing the simulated values with the ones measured at the SO/sub 2/ stations of the local air pollution monitoring network. Comparison of simulated and measured values was very satisfactory and proved the applicability of the implemented model for urban planning and establishment of air quality strategies also at a topographically complex site.

  9. Does the Danube exist? Versions of reality given by various regional climate models and climatological datasets

    CERN Document Server

    Lucarini, V; Kriegerova, I; Speranza, A; Danihlik, Robert; Kriegerova, Ida; Lucarini, Valerio; Speranza, Antonio

    2006-01-01

    We present an intercomparison and verification analysis of several regional climate models (RCMs) nested into the same run of the same Atmospheric Global Circulation Model (AGCM) regarding their representation of the statistical properties of the hydrological balance of the Danube river basin for 1961-1990. We also consider the datasets produced by the driving AGCM, from the ECMWF and NCEP-NCAR reanalyses. The hydrological balance is computed by integrating the precipitation and evaporation fields over the area of interest. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few datasets are consistent with the observed discharge values of the Danube at its Delta, even if the driving AGCM provides itself an excellent estimate. Since the considered approach relies on the mass conservation principle and bypasses the details of the air-land interface modeling, we propose that the atmospheric components of RCMs still face diffic...

  10. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  11. Excess science accommodation capabilities and excess performance capabilities assessment for Mars Geoscience and Climatology Orbiter: Extended study

    Science.gov (United States)

    Clark, K.; Flacco, A.; Kaskiewicz, P.; Lebsock, K.

    1983-01-01

    The excess science accommodation and excess performance capabilities of a candidate spacecraft bus for the Mars Geoscience and Climatology Orbiter MGCO mission are assessed. The appendices are included to support the conclusions obtained during this contract extension. The appendices address the mission analysis, the attitude determination and control, the propulsion subsystem, and the spacecraft configuration.

  12. Uncertainty Quantification for a Climatology of the Frequency and Spatial Distribution of North Atlantic Tropical Cyclone Landfalls

    Science.gov (United States)

    Tolwinski-Ward, S. E.; Stransky, S. M.

    2014-12-01

    We develop a Bayesian hierarchical model for the climatological frequency of Atlantic Basin tropical cyclone (TC) landfalls along the coast of North and Central America. The model is explicitly spatial, with a covariance structure that incorporates the effects of coastline geometry, and is resolved at impacts-relevant, 50-mile coastal increments. The model is based on a negative binomial regression on the phase of the Southern Oscillation, North Atlantic Oscillation, and the Atlantic Multidecadal Oscillation, and also accounts explicitly for the time-dependent uncertainty in the historical data used to fit it. The statistically-inferred climatology is interpreted in terms of current scientific understanding of the mechanisms through which related large-scale climatic variability affects the development and motion of Atlantic tropical cyclones. We also probe the spatial posterior probability distribution to quantify and rank the uncertainty in the climatology of TC landfalls that can be attributed to climatic variability, model parameter uncertainty, uncertainty in the historical landfall positions, a possible undercount bias early in the historical record, and sampling variability from the finite length of the observations. Given more detailed, expert information about uncertainty for each specific storm in the historical dataset, the model could be used to develop a definitive TC landfall climatology. It could also be used in conjunction with spatial information about exposures for risk management applications.

  13. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    Energy Technology Data Exchange (ETDEWEB)

    Geogdzhayev, Igor V. [Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025 (United States); NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Mishchenko, Michael I. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States)]. E-mail: crmim@giss.nasa.gov; Liu Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Department of Earth and Environmental Sciences, Columbia University, 2880 Broadway, New York, NY 10025 (United States); Remer, Lorraine [NASA Goddard Space Flight Center, Code 913, Greenbelt, MD 20771 (United States)

    2004-10-15

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis.

  14. Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998-2001)

    NARCIS (Netherlands)

    Belviso, S; Moulin, C; Bopp, L; Stefels, J

    2004-01-01

    A method is developed to estimate sea-surface particulate dimethylsulfoniopropionate (DMSP(p)) and dimethylsulfide (DMS) concentrations from sea-surface concentrations of chlorophyll a (Chl a). When compared with previous studies, the 1degrees x 1degrees global climatology of oceanic DMS concentrati

  15. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Zhao, Ying; Yang, Zhifeng

    2014-09-01

    In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann-Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year ( p RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.

  16. Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868

    Energy Technology Data Exchange (ETDEWEB)

    Stucki, Peter; Rickli, Ralph [Bern Univ. (Switzerland). Inst. of Geography; Broennimann, Stefan; Martius, Olivia; Wanner, Heinz [Bern Univ. (Switzerland). Inst. of Geography; Bern Univ. (Switzerland). Oeschger Centre; Grebner, Dietmar [ETH Zurich (Switzerland). Inst. for Atmospheric and Climate Science; Luterbacher, Juerg [Giessen Univ. (Germany). Dept. of Geography

    2012-12-15

    The generation of 24 extreme floods in large catchments of the central Alps is analyzed from instrumental and documentary data, newly digitized observations of precipitation (DigiHom) and 20{sup th} Century Reanalysis (20CR) data. Extreme floods are determined by the 95{sup th} percentile of differences between an annual flood and a defined contemporary flood. For a selection of six events between 1868 and 1910, we describe preconditioning elements such as precipitation, temperature, and snow cover anomalies. Specific weather patterns are assessed through a subjective analysis of three-dimensional atmospheric circulation. A focus is placed on synoptic-scale features including mid-tropospheric ascent, low-level moisture transport, propagation of cyclones, and temperature anomalies. We propose a hydro-meteorological classification of all 24 investigated events according to flood-generating weather conditions. Key elements of the upper-level synoptic-scale flow are summarized by five types: (i) pivoting cut-off lows, (ii) elongated cut-off lows, (iii) elongated troughs, (iv) waves (with a kink), and (v) approximately zonal flow over the Alpine region. We found that the most extreme floods (as above, but {>=} 98{sup th} percentile) in Switzerland since 1868 were caused by the interaction of severe hydro-climatologic conditions with a flood-inducing weather situation. The 20CR data provide plausible synoptic-scale meteorological patterns leading to heavy precipitation. The proposed catalogue of weather patterns and hydro-climatologic precursors can give direction when anticipating the possibility of severe floods in the Alpine region. (orig.)

  17. SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders

    Science.gov (United States)

    Tegtmeier, S.; Hegglin, M. I.; Anderson, J.; Bourassa, A.; Brohede, S.; Degenstein, D.; Froidevaux, L.; Fuller, R.; Funke, B.; Gille, J.; Jones, A.; Kasai, Y.; Krüger, K.; Kyrölä, E.; Lingenfelser, G.; Lumpe, J.; Nardi, B.; Neu, J.; Pendlebury, D.; Remsberg, E.; Rozanov, A.; Smith, L.; Toohey, M.; Urban, J.; Clarmann, T.; Walker, K. A.; Wang, R. H. J.

    2013-11-01

    comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed intercomparison. The ozone climatologies in form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I/II/III, UARS-MLS, HALOE, POAM II/III, SMR, OSIRIS, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978-2010. The intercomparisons focus on mean biases of annual zonal mean fields, interannual variability, and seasonal cycles. Additionally, the physical consistency of the data is tested through diagnostics of the quasi-biennial oscillation and Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical and midlatitude middle stratosphere with a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified, including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere (with a spread of ±30%) and at high latitudes (±15%). In particular, large relative differences are identified in the Antarctic during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. The evaluations provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons, detection of long-term trends, and data-merging activities.

  18. A dynamically downscaled climatology of severe convective thunderstorms over the United States

    Science.gov (United States)

    Robinson, Eric D.

    Severe convective storms---and the tornadoes, hail, and damaging winds that they produce---represent a real risk to life and property in the United States. In 2011, tornadoes claimed over 540 lives over 15 different states, the fourth highest toll on record. It is not known whether 2011 represents a positive trend in the frequency of severe thunderstorms and associated phenomena because of the many uncertainties in the historical record. This study seeks to examine a method developed to study these severe phenomena using a high-resolution numerical weather prediction model driven by large-scale reanalysis and employing an artificial neural network. Specifically, high resolution simulations of the Weather Research and Forecasting model, forced by data from the NCEP/NCAR Reanalysis Project are used to generate daily re-forecasts of every day in April, May, and June over 1990--2009. These simulations are examined at hourly intervals for the presence of severe convection through the use of an artificial neural network that was trained using days from ten years of modeled data that coincided with observed days of severe weather. This network is applied over all twenty years of data in order to examine the modeled trends in severe phenomena. Tests are also performed to examine the sensitivity of the modeling procedure to various parameters including integration time, land surface heterogeneity, and model physics. Results indicate that, contrary to the biased observational record, there has been no statistically significant change in the frequency of warm season severe weather occurrences in the eastern two-thirds of the United States over 1990--2009. Further, sensitivity tests indicate an approach with more frequent re-initializations of the model produces a more physically realistic climatology of severe convective events, and that this climatology is fairly insensitive to small changes in the land surface and model physics. A similar result is found for the spatial

  19. CLIMATOLOGICAL CHARACTERISTICS OF WINTER IN BUCIN MOUNTAIN TOP (GURGHIU MOUNTAINS, EASTERN CARPATHIANS

    Directory of Open Access Journals (Sweden)

    O. RUSZ

    2013-03-01

    Full Text Available In order to study the features of winter in Bucin Mountaintop, data collected from Bucin meteorological station (1270 m were used. The Bucin mountaintop is situated in the central part of Gurghiu Mountains and it is a popular touristic destination. Several climatological parameters of the the cold months (November, December, January, February, March, April in the period 1978-2010 were studied: mean temperatures, snow depth, snow cover, number of days with solid precipitation, etc. The mean temperature of these months is between -5.8°C (January and 3.1°C (April. The absolute minimum temperature (-26.1°C since the Bucin weather station functions (from 1978 was registered in February 1985 (in case of nearly mountain depressions this value approached -40°C. Generally, durable snow cover is present from November to April and on average 150 days/year are covered by snow. The highest mean snow depth is registered in March (76 cm. According to the Köppen asymmetric index the number of years that have lower snow depth that average is higher in case of all months. Mean number of frosty days (annual count of days when Tmin < 0°C is 161, of extremely cold days (annual count of days when Tmin< -10°C is 44 and of winter days (annual count of days when Tmax < 0°C is 75. Correlation tests (Pearson show statistically significant values in case of snow depth and mean temperature for almost all months, but in January and February, there are no statistically significant correlations between snow depth and precipitation amounts respectively number of days with solid precipitation. Generally, there are no statistically significant trends (Mann-Kendall tests regarding these climatological parameters typical for winter.

  20. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes

    Science.gov (United States)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Lavado, Waldo; Willems, Bram; Robles, Luis Alberto; Rodríguez-Sánchez, Juan-Pablo

    2016-02-01

    Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998-2014) and has generated one of the longest single-sensor, high-resolution, and high-accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patterns and also accurately defines orographic gradients but underestimates absolute monthly rainfall rates. The S-G merged products presented in this study constitute an improved source of climatological rainfall data, outperforming the gridded TPR product as well as a rain gauge-only product based on ordinary Kriging. Among the S-G merging methods, performance of inverse distance interpolation of satellite-gauge residuals was similar to that of geostatistical methods, which were more sensitive to gauge network density. High uncertainty and low performance of the merged precipitation products predominantly affected regions with low and intermittent precipitation regimes (e.g., Peruvian Pacific coast) and is likely linked to the low TPR sampling frequency. All S-G merged products presented in this study are available in the public domain.

  1. A new approach to sensitivity climatologies: the DTS-MEDEX-2009 campaign

    Directory of Open Access Journals (Sweden)

    A. Jansa

    2011-09-01

    Full Text Available Adaptive observation is an approach to improving the quality of numerical weather forecasts through the optimization of observing networks. It is sometimes referred to as Data Targeting (DT. This approach has been applied to high impact weather during specific field campaigns in the past decade. Adaptive observations may involve various types of observations, including either specific research observing platforms or routine observing platforms employed in an adaptive way. The North-Atlantic TReC 2003 and the EURORISK-PREVIEW 2008 exercises focused on the North-Atlantic and Western Europe areas using mainly routine observing systems. These campaigns also included Mediterranean cases.

    The most recent campaign, DTS-MEDEX-2009, is the first campaign in which the DT method has been used to address exclusively Mediterranean high impact weather events. In this campaign, which is an important stage in the MEDEX development, only operational radiosonde stations and commercial aircraft data (AMDAR have provided additional observations. Although specific diagnostic studies are needed to assess the impact of the extra-observations on forecast skill and demonstrate the effectiveness of DTS-MEDEX-2009, some preliminary findings can be deduced from a survey of this targeting exercise.

    After a description of the data targeting system and some illustrations of particular cases, this paper attempts some comparisons of additional observation needs (through effectively deployed radio-soundings with sensitivity climatologies in the Mediterranean. The first step towards a sensitivity climatology for Mediterranean cases of high impact weather is indirectly given by the frequency of extra-soundings launched from the network of radiosonde stations involved in the DTS-MEDEX-2009 campaign.

  2. The interaction between warm conveyor belts and breaking Rossby waves: a climatological perspective.

    Science.gov (United States)

    Madonna, Erica; Joos, Hanna; Martius, Olivia; Aebi, Christine; Limbach, Sebastian

    2014-05-01

    Warm conveyor belts (WCBs) are moist ascending airstreams in extratropical cyclones. Climatologically, they are key for the meridional and vertical transport of water vapour and heat. The rapid ascent of WCBs from the boundary layer to the upper troposphere in about 1-2 days leads to cloud formation, (intense) precipitation and the release of latent heat, which modifies their potential vorticity (PV) value in a significant way. Typically WCBs reach the tropopause level with low PV values (~0.5 pvu) and therefore the cross-isentropic transport of low-PV air in WCBs can amplify upper-level Rossby waves and contribute to the formation of PV streamers downstream. Here, filamentary PV streamers are regarded as clear signs of breaking Rossby waves. They in turn can act as precursors of extreme weather events and/or trigger the genesis of another cyclone, potentially generating a new WCB. The aim of this study is to quantify the interaction of WCBs and PV-streamers from a climatological point of view for the ERA-Interim data set for the period 1989-2010. WCBs are identified from comprehensive trajectory calculations that select air parcels in the vicinity of cyclones with a minimum ascent of 600 hPa in 48 hours. From these WCB trajectories, coherent features of WCB outflows are derived and checked for overlapping with PV streamers, which are identified using a contour searching algorithm. Both, WCBs and PV-streamers are then tracked using a novel feature tracking technique, which is based upon a modified region growing approach. With this technique, the interaction of WCBs and PV-streamers is analysed for a 22-years period leading to novel insight about the role of WCBs for triggering the breaking of Rossby waves, as well as, vice versa, about the importance of PV-streamers for the formation of new WCBs.

  3. Generation of a Bending Angle Radio Occultation Climatology (BAROCLIM and its use in radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    B. Scherllin-Pirscher

    2014-08-01

    Full Text Available In this paper, we introduce a bending angle radio occultation climatology (BAROCLIM based on Formosat-3/COSMIC (F3C data. This climatology represents the monthly-mean atmospheric state from 2006 to 2012. Bending angles from radio occultation (RO measurements are obtained from the accumulation of the change in the raypath direction of Global Positioning System (GPS signals. Best quality of these near-vertical profiles is found from the middle troposphere up to the mesosphere. Beside RO bending angles we also use data from the Mass Spectrometer and Incoherent Scatter Radar (MSIS model to expand BAROCLIM in a spectral model, which (theoretically reaches from the surface up to infinity. Due to the very high quality of BAROCLIM up to the mesosphere, it can be used to detect deficiencies in current state-of-the-art analysis and reanalysis products from numerical weather prediction (NWP centers. For bending angles derived from European Centre for Medium-Range Weather Forecasts (ECMWF analysis fields from 2006 to 2012, e.g., we find a positive bias of 0.5% to % at 40 km, which increases to more than 2% at 50 km. BAROCLIM can also be used as a priori information in RO profile retrievals. In contrast to other a priori information (i.e., MSIS we find that the use of BAROCLIM better preserves the mean of raw RO measurements. Global statistics of statistically optimized bending angle and refractivity profiles also confirm that BAROCLIM outperforms MSIS. These results clearly demonstrate the utility of BAROCLIM.

  4. Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868

    Directory of Open Access Journals (Sweden)

    Peter Stucki

    2012-12-01

    Full Text Available The generation of 24 extreme floods in large catchments of the central Alps is analyzed from instrumental and documentary data, newly digitized observations of precipitation (DigiHom and 20th Century Reanalysis (20CR data. Extreme floods are determined by the 95th percentile of differences between an annual flood and a defined contemporary flood. For a selection of six events between 1868 and 1910, we describe preconditioning elements such as precipitation, temperature, and snow cover anomalies. Specific weather patterns are assessed through a subjective analysis of three-dimensional atmospheric circulation. A focus is placed on synoptic-scale features including mid-tropospheric ascent, low-level moisture transport, propagation of cyclones, and temperature anomalies. We propose a hydro-meteorological classification of all 24 investigated events according to flood-generating weather conditions. Key elements of the upper-level synoptic-scale flow are summarized by five types: (i pivoting cut-off lows, (ii elongated cut-off lows, (iii elongated troughs, (iv waves (with a kink, and (v approximately zonal flow over the Alpine region. We found that the most extreme floods (as above, but ≥ 98th percentile in Switzerland since 1868 were caused by the interaction of severe hydro-climatologic conditions with a flood-inducing weather situation. The 20CR data provide plausible synoptic-scale meteorological patterns leading to heavy precipitation. The proposed catalogue of weather patterns and hydro-climatologic precursors can give direction when anticipating the possibility of severe floods in the Alpine region.

  5. A spatial climatology of precipitation from North Atlantic tropical cyclones over the Eastern United States

    Science.gov (United States)

    Zhou, Y.

    2015-12-01

    The precipitation associated with tropical cyclones (TCs) over the eastern U.S has drawn significant attention from researchers. Among studies about tropical cyclone precipitation (TCP), separating rainfall into tropical and non-tropical cyclone components is a challenging task. Therefore, a need exists for continued spatial climatological analysis of rainfall associated of TCs. To provide a long-term climatology of TCP in this study, 305 TCs having tracks located within 500 km of the U.S. coastline from 1948-2012 are examined. The daily precipitation amounts on 0.25°× 0.25° latitude-longitude grids are from the Climate Prediction Center (CPC) Unified Precipitation Data (UPD). A GIS and Python based method is developed to identify rainfall swaths produced by TCs. Then we overlay all TCP swaths on a U.S. county map to get cumulative frequency of counties receiving rainfall from a TC with value greater than 25.4 mm. We find that there are 2533 counties in 25 states had been affected by TCP with value greater than 25.4 mm at least once during 1948 to 2012. The total area of TCP and TCP area averaged by annual TC counts and days shows significant increases after the 1990s. By comparing the rainfall swaths to the wind swaths as reported by previous work, we determine the frequency with which locations receive either condition produced by TCs. The results reveal that TCPs extend more inland and have more frequency than TC winds, since TC winds decays quickly after make landfall, while rainfall field may expand due to extra-tropical transition or land surface conditions.

  6. Climatology of northern polar latitude MLT dynamics: mean winds and tides

    Directory of Open Access Journals (Sweden)

    G. Kishore Kumar

    2010-10-01

    Full Text Available Mean winds and tides in the northern polar Mesosphere and Lower Thermosphere (MLT have been studied using meteor radars located at Resolute Bay (75° N, 95° W and Yellowknife (62.5° N, 114.3° W. The measurements for Resolute Bay span almost 12 years from July 1997 to February 2009 and the Yellowknife data cover 7 years from June 2002 to October 2008. The analysis reveals similar wind flow over both sites with a difference in magnitude. The summer zonal flow is westward at lower heights, eastward at upper heights and the winter zonal flow is eastward at all heights. The winter meridional flow is poleward and sometimes weakly equatorward, while non winter months show equatorward flow, with a strong equatorward jet during mid-summer months. The zonal and meridional winds show strong interannual variation with a dominant annual variation as well as significant latitudinal variation. Year to year variability in both zonal and meridional winds exists, with a possible solar cycle dependence. The diurnal, semidiurnal and terdiurnal tides also show large interannual variability and latitudinal variation. The diurnal amplitudes are dominated by an annual variation. The climatological monthly mean winds are compared with CIRA 86, GEWM and HWM07 and the climatological monthly mean amplitudes and phases of diurnal and semidiurnal tides are compared with GSWM00 predictions. The GEWM shows better agreement with observations than the CIRA 86 and HWM07. The GSWM00 model predictions need to be modified above 90 km. The agreements and disagreements between observations and models are discussed.

  7. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  8. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology

    Science.gov (United States)

    Gutenbrunner, Christoph; Bender, Tamas; Cantista, Pedro; Karagülle, Zeki

    2010-09-01

    Health Resort Medicine, Balneology, Medical Hydrology and Climatology are not fully recognised as independent medical specialties at a global international level. Analysing the reasons, we can identify both external (from outside the field) and internal (from inside the field) factors. External arguments include, e.g. the lack of scientific evidence, the fact that Balneotherapy and Climatotherapy is not used in all countries, and the fact that Health Resort Medicine, Balneology, Medical Hydrology and Climatology focus only on single methods and do not have a comprehensive concept. Implicit barriers are the lack of international accepted terms in the field, the restriction of being allowed to practice the activities only in specific settings, and the trend to use Balneotherapy mainly for wellness concepts. Especially the implicit barriers should be subject to intense discussions among scientists and specialists. This paper suggests one option to tackle the problem of implicit barriers by making a proposal for a structure and description of the medical field, and to provide some commonly acceptable descriptions of content and terminology. The medical area can be defined as “medicine in health resorts” (or “health resort medicine”). Health resort medicine includes “all medical activities originated and derived in health resorts based on scientific evidence aiming at health promotion, prevention, therapy and rehabilitation”. Core elements of health resort interventions in health resorts are balneotherapy, hydrotherapy, and climatotherapy. Health resort medicine can be used for health promotion, prevention, treatment, and rehabilitation. The use of natural mineral waters, gases and peloids in many countries is called balneotherapy, but other (equivalent) terms exist. Substances used for balneotherapy are medical mineral waters, medical peloids, and natural gases (bathing, drinking, inhalation, etc.). The use of plain water (tap water) for therapy is called

  9. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Science.gov (United States)

    Osman, M.; Tarasick, D. W.; Liu, J.; Moeini, O.; Thouret, V.; Fioletov, V. E.; Parrington, M.; Nédélec, P.

    2015-11-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations, and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly from 2001-2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude. The mapping product has been carefully evaluated, by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less, and found to be less than 30 % for almost all cases. The trajectory-mapped CO dataset has also been validated by comparison profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Maps are also compared with Version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. While agreement is good in the lowermost troposphere, the MOPITT CO profile shows negative biases of ~ 20 % between 500 and 300 hPa. These upper troposphere biases are not related to the mapping procedure, as almost identical differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-mapped MOZAIC-IAGOS climatology column agrees with the

  10. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Directory of Open Access Journals (Sweden)

    M. Osman

    2015-11-01

    Full Text Available A three-dimensional gridded climatology of carbon monoxide (CO has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations, and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly from 2001–2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude. The mapping product has been carefully evaluated, by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less, and found to be less than 30 % for almost all cases. The trajectory-mapped CO dataset has also been validated by comparison profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Maps are also compared with Version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument. While agreement is good in the lowermost troposphere, the MOPITT CO profile shows negative biases of ~ 20 % between 500 and 300 hPa. These upper troposphere biases are not related to the mapping procedure, as almost identical differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-mapped MOZAIC-IAGOS climatology column

  11. The use of normalized climatological anomalies to rank synoptic-scale events and their relation to Weather Types

    Science.gov (United States)

    Ramos, A. M.; Lorenzo, M. N.; Gimeno, L.; Nieto, R.; Añel, J. A.

    2009-09-01

    Several methods have been developed to rank meteorological events in terms of severity, social impact or economic impacts. These classifications are not always objective since they depend of several factors, for instance, the observation network is biased towards the densely populated urban areas against rural or oceanic areas. It is also very important to note that not all rare synoptic-scale meteorological events attract significant media attention. In this work we use a comprehensive method of classifying synoptic-scale events adapted from Hart and Grumm, 2001, to the European region (30N-60N, 30W-15E). The main motivation behind this method is that the more unusual the event (a cold outbreak, a heat wave, or a flood), for a given region, the higher ranked it must be. To do so, we use four basic meteorological variables (Height, Temperature, Wind and Specific Humidity) from NCEP reanalysis dataset over the range of 1000hPa to 200hPa at a daily basis from 1948 to 2004. The climatology used embraces the 1961-1990 period. For each variable, the analysis of raking climatological anomalies was computed taking into account the daily normalized departure from climatology at different levels. For each day (from 1948 to 2004) we have four anomaly measures, one for each variable, and another, a combined where the anomaly (total anomaly) is the average of the anomaly of the four variables. Results will be analyzed on a monthly, seasonal and annual basis. Seasonal trends and variability will also be shown. In addition, and given the extent of the database, the expected return periods associated with the anomalies are revealed. Moreover, we also use an automated version of the Lamb weather type (WT) classification scheme (Jones et al, 1993) adapted for the Galicia area (Northwestern corner of the Iberian Peninsula) by Lorenzo et al (2008) in order to compute the daily local circulation regimes in this area. By combining the corresponding daily WT with the five anomaly

  12. Innovative aspects for teaching the Geology and Climatology course in Agricultural and Forestry Engineering degrees

    Science.gov (United States)

    del Campillo, M. C.; Cañasveras, J. C.; Sánchez-Alcalá, I.; Sánchez-Rodríguez, A. R.; Alburquerque, J. A.; Castro, M. A.; Rey, M. A.; Barrón, V.; Torrent, J.

    2012-04-01

    Courses of the first year at Engineering are typically basic to understanding other subjects and in many cases less attractive for students. In order to innovate and incorporate some aims of the Bologna process, here we present the development of the course of Geology and Climatology given the first year of Agricultural and Forestry degrees at the University of Córdoba. Temporal distribution of activities was as follows: a) to the whole group: 35% of master class, 5% of conferences and 10% of field trip, b) to the medium group (performance of a professional work: characterization of the geology and climatology of an area that will need to know for the courses in the coming years (for example soil science, crop sciences and environmental sciences). Students have to a) complete a literature review of all work done to date, b) use and study the geological map (1:50000) published by the Geological Survey of Spain (IGME), visit the study area in which they had to pick up rocks and subsequently to characterize them, and c) obtain meteorological data from the Spanish Agency of Meteorology (AEMET) (minimum 30 years of precipitation, 15 years of temperatures and 10 years of other variables) for a complete characterization of the climate. The assessment system for students included: attend classes, participation in practicals and excursions, carry out exercices, oral presentation of the report and a final written test. Key factors that favored student participation and interest in the course were: a) the small number of students in classes dedicated to the practicals and seminars and the continuous advice from teachers, and b) the personal choice by the student of the work area, usually close to their origin and in many cases from family property. All of this has served to students, who are involved with more dedication to the course, to solve specific problems and close to critical thinking, have contact with the real problems (in accessing the necessary data

  13. The extratropical transition of Atlantic tropical cyclones: Climatology, lifecycle definition, and a case study

    Science.gov (United States)

    Hart, Robert Edward

    This thesis examines the conversion of Atlantic tropical cyclones (TC) into extratropical cyclones (extratropical transition; ET) and presents arguments for the climatology, lifecycle definition, and the physical processes behind ET. Extratropical transition is the conversion of a symmetric, vertically stacked, warm-core tropical cyclone with a maximum intensity in the lower troposphere into an asymmetric, cold-core and tilted extratropical cyclone with a maximum intensity in the upper troposphere. This transition usually occurs with movement into the middle latitudes, and is partially a result of the increased shear, baroclinicity and synoptic-scale disturbances at those latitudes. After an introduction to the topic in Chapter 1, a comprehensive climatology of extratropically transitioning tropical cyclones in the Atlantic basin is presented in Chapter 2. Storm tracks and intensities over a period from 1899 through 1996 are examined, with a focus on the more reliable post-1950 era database. Extratropically transitioning tropical cyclones represent 50% of landfalling tropical cyclones on the east coasts of the United States and Canada, and the west coast of Europe, combined. Atlantic transition occurs from 24°N through 55°N, with a much higher frequency between the latitudes of 35°N to 45°N. Transition occurs at lower latitudes at the beginning and end of the season, and at higher latitudes during the season peak (August-September). The structural evolution of the 61 tropical cyclones from 1979-1993 in Chapter 2 were further examined using 1.125° ECMWF reanalyses in Chapter 3. A reliable indicator for the start of extratropical transition was the mean 850-600hPa thickness difference between the semicircles right and left of storm motion. The fourth chapter examines in detail a case study of extratropical transition through an application of the diagnostics developed in the first two chapters as well as conventional measures of tropical and extratropical

  14. A snow cover climatology for the Pyrenees from MODIS snow products

    Science.gov (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  15. Transport of anthropogenic emissions during ARCTAS-A: a climatology and regional case studies

    Directory of Open Access Journals (Sweden)

    D. L. Harrigan

    2011-02-01

    Full Text Available The National Aeronautics and Space Administration (NASA conducted the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission during 2008 as a part of the International Polar Year (IPY. The purpose of ARCTAS was to study the factors responsible for changes in the Arctic's atmospheric composition and climate. A major emphasis was to investigate Arctic haze, which is most pronounced during winter and early spring. This study focuses on the spring phase of ARCTAS (ARCTAS-A that was based in Alaska during April 2008. Although anthropogenic emissions historically have been associated with Arctic haze, biomass burning dominated the ARCTAS-A period and has been the focus of many ARCTAS related studies.

    This study determines the common pathways for anthropogenic emissions during ARCTAS-A. Trajectories (air parcels are released each day from three historically significant regions of anthropogenic emissions (Asia, North America, and Europe. These fifteen day forward trajectories are calculated using data from the Weather Research and Forecasting (WRF model at 45 km horizontal resolution. The trajectories then are examined to determine: origins of emissions that reach the Arctic (defined as north of 70° N within fifteen days, pathways of the emissions reaching the Arctic, Arctic entry locations, and altitudes at which the trajectories enter the Arctic. These results serve as regional "climatologies" for the ARCTAS-A period.

    Three cases during the ARCTAS-A period (one for each of the regions above are examined using backward trajectories and chemical fingerprinting based on in situ data sampled from the NASA DC-8. The fingerprinting utilizes volatile organic compounds that represent pure anthropogenic tracers, Asian anthropogenic pollution, incomplete combustion, and natural gas emissions. We determine flight legs containing anthropogenic emissions and the pathways travelled by these emissions

  16. Mid-latitude tropospheric ozone columns from the MOZAIC program: climatology and interannual variability

    Directory of Open Access Journals (Sweden)

    R. M. Zbinden

    2006-01-01

    Full Text Available Several thousands of ozone vertical profiles collected in the course of the MOZAIC programme (Measurements of Ozone, Water Vapour, Carbon Monoxide and Nitrogen Oxides by In-Service Airbus Aircraft from August 1994 to February 2002 are investigated to bring out climatological and interannual variability aspects. The study is centred on the most frequently visited MOZAIC airports, i.e. Frankfurt (Germany, Paris (France, New York (USA and the cluster of Tokyo, Nagoya and Osaka (Japan. The analysis focuses on the vertical integration of ozone from the ground to the dynamical tropopause and the vertical integration of stratospheric-origin ozone throughout the troposphere. The characteristics of the MOZAIC profiles: frequency of flights, accuracy, precision, and depth of the troposphere observed, are presented. The climatological analysis shows that the Tropospheric Ozone Column (TOC seasonal cycle ranges from a wintertime minimum at all four stations to a spring-summer maximum in Frankfurt, Paris, and New York. Over Japan, the maximum occurs in spring presumably because of the earlier springtime sun. The incursion of monsoon air masses into the boundary layer and into the mid troposphere then steeply diminishes the summertime value. Boundary layer contributions to the TOC are 10% higher in New York than in Frankfurt and Paris during spring and summer, and are 10% higher in Japan than in New York, Frankfurt and Paris during autumn and early spring. Local and remote anthropogenic emissions, and biomass burning over upstream regions of Asia may be responsible for the larger low- and mid-tropospheric contributions to the tropospheric ozone column over Japan throughout the year except during the summer-monsoon season. A simple Lagrangian analysis has shown that a minimum of 10% of the TOC is of stratospheric-origin throughout the year. Investigation of the short-term trends of the TOC over the period 1995–2001 shows a linear increase 0.7%/year in

  17. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-02-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere is based on observations and modeling studies using low resolution oceanic emission scenarios derived from top down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1° × 1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol I yr−1 for CH3I (Robust Fit/Ordinary Least Square regression technique. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic region. "Hot spots" for global

  18. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  19. Climatological Data Rescue from historic meteorological stations in the Czech Republic.

    Science.gov (United States)

    Repka, M.

    2010-09-01

    Digitization of climatological data from meteorological station had several periods in past. Last period is very close connected with database system CLIDATA. The main source of historical data is archive in Ostrava regional office of CHMI where a lot of historical monthly reports of observations with daily data are stored. Other historical data were founded from various types of historical annual reports and last but not least from border cooperation with Polish and Slovak meteorological services. During several last years were imported daily data from new discovered stations, and some elements from historic stations such as precipitation, temperature, relative humidity, cloudiness, hourly data of sunshine, temperatures from thermographs and also meteorological phenomena from some synoptic stations. Within the frame of our project we could also digitize wind speed, wind direction and wind gust data. During more than 150 years of regular meteorological observation, were used a big amount of various types of monthly reports for measured data records. Meteorological stations were founded by several organizations and all of them used another kind of reports that were changed during years. We recognized nearly 30 types of precipitation monthly reports and 50 types of climatologic reports. Digitization of data especially from very historical stations brings also some problems during definition of metadata such as coordinates, elevations, measuring instruments height, a lot of observing terms or historic units of elements. Some historical annual reports mention observer's jobs, that is very interesting and we can find position of meteorological stations more exactly. Data quality control has been proceeded since 1993. First were used special programs and algorithms outside of database system. Some new programs for wrong values detection or for missing values filling are used at present. CLIDATA database system and its extensions allows to make logical and spatial data

  20. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  1. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  2. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  3. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    Science.gov (United States)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  4. Climatology Comparison Studies of Precipitations Between GPCP and Rain Gauges in China

    Institute of Scientific and Technical Information of China (English)

    ZI Yong; XU Yinlong; FU Yunfei

    2006-01-01

    The Global Precipitation Climatology Project (GPCP) monthly rainfall data and the rainfall records observed by 740 rain gauges in the mainland of China are used to analyze similarities and differences of the precipitation in China in the period from January 1980 to December 2000. Results expose significantly consistent rainfall distributions between the both data in multi-year mean, multi-year seasonal mean, and multi-year monthly mean. Departures of monthly rainfall for each dataset also show a high correlation with an over 0.8 correlation coefficient. Analysis indicates small differences of both datasets during autumn,winter, and spring, but relative large ones in summer. Generally, the GPCP has trend of overestimating the rainfall rate. Based on above good relationship of both datasets, the GPCP data are used to represent distributions and variations of precipitation in the Tibetan Plateau and Northwest China. Results indicate positive departures of precipitation in summer in the west part of Tibetan Plateau in the 1980s and negative departures after the 1980s. For the west part of Northwest China, analysis illustrates precipitation decreases a little, but no clear variation tendency.

  5. Global climatology of the wind vector rotation - implications for the orographic gravity waves propagation

    Science.gov (United States)

    Pisoft, Petr; Sacha, Petr; Kuchar, Ales

    2015-04-01

    The gravity waves spectrum is shaped not only by different sources but it also reflects tropospheric background conditions contributing to filtering of various gravity waves. This could be most easily illustrated for the propagation of the orographic gravity waves that are critically filtered when the wind speed is zero. This condition is ensured in case of the directional shear exceeding 180°. Above regions where it is fulfilled, one can rule out the possibility of orographic GW modes contributing to the observed GW activity and vice versa regions of small wind rotation in the lower levels are often precursors of enhanced GW activity higher. In this study, we have performed a global analysis of the background conditions with a focus on the rotation of the ground level winds. We have analyzed MERRA and JRA-55 time series. The results provided climatology of atmospheric regions with the conditions favorable for the upward propagation of the orographic gravity waves from the troposphere into the stratosphere. The regions are detected mainly over areas where tropospheric and stratospheric jets coincide. The study is supplemented by a global analysis of the fields of potential energy of disturbances as a proxy for gravity waves activity using COSMIC GPS RO data.

  6. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    Directory of Open Access Journals (Sweden)

    Roger D. Launius

    2012-09-01

    Full Text Available Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  7. Climatology of Gravity Wave Characteristics and Middle Atmosphere Thermal Structure Characteristics over Reunion Islands, France

    Science.gov (United States)

    Prasanth, Vishnu

    2016-07-01

    In this paper, climatological characteristics of the gravity wave activities and thermal structure activities are studied using temperature profiles obtained from Rayleigh lidar located at Reunion Island (20.8°S, 55.5°E) over a period of ~14 years (1994-2007). The study has been performed over the height range from 30 to 65 km. The overall monthly mean temperature shows a maximum of 265-270K at the stratopause height region from ˜44-52km and peaks during the months of March and November. While there is no clear signature of seasonal oscillation in the stratopause height, the stratopause temperature shows distinct maxima during the periods March-April and October-November. The GW characteristics in terms of time (frequency), height (wave number) and GW associated Potential Energy and their seasonal dependences are presented. Generally, the temporal evolution of temperature profile illustrates the downward phase propagation indicating that the energy is propagating upward. The wave activity is clearly visible with the wave periods ranging from 260 min to 32 min. The dominant components have vertical wavelengths in the range of about ~4 km to 35 km. It is found that the seasonal variation of potential energy is maximum during summer in the upper stratosphere and lower mesosphere. A semiannual variation is seen in the gravity wave activity over all height ranges in the months of February and August.

  8. Climatological characteristics of the tropics in China: climate classification schemes between German scientists and Huang Bingwei

    Institute of Scientific and Technical Information of China (English)

    ManfredDomroes

    2003-01-01

    Reviewing some important German scientists who have developed climatic regionalization schemes either on a global or Chinese scale, their various definitions of the tropical climate characteristics in China are discussed and compared with Huang Bingwei's climate classification scheme and the identification of the tropical climate therein. It can be seen that, due to different methodological approaches of the climatic regionalization schemes, the definitions of the tropics vary and hence also their spatial distribution in China. However, it is found that the tropical climate type occupies only a peripheral part of southern China, though it firmly represents a distinctive type of climate that is subsequently associated with a great economic importance for China. As such, the tropical climate type was mostly identified with its agro-climatological significance, that is by giving favourable growing conditions all-year round for perennial crops with a great heat demand. Tropical climate is, hence, conventionally regarded to be governed by all-year round summer conditions "where winter never comes".

  9. A Climatology of Ripple Instabilities in the OH Airglow at Cerro Pachon, Chile

    Science.gov (United States)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.; Rudy, R. J.

    2015-12-01

    Airglow imaging provides a unique means by which to study many wave-related phenomena in the 80 to 100 km altitude regime. Observations reveal quasi-monochromatic disturbances associated with atmospheric gravity waves (AGWs) as well as small-scale instabilities often called ripples. Ripples are wavelike features that resemble AGWs in appearance, but have short horizontal wavelengths (Corporation's Nightglow Imager (ANI) is located at the Andes Lidar Observatory near the crest of Cerro Pachon, Chile. ANI observes nighttime OH emission (near 1.6 microns) every 2 seconds over an approximate 73 degree field of view, which allows the study of AGW and ripple features over very short temporal and spatial scales. An automated wave detection algorithm is used to identify ripple and quasi monochromatic wave features in the ANI data. Ripples are characterized by their wavelength, orientation, drift speed and location in the image. Quasi-monochromatic waves are quantified by wavelength, wave period and propagation direction. We present a climatology of ripple instabilities at Chile, including comparisons to the background quasi-monochromatic wave field. Lidar and radar data are used to determine the background wind and temperatures, which allows comparisons between ripple observations and evanescent regions and potentially unstable regions identified by Richardson number.

  10. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil

    Science.gov (United States)

    Oliveira, P. T.; Santos e Silva, C. M.; Lima, K. C.

    2016-07-01

    The present paper aims of computing climatology and trend analysis of occurrence and intensity of extreme events of precipitation in subregions of Northeast Brazil (NEB). We used daily rainfall data of 148 rain gauges collected from the hydrometeorological network managed by the National Water Agency during 1972 to 2002 and used quantiles technique in order to select rainfall events. Defining heavy rainfall events as those when at least one rain gauge recorded rainfall above the 95th percentile, normal rainfall was between the 45th and 55th percentiles, and weak rainfall events were under the 5th percentile. The Mann-Kendall nonparametric test was used to calculate the linear trend of the quantity and intensity of rainfall events. The NEB was divided in five subregions using the cluster analysis based on Euclidean distance and Ward's method: Northern coast, Northern semiarid, Northwest, Southern semiarid, and Southern coast. The results suggest that the subregions are less influenced by El Niño and La Niña, and dry areas have higher variability, with the greatest number of intense events.

  11. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  12. Climatology of the Ionospheric Scintillations over the Auroral and Cusp European Regions

    Science.gov (United States)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.

    2009-04-01

    Under perturbed conditions coming from the outer space, the ionosphere may become highly turbulent and small scale (from centimeters to meters) irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form causing diffraction effects on the satellites signals passing through them. Such effect can abruptly corrupt the performance of the positioning systems affecting, in turn, the awareness and safety of the modern devices. In this paper we analyze data of ionospheric scintillation in the latitudinal range 57°- 88° N during the period October, November and December 2003 as a first step to develop a "scintillation climatology" over the Northern Europe. The behavior of the scintillation occurrence as function of the magnetic local time and of the corrected magnetic latitude is investigated to characterize the scintillation conditions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC monitor) receivers over the European middle and high latitude regions. The results here shown and obtained merging observations from three GISTM, highlight also the possibility to investigate the dynamics of irregularities causing scintillation by combining the information coming from auroral to cusp latitudes. The findings, even if at a very preliminary stage, are here presented also in the frame of possible Space Weather implications.

  13. The Climatology of Neutral Winds in the MLT Region as Observed From Orbit

    Science.gov (United States)

    Niciejewski, R.; Skinner, W.; Gell, D.; Cooper, M.; Marsh, A.; Killeen, T.; Wu, Q.; Solomon, S.; Ortland, D.; Drob, D.; Emmert, J.

    2005-12-01

    Unique observations of the horizontal neutral winds in the altitude range 70 to 115 km have been performed from satellite platforms by HRDI and WINDII (UARS) and by TIDI (TIMED), the former since September 1991 and the latter since January 2002. All three experiments observed airglow on the terrestrial limb and derived vertical wind profiles of geophysical quantities by inverting altitude scans of Doppler shifted emission spectra. As a result, the global mesosphere / lower thermosphere region has been sampled for 14 years by a common technique resulting in an unparalleled neutral wind database. This database will be one of the key contributions to an improved Horizontal Wind Model (HWM). This paper will describe results from the first long term climatological study of the MLT region based on satellite wind measurements. The basic dynamic structure in the MLT is a tide, which also has long-term variation that has similar periods to the 27-month QBO (quasi-biennial oscillation) and the SAO (semi-annual oscillation). Signatures of ultra-long variability require analysis of the full wind database.

  14. A snow cover climatology for the Pyrenees from MODIS snow products

    Directory of Open Access Journals (Sweden)

    S. Gascoin

    2015-05-01

    a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85 for MOD10A1 and 96% (κ = 0.81 for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67. We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011–2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  15. Climatological characteristics of raindrop size distributions in Busan, Republic of Korea

    Science.gov (United States)

    Suh, S.-H.; You, C.-H.; Lee, D.-I.

    2016-01-01

    Raindrop size distribution (DSD) characteristics within the complex area of Busan, Republic of Korea (35.12° N, 129.10° E), were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a 4-year period from 24 February 2001 to 24 December 2004. Also, to find the dominant characteristics of polarized radar parameters, which are differential radar reflectivity (Zdr), specific differential phase (Kdp) and specific attenuation (Ah), T-matrix scattering simulation was applied in the present study. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories not only covering different temporal and spatial scales, but also different rainfall types. When only convective rainfall was considered, mean values of mass-weighted mean diameter (Dm) and normalized number concentration (Nw) values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we analyzed maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) wind identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT probability density function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.

  16. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Kriebel, K.T.

    2000-07-01

    Three different climates have been identified by our evaluation of AVHRR (advanced very high resolution radiometer) data using APOLLO (AVHRR processing scheme over land, clouds and ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15 km by 14 km. The study area only comprises 540 km by 560 km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At nonvegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps. (orig.)

  17. Metrological challenges for measurements of key climatological observables. Part 3: seawater pH

    Science.gov (United States)

    Dickson, A. G.; Camões, M. F.; Spitzer, P.; Fisicaro, P.; Stoica, D.; Pawlowicz, R.; Feistel, R.

    2016-02-01

    Water dissolves many substances with which it comes into contact, leading to a variety of aqueous solutions ranging from simple and dilute to complex and highly concentrated. Of the multiple chemical species present in these solutions, the hydrogen ion, H+, stands out in importance due to its relevance to a variety of chemical reactions and equilibria that take place in aquatic systems. This importance, and the fact that its presence can be assessed by reliable and inexpensive procedures, are the reasons why pH is perhaps the most measured chemical parameter. In this paper, while examining climatologically relevant ocean pH, we note fundamental problems in the definition of this key observable, and its lack of secure foundation on the International System of Units, the SI. The metrological history of seawater pH is reviewed, difficulties arising from its current definition and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent TEOS-10 seawater standard. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems.

  18. Statistical Mechanics and the Climatology of the Arctic Sea Ice Thickness Distribution

    CERN Document Server

    Toppaladoddi, Srikanth

    2016-01-01

    We study the seasonal changes in the thickness distribution of Arctic sea ice, $g(h)$, under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for $g(h)$ (Toppaladoddi \\& Wettlaufer \\emph{Phys. Rev. Lett.} {\\bf 115}, 148501, 2015), in which the thermodynamic growth growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to the observationally consistent thermodynamic model of Eisenman \\& Wettlaufer (\\emph{Proc. Natl. Acad. Sci. USA} {\\bf 106}, pp. 28-32, 2009). We find that due to the combined effects of thermodynamics and mechanics, $g(h)$ spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2 (Kwok \\& Cunningham, \\emph{Phil. Trans. R. Soc. A} {\\bf 373}, 20140157, 2015). Because $g(h)$ is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation ...

  19. The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario

    Energy Technology Data Exchange (ETDEWEB)

    Erukhimova, T. [Texas A and M University, Department of Physics, College Station, TX (United States); Zhang, R. [GFDL/NOAA, Princeton, NJ (United States); Bowman, K.P. [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States)

    2009-02-15

    Global atmospheric transport in a climate subject to a substantial weakening of the Atlantic thermohaline circulation (THC) is studied by using climatological Green's functions of the mass conservation equation for a conserved, passive tracer. Two sets of Green's functions for the perturbed climate and for the present climate are evaluated from 11-year atmospheric trajectory calculations, based on 3-D winds simulated by GFDL's newly developed global coupled ocean-atmosphere model (CM2.1). The Green's function analysis reveals pronounced effects of the climate change on the atmospheric transport, including seasonally modified Hadley circulation with a stronger Northern Hemisphere cell in DJF and a weaker Southern Hemisphere cell in JJA. A weakened THC is also found to enhance mass exchange rates through mixing barriers between the tropics and the two extratropical zones. The response in the tropics is not zonally symmetric. The 3-D Green's function analysis of the effect of THC weakening on transport in the tropical Pacific shows a modified Hadley cell in the eastern Pacific, confirming the results of our previous studies, and a weakening (strengthening) of the upward and eastward motion to the south (north) of the Equator in the western Pacific in the perturbed climate as compared to the present climate. (orig.)

  20. Moisture and heat budgets of the south American monsoon system: climatological aspects

    Science.gov (United States)

    Garcia, Sâmia R.; Kayano, Mary T.; Calheiros, Alan J. P.; Andreoli, Rita Valéria; de Souza, Rodrigo Augusto Ferreira

    2016-08-01

    The climatology of the moisture and heat budget equation terms for subareas within the South American Monsoon System (SAMS) region is investigated for the 1958-2014 period considering the distinct phases of the Pacific Decadal Oscillation (PDO). These budget equations are applied to the data from the National Centers for Environmental Prediction (NCEP) Reanalysis project. Sources or sinks of moisture and heat are equation residues, referred to as residue and diabatic terms, respectively. Analyses are done for the Central Amazon Basin (CAM) and Western-Central Brazil (WCB) for three distinct periods, 1958-1976, 1977-1995, and 1996-2014, that correspond to the cold, warm, and undefined PDO phases. The differences among the PDO phases for each term are discussed. The CAM region acts dominantly as a moisture sink and heat source in all months during the three phases. On the other hand, in the WCB region, the monsoon characteristics are better defined, with a moisture sink (source) and a heat source (sink) during the wet (dry) season. The main result of the present analysis is the persistence of SAMS intensification signs in both CAM and WCB areas up to the last analyzed period (1996-2014), which is consistent with intense flooding in the Amazon Basin in 2008/2009, 2012, and 2014.

  1. A global ETCCDI based precipitation climatology from satellite and rain gauge measurements

    Science.gov (United States)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2016-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused onto the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and has a spatial resolution of 1°. So far, the MiKlip forecast validation is based upon the Expert Team on Climate Change and Detection Indices (ETCCDI). These indices focus on precipitation extrema in terms of spell durations, percentiles, averaged precipitation amounts and further more. The application of these indices on the DAPAGLOCO dataset in its current state delivers insight into the global distribution of precipitation characteristics and extreme events. The resulting global patterns of these characteristics and extrema are the main objective of the presentation.

  2. Towards climatological study on the characteristics of aerosols in Central Africa and Mediterranean sites

    Science.gov (United States)

    Benkhalifa, Jamel; Chaabane, Mabrouk

    2016-02-01

    The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.

  3. Climatology of extreme daily precipitation in Colorado and its diverse spatial and seasonal variability

    Science.gov (United States)

    Mahoney, Kelly M.; Ralph, F. Martin; Walter, Klaus; Doesken, Nolan; Dettinger, Michael; Gottas, Daniel; Coleman, Timothy; White, Allen

    2015-01-01

    The climatology of Colorado’s historical extreme precipitation events shows a remarkable degree of seasonal and regional variability. Analysis of the largest historical daily precipitation totals at COOP stations across Colorado by season indicates that the largest recorded daily precipitation totals have ranged from less than 60 mm day−1 in some areas to more than 250 mm day−1 in others. East of the Continental Divide, winter events are rarely among the top 10 events at a given site, but spring events dominate in and near the foothills; summer events are most common across the lower-elevation eastern plains, while fall events are most typical for the lower elevations west of the Divide. The seasonal signal in Colorado’s central mountains is complex; high-elevation intense precipitation events have occurred in all months of the year, including summer, when precipitation is more likely to be liquid (as opposed to snow), which poses more of an instantaneous flood risk. Notably, the historic Colorado Front Range daily rainfall totals that contributed to the damaging floods in September 2013 occurred outside of that region’s typical season for most extreme precipitation (spring–summer). That event and many others highlight the fact that extreme precipitation in Colorado has occurred historically during all seasons and at all elevations, emphasizing a year-round statewide risk.

  4. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    Science.gov (United States)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  5. Contribution of the Ebro Observatory team to the IRI climatological modeling: A Review.

    Science.gov (United States)

    Altadill, David; Blanch, Estefania; Miquel Torta, J.

    During the recent years, the Geomagnetism and Aeronomy group of the Ebre Observatory has been working to improve the climatological prediction of some ionospheric key parameters. To do that, we have taken advantage of the increasing number of ionospheric stations providing data and sharing it through the Digital Ionospheric Data Base (DIDB). We have used the Spherical Harmonic analysis as analytical technique for globally modeling those parameters during quiet conditions. Models for bottom-side B0 and B1 parameters of IRI, for density peak height (hmF2) and for equivalent scale height (Hm) have been developed. Each SH model has been parameterized according to the time-space pattern of respectively ionospheric parameter and has been bounded to the solar activity. It has been proved that these empirical models improve, in average, the prediction of B0, B1 and hmF2 by 40%, 20% and 10% respectively with respect to previous IRI versions (hmF2 is improved by more than 30% at high and low latitudes). Due to these good results and to the analytical formulation, IRI has adopted the SH empirical models for B0 and B1 as an option in the current version (IRI 2012) and has proposed the SH model for hmF2 to be included into next releases. The analytical model for Hm could be useful to estimate information for the topside profile formulation.

  6. Venus-Earth-Mars: comparative climatology and the search for life in the solar system.

    Science.gov (United States)

    Launius, Roger D

    2012-09-19

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  7. Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity

    Science.gov (United States)

    Lovell-Smith, J. W.; Feistel, R.; Harvey, A. H.; Hellmuth, O.; Bell, S. A.; Heinonen, M.; Cooper, J. R.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions, such as are suggested here, for what are long-standing metrological problems.

  8. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  9. Climatology of the mixed layer depth in the East/Japan Sea

    Science.gov (United States)

    Lim, SeHan; Jang, Chan Joo; Oh, Im Sang; Park, JongJin

    2012-08-01

    A climatology for the mixed layer depth (MLD) in the East/Japan Sea was produced using temperature profile data collected from 1931 to 2005. MLD is defined as the depth at which the temperature differs from that at 10 m depth by 0.2 °C. It varies seasonally with a range of about 20 m, a minimum, near the subpolar front (SPF, 38°-41°N), 60-100 m in south of 38°N and north of 41°N, and about 200 m near the winter convection region (132°-135°E & 41°-43°N). The weaker seasonality near the SPF seems to result from year-round strong stratification sustained largely by advected warm water of the East Korean Warm Current and a result of complex dynamic process of frontogenesis including lateral dynamics or wind-induced friction. The temperature-based MLD does not show any significant difference (mostly less than 20 m) from the density-based values over most of the East/Japan Sea except a few localized regions near the Russian and Japanese coasts where barrier layers form from late fall through early spring. This study confirms that atmospheric forcing largely dominates the overall magnitude of MLD seasonal variability in most of the East/Japan Sea.

  10. The Impact of Climatological Variables on Kelp Canopy Area in the Santa Barbara Channel

    Science.gov (United States)

    Zigner, K.; Bausell, J.; Kudela, R. M.

    2015-12-01

    Kelp canopy area (KCA), a proxy for kelp forest health, has important implications for small and large-scale processes pertaining to fisheries, near shore currents, and marine ecosystems. As part of the NASA Airborne Science Research Program (SARP), this study examines the impact of ocean chemistry and climatological variables on KCA in the Santa Barbara Channel through time series analysis. El Niño Southern Oscillation (ENSO), North Pacific Gyre Oscillation (NPGO), North Pacific Oscillation (NPO), and upwelling indices as well as sea surface temperature (SST), salinity, nitrate, and chlorophyll-a concentrations taken within the Santa Barbara channel (1990-2014) were acquired from the Climate Prediction Center (CPC), California Cooperative Oceanic Fisheries Investigation (CalCOFI), and Di Lorenzo's NPGO websites. These data were then averaged for winter (November-January) and summer (May-August) seasons and compared to KCA measurements derived from Landsat images via unsupervised classification. Regression, cumulative sum tests, and cross-correlation coefficients revealed a two year lag between KCA and the NPGO, indicating the presence of an additional factor driving both variables. Further analyses suggests that the NPO may be this driving factor, as indicated by the correlation (lag 0) with KCA. Comparing relationships between kelp and other variables over various time periods supports the acceleration of the NPGO and other variables in more recent years. Exploring relationships between KCA, NPGO, and NPO may provide insight into potential impacts of climate change on coastal marine ecosystems.

  11. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    Science.gov (United States)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  12. Land surface skin temperature climatology: benefitting from the strengths of satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Jin Menglin [Department of Meteorology, San Jose State University, 1 Washington Square, San Jose, CA 95192-0104 (United States); Dickinson, Robert E, E-mail: jin@met.sjsu.edu [Jackson School of Geosciences, University of Texas at Austin (United States)

    2010-10-15

    Surface skin temperature observations (T{sub skin}), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (T{sub air}) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05 deg. latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for T{sub skin} variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface T{sub air} in terms of both physical meaning and magnitude. Therefore, the two temperatures (T{sub skin} and T{sub air}) are complementary in their contribution of valuable information to the study of climate change.

  13. Structure and Propagation Characteristics of Climatological Mean Kinetic Energy of Disturbance of Intraseasonal Oscillation in Asian Summer Monsoon Zone

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the structure and propagation characteristics of climatological mean kinetic energy of disturbance of intraseasonal oscillation in Asian summer monsoon zone. [Method] When South China Sea monsoon started to break out, the kinetic energy of intraseasonal oscillation disturbance in the monsoon zone was analyzed, especially the researches about the variation of South China Sea monsoon, the development of Indian monsoon and the advancement of East Asian monsoon. [Result] ...

  14. Modelling sea breeze climatologies and interactions on coasts in the southern North Sea: Implications for offshore wind energy

    OpenAIRE

    Steele, Christopher; Dorling, Stephen; von Glasow, Roland; Bacon, Jim

    2015-01-01

    Current understanding of the behaviour of sea breezes in the offshore environment is limited but rapidly requires improvement due, not least, to the expansion of the offshore wind energy industry. Here we report on contrasting characteristics of three sea-breeze types on five coastlines around the southern North Sea from an 11 year model-simulated climatology. We present and test an identification method which distinguishes sea-breeze types which can, in principle, be adapted for other coastl...

  15. Climatology Analysis of Aerosol Effect on Marine Water Cloud from Long-Term Satellite Climate Data Records

    OpenAIRE

    Xuepeng Zhao; Andrew K. Heidinger; Andi Walther

    2016-01-01

    Satellite aerosol and cloud climate data records (CDRs) have been used successfully to study the aerosol indirect effect (AIE). Data from the Advanced Very High Resolution Radiometer (AVHRR) now span more than 30 years and allow these studies to be conducted from a climatology perspective. In this paper, AVHRR data are used to study the AIE on water clouds over the global oceans. Correlation analysis between aerosol optical thickness (AOT) and cloud parameters, including cloud droplet effecti...

  16. South American Climatology and Impacts of El Niño in NCEP’s CFSR Data

    OpenAIRE

    Timothy Paul Eichler; Ana C. Londoño

    2013-01-01

    Understanding regional climate variability is necessary in order to assess the impacts of climate change. Until recently, the best methods for evaluating regional climate variability were via observation networks and coarse-gridded reanalysis datasets. However, the recent development of high-resolution reanalysis datasets offers an opportunity to better evaluate the climatologically diverse continent of South America. This study compares NCEP’s CFS reanalysis dataset with NCEP’s coarser-resol...

  17. Deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

    Directory of Open Access Journals (Sweden)

    L. M. Goddijn-Murphy

    2014-07-01

    Full Text Available Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2 Atlas (SOCAT has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2 is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables.

  18. A UT/LS ozone climatology of the nineteen seventies deduced from the GASP aircraft measurement program

    Science.gov (United States)

    Schnadt Poberaj, C.; Staehelin, J.; Brunner, D.; Thouret, V.; Mohnen, V.

    2007-11-01

    We present ozone measurements of the Global Atmospheric Sampling Program (GASP) performed from four commercial and one research aircraft in the late 1970s. The GASP quality assurance and control program was reviewed, and an ozone climatology of the upper troposphere and lower stratosphere (UT/LS) of the years 1975-1979 was built. The data set was estimated to have an overall uncertainty of 9% or 3 ppb whichever is greater for the first two years and 4% or 3 ppb for the remaining years, i.e. after implementation of silicone rubber membranes in the pumps. Two cases of nearly coincident flights of two GASP airliners along the same flight route, and the comparison with independent observations from the literature, including ozonesondes and aircraft campaigns, indicate that the ozone measurements are of high quality. The UT/LS climatology of the GASP data set is in general agreement with that derived from MOZAIC in the 1990s in regions covered by both programmes. GASP provides unique large-scale climatological information on UT/LS ozone above the northern hemisphere Pacific region, which is not covered by MOZAIC. There, the GASP climatology confirms several characteristic features derived from individual research aircraft campaigns and from ozone soundings. In particular, summertime ozone in the UT over the midlatitude eastern Pacific Ocean was significantly lower in the 1970s than over the American continent. The generally lower ozone concentrations in the tropics near the dateline as compared to farther east are indicative of convective uplifting of ozone poor air from the marine boundary layer.

  19. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Monthly Harmonic Climatologies (1982-2008) (NODC Accession 0075098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  20. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 5-day Harmonic Climatologies (1982-2008) (NODC Accession 0071182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km 5-day sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  1. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Daily Harmonic Climatologies (1982-2008) (NODC Accession 0071181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km daily sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  2. 4 km NODC/RSMAS AVHRR Pathfinder Cloud Screened Version 5.0 Monthly Climatologies (1985-2006) (NODC Accession 0110657)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 sea surface...

  3. Historical oceanographic data and climatologies in support of the Deepwater Horizon oil spill event in the Gulf of Mexico (NODC Accession 0064867)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data products and in situ oceanographic data collected as part of the Deepwater Horizon Event in the Gulf of Mexico (May 2010). The climatological fields detailed...

  4. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    Science.gov (United States)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; Hinsta, E. J.; Loewenstein, M.; Lopez, J.; Paige, M. E.; Pittman, J. V.; Podolske, J. R.; Proffitt, M. R.; Sachse, G. W.; Schiller, C.; Schlager, H.; Smith, J.; Spelten, N.; Webster, C.; Weinheimer, A.; Zondlo, M. A.

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  5. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    Science.gov (United States)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2015-09-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  6. A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC

    Directory of Open Access Journals (Sweden)

    N. Lamquin

    2012-01-01

    Full Text Available Ice supersaturation in the upper troposphere is a complex and important issue for the understanding of cirrus cloud formation. On one hand, infrared sounders have the ability to provide cloud properties and atmospheric profiles of temperature and humidity. On the other hand, they suffer from coarse vertical resolution, especially in the upper troposphere and therefore are unable to detect shallow ice supersaturated layers. We have used data from the Measurements of OZone and water vapour by AIrbus in-service airCraft experiment (MOZAIC in combination with Atmospheric InfraRed Sounder (AIRS relative humidity measurements and cloud properties to develop a calibration method for an estimation of occurrence frequencies of ice supersaturation. This method first determines the occurrence probability of ice supersaturation, detected by MOZAIC, as a function of the relative humidity determined by AIRS. The occurrence probability function is then applied to AIRS data, independently of the MOZAIC data, to provide a global climatology of upper-tropospheric ice supersaturation occurrence. Our climatology is then compared to ice supersaturation occurrence statistics from MOZAIC alone and related to high cloud occurrence from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP. As an example of application it is compared to model climatologies of ice supersaturation from the Integrated Forecast System (IFS of the European Centre for Medium-Range Weather Forecasts (ECMWF and from the European Centre HAmburg Model (ECHAM4. This study highlights the benefits of multi-instrumental synergies for the investigation of upper tropospheric ice supersaturation.

  7. Understanding the Climatology of Thermodynamic Signatures and their Role in Modification of Extreme Precipitation around Artificial Reservoirs

    Science.gov (United States)

    Degu, A. M.; Hossain, F.

    2010-12-01

    Very little is known about how dams and reservoirs modify rainfall and flood frequency in their vicinity. This is because conventional dam design and reservoir planning over the last century have been “one-way,” without acknowledging the possible feedback mechanisms on precipitation recycling due to local evaporation and systematic change in land use and land cover. In this study, using the North American Regional Reanalysis (NARR) database, the climatology of important thermodynamic signatures, such as CAPE (Convective Available Potential Energy), Convective Inhibition, Temperature, Latent Heat, Humidity, Precipitation and Wind are analyzed as a function of proximity to large artificial reservoirs in the United States. The analysis is cast in the context of the chronology of extreme precipitation trends around dams for the pre-dam and post-dam period. To understand how storms may have been intensified by reservoirs, the climatology was analyzed for a set of about 100 large dams for three specific scenarios: 1) right over the reservoir 2) right over land adjacent to the reservoir and 3) over land far away from the reservoir by at least 100 km. Precipitation records from the Global Historical Climate Network (GHCN) were used to correlate the temporal and spatial trends in extreme precipitation to the climatology of the thermodynamic signatures. Several hypotheses on the physical mechanism of storm intensification are proposed and tested using the analysis presented herein. Location of large dams with their climatic classification

  8. 4.4 Development of a 30-Year Soil Moisture Climatology for Situational Awareness and Public Health Applications

    Science.gov (United States)

    Case, Jonathan L.; Zavodsky, Bradley T.; White, Kristopher D.; Bell, Jesse E.

    2015-01-01

    This paper provided a brief background on the work being done at NASA SPoRT and the CDC to create a soil moisture climatology over the CONUS at high spatial resolution, and to provide a valuable source of soil moisture information to the CDC for monitoring conditions that could favor the development of Valley Fever. The soil moisture climatology has multi-faceted applications for both the NOAA/NWS situational awareness in the areas of drought and flooding, and for the Public Health community. SPoRT plans to increase its interaction with the drought monitoring and Public Health communities by enhancing this testbed soil moisture anomaly product. This soil moisture climatology run will also serve as a foundation for upgrading the real-time (currently southeastern CONUS) SPoRT-LIS to a full CONUS domain based on LIS version 7 and incorporating real-time GVF data from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (Vargas et al. 2013) into LIS-Noah. The upgraded SPoRT-LIS run will serve as a testbed proof-of-concept of a higher-resolution NLDAS-2 modeling member. The climatology run will be extended to near real-time using the NLDAS-2 meteorological forcing from 2011 to present. The fixed 1981-2010 climatology shall provide the soil moisture "normals" for the production of real-time soil moisture anomalies. SPoRT also envisions a web-mapping type of service in which an end-user could put in a request for either an historical or real-time soil moisture anomaly graph for a specified county (as exemplified by Figure 2) and/or for local and regional maps of soil moisture proxy percentiles. Finally, SPoRT seeks to assimilate satellite soil moisture data from the current Soil Moisture Ocean Salinity (SMOS; Blankenship et al. 2014) and the recently-launched NASA Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) missions, using the EnKF capability within LIS. The 9-km combined active radar and passive microwave retrieval product from SMAP (Das et al. 2011

  9. Multivariate Analysis of Multi-tracer and Climatological Data in an Urbanizing, Drought-impacted Watershed

    Science.gov (United States)

    Creech, L. T.; Donahoe, R. J.

    2009-12-01

    This paper documents water quality conditions of the Lake Tuscaloosa, Alabama water-supply reservoir and its watershed under two end-members of hydrologic and climatic variability. These data afford the opportunity to view water quality in the context of both land use and drought, facilitating the development of coupled hydrologic and water-quality forecast models to guide watershed management decisions. This study demonstrates that even the region’s normal 10-year drought cycle holds the capacity to significantly impact water quality and should be incorporated into watershed models and decision-making. To accomplish the goals of this project, a multi-tracer approach has been adopted to assess solute sources and water-quality impairments induced by land use. The biogeochemical tracers include: Major- and minor-ions, trace metals, nutrient speciation and stable-isotope tracers at natural abundance levels. These tracers are also vital to understand the role of climate variability in the context of a heterogeneous landscape. Eight seasonal sampling events across 23 sample locations and two water years yield 184 discrete water-quality samples representative of a range of landscape variability and climatological conditions. Each sample was analyzed for 27 solute species and relevant indicators of water quality. Climatological data was obtained from public repositories (NCDC, USDA); hydrologic data from stream and precipitation gages within the watershed (USGS). Multivariate statistics are used to facilitate the numerical analysis and interpretation of the resulting data. Measurements of nitrogen speciation were collected to document patterns of nutrient loading and nitrogen cycling. These data are augmented by the analysis of nitrogen and oxygen isotopes of nitrate. These data clarify the extent to which nitrogen is being loaded in the non-growing season as well as the capacity of the lake to assimilate nutrients. Under drought conditions the lake becomes nitrogen

  10. New and Updated Gridded Analysis Products provided by the Global Precipitation Climatology Centre (GPCC)

    Science.gov (United States)

    Ziese, Markus; Schneider, Udo; Meyer-Christoffer, Anja; Finger, Peter; Schamm, Kirstin; Rustemeier, Elke; Becker, Andreas

    2016-04-01

    Since its start in 1989 the Global Precipitation Climatology Centre (GPCC) performs global analyses of monthly precipitation for the earth's land-surface on the basis of in-situ measurements. Meanwhile, the data set has continuously grown both in temporal coverage (original start of the evaluation period was 1986), as well as extent and quality of the underlying data base. The high spatio-temporal variability of precipitation requires an accordingly high density of measurement data. Data collected from national meteorological and hydrological services are the core of the GPCC data base, supported by global and regional data collections. Also the GPCC receives SYNOP and CLIMAT reports via WMO-GTS, which are mainly applied for near-real-time products. A high quality control effort is undertaken to remove miscoded and temporal or spatial dislocated data before entry into the GPCC archive, serving the basis for further interpolation and product generation. The GPCC archive holds records from almost 100 000 stations, among those three quarters with records long enough to serve the data basis of the GPCC suite of global precipitation products, comprising near-real-time as well as non-real-time products. Near-real-time products are the 'First Guess Monthly', 'First Guess Daily', 'Monitoring Product' and 'GPCC Drought Index'. These products are based on WMO-GTS data, e.g., SYNOP and CLIMAT reports and monthly totals calculated at CPC. Non-real-time products are the 'Full Data Monthly', 'Full Data Daily', 'Climatology', and 'HOMPRA-Europe'. Data from national meteorological and hydrological services and regional and global data collections are mainly used to calculate these products. Also WMO-GTS data are used if no other data are available. The majority of the products were released in an updated version, but 'Full Data Daily' and HOMPRA-Europe' are new products provided the first time. 'Full Data Daily' is a global analysis of daily precipitation totals from 1988 to 2013

  11. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Science.gov (United States)

    Osman, Mohammed K.; Tarasick, David W.; Liu, Jane; Moeini, Omid; Thouret, Valerie; Fioletov, Vitali E.; Parrington, Mark; Nédélec, Philippe

    2016-08-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012, are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO data set is archived monthly from 2001 to 2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude.The mapping product has been carefully evaluated, firstly by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less and found to be less than 30 % for almost all cases. Secondly, the method has been validated by comparing profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Finally, the mapping product is compared with global MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped data set, and with independent data from the NOAA aircraft flask sampling program. The trajectory-mapped MOZAIC-IAGOS CO values show generally good agreement with both independent data sets.Maps are also compared with version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. Both data sets clearly show major regional CO sources such

  12. Simulation of Sea Ice in FGOALS-g2: Climatology and Late 20th Century Changes

    Institute of Scientific and Technical Information of China (English)

    XU Shiming; SONG Mirong; LIU Jiping; WANG Bin; LI Lijuan; HUANG Wenyu; LIU Li

    2013-01-01

    Sea ice is an important component in the Earth's climate system.Coupled climate system models are indispensable tools for the study of sea ice,its internal processes,interaction with other components,and projection of future changes.This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2),in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5),with a focus on historical experiments and late 20th century simulation.Through analysis,we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability.Sea ice spatial distribution and seasonal change characteristics are well captured.The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations,although the decrease trend is lower compared with observations.Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter summer changes.Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3.Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future:(1) ocean model improvements to remove the artificial island at the North Pole;(2) higher resolution of the atmosphere model for better simulation of important features such as,among others,the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land,and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.

  13. Predictions of barrier island berm evolution in a time-varying storm climatology

    Science.gov (United States)

    Plant, Nathaniel G.; Flocks, James; Stockdon, Hilary F.; Long, Joseph W.; Guy, Kristy K.; Thompson, David M.; Cormier, Jamie M.; Smith, Christopher G.; Miselis, Jennifer L.; Dalyander, P. Soupy

    2014-01-01

    Low-lying barrier islands are ubiquitous features of the world's coastlines, and the processes responsible for their formation, maintenance, and destruction are related to the evolution of smaller, superimposed features including sand dunes, beach berms, and sandbars. The barrier island and its superimposed features interact with oceanographic forces (e.g., overwash) and exchange sediment with each other and other parts of the barrier island system. These interactions are modulated by changes in storminess. An opportunity to study these interactions resulted from the placement and subsequent evolution of a 2 m high sand berm constructed along the northern Chandeleur Islands, LA. We show that observed berm length evolution is well predicted by a model that was fit to the observations by estimating two parameters describing the rate of berm length change. The model evaluates the probability and duration of berm overwash to predict episodic berm erosion. A constant berm length change rate is also predicted that persists even when there is no overwash. The analysis is extended to a 16 year time series that includes both intraannual and interannual variability of overwash events. This analysis predicts that as many as 10 or as few as 1 day of overwash conditions would be expected each year. And an increase in berm elevation from 2 m to 3.5 m above mean sea level would reduce the expected frequency of overwash events from 4 to just 0.5 event-days per year. This approach can be applied to understanding barrier island and berm evolution at other locations using past and future storm climatologies.

  14. Climatology and temporal evolution of the atmospheric semidiurnal tide in present-day reanalyses

    Science.gov (United States)

    Díaz-Argandoña, J.; Ezcurra, A.; Sáenz, J.; Ibarra-Berastegi, G.; Errasti, I.

    2016-05-01

    The solar semidiurnal atmospheric tide (S2) was extracted from seven reanalysis data sets, including current data sets, such as CFSR (Climate Forecast System Reanalysis), MERRA (Modern-Era Retrospective Analysis for Research and Applications), ERA-Interim (ECMWF Reanalysis), and 20CR (Twentieth Century Reanalysis), and older frozen products, such as NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research), ERA-40 (ECMWF Reanalysis), and JRA-25 (Japanese 25 year Reanalysis). In this calculation, we emphasized the temporal variation of the tide. We also calculated the tidal error, which was sizable at high latitudes and over short averaging periods and large for 20CR at all latitudes. Because of the four standard daily samples, the interpolation scheme of van den Dool et al. (1997) was used when necessary. We found this method to be accurate for zonally averaged tides only. Comparing the climatology from the MERRA and CFSR S2 with a recent empirical tide model showed that MERRA better represented the geographical structure of the tide, especially its phase. We found a bias in the phase in all of the reanalysis data sets except for MERRA. The temporal evolution of the tide was inconsistent between the different data sets, although similar seasonal variations were observed. The seasonal cycle was also better depicted in MERRA. The S2 calculated from MERRA and satellite precipitation measurements from TRMM (Tropical Rainfall Measuring Mission) presented results that were inconsistent with the hypothesis in which rainfall latent heat release represents S2 forcing and functions as a source of S2 seasonal variability.

  15. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    Science.gov (United States)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and

  16. Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph; Denn, Frederick; Flynn, Connor; Hodges, Gary; Kiedron, Piotr; Koontz, Annette; Schlemmer, James; Schwartz, Stephen E.

    2010-04-13

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  17. Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

    2010-04-01

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  18. Climatology of monsoon precipitation over the Tibetan Plateau from 13-year TRMM observations

    Science.gov (United States)

    Aijuan, Bai; Guoping, Li

    2015-07-01

    Based on the 13-year data from the Tropical Rainfall Measuring Mission (TRMM) satellite during 2001-2013, the influencing geographical location of the Tibetan Plateau (Plateau) monsoon is determined. It is found that the domain of the Plateau monsoon is bounded by the latitude between 27° N and 37° N and the longitude between 60° E and 103° E. According to the annual relative precipitation, the Plateau monsoon can be divided into three sections: the Plateau winter monsoon (PWM) over Iran and Afghanistan, the Plateau summer monsoon (PSM) over the central Plateau, and the transiting zone of the Plateau monsoon (TPM) over the south, west, and east edges of the Plateau. In PWM and PSM, the monsoon climatology has a shorter rainy season with the mean annual rainfall of less than 800 mm. In TPM, it has a longer rainy season with the mean annual rainfall of more than 1800 mm. PWM experiences a single-peak monthly rainfall with the peak during January to March; PSM usually undergoes a multi-peak pattern with peaks in the warm season; TPM presents a double-peak pattern, with a strong peak in late spring to early summer and a secondary peak in autumn. The Plateau monsoon also characterizes an asymmetrical seasonal advance of the rain belt. In the east of the Plateau, the rain belt migrates in a south-north orientation under the impact of the tropical and subtropical systems' oscillation. In the west of the Plateau, the rain belt advances in an east-west direction, which is mainly controlled by the regional Plateau monsoon.

  19. A Radar-Based Climatology of Thunderstorm Days across New York State.

    Science.gov (United States)

    Falconer, Phillip D.

    1984-07-01

    Archived radar reports, derived from the National Weather Service radar network, were used to estimate the average annual frequencies of thunderstorm days across New York State for the period 1978-81. The archival records consist of manually-digitized radar (MDR) data, available on magnetic tapes and arranged as hourly, digitally-encoded radar reflectivity values within a high-resolution grid of reporting blocks, each 45 × 45 km. Analyses of these data made use of an experimentally-derived relationship between radar reflectivities and the presence and intensities of thunderstorms. The radar-based thunderstorm day climatology generally agreed to within 15% of conventional, surface-based thunderstorm day statistics reported for the same period by National Weather Service (NWS) offices located within range of two or more network radars in the State. Poorest agreement between annual totals was found at selected NWS offices in the Greater New York City Metropolitan Area and northward into the lower Hudson River Valley, in far western New York and over far northern New York. Where redundant, near-continuous network radar coverage was available, a northwest-to-southeast increase of thunderstorm days, approaching an annual maximum of 45 in downstate New York was revealed. This gradient in thunderstorm day activity is significantly different from that depicted on isokeraunic maps derived from conventional thunder observing protocol. Because the MDR data are archived on a high-resolution grid of reporting blocks, local thunderstorm maxima on a scale of tens of kilometers may be resolved. Analyses further revealed that 5-25% of all thunderstorm days contained sufficiently vigorous storms to be characterized as `intense'. The greatest frequency of intense thunderstorm days, approaching 8 annually, was located in the highly-populated region of the State along the New York-New Jersey borders, northwest of the Greater New York City Metropolitan Area.

  20. Changes in satellite-derived impervious surface area at US historical climatology network stations

    Science.gov (United States)

    Gallo, Kevin; Xian, George

    2016-10-01

    The difference between 30 m gridded impervious surface area (ISA) between 2001 and 2011 was evaluated within 100 and 1000 m radii of the locations of climate stations that comprise the US Historical Climatology Network. The amount of area associated with observed increases in ISA above specific thresholds was documented for the climate stations. Over 32% of the USHCN stations exhibited an increase in ISA of ⩾20% between 2001 and 2011 for at least 1% of the grid cells within a 100 m radius of the station. However, as the required area associated with ISA change was increased from ⩾1% to ⩾10%, the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 113 (9% of stations). When the 1000 m radius associated with each station was examined, over 52% (over 600) of the stations exhibited an increase in ISA of ⩾20% within at least 1% of the grid cells within that radius. However, as the required area associated with ISA change was increased to ⩾10% the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 35 (less than 3% of the stations). The gridded ISA data provides an opportunity to characterize the environment around climate stations with a consistently measured indicator of a surface feature. Periodic evaluations of changes in the ISA near the USHCN and other networks of stations are recommended to assure the local environment around the stations has not significantly changed such that observations at the stations may be impacted.

  1. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  2. Exploring Climatology and Long-Term Variations of Aerosols from NASA Reanalysis MERRA-2 with Giovanni

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana; Vollmer, Bruce; Li, Zhanqing

    2016-01-01

    Dust plays important roles in energy cycle and climate variations. The dust deposition is the major source of iron in the open ocean, which is an essential micronutrient for phytoplankton growth and therefore may influence the ocean uptake of atmospheric CO2. Mineral dust can also act as fertilizer for forests over long time periods. Over 35 years of simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using MERRA-2 aerosol model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Dust deposition data along with other major aerosol compositions (e.g. black carbon, sea salt, and sulfate, etc.) are simulated as dry and wet deposition, respectively. The hourly and monthly data are available at spatial resolution of 0.5ox0.625o (latitude x longitude). Quick data exploration of climatology and interannual variations of MERRA-2 aerosol can be done through the online visualization and analysis tool, Giovanni. This presentation, using dust deposition as an example, demonstrates a number of MERRA-2 data services at GES DISC. Global distributions of dust depositions, and their seasonal and inter-annual variations are investigated from MERRA-2 monthly aerosol products.

  3. TRMM-based Merged Data Products Compared to Global Precipitation Climatology Project (GPCP) Analyses

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool; in a merged analysis on a 1 degree x l degree latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product will be compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates close agreement with the GPCP estimates. By the time of the meeting over a year of TRMM products will be available for comparison. Global tropical and regional values will be compared. Seasonal variations, and variations associated with the 1998 El Nino/Southern Oscillation ENSO event will be examined and compared between the two analyses. These variations will be examined carefully and validated where possible from surface-based radar and gauge observations. The role of TRMM observations in the refinement of the long-term monitoring product will be outlined.

  4. Aerosol Climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2011-04-01

    Full Text Available Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical depth (AOD at 550 nm were examined for the 10 yr 2000–2009. Significant monthly variability is observed with maxima in April or May (~0.5 and October (~0.45, and a minimum in December and January (~0.2. Monthly mean values of UV Aerosol Index (UVAI retrieved by the Ozone Monitoring Instrument (OMI for 4 yr (2005–2008 exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL, while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  5. Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2011-10-01

    Full Text Available Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical depth (AOD at 550 nm were examined for the 10 yr period from 2000–2009. Significant monthly variability is observed in the AOD with maxima in April or May (~0.5 and October (~0.45, and a minimum in December and January (~0.2. Monthly mean values of UV Aerosol Index (UVAI retrieved by the Ozone Monitoring Instrument (OMI for 4 yr (2005–2008 exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL, while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  6. The Climatology and Impacts of Atmospheric Rivers near the Coast of Southern Alaska

    Science.gov (United States)

    Nardi, K.; Barnes, E. A.; Mundhenk, B. D.

    2015-12-01

    Atmospheric rivers, narrow plumes of anomalously high tropospheric water vapor transport, frequently appear over the Pacific Ocean. Popularized by colloquialisms such as the "Pineapple Express," atmospheric rivers often interact with synoptic-scale disturbances to produce significant precipitation events over land masses. Previous research has focused extensively on the impacts of this phenomenon with respect to high-precipitation storms, namely during boreal winter, on the western coast of the contiguous United States. These events generate great scientific, political, and economic concerns for nearby cities, farms, and tourist destinations. Recently, researchers have investigated similar high-precipitation events along the southern coast of Alaska. Specifically, previous work has discussed several major events occurring during the September-November timeframe. One particular event, in October 2006, produced an all-time record for water levels at several river observation sites. This study examines the climatology of atmospheric rivers in the vicinity of southern Alaska. Data (1979-2014) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used to detect atmospheric rivers approaching, and making landfall on, the southern Alaskan coast from the Kenai Peninsula to the Gulf of Alaska region. A seasonal cycle in the strength and frequency of atmospheric rivers over Alaska is shown. Furthermore, the study assesses the synoptic conditions coincident with atmospheric rivers and examines several instances of particularly strong precipitation events. For example, wintertime atmospheric river events tend to occur when a blocking high exists over southeastern Alaska. These results have the potential to help forecasters and emergency managers predict high-precipitation events and lessen potential negative impacts.

  7. Detection of Atmospheric Rivers: An Algorithm for Global Climatology and Model Evaluation Studies

    Science.gov (United States)

    Guan, B.; Waliser, D. E.

    2015-12-01

    Atmospheric rivers (ARs) are narrow, elongated, synoptic jets of water vapor that play important roles in the global water cycle and regional weather and hydrology. Previous studies have developed techniques for the identification of ARs based on intensity and/or geometry thresholds indicative of AR conditions. Such techniques have facilitated the investigation of ARs on local to regional scales. Recent advancement in the understanding of AR's global signatures and impacts (including those in less explored areas such as Greenland and Antarctica), and the need for understanding the representation of key AR characteristics in global weather/climate models motivate the development and evaluation of AR detection techniques suitable for global climatological and model evaluation studies. In this work, an objective AR detection algorithm is developed based on thresholding global, 6-hourly fields of integrated water vapor transport (IVT) derived from ERA-Interim reanalysis. Long, narrow filaments of enhanced IVT are detected by applying a set of intensity and geometry criteria, along with other considerations. Key output of the algorithm includes the AR shape boundary, main axis, location of landfalls, and a tabulated list of the basic statistics such as length, width, and mean IVT strength/direction of each detected AR. Sensitivity of detection is examined for selected parameters, and the result is evaluated and compared with an independent database of landfalling ARs in the west coast of North America based on satellite images of integrated water vapor (Neiman et al. 2008). Global distribution of key AR characteristics, and examples of their modulation by climate variability, will be presented.

  8. Severe heat waves in Southern Australia: synoptic climatology and large scale connections

    Science.gov (United States)

    Pezza, Alexandre Bernardes; van Rensch, Peter; Cai, Wenju

    2012-01-01

    This paper brings a new perspective on the large scale dynamics of severe heat wave (HW) events that commonly affect southern Australia. Through an automatic tracking scheme, the cyclones and anticyclones associated with HWs affecting Melbourne, Adelaide and Perth are tracked at both the surface and upper levels, producing for the first time a synoptic climatology that reveals the broader connections associated with these extreme phenomena. The results show that a couplet (or pressure dipole) formed by transient cyclones and anticyclones can reinforce the HW similarly to what is observed in cold surges (CS), with an obvious opposite polarity. Our results show that there is a large degree of mobility in the synoptic signature associated with the passage of the upper level ridges before they reach Australia and the blocking is established, with HW-associated surface anticyclones often initiating over the west Indian Ocean and decaying in the eastern Pacific. In contrast to this result the 500 hPa anticyclone tracks show a very small degree of mobility, responding to the dominance of the upper level blocking ridge. An important feature of HWs is that most of the cyclones are formed inland in association with heat troughs, while in CS the cyclones are typically maritime (often explosive), associated with a strong cold front. Hence the influence of the cyclone is indirect, contributing to reinforce the blocking ridge through hot and dry advection on the ridge's western flank. Additional insights are drawn for the record Adelaide case of March 2008 with fifteen consecutive days above 35°C breaking the previous record by 7 days. Sea surface temperatures suggest a significant air-sea interaction mechanism, with a broad increase in the meridional temperature gradient over the Indian Ocean amplifying the upstream Rossby waves that can trigger HW events. A robust cooling of the waters close to the Australian coast also contributes to the maintenance of the blocking highs

  9. Climatology of observed rainfall in Southeast France at the Regional Climate Model scales

    Science.gov (United States)

    Froidurot, Stéphanie; Molinié, Gilles; Diedhiou, Arona

    2016-04-01

    In order to provide convenient data to assess rainfall simulated by Regional Climate Models, a spatial database (hereafter called K-REF) has been designed. This database is used to examine climatological features of rainfall in Southeast France, a study region characterized by two mountain ranges of comparable altitude (the Cévennes and the Alps foothill) on both sides of the Rhône valley. Hourly records from 1993 to 2013 have been interpolated to a 0.1° × 0.1° latitude-longitude regular grid and accumulated over 3-h periods in K-REF. The assessment of K-REF relatively to the SAFRAN daily rainfall reanalysis indicates consistent patterns and magnitudes between the two datasets even though K-REF fields are smoother. A multi-scale analysis of the occurrence and non-zero intensity of rainfall is performed and shows that the maps of the 50th and 95th percentiles of 3- and 24-h rain intensity highlight different patterns. The maxima of the 50th and 95th percentiles are located over plain and mountainous areas respectively. Moreover, the location of these maxima is not the same for the 3- and 24-h intensities. To understand these differences between median and intense rainfall on the one hand and between the 3- and 24-h rainfall on the other hand, we analyze the statistical distributions and the space-time structure of occurrence and intensity of the 3-h rainfall in two classes of days, defined as median and intense. This analysis illustrates the influence of two factors on the triggering and the intensity of rain in the region: the solar cycle and the orography. The orographic forcing appears to be quite different for the two ranges of the domain and is much more pronounced over the Cévennes.

  10. European drought climatologies and trends based on a multi-indicator approach

    Science.gov (United States)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen; Barbosa, Paulo

    2015-04-01

    Drought is one of the most important weather-induced phenomena which may have severe impacts on different areas such as agriculture, economy, energy production, and society. From a meteorological point of view, drought can be induced and/or reinforced by lack of precipitation, hot temperatures and enhanced evapotranspiration. Starting from a multi-indicator approach, we present European-wide meteorological drought climatologies and trends for the period 1950-2012. As input data, we used precipitation and temperature data from the E-OBS (spatial resolution: 0.25° × 0.25°) gridded dataset of the European Climate Assessment and Dataset (ECA&D). Precipitation, temperature, and the derived potential evapotranspiration (PET) have been used to compute three drought indicators: the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Reconnaissance Drought Index (RDI). SPI, SPEI, and RDI, calculated for 12-month accumulation period, have been rationally merged into a combined indicator and this quantity has been used to obtain drought frequency, duration, and severity for the entire Europe. We identified the following drought hotspots: Scandinavia, Eastern Europe, and Russia in 1951-1970, no particular hotspot in 1971-1990, the Mediterranean region and the Baltic Republics in 1991-2010. A linear trend analysis shows that drought variables increased in the period 1950-2012 in South-Western Europe, in particular in the Mediterranean and Carpathian regions, with precipitation decrease and PET increase as drivers. Drought variables show a decrease in Scandinavia, Belarus, Ukraine and Russia: precipitation increase is the main driver. In Central Europe and the Balkans, drought variables show a moderate increase, for the significant PET increase outbalances a not significant precipitation increase.

  11. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    Science.gov (United States)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  12. First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2009-11-01

    Full Text Available GOMOS (Global Ozone Monitoring by Occultation of Stars, on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South.

  13. Why Does the Leeward Side of Mt. Tamalpais Experience a Climatological Precipitation Maximum?

    Science.gov (United States)

    Christen, N.; Dempsey, D. P.; Stine, A.

    2015-12-01

    Climatological records show annual precipitation maximum values on the northeast side of Mt. Tamalpais in the San Francisco Bay Area, which is typically the leeward side during winter precipitation events. The town of Kentfield, CA, about five kilometers to the northeast of the mountain, has a significantly higher annual-average rainfall than adjacent locations, particularly compared with stations to its north and south. One hypothesis regarding this phenomenon is that the topography if Mt. Tamalpais creates convergence on the leeward side, thereby enhancing precipitation. If prevailing southwesterly winds during rainfall events are interrupted by the mountain and then flow around either side, converging on leeward side, then enhanced cloud formation and precipitation would replace the divergent flow characteristic to leeward slopes. A second hypothesis is that Mt. Tamalpais is narrow relative to the advective scale of orographically triggered precipitation. If the mountain is relatively narrow, precipitation from clouds generated orographically on the upwind side might not develop and fall until air within the clouds has reached the leeward side, where Kentfield lies. With a network of surface weather stations, we analyze precipitation accumulations to quantify the Kentfield rainfall maximum over a series of rainfall events during 2015. For these rainfall events, we evaluate how well a 1.1-km resolution WRF-ARW model reproduces the precipitation observations. To the extent that the model agrees with observations, we investigate mechanisms underlying the rainfall maximum by analyzing patterns of low-level wind convergence downwind of Mt. Tamalpais and patterns of vertical velocity and cloud and rain-water mixing ratios in vertical cross sections across Mt. Tamalpais, parallel to the wind flow for each rainfall event. Cross-sectional mixing ratio analyses provide evidence of precipitation development and advection and test the second of the aforementioned hypotheses

  14. NO2 climatology in the northern subtropical region: diurnal, seasonal and interannual variability

    Directory of Open Access Journals (Sweden)

    M. Navarro

    2007-10-01

    Full Text Available Daily NO2 vertical column density (VCD has been routinely measured by zenith sky spectroscopy at the subtropical station of Izaña (28° N, 16° W since 1993 in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC. Based on 14 years of data the first low latitudes NO2 VCD climatology has been established and the main characteristics from short scales of one day to inter-annual variability are presented. Instrumental descriptions and different source of errors are described in detail. The observed diurnal cycle follows that expected by gas-phase NOx chemistry, as can be shown by the good agreement with a vertically integrated chemical box model, and is modulated by solar radiation. The seasonal evolution departs from the phase of the hours of daylight, showing the signature of upper stratospheric temperature changes. From the data record no significant long-term trends in NO2 VCD can be inferred. Comparison of the ground-based data sets with nadir looking satellite spectrometers shows excellent agreement for SCIAMACHY with differences between both datasets of 1.1%. GOME displays unrealistic features with largest discrepancies during summer. The ground-based data are compared with long-term output of the SLIMCAT 3-D chemical transport model (CTM. The basic model, forced by ECMWF (ERA-40 analyses, captures the observed NO2 annual cycle but significantly underestimates the spring/summer maximum. In a model run which uses assimilation of satellite CH4 profiles to constrain the model long-lived tracers the agreement is significantly improved. This improvement in modelled column NO2 is due to better modelled NOy profiles and points to transport errors in the ECMWF ERA-40 reanalyses.

  15. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  16. Climatology of yellow sand (Asian sand, Asian dust or Kosa)in East Asia

    Institute of Scientific and Technical Information of China (English)

    Masatoshi; Yoshino

    2002-01-01

    In order to study climatology of yellow sand (Asian sand, Asian dust or Kosa) in EastAsia, secular fluctuation in China, Korea and Japan in the recent 30 years was presented. Thenumber of days with sand-dust storm at five stations in China-Hotan, Zhangye, Minqin, Jurhand Beijing, decreases a lot at the former three stations, but changed little at the latter two stations.Suggesting that the recent global warming is more evident in Xinjiang and Gansu, where the fre-quency of cold air invasions from the higher latitudes is decreasing. But, the eastern parts ofMongolia, inner Mongolia, and North China encounter stronger cyclones in early spring as a resultof global warming. These cyclones bring cold air from higher latitudes, causing severe duststorms. Secular variation in the annual days with sand-dust storms in China and Kosa days in Ko-rea and Japan show a parallel change with higher frequency from 1975 to 1985. This may be re-lated to the higher frequency of La Nina years. However, different tendency was shown in theperiod from 1986 to 1996. Since 1996 or 1997, a sharp increase is clear, which may be caused bythe developed cyclones in East Asia as well as human activities, and stronger land degradationunder La Nina conditions. Anomalies of the total number of stations with Kosa days were dis-cussed in accordance with some synoptic meteorological conditions such as the differences be-tween Siberian anticyclone and Aleutian cyclone center at 500 hPa level during the previous winter.

  17. Jet characterization in the upper troposphere/lower stratosphere (UTLS: applications to climatology and transport studies

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2011-01-01

    Full Text Available A method of classifying the upper tropospheric/lower stratospheric (UTLS jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS satellite and the Winter Storms aircraft datasets in jet coordinates highlights important advantages in comparison to an EqL-coordinate view: strong PV, tropopause height and trace gas gradients across the subtropical jet are washed out in the latter and clearly highlighted in the former. The jet coordinate view emphasizes the presence of stratospheric ozone well below the tropopause, especially poleward of and below the jet core, and highlights other transport features associated with the upper tropospheric jets. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.

  18. Replacing climatological potential evapotranspiration estimates with dynamic satellite-based observations in operational hydrologic prediction models

    Science.gov (United States)

    Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.

    2011-12-01

    In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.

  19. Total ozone and Umkehr observations at Hoher Sonnblick 1994-2011: Climatology and extreme events

    Science.gov (United States)

    Fitzka, M.; Hadzimustafic, J.; Simic, S.

    2014-01-01

    Umkehr and total ozone measurements have been carried out at Hoher Sonnblick (47.05°N, 12.95°E; 3106 m above sea level) since 1994 with the Brewer MkIV #093 spectrophotometer. These measurements are used to investigate trends in total and vertically resolved ozone in the period 1994-2011 and for establishing an Umkehr climatology. A method to estimate daily thresholds for extreme events in total ozone (TO3) based on skewed log-Weibull distributions is presented and applied to the record. An analysis of the such defined extreme events reveals a significant decline in the number of low events, whereas the high events increased by about the same amount. However, no significant trend is observed in the magnitude of extreme events. Solar activity and equivalent effective stratospheric chlorine show weak to no correlation with vertically resolved ozone, presumably due to the record's limited extent, while tropopause pressure and quasi-biennial oscillation show a significant influence. Trend analysis of total and vertically resolved ozone indicates a significant increase in TO3 of 2.0% per decade since 1994, whereas no recovery is observed in the upper stratosphere. While ozone concentrations continue to decrease or stagnate in the upper stratosphere, the loss is overcompensated by large gains in the lowest layers during winter, leading to a significant overall increase in TO3. During events with extremely low TO3, the largest deficiencies are found in the bottommost layers with a marked seasonal component. The topmost layers mainly contribute to TO3 reductions during late winter and fall.

  20. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program

    Directory of Open Access Journals (Sweden)

    A. J. Ding

    2007-07-01

    Full Text Available Ozone (O3 profiles recorded over Beijing from 1995 to 2005 by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC program were analyzed to provide a first climatology of tropospheric O3 over Beijing and the North China Plains (NCPs, one of the most populated and polluted regions in China. A pooled method was adopted in the data analysis to reduce the influence of irregular sampling frequency. The tropospheric O3 over Beijing shows a seasonal and vertical distribution typical of mid-latitude locations in the Northern Hemisphere, but has higher daytime concentrations in the lower troposphere, when compared to New York City, Tokyo, and Paris at similar latitude. The tropospheric O3 over Beijing exhibits a common summer maximum and a winter minimum, with a broad summer maximum in the middle troposphere and a narrower early summer (June peak in the lower troposphere. Examination of meteorological and satellite data suggests that the lower tropospheric O3 maximum in June is a result of strong photochemical production, transport of regional pollution, and possibly also more intense burnings of biomass in Central-Eastern China. Trajectory analysis indicates that in summer the regional pollution sources from the NCPs, maybe mixed with urban plumes from Beijing, played important roles on the high O3 concentrations in the boundary layer, but had limited impact on the O3 concentrations in the middle troposphere. A comparison of the data recorded before and after 2000 reveals that O3 in the lower troposphere over Beijing had a strong positive trend (approximately 2% per year from 1995 to 2005 in contrast to a flat or a decreasing trend over Tokyo, New York City, and Paris, indicating worsening photochemical pollution in Beijing and the NCPs.

  1. Lightning climatology of exoplanets and brown dwarfs guided by Solar system data

    Science.gov (United States)

    Hodosán, G.; Helling, Ch.; Asensio-Torres, R.; Vorgul, I.; Rimmer, P. B.

    2016-10-01

    Clouds form on extrasolar planets and brown dwarfs where lightning could occur. Lightning is a tracer of atmospheric convection, cloud formation and ionization processes as known from the Solar system, and may be significant for the formation of prebiotic molecules. We study lightning climatology for the different atmospheric environments of Earth, Venus, Jupiter and Saturn. We present lightning distribution maps for Earth, Jupiter and Saturn, and flash densities for these planets and Venus, based on optical and/or radio measurements from the World Wide Lightning Location Network and Sferics Timing and Ranging Network radio networks, the Lightning Imaging Sensor/Optical Transient Detector satellite instruments, the Galileo, Cassini, New Horizons and Venus Express spacecraft. We also present flash densities calculated for several phases of two volcano eruptions, Eyjafjallajökull's (2010) and Mt Redoubt's (2009). We estimate lightning rates for sample, transiting and directly imaged extrasolar planets and brown dwarfs. Based on the large variety of exoplanets, six categories are suggested for which we use the lightning occurrence information from the Solar system. We examine lightning energy distributions for Earth, Jupiter and Saturn. We discuss how strong stellar activity may support lightning activity. We provide a lower limit of the total number of flashes that might occur on transiting planets during their full transit as input for future studies. We find that volcanically very active planets might show the largest lightning flash densities. When applying flash densities of the large Saturnian storm from 2010/11, we find that the exoplanet HD 189733b would produce high lightning occurrence even during its short transit.

  2. Probing for suitable climatology to estimate the predictability of monsoon onset over Kerala (MOK), India

    Science.gov (United States)

    Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy

    2016-07-01

    Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.

  3. Detection, dynamics and climatology of Rossby wave initiation on the extratropical waveguide

    Science.gov (United States)

    Röthlisberger, Matthias; Martius, Olivia; Wernli, Heini

    2016-04-01

    Synoptic-scale Rossby waves are ubiquitous in the extratropical flow and, together with jets and vortices, they form the building blocks of extratropical dynamics. In this study a novel method is presented that automatically identifies the initiation of synoptic-scale Rossby waves (RWIs) on tropopause-level waveguides. RWIs are identified based on geometry changes of the 2 Potential Vorticity Units (PVU) contours on isentropic levels. The 2 PVU contours are hereby regarded as proxies for the position and shape of the extratropical waveguide. A RWI is recorded in a zonally aligned (i.e. wave-free) longitudinal contour segment if the segment becomes wavy over time and, additionally, the respective 2 PVU contour is wave-free upstream of the segment. The algorithm is applied to the ERA-Interim data set to compile a Northern Hemisphere climatology of RWIs (1979-2013) on tropopuase-level waveguides. To further illustrate the potential of the method, an example RWI is presented in which a wave is initiated by a mesoscale lower stratospheric high-PV anomaly interacting with the extratropical jet and with surface baroclinicity. Next, the spatial distribution and seasonal cycle of RWIs is discussed. The majority of the RWIs occur over the Northwestern Pacific and a secondary initiation region is located over the North Atlantic. Especially the initiation region over the North Pacific undergoes a strong seasonal cycle, both in its location and in the number of RWIs occurring. Finally, we present a composite view on RWIs occurring over the North Pacific and highlight key aspects of the dynamics of the first stage in the life cycle of synotic-scale Rossby waves.

  4. Climatological study of ionospheric irregularities over the European mid-latitude sector with GPS

    Science.gov (United States)

    Wautelet, Gilles; Warnant, René

    2014-03-01

    High-frequency variability of the ionosphere, or irregularities, constitutes the main threat for real-time precise positioning techniques based on Global Navigation Satellite Systems (GNSS) measurements. Indeed, during periods of enhanced ionospheric variability, GNSS users in the field—who cannot verify the integrity of their measurements—will experience positioning errors that can reach several decimeters, while the nominal accuracy of the technique is cm-level. In the frame of this paper, a climatological analysis of irregularities over the European mid-latitude region is presented. Based on a 10 years GPS dataset over Belgium, the work analyzes the occurrence rate (as a function of the solar cycle, season and local time) as well as the amplitude of ionospheric irregularities observed at a single GPS station. The study covers irregularities either due to space weather events (solar origin) or of terrestrial origin. If space weather irregularities are responsible for the largest effects in terms of ionospheric error, their occurrence rate highly depends on solar activity. Indeed, the occurrence rate of ionospheric irregularities is about 9 % during solar maximum, whereas it drops to about 0 % during medium or low solar activity periods. Medium-scale ionospheric disturbances (MSTIDs) occurring during daytime in autumn/winter are the most recurrent pattern of the time series, with yearly proportions slightly varying with the solar cycle and an amplitude of about 10 % of the TEC background. Another recurrent irregularity type, though less frequent than MSTIDs, is the noise-like variability in TEC observed during summer nighttime, under quiet geomagnetic conditions. These summer nighttime irregularities exhibit amplitudes ranging between 8 and 15 % of the TEC background.

  5. Climatología urbana por modificación antropogénica. Alteración del balance de energía natural / Urban climatology by anthropogenic modification. Alteration of the natural energy balance

    OpenAIRE

    Fuentes Pérez, Carlos Alberto

    2015-01-01

    La investigación valora el análisis climático histórico para establecer la temperatura y humedad relativa media, en contraste con la climatología urbana por modificación antropogénica estudio de caso, y su contribución de consigna fijado para invierno y verano que son las estaciones críticas. El procedimiento metodológico a implementar, apoya a los planificadores urbanos a no tener que participar científicamente para evaluar el emplazamiento térmico de sus proyectos y por lo tanto se puede...

  6. Joint statistical correction of clutters, spokes and beam height for a radar derived precipitation climatology in southern Germany

    Directory of Open Access Journals (Sweden)

    A. Wagner

    2012-11-01

    Full Text Available First results of radar derived climatology have emerged over the last years, as datasets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as continuous storage of radar data was often not achieved before. This kind of climatology demands a high level of data quality. Small deviations or minor systematic under- or overestimations in single radar images become a major cause of error in statistical analysis. Extensive corrections of radar data are a crucial prerequisite for radar derived climatology. We present a new statistical post-correction scheme based on a climatological analysis of seven years of radar data of the Munich weather radar (2000–2006 operated by DWD (German Weather Service. Original radar products are used subject only to corrections within the signal processor without any further corrections on single radar images. The aim of this statistical correction is to make up for the average systematic errors caused by clutter, propagation, or measuring effects but to conserve small-scale natural variations in space.

    The statistical correction is based on a thorough analysis of the different causes of possible errors for the Munich weather radar. This analysis revealed the following basic effects: the decrease of rain amount as a function of height and distance from the radar, clutter effects such as clutter remnants after filtering, holes by eliminated clutter or shading effects from obstacles near the radar, visible as spokes, as well as the influence of the bright band. The correction algorithm is correspondingly based on these results. It consists of three modules. The first one is an altitude correction which minimises measuring effects. The second module corrects clutter effects and disturbances and the third one realises a mean adjustment to selected rain gauges. Two different sets of radar products are used. The statistical analysis as well as

  7. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts

    Science.gov (United States)

    Richaud, Benjamin; Kwon, Young-Oh; Joyce, Terrence M.; Fratantoni, Paula S.; Lentz, Steven J.

    2016-08-01

    A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈-0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.

  8. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS data set

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-06-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry-Climate Model Validation Activity. The ACE-FTS climatological data set is available through the ACE website.

  9. The climatology and interannual variability of the South Asia high and its relationship with ENSO in CMIP5 models

    Science.gov (United States)

    Xue, Xu; Chen, Wen; Chen, Shangfeng

    2016-07-01

    The present study examines climatology and interannual variability of South Asian high (SAH) and its connection with the ENSO based on 38 coupled models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Results show that multi-model ensemble (MME) can reasonably capture the climatological spatial pattern of the SAH, although its intensity is slightly underestimated. The CCSM4, CESM1-BGC and CESM1-FASTCHEM can well simulate the climatological location and intensity of the SAH. The interannual variability of the SAH is investigated by calculating ratio of the standard deviation of the ten parameters in models with those in observations. The results indicate that the MME can reasonably capture magnitudes of the interannual variability of the area index, intensity index, and longitude of the SAH center. Quasi-4-year period of the SAH intensity index can be well simulated by CMCC-CESM, CMCC-CMS and GFDL-ESM2G, and quasi-5-year period of north-south movement index can be captured by CanCM4, CESM1-CAM5, CESM1-FASTCHEM, CNRM-CM5-2, GFDL-ESM2G and HadCM3. Furthermore, MME can reasonably reproduce seasonal evolution of intensity and location of the SAH except for its east-west movement. The ENSO-SAH relationship is further evaluated. It is found that about two-thirds of the CMIP5 models can capture the observed ENSO-SAH relationship, although the relationship is distinctly exaggerated by several models. The success of these models is attributed to the reasonable simulation of both the "charge" process over the tropical Indian Ocean induced by the ENSO-related anomalous sea surface temperature (SST) over the tropical eastern Pacific (TEP) and longitude extension of the western boundary of the ENSO-related anomalous SST over the TEP.

  10. Snow and Ice Climatology of the Western United States and Alaska from MODIS

    Science.gov (United States)

    Rittger, K. E.; Painter, T. H.; Mattmann, C. A.; Seidel, F. C.; Burgess, A.; Brodzik, M.

    2013-12-01

    The climate and hydroclimate of the Western US and Alaska are tightly coupled to their snow and ice cover. The Western US depends on mountain snowmelt for the majority of its water supply to agriculture, industrial and urban use, hydroelectric generation, and recreation, all driven by increasing population and demand. Alaskan snow and glacier cover modulate regional climate and, as with the Western US, dominate water supply and hydroelectric generation in much of the state. Projections of climate change in the Western US and Alaska suggest that the most pronounced impacts will include reductions of mountain snow and ice cover, earlier runoff, and a greater fraction of rain instead of snow. We establish a snow and ice climatology of the Western US and Alaska using physically based MODIS Snow Covered Area and Grain size model (MODSCAG) for fractional snow cover, the MODIS Dust Radiative Forcing in Snow model (MODDRFS) for radiative forcing by light absorbing impurities in snow, and the MODIS Permanent Ice model (MODICE) for annual minimum exposed snow. MODSCAG and MODDRFS use EOS MOD09GA historical reflectance data (2000-2012) to provide daily and 8-day composites and near real time products since the beginning of 2013, themselves ultimately composited to 8-day products. The compositing method considers sensor-viewing geometry, solar illumination, clouds, cloud shadows, aerosols and noisy detectors in order to select the best pixel for an 8-day period. The MODICE annual minimum exposed snow and ice product uses the daily time series of fractional snow and ice from MODSCAG to generate annual maps. With this project we have established an ongoing, national-scale, consistent and replicable approach to assessing current and projected climate impacts and climate-related risk in the context of other stressors. We analyze the products in the Northwest, Southwest, and Alaska/Arctic regions of the National Climate Assessment for the last decade, the nation's hottest on record

  11. A climatology of the diurnal variations of stratospheric and mesospheric ozone over Bern, Switzerland

    Directory of Open Access Journals (Sweden)

    S. Studer

    2013-08-01

    Full Text Available The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E, Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA. Aura Microwave Limb Sounder (Aura/MLS ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30. In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5% than in summer (−18 ± 4% (compared to mean values around midnight. For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone

  12. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    storm's rainband and eyewall organization. Ultimately, this project develops a consistent climatology of TC structures using a new database of research-quality historical TC satellite microwave observations. Not only can such data sets more accurately study TC structural evolution, but they may facilitate automated TC intensity estimates and provide methods to enhance current operational and research products, such as at the NRL TC webpage (http://www.nrlmry.navy.mil/TC.html). The process of developing the dataset and possible objective definitions of TC structures using passive microwave imagery will be described, with preliminary results suggesting new methods to identify TC structures that may interrogate and expand upon physical and dynamical theories. Structural metrics such as threshold analysis of the outlines of the TC shape as well as methods to diagnose the inner-core size, completion, and magnitude will be introduced.

  13. Comparison of TRMM and Global Precipitation Climatology Project (GPCP) Precipitation Analyses

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool in a merged analysis on a 1 x 1' latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product is compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates fairly close agreement with the GPCP estimates. The GPCP analysis is done at 2.5 degree latitude/longitude resolution and interpolated to a 1 degree grid for comparison with the TRMM analysis. As expected the same features are evident in both panels, but there are subtle differences in the magnitudes. Focusing on the Pacific Ocean Inter-Tropical Convergence Zone (ITCZ) one can see the TRMM-based estimates having higher peak values and lower values in the ITCZ periphery. These attributes also show up in the statistics, where GPCP>TRMM at low values (below 10 mm/d) and TRMM>GPCP at high values (greater than 15 mm/d). The area in the Indian Ocean which shows consistently higher values of TRMM over GPCP needs to be examined carefully to determine if the lack of geosynchronous data has led to a difference in the two analyses. By the time of the meeting over a year of TRMM products will be available for

  14. Changes in the ecosystem structure of the Black Sea under predicted climatological and anthropogenic variations

    Science.gov (United States)

    Akoglu, Ekin; Salihoglu, Baris; Fach Salihoglu, Bettina; Libralato, Simone; Cannaby, Heather; Oguz, Temel; Solidoro, Cosimo

    2014-05-01

    A dynamic Ecopath with Ecosim higher-trophic-level (HTL) model representation of the Black Sea ecosystem was coupled to the physical (BIMS-CIR) and biogeochemical (BIMS-ECO) models of the Black Sea in order to investigate historical anthropogenic and climatological interactions and feedbacks in the ecosystem. Further, the coupled models were used to assess the likely consequences of these interactions on the ecosystem's structure and functioning under predicted future climate (IPCC A1B) and fishing variability. Therefore, two model scenarios were used; i) a hindcast scenario (1980-1999) to evaluate and understand the impacts of the short-term climate and physical variability and the introduction of invasive species on the Black Sea ecosystem, and ii) a forecast scenario (2080-2099) to investigate the potential implications of climate change and anthropogenic exploitation on living resources of the Black Sea ecosystem by the end of the 21st century. According to the outcomes of the hindcast simulation, fisheries were found to be the main driver in determining the structure and functioning of the Black Sea ecosystem under changing environmental conditions. The coupled physical-biogeochemical forecast simulations predicted a slight but statistically significant basin-wide increase in the Black Sea's primary productivity by the end of the century due to increased stratification induced by basin-wide temperature increase and reduced Cold Intermediate Layer (CIL) formation which increased the residence time of riverine nutrients within the euphotic zone. Despite this increased primary productivity, the HTL model forecast simulation predicted a significant decrease in the commercial fish stocks primarily due to fisheries exploitation if current catch rates are maintained into the future. Results further suggested that some economically important small pelagic fish species are likely to disappear from the ecosystem making the recovery of the already-collapsed piscivorous

  15. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ

    Directory of Open Access Journals (Sweden)

    Alexander Läderach

    2013-07-01

    Full Text Available The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity – a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and

  16. Aerosol climatology: on the discrimination of aerosol types over four AERONET sites

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2007-05-01

    Full Text Available Aerosols have a significant regional and global effect on climate, which is about equal in magnitude but opposite in sign to that of greenhouse gases. Nevertheless, the aerosol climatic effect changes strongly with space and time because of the large variability of aerosol physical and optical properties, which is due to the variety of their sources, which are natural, and anthropogenic, and their dependence on the prevailing meteorological and atmospheric conditions. Characterization of aerosol properties is of major importance for the assessment of their role for climate. In the present study, 3-year AErosol RObotic NETwork (AERONET data from ground-based sunphotometer measurements are used to establish climatologies of aerosol optical depth (AOD and Ångström exponent α in several key locations of the world, characteristic of different atmospheric environments. Using daily mean values of AOD at 500 nm (AOD500 and Ångström exponent at the pair of wavelengths 440 and 870 nm (α 440–870, a discrimination of the different aerosol types occurring in each location is achieved. For this discrimination, appropriate thresholds for AOD500 and α 440–870 are applied. The discrimination of aerosol types in each location is made on an annual and seasonal basis. It is shown that a single aerosol type in a given location can exist only under specific conditions (e.g. intense forest fires or dust outbreaks, while the presence of well-mixed aerosols is the accustomed situation. Background clean aerosol conditions (AOD500<0.06 are mostly found over remote oceanic surfaces occurring on average in ~56.7% of total cases, while this situation is quite rare over land (occurrence of 3.8–13.7%. Our analysis indicates that these percentages change significantly from season to season. The spectral dependence of AOD exhibits large differences between the examined locations, while it exhibits a strong

  17. North Alabama Total Lightning Climatology in Support of Lightning Safety Operations

    Science.gov (United States)

    Stano, G. T.; Schultz, C. J.; Koshak, W. J.

    2015-12-01

    The North Alabama Lightning Mapping Array (NALMA) was installed in 2001 to observe total lightning (cloud-to-ground and intra-cloud) and study its relationship to convective activity. NALMA has served as ground-truth for the Tropical Rainfall Measuring Mission Lightning Imager (TRMM-LIS) and will again for the GOES-R Geostationary Lightning Mapper (GLM). Also, NASA's Short-term Prediction Research and Transition Center (SPoRT) has transitioned these data to National Weather Service Weather Forecast Offices to evaluate the impact in operations since 2003. This study focuses on seasonal and diurnal observations from NALMA's 14 year history. This is initially intended to improve lightning safety at Marshall Space Flight Center, but has other potential applications. Improvements will be made by creating a dataset to investigate temporal, spatial, and seasonal patterns in total lightning over the Tennessee Valley, compare these observations to background environmental parameters and the TRMM-LIS climatology, and investigate applying these data to specific points of interest. Unique characteristics, such as flash extent density and length of flashes can be investigated, which are unavailable from other lightning networks like the National Lightning Detection Network (NLDN). The NALMA and NLDN data can be combined such that end users can use total lightning to gain lead time on the initial cloud-to-ground flash of a storm and identify if lightning is extending far from the storm's core. This spatial extent can be analyzed to determine how often intra-cloud activity may impinge on a region of interest and how often a cloud-to-ground strike may occur in the region. The seasonal and diurnal lightning maps can aid with planning of various experiments or tests that often require some knowledge about future weather patterns months in advance. The main goal is to develop a protocol to enhance lightning safety everywhere once the Geostationary Lightning Mapper (GLM) is on orbit

  18. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    Science.gov (United States)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth's climate, whereas cooling clouds typically have cloud edges too low in altitude to satisfy the FLICA criterion of temperatures below -38 °C. We find CRFNET = 0.9 W m-2 for Jungfraujoch and 1.0 W m-2 (1.7 W m-2) for Zürich (Jülich). Further, we calculate that subvisible cirrus (τ < 0.03) contribute about 5 %, thin cirrus (0.03 < τ < 0.3) about 45 %, and opaque cirrus (0.3 < τ) about 50 % of the total cirrus radiative forcing.

  19. Climatological sensitivity analysis of crop yield to changes in temperature and precipitation using particle filter

    Science.gov (United States)

    Yokozawa, M.; Sakurai, G.; Iizumi, T.

    2010-12-01

    The climatological sensitivities of crop yields to changes in mean temperature and precipitation during a period of the growing season were statistically examined. The sensitivity is defined as the change of yield in response to the change of climatic condition in the growth period from sowing to harvesting. The objective crops are maize and soybean, which are being cultivated in United States, Brazil and China as the world major production countries. We collected the yield data of maize and soybean on county level of United States from USDA during a period of 1980-2006, on Município level of Brazil during a period of 1990-2006 and on Xiàn level of China during a period of 1980-2005. While the data on only four provinces in China are used (Heilongjiang, Henan, Liaoning, and Shandong), total production of the four provinces reaches about 40% (maize) and 51% (soybean) to the country total (USDA 1997). We used JRA-25 reanalysis climate data distributed from the Japanese Meteorological Agency during a period of 1980 through 2006 with a resolution of 1.125° in latitude and longitude. To coincide in resolution, the crop yield data were reallocated into the same grids as climate. To eliminate economical and technical effects on yield, we detrended the time series data of yield and climate. We applied a local regression model to conduct the detrend (cubic weighting and M estimator of Tukey's bi-weight function). The time series data on the deviation from the trend were examined with the changes in temperature and precipitation for each grid using the particle filter. The particle filter used here is based on self-organizing state-space model. As a result, in the northern hemisphere, positive sensitivity, i.e. increase in temperature shifts the crop yield positively, is generally found especially in higher latitude, while negative sensitivity is found in the lower latitude. The neutral sensitivity is found in the regions where the mean temperature during growing season

  20. Oceanic Climatology in the Coupled Model FGOALS-g2:Improvements and Biases

    Institute of Scientific and Technical Information of China (English)

    LIN Pengfei; YU Yongqiang; LIU Hailong

    2013-01-01

    The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere-Land System model,Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data.The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed,and substantially improved compared to those simulated by the previous version,FGOALS-g1.0.Compared with simulations by FGOALS-g1.0,the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2.In the high latitudes of the Northern Hemisphere,the cold biases of SST were about 1℃ 5℃ smaller in FGOALS-g2.The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2.The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2,although its magnitude was larger than that found in observed data.The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage,which is close to that observed.Moreover,Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2.However,large SST cold biases (>3℃) were still found to exist around major western boundary currents and in the Barents Sea,which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution.In the Indo-Pacific warm pool,the cold biases were partly related to the excessive loss of heat from the ocean.Along the eastern coast in the Atlantic and Pacific Oceans,the warm biases were due to overestimation of shortwave radiation.In the Indian Ocean and Southern Ocean,the surface fresh biases were mainly due to the biases of precipitation.In the tropical Pacific Ocean,the surface fresh biases (>2 psu) were mainly caused by excessive precipitation and oceanic advection.In theIndo-Pacific Ocean,fresh biases were also found to dominate in the upper 1000 m,except in the northeastern Indian Ocean.There were warm and

  1. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    zones are found. Overall, the simulated rainfall climatology was reproduced well for the low and heavy rainfall followed by very heavy and extremely heavy rainfall in Europe and the simulation is better in the Iberian west coast, central northern Europe and Alps Mountains.

  2. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  3. Chemical climatology of high elevation spruce-fir forests in the southern Appalachian mountains.

    Science.gov (United States)

    Aneja, V P; Robarge, W P; Claiborn, C S; Murthy, A; Soo-Kim, D; Li, Z; Cowling, E B

    1992-01-01

    The physical and chemical climatology of high elevation (> 1500 m) spruce-fir forests in the southern Appalachian mountains was studied by establishing a weather and atmospheric chemical observatory at Mt Mitchell State Park in North Carolina (35 degrees 44' 05" N, 82 degrees 17' 15"W). Data collected during the summer and autumn (May-October) of 1986, 1987, and 1988 are reported. All measurements were made on or near a 16.5 m walk-up tower extending 10 m above the forest canopy on Mt Gibbes (2006 m msl), which is located approximately 2 km SW of Mt Mitchell. The tower was equipped with standard meteorological instrumentation, a passive cloud water collector, and gas pollutant sensors for O3, SO2, NOx. The tower and nearby forest canopy were immersed in clouds 25 to 40% of the time. Non-precipitating clouds were very acidic (pH 2.5-4.5). Precipitating clouds were less acidic (pH 3.5-5.5). The dominant wind directions were WNW and ESE. Clouds from the most common wind direction (WNW) were more acidic (mean pH 3.5) than those from the next most common wind direction (ESE, mean pH 5.5). Cloud water acidity was related to the concentration of SO4(2-), and NO3- ions. Mean concentration of H+, NH4+, SO4(2-), and NO3- ions in the cloud water varied from 330-340, 150-200, 190-200 and 120-140 micromol litre(-1) respectively. The average and range of O3 were 50 (25-100) ppbv (109) in 1986, 51 (26-102) ppbv in 1987, and 66 (30-140) during the 1988 field seasons, respectively. The daily maximum, 1-h average, and 24-h average concentrations were all greatest during June through mid-August, suggesting a correlation with the seasonal temperature and solar intensity. Throughfall collectors near the tower were used to obtain a useful estimate of deposition to the forest canopy. Between 50-60% of the total deposition of SO4(2-) was due to cloud impact. PMID:15092054

  4. Climatología de la precipitación de tres días en la Cuenca del Plata Climatology of three days precipitation in La Plata Basin

    Directory of Open Access Journals (Sweden)

    Gustavo Naumann

    2012-06-01

    Full Text Available Una climatología de distintas propiedades de la precipitación en intervalos de tres días es desarrollada en el presente trabajo, la cual es de especial importancia para el pronóstico extendido de precipitación. Por lo tanto el objetivo fundamental de esta climatología es el desarrollo y el inicio de pronósticos extendidos de 6 a 10 días en términos de probabilidades divididas en categorías. Para esto, se analizan las frecuencias de días con precipitación en ventanas de 3 días. Cada frecuencia de cero días de precipitación para el día i es el resultado de la ausencia de precipitación en ventanas móviles de tres días centradas en el día i, de la misma forma se obtienen las frecuencias hasta tres días con precipitación respectivamente. Se emplean los datos de 94 estaciones en un período común (1959-1998 en el área de estudio. Se estudian las ondas anuales de las propiedades obtenidas para las precipitaciones y su síntesis a través de la descomposición en armónicos. Se propone una representación vectorial de las propiedades que definen el análisis armónico, tales como la fecha de ocurrencia del máximo (su fase y su amplitud. Finalmente, se pone especial énfasis en el estudio de las condiciones extremas de eventos de precipitación, como por ejemplo, la marcha anual de los máximos representados por el percentil 90 de precipitación diaria.A climatology of various properties of precipitation in intervals of three days is developed. This climatology has a particular importance for the extended forecast of precipitation. Therefore the main objective of this climatology is the development and the initiation of extended forecasts of 6 to 10 days in terms of probabilities divided into categories. For this, the frequencies of days with precipitation in three days windows are analyzed. Each frequency of zero days of precipitation for day i is the result of a lack of rainfall in three days moving windows centered on i, in

  5. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  6. Influences of specific land use/land cover conversions on climatological normals of near-surface temperature

    Science.gov (United States)

    Hale, Robert C.; Gallo, Kevin P.; Loveland, Thomas R.

    2008-01-01

    Quantification of the effects of land use/land cover (LULC) changes on proximal measurements of near-surface air temperature is crucial to a better understanding of natural and anthropogenically induced climate change. In this study, data from stations utilized in deriving U.S. climatological temperature normals were analyzed in conjunction with NCEP-NCAR 50-Year Reanalysis (NNR) estimates and highly accurate LULC change maps in order to isolate the effects of LULC change from other climatological factors. While the “Normals” temperatures exhibited considerable warming in both minima and maxima, the NNR data revealed that the majority of the warming of maximum temperatures was not due to nearby LULC change. Warming of minimum temperatures was roughly evenly split between the effects of LULC change and other influences. Furthermore, the effects of LULC change varied considerably depending upon the particular type of land cover conversion that occurred. Urbanization, in particular, was found to result in warming of minima and maxima, while some LULC conversions that might be expected to have significantly altered nearby temperatures (e.g., clear-cutting of forests) did not.

  7. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ- S climatology

    Science.gov (United States)

    Owens, W. Brechner; Wong, Annie P. S.

    2009-03-01

    An improved method to estimate the time-varying drift of measured conductivity from autonomous CTD profiling floats has been developed. This procedure extends previous methods developed by Wong, Johnson and Owens [2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by θ- S climatology. Journal of Atmospheric and Oceanic Technology, 20, 308-318] and Böhme and Send [2005. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep-Sea Research Part II, 52, 651-664]. It uses climatological salinity interpolated to the float positions and observed θ surfaces and chooses 10 'best' levels that are within well-mixed mode waters or deep homogeneous water masses. A piece-wise linear fit is used to estimate the temporally varying multiplicative adjustment to the float potential conductivities. An objective, statistical method is used to choose the breakpoints in the float time series where there are multiple drift trends. In the previous methods these breakpoints were chosen subjectively by manually splitting the time series into separate segments over which the fits were made. Our statistical procedure reduces the subjectivity by providing an automated way for doing the piece-wise linear fit. Uncertainties in this predicted adjustment are estimated using a Monte-Carlo simulation. Examples of this new procedure as applied to two Argo floats are presented.

  8. The Influence of subway climatology on gas dispersion and the effectiveness of guided evacuations in a complex subway station

    Directory of Open Access Journals (Sweden)

    Markus Brüne

    2016-09-01

    Full Text Available This paper discusses a strategy that integrates data from tracer gas experiments with results from pedestrian simulation software in the evaluation of different evacuation procedures for subway stations in response to a fire or a terrorist attack with chemical, biological, radiological, nuclear and enhanced conventional weapons (CBRNE. The study demonstrates that by combining the two data sets a greater understanding of the impact of different evacuations routes on an evacuee's health is gained. It is shown that by controlling the routes pedestrians would use to exit a subway station, the number of fatalities and evacuees with long term health issues can be reduced. It is highlighted that a dynamic evacuation guiding system based on subway climatology would take into account the source of the toxin, the resulting dispersal of gas, smoke, etc. and the subway climatology at the time. In doing so, it would be possible to identify the most endangered areas and guide passengers via an adaptive escape route using audio and visual techniques. Information on the evolution of the emergency situation could also simultaneously be relayed back to the rescue forces to help to plan the rescue and evacuation procedures and optimise the deployment of the search and rescue teams.

  9. Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL during NH winter

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2008-02-01

    Full Text Available A long-term climatology of air mass transport through the tropical tropopause layer (TTL is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the upper part of the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH winters 1992–2001. Climatological maps show a cooling and strengthening of this part of the residual circulation during the 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields is found to be influenced by volcanic eruptions, El Niño Southern Oscillation (ENSO, Quasi-Biennial Oscillation (QBO and the solar cycle. The coldest and driest TTL is reached during QBO easterly phase and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBO westerly phase it is warmer and less dry.

  10. Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL during NH winter

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2007-09-01

    Full Text Available A long-term climatology of air mass transport through the tropical tropopause layer (TTL is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH winters 1992–2001, close to observations from the tape recorder. Climatological maps show a cooling and strengthening of this part of the residual circulation during the late 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields are found to be influenced by volcanic eruptions, ENSO, QBO and the solar cycle. The coldest and driest TTL is reached during QBOE and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBOW it is warmer and less dry.

  11. A climatological study of sea breeze clouds in the southeast of the Iberian Peninsula (Alicante, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Azorin-Molina, C. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain)]. E-mail: cazorin@ceam.es; Sanchez-Lorenzo, A. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain); Calbo, J. [Grupo de Fisica Ambiental, Universidad de Girona, Campus Montilivi, Cataluna (Spain)

    2009-01-15

    Sea breezes blow under anticyclonic weather types, weak surface pressure gradients, intense solar radiation and relatively cloud-free skies. Generally, total cloud cover must be less than 4/8 in order to cause a thermal and pressure difference between land and sea air which allows the development of this local wind circulation. However, many numerical and observational studies have analyzed the ability of sea breezes to generate clouds in the convective internal boundary layer and in the sea breeze convergence zone. Accordingly, the aim of this study is to statistically analyze the impact of sea breezes on cloud types in the convective internal boundary layer and in the sea breeze convergence zone. The study area is located in the southeast of the Iberian Peninsula (province of Alicante, Spain) and the survey corresponds to a 6-yr study period (2000-2005). This climatological study is mainly based on surface cloud observations at the Alicante-Ciudad Jardin station (central coastal plain) and on an extensive cloud observation field campaign at the Villena-Ciudad station (Prebetic mountain ranges) over a 3-yr study period (2003-2005). The results confirm the hypothesis that the effect of sea breezes on cloud genera is to increase the frequency of low (Stratus) and convective (Cumulus) clouds. Sea breezes trigger the formation of thunderstorm clouds (Cumulonimbus) at the sea breeze convergence zone, which also have a secondary impact on high-level (Cirrus, Cirrocumulus, Cirrostratus), medium-level (Altostratus, Altocumulus) and low-level clouds (Stratus, Stratocumulus, Nimbostratus) associated with the Cumulonimbus clouds (e.g., Cumulonimbus anvil). [Spanish] Las brisas marinas soplan bajo tipos de tiempo anticiclonicos, debiles gradientes de presion atmosferica, radiacion solar intensa y cielos practicamente despejados. Por lo general, la cobertura nubosa total debe ser inferior a 4/8 para que se genere un diferencial termico y de presion entre el aire sobre las

  12. Revisiting Melton: Analyzing the correlation structure of geomorphological and climatological parameters

    Science.gov (United States)

    Carothers, R. A.; Sangireddy, H.; Passalacqua, P.

    2013-12-01

    In his expansive 1957 study of over 80 basins in Arizona, Colorado, New Mexico, and Utah, Mark Melton measured key morphometric, soil, land cover, and climatic parameters [Melton, 1957]. He identified correlations between morphological parameters and climatic regimes in an attempt to characterize the geomorphology of the basin as a function of climate and vegetation. Using modern techniques such as high resolution digital terrain models in combination with high spatial resolution weather station records, vector soil maps, seamless raster geological data, and land cover vector maps, we revisit Melton's 1957 dataset with the following hypotheses: (1) Patterns of channelization carry strong, codependent signatures in the form of statistical correlations of rainfall variability, soil type, and vegetation patterns. (2) Channelization patterns reflect the erosion processes on sub-catchment scale and the subsequent processes of vegetation recovery and gullying. In order to characterize various topographic and climatic parameters, we obtain elevation and land cover data from the USGS National Elevation dataset, climate data from the Western Regional Climate Center and PRISM climate group database, and soil type from the USDA STATSGO soil database. We generate a correlative high resolution database on vegetation, soil cover, lithology, and climatology for the basins identified by Melton in his 1957 study. Using the GeoNet framework developed by Passalacqua et al. [2010], we extract various morphological parameters such as slope, drainage density, and stream frequency. We also calculate metrics for patterns of channelization such as number of channelized pixels in a basin and channel head density. In order to understand the correlation structure between climate and morphological variables, we compute the Pearson's correlation coefficient similar to Melton's analysis and also explore other statistical procedures to characterize the feedbacks between these variables. By

  13. Effects of time-series length and gauge network density on rainfall climatology estimates in Latin America

    Science.gov (United States)

    Maeda, E.; Arevalo, J.; Carmona-Moreno, C.

    2012-04-01

    Despite recent advances in the development of satellite sensors for monitoring precipitation at high spatial and temporal resolutions, the assessment of rainfall climatology still relies strongly on ground-station measurements. The Global Historical Climatology Network (GHCN) is one of the most popular stations database available for the international community. Nevertheless, the spatial distribution of these stations is not always homogeneous and the record length largely varies for each station. This study aimed to evaluate how the number of years recorded in the GHCN stations and the density of the network affect the uncertainties of annual rainfall climatology estimates in Latin America. The method applied was divided in two phases. In the first phase, Monte Carlo simulations were performed to evaluate how the number of samples and the characteristics of rainfall regime affect estimates of annual average rainfall. The simulations were performed using gamma distributions with pre-defined parameters, which generated synthetic annual precipitation records. The average and dispersion of the synthetic records were then estimated through the L-moments approach and compared with the original probability distribution that was used to produce the samples. The number of records (n) used in the simulation varied from 10 to 150, reproducing the range of number of years typically found in meteorological stations. A power function, in the form RMSE= f(n) = c.na, where the coefficients were defined as a function of the rainfall statistical dispersion, was applied to fit the errors. In the second phase of the assessment, the results of the simulations were extrapolated to real records obtained by the GHCN over Latin America, creating estimates of errors associated with number of records and rainfall characteristics in each station. To generate a spatially-explicit representation of the uncertainties, the errors in each station were interpolated using the inverse distance

  14. The SPARC Data Initiative: comparisons of CFC-11, CFC-12, HF and SF6 climatologies from international satellite limb sounders

    Science.gov (United States)

    Tegtmeier, S.; Hegglin, M. I.; Anderson, J.; Funke, B.; Gille, J.; Jones, A.; Smith, L.; von Clarmann, T.; Walker, K. A.

    2016-02-01

    A quality assessment of the CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments is provided by means of a detailed intercomparison. The climatologies in the form of monthly zonal mean time series are obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991-2010. The intercomparisons focus on the mean biases of the monthly and annual zonal mean fields and aim to identify their vertical, latitudinal and temporal structure. The CFC evaluations (based on MIPAS, ACE-FTS and HIRDLS) reveal that the uncertainty in our knowledge of the atmospheric CFC-11 and CFC-12 mean state, as given by satellite data sets, is smallest in the tropics and mid-latitudes at altitudes below 50 and 20 hPa, respectively, with a 1σ multi-instrument spread of up to ±5 %. For HF, the situation is reversed. The two available data sets (HALOE and ACE-FTS) agree well above 100 hPa, with a spread in this region of ±5 to ±10 %, while at altitudes below 100 hPa the HF annual mean state is less well known, with a spread ±30 % and larger. The atmospheric SF6 annual mean states derived from two satellite data sets (MIPAS and ACE-FTS) show only very small differences with a spread of less than ±5 % and often below ±2.5 %. While the overall agreement among the climatological data sets is very good for large parts of the upper troposphere and lower stratosphere (CFCs, SF6) or middle stratosphere (HF), individual discrepancies have been identified. Pronounced deviations between the instrument climatologies exist for particular atmospheric regions which differ from gas to gas. Notable features are differently shaped isopleths in the subtropics, deviations in the vertical gradients in the lower stratosphere and in the meridional gradients in the upper troposphere, and inconsistencies in the seasonal cycle. Additionally, long-term drifts between the instruments have been identified for the CFC-11 and CFC-12 time series. The evaluations as a

  15. Climatología urbana por modificación antropogénica. Alteración del balance de energía natural / Urban climatology by anthropogenic modification. Alteration of the natural energy balance

    Directory of Open Access Journals (Sweden)

    Fuentes Pérez, Carlos Alberto

    2015-09-01

    Full Text Available La investigación valora el análisis climático histórico para establecer la temperatura y humedad relativa media, en contraste con la climatología urbana por modificación antropogénica estudio de caso, y su contribución de consigna fijado para invierno y verano que son las estaciones críticas. El procedimiento metodológico a implementar, apoya a los planificadores urbanos a no tener que participar científicamente para evaluar el emplazamiento térmico de sus proyectos y por lo tanto se puede acelerar el proceso de diseño sin comprometer el énfasis en el contexto urbano sustentable. Con base a los resultados se establecen las islas de calor urbano y su huella térmica en el hábitat. El objetivo de la presente investigación es determinar la climatología urbana por modificación antropogénica y su alteración a la calidad del hábitat en Tampico, México. The research assesses the historical climate analysis to determine the average temperature and relative humidity, in contrast to urban anthropogenic weather modification case study, and their contribution setpoint set for winter and summer are the season’s criticism. The methodology to implement, procedure supports urban planners will not have to participate to scientifically evaluate the thermal construction projects and therefore can accelerate the design process without compromising the emphasis on sustainable urban context. Based on the results of urban heat islands and thermal footprint habitat established. The objective of this research is to determine the urban climate by anthropogenic modification and alteration of habitat quality in Tampico, Mexico.

  16. Teaching the Teachers on Building Climatology. (CIB Steering Group S 4, Colloquium, Stockholm, September 4-6, 1972). CIB Proceedings No. 25.

    Science.gov (United States)

    National Swedish Inst. for Building Research, Stockholm.

    This publication comprises a collection of papers and synopses of discussions dating from the "Teaching the Teachers in Building Climatology" colloquium which was held under the auspices of the International Council for Building Research (CIB) and the World Meteorological Organization (WMO). The papers deal with the use of various meteorological…

  17. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans

    NARCIS (Netherlands)

    Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik; Sweeney, Colm; Feely, Richard A.; Chipman, David W.; Hales, Burke; Friederich, Gernot; Chavez, Francisco; Sabine, Christopher; Watson, Andrew; Bakker, Dorothee C.E.; Schuster, Ute; Metzl, Nicolas; Yoshikawa-Inoue, Hisayuki; Ishii, Masao; Midorikawa, Takashi; Nojiri, Yukihiro; Körtzinger, Arne; Steinhoff, Tobias; Hoppema, Mario; Olafsson, Jon; Arnarson, Thorarinn S.; Tilbrook, Bronte; Johannessen, Truls; Olsen, Are; Bellerby, Richard; Wong, C.S.; Delille, Bruno; Bates, N.R.; Baar, Hein J.W. de

    2009-01-01

    A climatological mean distribution for the surface water pCO2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO2 obtained from 1970 to 2

  18. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low...

  19. Climatology of 15 years of North Atlantic upper tropospheric relative humidity in-situ measurements by the MOZAIC programme

    Science.gov (United States)

    Neis, Patrick; Smit, Herman G. J.; Rohs, Susanne; Berkes, Florian; Boulanger, Damien; Nedelec, Philippe; Konopka, Paul; Hoor, Peter; Spichtinger, Peter; Petzold, Andreas

    2016-04-01

    Water vapour is a major parameter in weather prediction and climate research. However, the interaction between water vapour in the upper troposphere and lowermost stratosphere (UTLS) and tropopause dynamics are not well understood. Furthermore, the knowledge about potential trends and feedback mechanisms of upper troposphere/lower stratosphere water vapour is low because of the large variability of observations and relatively short data records. Since 1994, upper tropospheric humidity (UTH) data with high spatial and temporal resolution are provided by the in-situ measurements aboard civil passenger aircraft from the MOZAIC/IAGOS-programme (www.iagos.org). The measurement system is based on a capacitive hygrometer with a simultaneous temperature measurement. Comparison studies against research-grade water vapour instruments demonstrated successfully the qualification of the MOZAIC Capacitive Hygrometer (MCH) and its improved successor IAGOS Capacitive Hygrometer (ICH) for the use in long-term observation programmes. Moreover, the continuation of high data quality is confirmed for the transition from MCH to ICH (see P. Neis et al., 2015). After the reanalysis of the relative humidity data from 1994 to 2009 (see H. Smit et al., 2014), this extensive and unique data set is examined by criteria of continuity, homogeneity and quantity of data coverage, to identify global regions suitable for UTH climatology and trend analyses. For the identified target region above the North Atlantic time series and climatologies of, e.g., relative humidity with respect to ice, temperature, and absolute humidity are investigated. Different data sets selected according to geographic and atmospheric dynamics criteria and different tropopause definitions are compared for the robustness of the obtained results.

  20. Modelled rainfall skill assessment against a 1000-year time/space isotope dendro-climatology for southern Africa

    Science.gov (United States)

    Woodborne, Stephan; Hall, Grant; Zhang, Qiong

    2016-04-01

    Palaeoclimate reconstruction using isotopic analysis of tree growth increments has yielded a 1000-year record of rainfall variability in southern Africa. Isotope dendro-climatology reconstructions from baobab trees (Adansonia digitata) provide evidence for rainfall variability from the arid Namib Desert and the Limpopo River Valley. Isotopic analysis of a museum specimen of a yellowwood tree (Podocarps falcatus) yields another record from the southwestern part of the subcontinent. Combined with the limited classic denro-climatologies available in the region these records yield palaeo-rainfall variability in the summer and winter rainfall zones as well as the hyper-arid zone over the last 1000 years. Coherent shifts in all of the records indicate synoptic changes in the westerlies, the inter-tropical convergence zone, and the Congo air boundary. The most substantial rainfall shift takes place at about 1600 CE at the onset of the Little Ice Age. Another distinctive feature of the record is a widespread phenomenon that occurs shortly after 1810 CE that in southern Africa corresponds with a widespread social upheaval known as the Difequane or Mfekane. Large scale forcing of the system includes sea-surface temperatures in the Agulhas Current, the El Nino Southern Oscillation and the Southern Annular Mode. The Little Ice Age and Mfekane climate shifts result from different forcing mechanisms, and the rainfall response in the different regions at these times do not have a fixed phase relationship. This complexity provides a good scenario to test climate models. A first order (wetter versus drier) comparison between each of the tree records and a 1000-year palaeoclimate model simulation for the Little Ice Age and Mfekane transitions demonstrates a generally good correspondence.

  1. A Central European precipitation climatology. Pt. I. Generation and validation of a high-resolution gridded daily data set (HYRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Rauthe, Monika; Steiner, Heiko; Riediger, Ulf; Mazurkiewicz, Alex; Gratzki, Annegret [Deutscher Wetterdienst, Offenbach am Main (Germany)

    2013-10-15

    A new precipitation climatology (DWD/BfG-HYRAS-PRE) is presented which covers the river basins in Germany and neighbouring countries. In order to satisfy hydrological requirements, the gridded dataset has a high spatial resolution of 1 km{sup 2} and a daily temporal resolution that is based on up to 6200 precipitation stations within the spatial domain. The period of coverage extends from 1951 to 2006 for which gridded, daily precipitation fields were calculated from the station data using the REGNIE method. This is a combination between multiple linear regression considering orographical conditions and inverse distance weighting. One of the main attributes of the REGNIE method is the preservation of the station values for their respective grid cells. A detailed validation of the data set using cross-validation and Jackknifing showed both seasonally- and spatially-dependent interpolation errors. These errors, through further applications of the HYRAS data set within the KLIWAS project and other studies, provide an estimate of its certainty and quality. The mean absolute error was found to be less than 2 mm/day, but with both spatial and temporal variability. Additionally, the need for a high station network density was shown. Comparisons with other existing data sets show good agreement, with areas of orographical complexity displaying the largest differences within the domain. These errors are largely due to uncertainties caused by differences in the interpolation method, the station network density available, and the topographical information used. First climatological applications are presented and show the high potential of this new, high-resolution data set. Generally significant increases of up to 40% in winter precipitation and light decreases in summer are shown, whereby the spatial variability of the strength and significance of the trends is clearly illustrated. (orig.)

  2. The hard winter of 1880-1881: Climatological context and communication via a Laura Ingalls Wilder narrative

    Science.gov (United States)

    Boustead, Barbara E.

    The Hard Winter of 1880-1881 was featured in the Laura Ingalls Wilder historical fiction account, The Long Winter, as well as in several town histories across the region. Both meteorological records and historical accounts indicate that the winter was particularly long, snowy, and cold. The question of how "hard" a winter is for a given location depends on the climatological context, which relies on an objective characterization of winter severity. The Accumulated Winter Season Severity Index (AWSSI) allows comparison of the winter of 1880-1881 among sites across the region, as well as in the context of the period of record, to quantify its severity. Additionally, investigating the impacts of both the El Nino/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) in the central United States provides context for the influence of both a strongly negative NAO and an El Nino event during the winter of 1880-1881. With an understanding of the climatological factors influencing the Hard Winter, along with the context for its severity, a more thorough analysis then was conducted to quantify and describe its severity. The connection of the winter of 1880-1881 to a popular book written by an author who is a cultural icon provides a natural vehicle with which to communicate weather and climate concepts to multiple non-technical audiences. The communication of complex weather and climate concepts is a well-documented challenge. One method to bridge between science concepts and public understanding is to relate those concepts to familiar subjects and stories, including Laura Ingalls Wilder's books. A narrative constructed around the books, particularly The Long Winter, provides a means of audience engagement and interest in weather- and climate-related topics, which was at least partially quantified by surveying audiences of the narrative. Overall, the scientific background, combined with a familiar narrative voice, provides a means to transmit weather and

  3. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  4. First results on climatological response of Indian low latitude ionosphere to geomagnetic storms during solar cycle 23 and 24

    Science.gov (United States)

    Suresh, Sunanda; Dashora, Nirvikar

    2016-07-01

    For the first time, a climatological response of low latitude ionosphere to geomagnetic storms is presented using long term global ionospheric maps (GIM) data from June 1998 to June 2015 covering two solar cycles 23 and 24. The results are not only the first from Indian region but also the first around the globe to bring latitudinal character of daytime ionospheric storms with use of newly defined criteria. The results are presented for daytime forenoon and afternoon sectors under minor, moderate and major ionospheric storm categories based on minimum Dst index criterion. For the first time the effectiveness of storms is identified using monthly standard deviation as an indicator of the day-to-day variability in equatorial and low latitude ionosphere. Thus results on climatology are definitive and form a data base that would be comparable to statistical results from any other longitude and time. Seasonal statistics for total storms, effective positive and negative storms, and amplitude of mean seasonal perturbation in total electron content are obtained. Total and effective storms are found to be higher in solar cycle 23 than in 24 and only couple of effective storms occurred during low solar activity 2007-2009 that also in minor category. Afternoon sector is found to be favourable for occurrence of maximum number of effective positive storms. A latitudinal preference is found for a given storm to be effective in either time sectors. Equinoctial asymmetry in ionospheric response both in terms of occurrence and perturbation amplitude is found. September equinoxes are found to bear maximum total, effective positive and negative storms. Winters are found more prone to negative storms whereas summers have recorded minimum number of either of storms and minimum perturbation amplitudes.

  5. Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979-2009

    Science.gov (United States)

    Almazroui, Mansour; Islam, M. Nazrul; Jones, P. D.; Athar, H.; Rahman, M. Ashfaqur

    2012-07-01

    Attempts are made to study the seasonal climatology of the Arabian Peninsula, including the regional to station level information for Saudi Arabia for the period 1979-2009. The wet (November to April) and dry (June to September) season rainfall and temperature climatology are obtained from various data sources, namely, surface observations, CPC Merged Analysis of Precipitation (CMAP), Climatic Research Unit (CRU) and Tropical Rainfall Measuring Mission (TRMM). These gridded datasets detect the dry zone over the Rub Al-Khali, the world's largest sand desert, during the wet season. In this season, large rain belts exist north of 30°N and south of 15°N. During the dry season, the Arabian Peninsula is almost entirely dry north of 15°N but rain belts exist below this latitudinal boundary. Irrespective of the season or dataset used, a relatively heavy-rain area is obtained for the southwest of the Peninsula. The wet (dry) season temperature is highest over the western (middle to the northern) parts of the Peninsula. Surface observations indicate that, irrespective of season, rainfall insignificantly increased in the first period (1979-1993), and then significantly decreased in the second period (1994-2009). The decrease rate is 35.1 mm (5.5 mm) per decade during the wet (dry) season. The temperature over Saudi Arabia has increased significantly, and the increase rate is faster (0.72 °C per decade) in the dry season compared to the wet season (0.51 °C per decade).

  6. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    Science.gov (United States)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  7. Assessment of daily reference evapotranspiration in Sicily by means of POWER-NASA agro-climatology archive

    Science.gov (United States)

    Negm, Amro; Jabro, Jay; Provenzano, Giuseppe

    2016-04-01

    The importance of evapotranspiration, ET, processes has long been recognized in many disciplines, including hydrologic and drainage studies as well as for irrigation system design and management. A wide number of equations have been proposed to estimate crop reference evapotranspiration, ET0, based on the variables affecting the process. When a full data set of climate variables is available, the Food and Agriculture Organization (FAO) of the United Nations recommended to use the physically based FAO-56 Penman-Monteith equation. The lack of climate variables and particularly of solar radiation has led several researchers to propose simplified ET0 estimation equations using a limited number of climate variables. These equations, however, need site-specific validation prior to their use and cannot be generalized. Recently, the American National Aeronautics and Space Administration (NASA), created an efficient and open access agro-climatology archive in the frame of the Prediction Of Worldwide Energy Resource (POWER) project containing, on global scale, a long-series of meteorological variables and surface solar energy fluxes. The main objective of the research was to assess the suitability of POWER-NASA open access archive to estimate daily reference evapotranspiration, ET0, in Sicily, for the period 2006-2014. Daily ET0 were evaluated according to FAO-56 PM equation, by considering the POWER-NASA database characterized by a grid resolution of 1° latitude × 1° longitude, as well as the climate data measured on the ground, by a network of 36 meteorological stations installed in Sicily and belonging to the Agro-meteorological Information Service (SIAS). After comparing the climate data available in both databases (minimum, maximum and average air temperature and relative air humidity, wind speed, solar radiation and air pressure), a statistical comparison was also carried out on ET0 values estimated with the FAO-56 PM equation. The analysis showed a good correlation

  8. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  9. Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology

    Directory of Open Access Journals (Sweden)

    J. Urban

    2009-09-01

    Full Text Available The Sub-Millimetre Radiometer (SMR on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3 originating from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements of the global distribution of nitric acid in the stratosphere were performed approximately on two observation days per week. An HNO3 climatology based on more than 7 years of observations from August 2001 to April 2009 covering the vertical range between typically ~19 and 45 km (~1.5–60 hPa or ~500–1800 K in terms of potential temperature was created. The study highlights the spatial and seasonal variation of nitric acid in the stratosphere, characterised by a pronounced seasonal cycle at middle and high latitudes with maxima during late fall and minima during spring, strong denitrification in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible removal of NOy by the sedimentation of cloud particles containing HNO3, as well as large quantities of HNO3 formed every winter at high-latitudes in the middle and upper stratosphere. A strong inter-annual variability is observed in particular at high latitudes. A comparison with a stratospheric HNO3 climatology, based on over 7 years of UARS/MLS (Upper Atmosphere Research Satellite/Microwave Limb Sounder measurements from the 1990s, shows good consistency and agreement of the main morphological features in the potential temperature range ~465 to ~960 K, if the different characteristics of the data sets such as the better altitude resolution of Odin/SMR as well as the slightly different altitude ranges are considered. Odin/SMR reaches higher up and UARS/MLS lower down in the stratosphere. An overview from 1991 to 2009 of stratospheric nitric acid is provided (with a short gap between 1998 and 2001, if the global measurements of both experiments are taken together.

  10. A multi-model analysis of the resolution influence on precipitation climatology in the Gulf Stream region

    Science.gov (United States)

    Feng, Xuelei; Huang, Bohua; Kirtman, Ben P.; Kinter, James L.; Chiu, Long S.

    2016-05-01

    Using climate simulations from coupled and uncoupled general circulation models, this study investigates the influence of horizontal resolution in both atmospheric and oceanic model components on the mean precipitation over the Gulf Stream (GS) region. For this purpose, three sets of model experiments are analyzed. The first two examine the effects of increasing horizontal resolution of an atmospheric general circulation model (AGCM) gradually from 100 to 10 km under fixed oceanic settings. Specifically, the AGCM is either forced with prescribed observed sea surface temperature (SST) (the first case) or coupled to a non-eddy-resolving ocean general circulation model (OGCM) at a fixed horizontal resolution near 100 km (the second case). The third set of experiments examines the effects of the oceanic resolution with a pair of long-term simulations by another coupled ocean-atmosphere general circulation model (CGCM), in which the OGCM is run respectively at non-eddy-resolving (100 km) and eddy-resolving (10 km) resolutions, while the AGCM resolution remains fixed at 50 km for both runs. In general, all simulations qualitatively reproduce the gross features of the mean GS precipitation and its annual cycle. At similar AGCM resolutions, the uncoupled models produce a GS rain band that is more realistic in both structure and strength compared to the coupled models with non-eddy-resolving oceans. This is because the prescribed observed SST better represents the gradient near the oceanic front than the non-eddy-resolving OGCMs simulate. An increase from the baseline AGCM resolution produces enhanced climatological GS precipitation, both large-scale and convective, with the latter more tightly confined to the oceanic front. The enhancement, however, is moderate and further increases in resolution achieves diminishing results. On the other hand, an increase in oceanic resolution from non-eddy-resolving to eddy resolving scheme results in more consistent simulations with

  11. Climatological Features of the Western Pacific Subtropical High Southward Retreat Process in Late Spring and Early Summer

    Institute of Scientific and Technical Information of China (English)

    LI Jianping; ZHU Jianlei

    2010-01-01

    Based on the climatological daily mean NCEP/NCAR reanalysis data, NOAA outgoing longwave radiation (OLR) data, and pentad NOAA CMAP precipitation from 1979 to 2006, the variation of the western Pacific subtropical high (WPSH) ridge during late spring and early summer (LSES) and its relationship with the onset of the Asian summer monsoon is discussed from a climatological perspective. It is found that a remarkable southward retreat process (SRP) of the WPSH during LSES appears at both lower and higher levels of the troposphere, with a lifespan of approximate two weeks. Afterwards, the first northward jump of the WPSH occurs. The end date of the WPSH SRP in the upper troposphere is about 10 days earlier than the beginning of the WPSH SRP in the lower troposphere, showing a meaningful leading signal for predicting the WPSH SRP in the lower troposphere and the subsequent northward jump of the WPSH. The WPSH SRP at lower levels happens simultaneously with a notable eastward shift of the WPSH. After the WPSH SRP at lower levels comes to the southernmost position around the end of May, the WPSH ridge axis inclines northward rather than southward with altitude due to the change of the meridional gradient of air temperature.The Asian summer monsoon onset and associated variations in strong convection and rainfall in Asia are closely related to the variations of WPSH SRP during LSES. In the mid-late period of the higher-level WPSH SRP, around the end of April, the summer monsoon onset takes place in the Andaman Sea and the Bay of Bengal. Following the start of the lower-level WPSH SRP, the South China Sea (SCS) summer monsoon breaks out (May 14-15). By the end of the lower-level WPSH SRP, in the beginning of June, the Indian summer monsoon kicks off. Upon the end of the lower-level WPSH return stage, the East Asian summer monsoon begins. The commencement of each component of the Asian summer monsoon system corresponds nicely to a particular stage of the WPSH SRP in the lower

  12. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2010-05-01

    Full Text Available The impact of very deep convection on the water budget and thermal structure of the tropical tropopause layer is still not well quantified, not least because of limitations imposed by the available observation techniques. Here, we present detailed analysis of the climatology of the cloud top brightness temperatures as indicators of deep convection during the Indian summer monsoon, and the variations therein due to active and break periods. We make use of the recently newly processed data from the Advanced Very High Resolution Radiometer (AVHRR at a nominal spatial resolution of 4 km. Using temperature thresholds from the Atmospheric Infrared Sounder (AIRS, the AVHRR brightness temperatures are converted to climatological mean (2003–2008 maps of cloud amounts at 200, 150 and 100 hPa. Further, we relate the brightness temperatures to the level of zero radiative heating, which may allow a coarse identification of convective detrainment that will subsequently ascend into the stratosphere. The AVHRR data for the period 1982–2006 are used to document the differences in deep convection between active and break conditions of the monsoon. The analysis of AVHRR data is complemented with cloud top pressure and optical depth statistics (for the period 2003–2008 from the Moderate Resolution Imaging Spectroradiometer (MODIS onboard Aqua satellite. Generally, the two sensors provide a very similar description of deep convective clouds.

    Our analysis shows that most of the deep convection occurs over the Bay of Bengal and central northeast India. Very deep convection over the Tibetan plateau is comparatively weak, and may play only a secondary role in troposphere-to-stratosphere transport. The deep convection over the Indian monsoon region is most frequent in July/August, but the very highest convection (coldest tops, penetrating well into the TTL occurs in May/June. Large variability in convection reaching the TTL is due to monsoon break

  13. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2010-02-01

    Full Text Available The impact of very deep convection on the water budget and thermal structure of the tropical tropopause layer is still not well quantified, not least because of limitations imposed by the available observation techniques. Here, we present detailed analysis of the climatology of the cloud top brightness temperatures as indicators of deep convection during the Indian summer monsoon, and the variations therein due to active and break periods. We make use of the recently newly processed data from the Advanced Very High Resolution Radiometer (AVHRR at a nominal spatial resolution of 4 km. Using temperature thresholds from the Atmospheric Infrared Sounder (AIRS, the AVHRR brightness temperatures are converted to climatological mean (2003–2008 maps of cloud amounts at 200, 150 and 100 hPa. Further, we relate the brightness temperatures to the level of zero radiative heating, which may allow a coarse identification of convective detrainment that will subsequently ascend into the stratosphere. The AVHRR data for the period 1982–2006 are used to document the differences in deep convection between active and break conditions of the monsoon. The analysis of AVHRR data is complemented with cloud top pressure and optical depth statistics (for the period 2003–2008 from the Moderate Resolution Imaging Spectroradiometer (MODIS onboard Aqua satellite. Generally, the two sensors provide a very similar description of deep convective clouds.

    Our analysis shows that most of the deep convection occurs over the Bay of Bengal and Central Northeast India. Very deep convection over the Tibetan plateau is comparatively weak, and may play only a secondary role in troposphere-to-stratosphere transport. The deep convection over the Indian monsoon region is most frequent in July/August, but the very highest convection (coldest tops, penetrating well into the TTL occurs in May/June. Large variability in convection reaching the TTL is due to monsoon break

  14. Decadal Changes in Climatological Intraseasonal Fluctuation of Subseasonal Evolution of Summer Precipitation over the Korean Peninsula in the mid-1990s

    Institute of Scientific and Technical Information of China (English)

    WonMoo KIM; Jong-Ghap JHUN; Kyung-Ja HA; Masahide KIMOTO

    2011-01-01

    Decadal changes in the subseasonal evolution and the phase-locked climatological intraseasonal fluctuation of summertime rainfall over the Korean Peninsula before and after the mid-1990s are investigated. The activity and the migration speed of the monsoon rain band over the East Asian region are altered in the recent decade, resulting in the drier conditions in late spring and the earlier onset of Changma. In early August when a climatological monsoon break was clear in the earlier decade, the precipitation has increased dramatically with a meridional coherency. The response to the enhanced convection over the South China Sea and southeastern China provides a favorable condition for more precipitation in early August through the changes in moisture transport and tropical cyclone passage.

  15. Decadal Changes in Climatological Intraseasonal Fluctuation of Subseasonal Evolution of Summer Precipitation over the Korean Peninsula in the mid-1990s

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Decadal changes in the subseasonal evolution and the phase-locked climatological intraseasonal fluctuation of summertime rainfall over the Korean Peninsula before and after the mid-1990s are investigated.The activity and the migration speed of the monsoon rain band over the East Asian region are altered in the recent decade,resulting in the drier conditions in late spring and the earlier onset of Changma.In early August when a climatological monsoon break was clear in the earlier decade,the precipitation has increased dramatically with a meridional coherency.The response to the enhanced convection over the South China Sea and southeastern China provides a favorable condition for more precipitation in early August through the changes in moisture transport and tropical cyclone passage.

  16. Climatology of Mid-latitude Ionospheric Disturbances from the Very Large Array Low-frequency Sky Survey

    CERN Document Server

    Helmboldt, J F; Cotton, W D

    2012-01-01

    The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MHz interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases,...

  17. Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.

    2011-01-01

    The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.

  18. The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains

    Directory of Open Access Journals (Sweden)

    Sukanta Basu

    2010-02-01

    Full Text Available For wind resource assessment projects, it is common practice to use a power-law relationship (U(z ~ zα and a fixed shear exponent (α = 1=7 to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP are significantly higher than 1=7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model—the Weather Research and Forecasting (WRF model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer.

  19. A climatology of Brazilian surface wind speed trends using in-situ and climate reanalysis datasets from 1980-2014

    Science.gov (United States)

    Gilliland, J. M.; Keim, B. D.

    2015-12-01

    Wind speed trends have been extensively researched for the Northern Hemisphere and Australia. The general consensus among scientists is that wind speeds have declined over the past century. However, a minimal amount of research has focused on understanding how wind speeds changed across Brazil based on temporal and geographical perspectives. Therefore, this study provides a climatological assessment of wind speed trends across Brazil using in-situ and climatic model datasets from 1980-2014. Seasonal and annual trends are determined across the study area using linear and quantile regression. Geographical Information Systems is used to interpret and understand how wind speed trends have changed across Brazil. Preliminary results show two distinct wind speed trend patterns exist across Brazil. The largest wind speed magnitude increases occurred along northeastern and coastal Brazil, where as decreasing wind speeds have been observed for central and southeastern Brazil. Furthermore, quantile regression also shows the largest seasonal and annual wind trend fluctuations occur at lower (5%) and upper percentiles (95%) for both in-situ and climate model datasets. As a result, these findings indicate possible alterations in atmospheric and oceanic circulations could be affecting wind speed trends across Brazil and warrants further investigation and research.

  20. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011-2012

    Science.gov (United States)

    Ding, Feng; Wan, Weixing; Li, Qiang; Zhang, Rui; Song, Qian; Ning, Baiqi; Liu, Libo; Zhao, Biqiang; Xiong, Bo

    2014-01-01

    This paper describes a comparative study of the climatology of large-scale traveling ionospheric disturbances (LSTIDs) over North America and China based on observations obtained in 2011-2012 using two GPS networks characterized by dense regional coverage. We identified a total of 390 LSTIDs in China and 363 events in North America. These can be categorized into three types, namely south, north, and westward propagating LSTIDs. The southward LSTIDs over North America show similar diurnal and seasonal variations to those of geomagnetic disturbances, but the southward LSTIDs over China do not show such variations. The occurrence of southward LSTIDs over China increases at ~1-2 h after the time of geomagnetic activity maximum; this increase lasts several hours until the geomagnetic minimum, which happens during the local evening. The southward LSTIDs over North America show a semiannual variation with two peaks in March and October, while the southward LSTIDs over China show a major peak in January. Northward LSTIDs occur much less frequently than their southward counterparts, and they are mainly observed in China. They mostly occur during geomagnetic activity maximum, indicating a possible relation with the degree of geomagnetic activity. Westward LSTIDs are seen in both regions during local sunrise and may be excited by the moving solar terminator. No relationship was found between these latter LSTIDs and the geomagnetic disturbances. The propagation direction of westward events changed from northwestward during winter solstice to southwestward at summer solstice. This is consistent with the seasonal orientation of the solar terminator.

  1. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2008-03-01

    Full Text Available The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosondes and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis was used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin-scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns enables the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.

  2. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2007-09-01

    Full Text Available The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosoundings and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis is used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns will enable the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.

  3. Composition of the Asian summer monsoon anticyclone: Climatology and variability from 10 years of Aura Microwave Limb Sounder measurements

    Science.gov (United States)

    Santee, Michelle; Manney, Gloria; Livesey, Nathaniel; Neu, Jessica; Schwartz, Michael; Read, William

    2016-04-01

    Satellite measurements are invaluable for investigating the composition of the upper troposphere / lower stratosphere (UTLS) in the region of the Asian summer monsoon anticyclone, which has been sparsely sampled by other means. The Microwave Limb Sounder (MLS), launched as part of NASA's Aura mission in July 2004, makes simultaneous co-located measurements of trace gases and cloud ice water content (IWC, a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, and extensive measurement suite of Aura MLS to characterize the climatological composition of the ASM anticyclone and quantify its considerable spatial, seasonal, and interannual variability. We relate the observed trace gas behavior to various meteorological quantities, such as the size and strength of the ASM anticyclone, the extent and intensity of deep convection, and variations in the tropopause and the upper tropospheric jets in that region. Multiple species of both tropospheric and stratospheric origin are examined to help assess whether the observed variability arises from variations in transport processes or changes in the strength or location of surface emissions.

  4. South American Climatology and Impacts of El Niño in NCEP’s CFSR Data

    Directory of Open Access Journals (Sweden)

    Timothy Paul Eichler

    2013-01-01

    Full Text Available Understanding regional climate variability is necessary in order to assess the impacts of climate change. Until recently, the best methods for evaluating regional climate variability were via observation networks and coarse-gridded reanalysis datasets. However, the recent development of high-resolution reanalysis datasets offers an opportunity to better evaluate the climatologically diverse continent of South America. This study compares NCEP’s CFS reanalysis dataset with NCEP’s coarser-resolution reanalysis II dataset to determine if CFS reanalysis improves our ability to represent the regional climate of South America. Our results show several regional differences between the CFSR and Re2 data, especially in areas of large topographical gradients. A comparison with the University of Delaware and TRMM precipitation datasets lends credence to some of these differences, such as heavier precipitation associated with anomalous 925 hPa westerlies over northwestern Peru and Ecuador during El Niño. However, our results also stress that caution is advised when using reanalysis data to assess regional climate variability, especially in areas of large topographical gradient such as the Andes. Our results establish a baseline to better study climate change, especially given the release of IPCC AR5 model simulations.

  5. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    Science.gov (United States)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  6. Santa Ana Winds of Southern California: Their Climatology and Variability Spanning 6.5 Decades from Regional Dynamical Modelling

    Science.gov (United States)

    Guzman-Morales, J.; Gershunov, A.

    2015-12-01

    Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region. In spite of their tremendous episodic impacts on the health, economy and mood of the region, climate-scale behavior of SAW is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis product and construct an hourly SAW catalogue spanning 65 years. We describe the long-term SAW climatology at relevant time-space resolutions, i.e, we developed local and regional SAW indices and analyse their variability on hourly, daily, annual, and multi-decadal timescales. Local and regional SAW indices are validated with available anemometer observations. Characteristic behaviors are revealed, e.g. the SAW intensity-duration relationship. At interdecadal time scales, we find that seasonal SAW activity is sensitive to prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system that are also known to affect the hydroclimate of this region. Lastly, we do not find any long-term trend in SAW frequency and intensity as previously reported. Instead, we identify a significant long-term trend in SAW behavior whereby contribution of extreme SAW events to total seasonal SAW activity has been increasing at the expense of moderate events. These findings motivate further investigation on SAW evolution in future climate and its impact on wildfires.

  7. Climatology of aerosol and cloud optical properties at the Atmospheric Radiation Measurements Climate Research Facility Barrow and Atqasuk sites

    Science.gov (United States)

    Yin, Bangsheng; Min, Qilong

    2014-02-01

    The long-term measurements at the Barrow and Atqasuk sites have been processed to develop the climatology of aerosol and cloud properties at interannual, seasonal, and diurnal temporal scales. At the Barrow site, the surface temperature exhibits an increasing trend in both thawed and frozen seasons over the period studied here, about one decade. Corresponding to the warming, the snow melting day arrives earlier, and the non-snow-cover duration increases. Aerosol optical depth increased during 2001-2003 and 2005-2009 and decreased during 2003-2005. The liquid water path (LWP), cloud optical depth (COD), and cloud fraction exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. In the frozen season, the arctic haze and ice clouds are dominant, while in the thawed season, the oceanic biogenic aerosols and liquid water clouds or mixed-phase clouds are dominant. The cloud droplet effective radius during the thawed season is larger than that during the frozen season. The diurnal variations of aerosol and cloud-related atmospheric properties are not obvious at these two sites. During the sunshine periods, the aerosol has a cooling effect on the surface through direct aerosol radiative forcing. In the frozen season, clouds have a positive impact on the net surface radiation, and the water vapor path, LWP, and COD have good positive correlations with the surface temperature, suggesting that the cloud radiation feedback is positive. In the thawed season, clouds have a negative impact on the net surface radiation.

  8. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Directory of Open Access Journals (Sweden)

    A. K. Pandit

    2015-06-01

    Full Text Available 16 year (1998–2013 climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness and optical properties (cloud optical thickness observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E, India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006–December 2013 of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50–55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between −50 to −70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013 which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  9. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  10. 4 km NODC/RSMAS AVHRR Pathfinder v5 Seasonal and Annual Day-Night Sea Surface Temperature Climatologies for 1982-2009 for the Gulf of Mexico (NODC Accession 0072888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a set of sea surface temperature climatologies for the Gulf of Mexico (GOM), derived from the AVHRR Pathfinder Version 5 sea surface...

  11. Some implications of time series analysis for describing climatologic conditions and for forecasting. An illustrative case: Veracruz, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gay, C.; Estrada, F.; Conde, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E:mail: feporrua@atmosfera.unam.mx

    2007-04-15

    The common practice of using 30-year sub-samples of climatological data for describing past, present and future conditions has been widely applied, in many cases without considering the properties of the time series analyzed. This paper shows that this practice can lead to an inefficient use of the information contained in the data and to an inaccurate characterization of present, and especially future, climatological conditions because parameters are time and sub-sample size dependent. Furthermore, this approach can lead to the detection of spurious changes in distribution parameters. The time series analysis of observed monthly temperature in Veracruz, Mexico, is used to illustrate the fact that these techniques permit to make a better description of the mean and variability of the series, which in turn allows (depending on the class of process) to restrain uncertainty of forecasts, and therefore provides a better estimation of present and future risk of observing values outside a given coping range. Results presented in this paper show that, although a significant trend is found in the temperatures, giving possible evidence of observed climate change in the region, there is no evidence to support changes in the variability of the series and therefore there is neither observed evidence to support that monthly temperature variability will increase (or decrease) in the future. That is, if climate change is already occurring, it has manifested itself as a change-in-the-mean of these processes and has not affected other moments of their distributions (homogeneous non-stationary processes). The Magicc-Scengen, a software useful for constructing climate change scenarios, uses 20-year sub-samples to estimate future climate variability. For comparison purposes, possible future probability density functions are constructed following two different approaches: one, using solely the Magicc-Scengen output, and another one using a combination of this information and the time

  12. Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset

    Directory of Open Access Journals (Sweden)

    B. Kucieńska

    2010-11-01

    Full Text Available This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005–2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed.

    The data are retrieved from the World Wide Lightning Location Network (WWLLN dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation ("spherics" associated with lightning.

    The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico.

    The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity.

    The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT.

    The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Sub-tropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal

  13. Cloud-to-ground lightning over Mexico and adjacent oceanic regions. A preliminary climatology using the WWLLN dataset

    Energy Technology Data Exchange (ETDEWEB)

    Kucienska, B.; Raga, G.B. [Universidad Nacional Autonoma de Mexico (Mexico). Centro de Ciencias de la Atmosfera; Rodriguez, O. [Instituto Mexicano de Tecnologia del Agua, Morelos (Mexico)

    2010-07-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from theWorldWide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation (''spherics'') associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Subtropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated

  14. Nevadas en el Sudeste Bonaerense: climatología sinóptica y un caso de estudio

    Directory of Open Access Journals (Sweden)

    Paola Salio

    2006-12-01

    Full Text Available Este trabajo realiza una estadística de la frecuencia de las nevadas ocurridas sobre el sudeste de la provincia de Buenos Aires durante un período de 35 años (1960-2004. Utilizando información de tiempo presente se detectaron 32 eventos de nevada, 7 de los cuales produjeron nieve en más de una estación sinóptica. A fin de comprender los patrones de circulación, se realiza una climatología sinóptica de las incursiones de aire frío que son responsables de nevadas en la región de estudio. Dichos patrones se caracterizan por anomalías extremas en las vaguadas asociadas a frentes fríos y en las cuñas posfrontales que denotan la intensidad de dichos sistemas. El campo de anomalías de altura geopotencial muestra en los casos de nieve generalizada un mínimo sobre la vaguada frontal que duplica la intensidad de la obtenida en los casos de nieve aislada. El intenso régimen ciclónico favorece la convergencia en niveles bajos y el fuerte enfriamiento, evidente en las anomalías del campo térmico en niveles medios, indicando la inestabilidad generada en la masa de aire que es conducida hacia el norte sobre la costa patagónica y el Mar Argentino. En un caso particular de nevada generalizada, asociada a una fuerte incursión de aire frío ocurrida el 10 de julio de 2004 sobre el sudeste de la costa bonaerense, se analiza la situación sinóptica utilizando el modelo "Sistema de Modelado Atmosférico Regional" (RAMS como herramienta de diagnóstico y se la relaciona con las muestras previamente encontradas, caracterizando la masa de aire polar y su evolución. La nevada se asocia a una inestabilización sostenida de la masa de aire, favorecida por calentamiento y humedecimiento en una trayectoria dominantemente marítima y por convergencia en un régimen ciclónico en niveles bajos.This paper presents a statistic of the frequency of snow-fall occurred over the southeast of Buenos Aires province over a 35 year period (1960-2004. Considering

  15. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    Science.gov (United States)

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  16. Climatology of diurnal tide and its long-term variability in the lower middle atmosphere over a tropical station

    Science.gov (United States)

    Kumar, P. Vinay; Dutta, Gopa; Mohammad, Salauddin; Rao, B. Venkateswara

    2016-07-01

    ECMWF reanalysis (ERA-interim) data of winds for two solar cycles (1991-2012) are harmonically analyzed to delineate the characteristics and variability of diurnal tide over a tropical site (13.5° N, 79.5° E). The diurnal cycle horizontal winds measured by Gadanki (13.5° N, 79.2° E) mesosphere-stratosphere-troposphere (MST) radar between May 2005 and April 2006 have been used to compute 24 h tidal amplitudes and phases and compared with the corresponding results obtained from ERA winds. The climatological diurnal tidal amplitudes and phases have been estimated from surface to ˜33 km using ERA interim data. The amplitudes and phases obtained in the present study are found to compare reasonably well with Global Scale Wave Model (GSWM-09). Diurnal tides show larger amplitudes in the lower troposphere below 5 km during summer and in the mid-stratosphere mainly during equinoctial months and early winter. Water vapor and convection in the lower troposphere are observed to play major roles in exciting 24-h tide. Correlations between diurnal amplitude and integrated water vapor and between diurnal amplitude and outgoing longwave radiation (OLR) are 0.59 and -0.34, respectively. Ozone mixing ratio correlates (ρ = 0.66) well with diurnal amplitude and shows annual variation in the troposphere whereas semi-annual variation is observed at stratospheric heights with stronger peaks in equinoctial months. A clear annual variation of diurnal amplitude is displayed in the troposphere and interannual variability becomes prominent in the stratosphere which could be partly due to the influence of equatorial stratospheric QBO. The influence of solar activity on diurnal oscillations is found to be insignificant.

  17. Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria

    Directory of Open Access Journals (Sweden)

    Piero Lionello

    2016-05-01

    Full Text Available The Mediterranean storm track constitutes a well-defined branch of the North Hemisphere storm track and is characterised by small but intense features and frequent cyclogenesis. The goal of this study is to assess the level of consensus among cyclone detection and tracking methods (CDTMs, to identify robust features and to explore sources of disagreement. A set of 14 CDTMs has been applied for computing the climatology of cyclones crossing the Mediterranean region using the ERA-Interim dataset for the period 1979–2008 as common testbed. Results show large differences in actual cyclone numbers identified by different methods, but a good level of consensus on the interpretation of results regarding location, annual cycle and trends of cyclone tracks. Cyclogenesis areas such as the north-western Mediterranean, North Africa, north shore of the Levantine basin, as well as the seasonality of their maxima are robust features on which methods show a substantial agreement. Differences among methods are greatly reduced if cyclone numbers are transformed to a dimensionless index, which, in spite of disagreement on mean values and interannual variances of cyclone numbers, reveals a consensus on variability, sign and significance of trends. Further, excluding ‘weak’ and ‘slow’ cyclones from the computation of cyclone statistics improves the agreement among CDTMs. Results show significant negative trends of cyclone frequency in spring and positive trends in summer, whose contrasting effects compensate each other at annual scale, so that there is no significant long-term trend in total cyclone numbers in the Mediterranean basin in the 1979–2008 period.

  18. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    Science.gov (United States)

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. PMID:26383855

  19. West African equatorial ionospheric parameters climatology based on Ouagadougou ionosonde station data from June 1966 to February 1998

    Directory of Open Access Journals (Sweden)

    F. Ouattara

    2009-06-01

    Full Text Available This study is the first which gives the climatology of West African equatorial ionosphere by using Ouagadougou station through three solar cycles. It has permitted to show the complete morphology of ionosphere parameters by analyzing yearly variation, solar cycle and geomagnetic activity, seasonal evolution and diurnal development. This work shows that almost all ionospheric parameters have 11-year solar cycle evolution. Seasonal variation shows that only foF2 exhibits annual, winter and semiannual anomaly. foF2 seasonal variation has permitted us to identify and characterize solar events effects on F2 layer in this area. In fact (1 during quiet geomagnetic condition foF2 presents winter and semiannual anomalies asymmetric peaks in March/April and October. (2 The absence of winter anomaly and the presence of equinoctial peaks are the most visible effects of fluctuating activity in foF2 seasonal time profiles. (3 Solar wind shock activity does not modify the profile of foF2 but increases ionization. (4 The absence of asymmetry peaks, the location of the peaks in March and October and the increase of ionization characterize recurrent storm activity. F1 layers shows increasing trend from cycle 20 to cycle 21. Moreover, E layer parameters seasonal variations exhibit complex structure. It seems impossible to detect fluctuating activity effect in E layer parameters seasonal variations but shock activity and wind stream activity act to decrease E layer ionization. It can be seen from Es layer parameters seasonal variations that wind stream activity effect is fairly independent of solar cycle. E and Es layers critical frequencies and virtual heights diurnal variations let us see the effects of the greenhouse gases in these layers.

  20. Adjustment of the thermal component of two tourism climatological assessment tools using thermal perception and preference surveys from Hungary

    Science.gov (United States)

    Kovács, Attila; Unger, János; Gál, Csilla V.; Kántor, Noémi

    2016-07-01

    This study introduces new methodological concepts for integrating seasonal subjective thermal assessment patterns of people into the thermal components of two tourism climatological evaluation tools: the Tourism Climatic Index (TCI) and the Climate-Tourism/Transfer-Information-Scheme (CTIS). In the case of the TCI, we replaced the air temperature and relative humidity as the basis of the initial rating system with the physiologically equivalent temperature (PET)—a complex human biometeorological index. This modification improves the TCI's potential to evaluate the thermal aspects of climate. The major accomplishments of this study are (a) the development of a new, PET-based rating system and its integration into the thermal sub-indices of the TCI and (b) the regionalization of the thermal components of CTIS to reflect both the thermal sensation and preference patterns of people. A 2-year-long (2011-2012) thermal comfort survey conducted in Szeged, Hungary, from spring to autumn was utilized to demonstrate the implementation of the introduced concepts. We found considerable differences between the thermal perception and preference patterns of Hungarians, with additional variations across the evaluated seasons. This paper describes the proposed methodology for the integration of the new seasonal, perception-based, and preference-based PET rating systems into the TCI, and presents the incorporation of new PET thresholds into the CTIS. In order to demonstrate the utility of the modified evaluation tools, we performed case study climate analyses for three Hungarian tourist destinations. The additional adjustments introduced during the course of those analyses include the reduction of TCI's temporal resolution to 10-day intervals and the exclusion of nocturnal and winter periods from the investigation.

  1. Hydrographic climatology in the Gulf of St. Lawrence: its recent trends and an estuarine regime of interannual variability

    Science.gov (United States)

    Yankovsky, Alexander; Yashayaev, Igor; Frank, Alejandro

    2016-04-01

    Combining hydrographic data from the NOAA NODC World Ocean Database and the archive of the Bedford Institute of Oceanography we construct a hydrographic climatology of the Gulf of St. Lawrence (GSL) and analyze interannual to multidecadal variability of its principal water masses. Our analysis is based on the assumption that buoyancy is a primary forcing mechanism defining thermohaline fields and driving circulation in GSL, which in turn dictates the selection of representative transects. We analyze ensembles of hydrographic conditions, parameters of seasonal cycle, seasonal-to-interannual anomalies and long-term trends in each distance-depth bin of several transects orthogonal or tangential to the principal pathways of buoyancy-driven flows in GSL. In the Cabot Strait, the surface layer exhibits freshening while the bottom layer (affected by the Atlantic water influx) becomes warmer and saltier. The latter tendency can be traced along the axis of the entire Laurentian Channel and becomes even stronger further inland (e.g., off Anticosti Isl.). This enhancement in two-layer estuarine exchange flow is likely related to the freshening effect of the melting ice further north advected into the Gulf, or to the stronger freshwater discharge mixing in the Gulf. Indeed, the near-surface coastal bin off Nova Scotia occupied by the coastal buoyancy current originating from the St. Lawrence estuary does not reveal similar freshening. Interannual variability of temperature and salinity also exhibits patterns of estuarine exchange: near-bottom temperature and salinity indicative of the return flow from the Atlantic into GSL correlate with the St. Lawrence River discharge. The coastal buoyancy current responds to variations in the freshwater discharge by its expansion offshore while the salinity variations near the coast do not show a significant relationship with the discharge. Accelerating departure of hydrographic anomalies from their record-mean trends is observed over the

  2. Climatology and Biometeorology: two new topics of the State of Environment Report for Policymakers in the Florentine Area

    Science.gov (United States)

    Petralli, M.; Massetti, L.; Pozzi, R.; Orlandini, S.

    2009-09-01

    The importance of a sustainable urban planning is increasing in the last few years and it will be even more important in the future years: in fact, there is a global tendency towards an increasing population concentration in cities, strictly related to urban sprawl , as it has already been underlined by many international reports. The quality of Urban life is strongly affected by climatic conditions and at the same time urbanization is modifying local climate as, for instance, the increasing temperature and the strengthening of Urban Heat Island (UHI) effect. From 2004, the Florence Municipality with other 8 neighbour municipality, started the "Agenda21 of the Florentine Area” Project: the aim of this project was to create a network between some similar and neighbour Municipality to pursue "sustainable development" as an urbanization model capable of reconciling environmental integrity, social equity and economic efficiency. Every two years, a Report on the environment state and the sustainability of the Florentine area is provided. The main themes of the report are Air, Soil, Nature and Landscape, Economic and social issues, Energy, Waste, Electromagnetism, Water, Traffic and Good practices. For the first time in 2008 Florence Municipality decided to include biometeorological indicators in its Report. A section was dedicated to the description of Florence climate and annual trends of average air temperature and total amount of precipitation, while another section was dedicated to the impacts of extreme bio-climatic conditions on citizens' health. In addition, the report highlights how the knowledge of climate and meteorological conditions can be a cross-cutting theme, underlining the mutual influence between climate and almost all the indicators included in the report. The 2008 Florentine Report represents the first step towards the implementation of an effective tool that underlines the importance of climatological and biometeorological issues in the future

  3. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. [National Climatic Data Center, Asheville, NC (United States); Eischeid, J.K. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  4. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Schmoyer, R.L. (Oak Ridge National Lab., TN (United States)); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. (National Climatic Data Center, Asheville, NC (United States)); Eischeid, J.K. (Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  5. An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis

    Science.gov (United States)

    Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.

  6. A 6-year global climatology of occurrence of upper-tropospheric ice supersaturation inferred from the Atmospheric Infrared Sounder after synergetic calibration with MOZAIC

    Directory of Open Access Journals (Sweden)

    N. Lamquin

    2011-04-01

    Full Text Available Ice supersaturation in the upper troposphere is a complex and important issue for the understanding of cirrus cloud formation. Infrared sounders have the ability to provide cloud properties and atmospheric profiles of temperature and humidity. On the other hand, they suffer from coarse vertical resolution, especially in the upper troposphere and therefore are unable to detect shallow ice supersaturated layers. We have used data from the Measurements of OZone and water vapour by AIrbus in-service airCraft experiment (MOZAIC in combination with Atmospheric InfraRed Sounder (AIRS relative humidity measurements and cloud properties to develop a calibration method for an estimation of occurrence frequencies of ice supersaturation. This method first determines the occurrence probability of ice supersaturation, detected by MOZAIC, as a function of the relative humidity determined by AIRS. The occurrence probability function is then applied to AIRS data, independently of the MOZAIC data, to provide a global climatology of upper-tropospheric ice supersaturation occurrence. Our climatology is then related to high cloud occurrence from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP and compared to ice supersaturation occurrence statistics from MOZAIC alone. Finally it is compared to model climatologies of ice supersaturation from the Integrated Forecast System (IFS of the European Centre for Medium-Range Weather Forecasts (ECMWF and from the European Centre HAmburg Model (ECHAM. All the comparisons show good agreements when considering the limitations of each instrument and model. This study highlights the benefits of multi-instrumental synergies for the investigation of upper tropospheric ice supersaturation.

  7. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    Science.gov (United States)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  8. OW COADS Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — COADS (Comprehensive Ocean-Atmosphere Data Set) is a ocean-atmosphere data set generated by means of in-situ (ship) measurements and reports from around the world's...

  9. Local Climatological Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Publication containing summaries from major U.S. airport stations that include a daily account of temperature extremes, degree days, hourly and daily precipitation...

  10. Climatological Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Major US airport weather stations monthly and annual publication containing station daily maximum and minimum temperatures, precipitation amounts, and monthly...

  11. State Climatology Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Substation history publications by state. Includes station metadata such as station name and location changes, observer names and changes, alternate station names....

  12. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Directory of Open Access Journals (Sweden)

    Igor V. Geogdzhayev

    2015-09-01

    Full Text Available A comprehensive set of monthly mean aerosol optical thickness (AOT data from coastal and island AErosol RObotic NETwork (AERONET stations is used to evaluate Global Aerosol Climatology Project (GACP retrievals for the period 1995–2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS Aqua level-2 data for 2003–2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81–0.85 for GACP and 0.74–0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%–27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%–25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the

  13. Global Monthly and Daily Precipitation Analysis for the Global Precipitation Climatology Project (GPCP): Global and Regional Variations and Trends

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The 22 year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) and the four year (1997-present) daily GPCP analysis are described in terms of the data sets and analysis techniques used in their preparation. These analyses are then used to study global and regional variations and trends during the 22 years and the shorter-time scale events that constitute those variations. The GPCP monthly data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO (El Nino and Southern Oscillation) events is quantified with no significant signal when land and ocean are combined. In terms of regional trends 1979 to 2000 the tropics have a distribution of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe. In the

  14. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  15. Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing

    Science.gov (United States)

    Wei, Nan; Zhou, Liming; Dai, Yongjiu

    2016-08-01

    This study examines the effects of modeled planetary boundary layer (PBL) mixing on the simulated temperature diurnal cycle climatology over land in 20 CMIP5 models with AMIP simulations. When compared with observations, the magnitude of diurnal temperature range (DTR) is systematically underestimated over almost all land areas due to a widespread warm bias of daily minimum temperature (Tmin) and mostly a cold bias of daily maximum temperature (Tmax). Analyses of the CMIP5 multi-model ensemble means suggest that the biases of the simulated PBL mixing could very likely contribute to the temperature biases. For the regions with the cold bias in Tmax, the daytime PBL mixing is generally underestimated. The consequent more dry air entrainment from the free atmosphere could help maintain the surface humidity gradient, and thus produce more surface evaporation and potentially lower the Tmax. The opposite situation holds true for the regions with the warm bias of Tmax. This mechanism could be particularly applicable to the regions with moderate and wet climate conditions where surface evaporation depends more on the surface humidity gradient, but less on the available soil moisture. For the widespread warm bias of Tmin, the widely-recognized overestimated PBL mixing at nighttime should play a dominant role by transferring more heat from the atmosphere to the near-surface to warm the Tmin. Further analyses using the high resolution CFMIP2 output also support the CMIP5 results about the connections of the biases between the simulated turbulent mixing and the temperature diurnal cycle. The large inter-model variations of the simulated temperature diurnal cycle primarily appear over the arid and semi-arid regions and boreal arctic regions where the model differences in the PBL turbulence mixing could make equally significant contributions to the inter-model variations of DTR, Tmax and Tmin compared to the model differences in surface radiative processes. These results

  16. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    Science.gov (United States)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  17. Development of a climatological data base to help forecast cloud cover conditions for shuttle landings at the Kennedy Space Center

    Science.gov (United States)

    Atchison, M. Kevin

    1993-01-01

    The Space Shuttle is an extremely weather sensitive vehicle with very restrictive constraints for both launches and landings. The most important difference between Shuttle and normal aircraft landings is that the Shuttle has no go-around capability once it begins its decent into the earth's atmosphere. The de-orbit burn decision is generally made approximately 90 minutes before landing requiring a forecast with little room for error. Because of the Shuttle's rapid re-entry to earth, the pilot must be able to see all runway and visual navigation aids from high altitude to land the Shuttle. In addition, the heat resistant tiles which are used to protect the Shuttle during its re-entry into the earth's atmosphere are extremely sensitive to any type of precipitation. Extensive damage to these tiles could occur if the Shuttle passes through any cloud that contains precipitation size particles. To help guard against changing weather conditions or any type of weather problems that might occur prior to landing, flight rules have been developed as guidelines for all landings. Although the rules vary depending on the location of the landing (Kennedy Space Center or Edwards AFB), length of mission, and weight of vehicle, most of the rules can be condensed into 4 major groupings. These are: (1) Cloud ceilings should not be less than 3048 m (10,000 feet), (2) Visibility should not be less than 13 km (7 nm), (3) Cross-wind no greater than 5-8 m/s (10-15 knots); and (4) No showers or thunderstorms at or within 56 km (30 nm) of the Shuttle Landing Facility. This study consisted of developing a climatological database of the Shuttle Landing Facility (SLF) surface observations and performing an analysis of observed conditions one and two hours subsequent to given conditions at the SLF to help analyze the 0.2 cloud cover rule. Particular emphasis was placed on Shuttle landing weather violations and the amounts of cloud cover below 3048 m (10,000 ft.). This analysis has helped to

  18. Airborne observations of trace gases over boreal Canada during BORTAS: campaign climatology, airmass analysis and enhancement ratios

    Directory of Open Access Journals (Sweden)

    S. J. O'Shea

    2013-05-01

    Full Text Available In situ airborne measurements were made over Eastern Canada in summer 2011 as part of the BORTAS experiment (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and~Satellites. In this paper we present observations of greenhouse gases (CO2 and CH4 and other biomass burning tracers and related trace gases, both climatologically and through case studies, as recorded on board the FAAM BAe-146 research aircraft. Vertical profiles of CO2 were generally characterised by depleted boundary layer concentrations relative to the free troposphere, consistent with terrestrial biospheric uptake. In contrast, CH4 concentrations were found to rise with decreasing altitude due to strong local and regional surface sources. We use coincident tracer-tracer correlations and a Lagrangian trajectory model to characterise and differentiate air mass history of intercepted plumes. In particular, CO, HCN and CH3CN were used to identify air masses that have been recently influenced by biomass burning. Concentrations of CO2 were found to have a mean tropospheric, campaign-average concentration of 384.8 ppm (ranging between 371.5 and 397.1 ppm, whilst CH4 concentrations had a mean value of 1859 ppb (ranging between 1797 and 1968 ppb, representing the episodic sampling of local fire plumes. CH4 and CO2 concentrations during BORTAS were found to be broadly comparable to previous measurements in the region during the regional burning season and with reanalysed composition fields from the EU Monitoring Atmospheric Composition and Change (MACC project. By examining individual case studies we were able to quantify emissions from biomass burning. Using both near-field (1 day sampling, boreal forest fire plumes were identified throughout the troposphere. Fresh plumes from fires in Northwest Ontario yield emission factors for CH4 and CO2 of 8.5 ± 0.9 g (kg dry matter−1 and 1512 g ± 185 g (kg dry matter−1, respectively. We have

  19. Understanding climatological, instantaneous and reference VTEC maps, its variability, its relation to STEC and its assimilation by VTEC models

    Science.gov (United States)

    Orus, R.; Prieto-Cerdeira, R.

    2012-12-01

    As the next Solar Maximum peak is approaching, forecasted for the late 2013, it is a good opportunity to study the ionospheric behaviour in such conditions and how this behaviour can be estimated and corrected by existing climatological models - e.g.. NeQuick, International Reference Ionosphere (IRI)- , as well as, GNSS driven models, such as Klobuchar, NeQuick Galileo, SBAS MOPS (EGNOS and WAAS corrections) and Near Real Time Global Ionospheric Maps (GIM) or regional Maps computed by different institutions. In this framework, technology advances allow to increase the computational and radio frequency channels capabilities of low-cost receivers embedded in handheld devices (such mobile phones, pads, trekking clocks, photo-cameras, etc). This may enable the active use of received ionospheric data or correction parameters from different data sources. The study is centred in understanding the ionosphere but focusing on its impact on the position error for low-cost single-frequency receivers. This study tests optimal ways to take advantage of a big amount of Real or Near Real Time ionospheric information and the way to combine various corrections in order to reach a better navigation solution. In this context, the use of real time estimation vTEC data coming from EGNOS or WAAS or near real time GIMs are used to feed the standard GPS single-frequency ionospheric correction models (Klobuchar) and get enhanced Ionospheric corrections with minor changes on the navigation software. This is done by using a Taylor expansion over the 8 coefficients send by GPS. Moreover, the same datasets are used to assimilate it in NeQuick, for broadcast coefficients, as well as, for grid assimilation. As a side product, electron density profiles in Near Real Time could be estimated with data assimilated from different ionospheric sources. Finally, the ionospheric delay estimation for multi-constellation receivers could take benefit from a common and more accurate ionospheric model being

  20. Determination of the UV solar risk in Argentina with high-resolution maps calculated using TOMS ozone climatology

    Science.gov (United States)

    Piacentini, Rubén D.; Cede, Alexander; Luccini, Eduardo; Stengel, Fernando

    2004-01-01

    The connection between ultraviolet (UV) radiation and various skin diseases is well known. In this work, we present the computer program "UVARG", developed in order to prevent the risk of getting sunburn for persons exposed to solar UV radiation in Argentina, a country that extends from low (tropical) to high southern hemisphere latitudes. The software calculates the so-called "erythemal irradiance", i.e., the spectral irradiance weighted by the McKinlay and Diffey action spectrum for erythema and integrated in wavelength. The erythemal irradiance depends mainly on the following geophysical parameters: solar elevation, total ozone column, surface altitude, surface albedo, total aerosol optical depth and Sun-Earth distance. Minor corrections are due to the variability in the vertical ozone, aerosol, pressure, humidity and temperature profiles and the extraterrestrial spectral solar UV irradiance. Key parameter in the software is a total ozone column climatology incorporating monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina that was obtained from TOMS/NASA satellite data from 1978 to 2000. Different skin types are considered in order to determine the sunburn risk at any time of the day and any day of the year, with and without sunscreen protection. We present examples of the software for three different regions: the high altitude tropical Puna of Atacama desert in the North-West, Tierra del Fuego in the South when the ozone hole event overpasses and low summertime ozone conditions over Buenos Aires, the largest populated city in the country. In particular, we analyzed the maximum time for persons having different skin types during representative days of the year (southern hemisphere equinoxes and solstices). This work was made possible by the collaboration between the Argentine Skin Cancer Foundation, the Institute of Physics Rosario (CONICET-National University of Rosario, Argentina) and the Institute of

  1. Climatology of low latitude ionosphere under effect of varying solar flux during solar cycle 23 and 24

    Science.gov (United States)

    Dashora, Nirvikar; Suresh, Sunanda

    2016-07-01

    The characteristics of quiet time equatorial and low latitude total electron content (TEC) over the Indian sector using GIM data (1998-2014) is obtained. For the first time the analysis is carried filtering out the solar flare and storm effects and time series of quiet time VTEC data from three locations namely dip equator and two low latitude conjugate locations in Indian sector are obtained. It is well known that a complex interplay among drivers of equatorial electrodynamics like Solar flux, dynamo electric field and meridional winds determine the daytime ionization and distribution in equatorial ionization anomaly zone. In this study, we have critically examined the role of varying solar flux and response of low latitude ionosphere with new and standardized definitions. The results are examined and interpreted in the context of large number of previous studies. The newly found features from this study are as follows. Marked difference in nature of equinoctial asymmetry is noted between solar cycle 23 and 24. Long absence of winter anomaly both during low and high solar activity (HSA) in LL (low latitude) regions is found. Climatology of the diurnal cycle is provided in four categories using new criteria for demarcation of solar activity levels. Highest correlation (~77%) between GIM ionospheric electron content (IEC) and PI (solar EUV proxy index) is noted over equator in contrast to previous studies. The minimum positive contribution of PI in variation of IEC requires minimum of 2 years of data and if more than 7-8 years of data is used, it saturates. RMS (root mean square) width of PI can be used to define the HSA. Strong QBO (quasi biennial oscillations) in IEC is noted in tune with the one in PI over both the LL location but QBO remains surprisingly subdued over equator. The semi-annual oscillations in GIM-IEC are found to be stronger at all locations during high solar activity and weaker between 2005 and 2011, whereas, the annual oscillations are found to

  2. An approach to integrate spatial and climatological data as support to drought monitoring and agricultural management problems in South Sudan

    Science.gov (United States)

    Bonetto, Sabrina; Facello, Anna; Camaro, Walther; Isotta Cristofori, Elena; Demarchi, Alessandro

    2016-04-01

    humanitarian emergencies, the precipitation is used to monitoring potential drought events in the critical periods of the year. The methods employed and integrated different satellite data (Landsat and NASA-TRMM) in order to generate a proper database for the analysis of the seasonal movements according to climatological variations. Preliminary results will be presented and discussed.

  3. Climatology of new particle formation events in the subtropical North Atlantic free troposphere at Izaña GAW observatory

    Directory of Open Access Journals (Sweden)

    M. I. García

    2013-09-01

    Full Text Available A climatology of new particle formation (NPF events in the subtropical North Atlantic free troposphere is presented. A four year data set (June 2008–June 2012, which includes number size distributions (10–600 nm, reactive gases (SO2, NOx, and O3, several components of solar radiation and meteorological parameters, measured at Izaña Global Atmospheric Watch observatory (2400 m above sea level; Tenerife, Canary Islands was analysed. On average, NPF occurred during 30% of the days,the mean values of the formation and growth rates during the study period were 0.49 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May to August, when these events account for 50 to 60% of the days/month. Monthly mean values of the formation and growth rates exhibit higher values during this season (0.50–0.95 cm−3 s−1 and 0.48–0.58 nm h−1, respectively than during other periods. The two steps (formation and growth of the NPF process mostly occur under the prevailing northern winds typical of this region. Sulphur dioxide and UV radiation show higher levels during NPF events than in other type of episodes. The presence of Saharan dust in the free troposphere is associated with a decrease in the formation rates of new particles. In the analysis of the year-to-year variability, mean sulphur dioxide concentration (within the range 60–300 ppt was the parameter that exhibited the highest correlation with the frequency of NPF episodes. The availability of this trace gas (i.e. their oxidation products seems also to have a influence on the duration of the events, number of formed nucleation particles, formation rates and growth rates. We identified a set of NPF events in which two nucleation modes (that may evolve at different rates occur simultaneously and for which further investigations are necessary.

  4. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    Energy Technology Data Exchange (ETDEWEB)

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.; Brookmeyer, P.; Weil, G. J.; Sultan, M.; Harb, M.; Environmental Research; Washington Univ.; Utah State Univ.; Egyptian Ministry of Health

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasis prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.

  5. Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations

    Science.gov (United States)

    Jin, Chun-Sil; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Hong, Song-You; Kang, Hyun-Suk; Ho, Chang-Hoi

    2016-08-01

    The ability of five regional climate models (RCMs), within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia, to simulate tropical cyclone (TC) activity over the western North Pacific is evaluated. All RCMs are performed at ~50 km resolution over the CORDEX-East Asia domain, and are driven by the ECMWF Interim Re-Analysis (ERA-Interim) for the period 1989-2008. ERA-Interim sea surface temperature is prescribed as the lower boundary. Performances of the individual RCMs and multi-RCM ensemble mean are investigated in detail for 20-year climatology, intensity, and interannual variability of TC activity compared to observational datasets. Although most of the individual RCMs show significant biases and underestimate TC intensity due to horizontal resolutions still too low to resolve the most intense observed TCs, they reasonably capture the observed climatological spatial distribution and interannual variability of TC activity. The multi-RCM ensemble mean based on the model performance generally outperforms most of the individual models with smaller biases and higher correlation on the spatial and temporal variation of TC activity. This ensemble mean reduces the uncertainty in the simulated TC activity by a single RCM. These analyses suggest that the multi-RCM ensemble within CORDEX-East Asia can be applied to provide more reliable and credible estimation of future TC activity over the western North Pacific due to climate change.

  6. A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9° N–5.7° E

    Directory of Open Access Journals (Sweden)

    C. Hoareau

    2013-07-01

    Full Text Available This study provides an analysis of cirrus cloud properties at midlatitude in the southern part of France from ground-based and spaceborne lidars. A climatology of cirrus cloud properties and their evolution over more than 12 yr is presented and compared to other mid-latitude climatological studies. Cirrus clouds occur ~37% of the total observation time and remain quasi-constant across seasons with a variation within ~5% around the mean occurrence. Similar results are obtained from CALIOP and the ground-based lidar, with a mean difference in occurrence of ~5% between both instruments. From the ground-based lidar data, a slight decrease in occurrence of ~3% per decade is observed but found statistically insignificant. Based on a clustering analysis of cirrus cloud parameters, three distinct classes have been identified and investigations concerning their origin are discussed. Properties of these different classes are analysed, showing that thin cirrus in the upper troposphere represent ~50% of cloud cover detected in summer and fall, decreasing by 15–20% for other seasons.

  7. The climatology of lightning producing large impulse charge moment changes with an emphasis on mesoscale convective systems

    Science.gov (United States)

    Beavis, Nicholas

    The use of both total charge moment change (CMC) and impulse charge moment change (iCMC) magnitudes to assess the potential of a cloud-to-ground (CG) lightning stroke to induce a mesospheric sprite has been well described in literature. However, this work has primarily been carried out on a case study basis. To complement these previous case studies, climatologies of regional, seasonal, and diurnal observations of large-iCMC discharges are presented. In this study, large-iCMC discharges for thresholds > 100 and > 300 C km in both positive and negative polarities are analyzed on a seasonal basis using density maps of 2o by 2o resolution across the conterminous U.S. using data from the Charge Moment Change Network (CMCN). Also produced were local solar time diurnal distributions in eight different regions covering the lower 48 states as well as the Atlantic Ocean, including the Gulf Stream. In addition, National Lightning Detection Network (NLDN) cloud-to-ground (CG) flash diurnal distributions were included. The seasonal maps show the predisposition of large positive iCMCs to dominate across the Northern Great Plains, with large negative iCMCs favored in the Southeastern U.S. year-round. During summer, the highest frequency of large positive iCMCs across the Upper Midwest aligns closely with the preferred tracks of nocturnal mesoscale convective systems (MCSs). As iCMC values increase above 300 C km, the maximum shifts eastward of the 100 C km maximum in the Central Plains. The Southwestern U.S. also experiences significant numbers of large-iCMC discharges in summer, presumably due to convection associated with the North American Monsoon (NAM). The Gulf Stream is active year round, with a bias towards more large positive iCMCs in winter. Diurnal distributions in the eight regions support these conclusions, with a nocturnal peak in large-iCMC discharges in the Northern Great Plains and Great Lakes, an early- to mid-afternoon peak in the Intermountain West and the

  8. Innovation of Ozone Initial Concentration and Boundary Condition for Models-3 Community Multi-scale Air Quality (CMAQ) Modeling System Using Ozone Climatology and Its Impacts

    Science.gov (United States)

    He, S.; Vukovich, F. M.; Ching, J.; Gilliland, A.

    2002-05-01

    Models-3/CMAQ system is designed to provide a comprehensive and flexible modeling tool for states and other government agencies, and for scientific studies. The current setting of initial concentrations and boundary condition (ICBC) of air species for CMAQ system represents clean ambient condition in the eastern-half of the US, and as such. The ozone ICBC differed from observational values, significantly at upper troposphere. Because of the stratosphere-troposphere exchange, the upper troposphere may contain high concentrations of ozone (hundreds of ppbv). However the current ICBC artificially set ozone level as 70ppbv in upper troposphere throughout model domain. The large difference of standard ozone ICBC from realistic situation becomes considerable uncertainty source of CMAQ system. The purpose of this research is to improve ICBC setting for Models-3/CMAQ modeling system, and to assess the influence of introducing stratospheric ozone into troposphere on regional and urban air quality and on the tropospheric ozone budget. The approach taken is to perform a series of sensitivity studies on ICBC with CMAQ. The simulation covers the entire US with 108km grid resolution from July 2 to 12 of 1988. The domain divide in 34 layers vertically up to 40mbar. In addition to the base case with standard ICBC, ozone initial concentration and boundary condition are generated based on ozone climatology (Logan, 1999), which was derived from surface, satellite, and ozonesonde data across the globe. This new ICBC enables CMAQ model to study ozone cross-tropopause flux transporting to lower troposphere, and to analyze the impact of intercontinental ozone transport. The tropospheric ozone residue (TOR) data is used to compare with modeling tropospheric ozone budget for evaluation of CMAQ performance. Since ozone climatology was based on observation, the derived ozone ICBC are in better agreement with the ``real'' atmosphere than standard ICBC. CMAQ simulations with ozone climatology

  9. Simulated Future Changes in Air Temperature and Precipitation Climatology in the Central Asia Cordex Region 8 BY Using RegCM 4.3.5

    Science.gov (United States)

    Ozturk, Tugba; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    In this study, projected future changes for the period of 2071-2100 in mean surface air temperature and precipitation climatology and variability over the large Central Asia region with respect to present climate (1971 to 2000) were simulated based on the RCP 4.5 and RCP 8.5 emission scenarios. Regional Climate Model (RegCM4.3) of the International Centre for Theoretical Physics (ICTP) was used for projections of future and present climate conditions. Hadley Global Environment Model 2 (HadGEM2) of the Met Office Hadley Centre was downscaled for the Cordex Region 8. We investigated the seasonal time-scale performance of RegCM4.3.5 in reproducing observed climatology over the domain of Central Asia by usingtwo different emission scenario datasets for three future periods. The regional model is capable of reproducing the observed climate with few exceptions, which are due to the meteorological and physical geographical complexities of the domain. For the future climatology of the domain, the regional model predicts relatively high warming in the warm season and northern part of the domain at cold season with a decrease in precipitation amounts almost all part of the domain. The results of our study showed that surface air temperatures in the region will increase from 3° C up to more than 7° C on average according to the emission scenarios for the period of 2070-2100 with respect to past period of 1970-2000. In the future, a decrease in the amount of precipitation is also predicted for the region. The projected warming and decrease in precipitation for the domain may strongly affect the ecological and socio-economic systems including agriculture, natural biomes, hydrology and water resources of this region, which is already a mostly arid and semi-arid environment. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  10. A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall-winter drought in the southeastern United States

    International Nuclear Information System (INIS)

    Using rain gauge and satellite-based rainfall climatologies and the NOAA Storm Prediction Center tornado database (1952-2007), this study found a statistically significant tendency for fall-winter drought conditions to be correlated with below-normal tornado days the following spring in north Georgia (i.e. 93% of the years) and other regions of the Southeast. Non-drought years had nearly twice as many tornado days in the study area as drought years and were also five to six times more likely to have multiple tornado days. Individual tornadic events are largely a function of the convective-mesoscale thermodynamic and dynamic environments, thus the study does not attempt to overstate predictability. Yet, the results may provide seasonal guidance in an analogous manner to the well known Sahelian rainfall and Cape Verde hurricane activity relationships.

  11. Re—Examination on the Climatological Significance of the Ice Core δ18O Records from No.1 Glacier at the Head of Urumqi River

    Institute of Scientific and Technical Information of China (English)

    侯书贵

    2000-01-01

    Ice core δ18O recorde from the No.a glacier at the head of the Urumqi River were used o characterize the relationship between δ18O and contemporaneous surface air temperature(Ta) nearby the Daxigou Meteorological Station(3539 m above sea level,-2km away from the ice core drilling site),Although the ice core records of annually averaged δ18O are positively correlated with conemporaneous surface air temperature,especially summer air temperature,the correlation is less significant than that for the precipitation samples due to depositional and post-depositional modification processes,However,the Climatological significance of the ice corδ18O records can be still preserved to a certain degree,which moght extend the application of high altitude and sub-tropical ice core δ18O records to paleoclimate reconstruction.

  12. 中国热带气候特征%Climatological characteristics of the tropics in China: climate classification schemes between German scientists and Huang Bingwei

    Institute of Scientific and Technical Information of China (English)

    Manfred Domroes

    2003-01-01

    Reviewing some important German scientists who have developed climatic regionalizationschemes either on a global or Chinese scale, their various definitions of the tropical climatecharacteristics in China are discussed and compared with Huang Bingwei's climate classificationscheme and the identification of the tropical climate therein. It can be seen that, due to differentmethodological approaches of the climatic regionalization schemes, the definitions of the tropics varyand hence also their spatial distribution in China. However, it is found that the tropical climate typeoccupies only a peripheral part of southern China, though it firmly represents a distinctive type ofclimate that is subsequently associated with a great economic importance for China. As such, thetropical climate type was mostly identified with its agro-climatological significance, that is by givingfavourable growing conditions all-year round for perennial crops with a great heat demand. Tropicalclimate is, hence, conventionally regarded to be govemed by all-year round summer conditions "wherewinter never comes".

  13. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources

    Science.gov (United States)

    Schneider, Udo; Ziese, Markus; Meyer-Christoffer, Anja; Finger, Peter; Rustemeier, Elke; Becker, Andreas

    2016-10-01

    Precipitation plays an important role in the global energy and water cycle. Accurate knowledge of precipitation amounts reaching the land surface is of special importance for fresh water assessment and management related to land use, agriculture and hydrology, incl. risk reduction of flood and drought. High interest in long-term precipitation analyses arises from the needs to assess climate change and its impacts on all spatial scales. In this framework, the Global Precipitation Climatology Centre (GPCC) has been established in 1989 on request of the World Meteorological Organization (WMO). It is operated by Deutscher Wetterdienst (DWD, National Meteorological Service of Germany) as a German contribution to the World Climate Research Programme (WCRP). This paper provides information on the most recent update of GPCC's gridded data product portfolio including example use cases.

  14. A Climatology of Derecho-Producing Mesoscale Convective Systems in the Central and Eastern United States, 1986-95. Part I: Temporal and Spatial Distribution.

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.

    1998-11-01

    In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name "derecho". Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.

  15. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation

    Science.gov (United States)

    Kryza, Maciej; Szymanowski, Mariusz; Błaś, Marek; Migała, Krzysztof; Werner, Małgorzata; Sobik, Mieczysław

    2015-10-01

    In this study, we show how the climatological suitability of wine grapes cultivation of the transboundary region of Poland, Germany and the Czech Republic has changed over the 1971-2010 period. Strong, positive and statistically significant trend in sum of active temperatures (SAT) and growing degree days (GDD) is observed. The trend is more pronounced in the lowland areas of the study region. The total acreage suitable for more demanding, in terms of SAT and GDD, varieties of wine grapes is increasing, while the opposite trend is observed for less demanding classes. The observed trends reduce the risk for wine grapes cultivation in terms of accumulative SAT and GDD indices. This shows that the transboundary area of Poland, Germany and Czech Republic shifts towards the climate more suitable for viticulture.

  16. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  17. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-05-15

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  18. A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS

    Directory of Open Access Journals (Sweden)

    Monika Rauthe

    2013-07-01

    Full Text Available A new precipitation climatology (DWD/BfG-HYRAS-PRE is presented which covers the river basins in Germany and neighbouring countries. In order to satisfy hydrological requirements, the gridded dataset has a high spatial resolution of 1 km2 and a daily temporal resolution that is based on up to 6200 precipitation stations within the spatial domain. The period of coverage extends from 1951 to 2006 for which gridded, daily precipitation fields were calculated from the station data using the REGNIE method. This is a combination between multiple linear regression considering orographical conditions and inverse distance weighting. One of the main attributes of the REGNIE method is the preservation of the station values for their respective grid cells. A detailed validation of the data set using cross-validation and Jackknifing showed both seasonally- and spatially-dependent interpolation errors. These errors, through further applications of the HYRAS data set within the KLIWAS project and other studies, provide an estimate of its certainty and quality. The mean absolute error was found to be less than 2 mm/day, but with both spatial and temporal variability. Additionally, the need for a high station network density was shown. Comparisons with other existing data sets show good agreement, with areas of orographical complexity displaying the largest differences within the domain. These errors are largely due to uncertainties caused by differences in the interpolation method, the station network density available, and the topographical information used. First climatological applications are presented and show the high potential of this new, high-resolution data set. Generally significant increases of up to 40% in winter precipitation and light decreases in summer are shown, whereby the spatial variability of the strength and significance of the trends is clearly illustrated.

  19. Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea

    Science.gov (United States)

    Yang, Tae-Yong; Kwak, Young-Sil; Kil, Hyosub; Lee, Young-Sook; Lee, Woo Kyoung; Lee, Jae-jin

    2015-11-01

    A new 40.8 MHz coherent scatter radar was built in Daejeon, South Korea (36.18°N, 127.14°E, dip latitude: 26.7°N) on 29 December 2009 and has since been monitoring the occurrence of field-aligned irregularities (FAIs) in the northern middle latitudes. We report on the occurrence climatology of the F region FAIs as observed by the Daejeon radar between 2010 and 2014. The F region FAIs preferentially occur around 250-350 km at 18:00-21:00 local time (postsunset FAI), around 350-450 km near midnight (nighttime FAI), around 250-350 km before sunrise (presunrise FAI), and around 160-300 km after 05:00 local time (postsunrise FAI). The occurrence rates of nighttime and presunrise FAIs are maximal during summer, though the occurrence rates of postsunset and postsunrise FAIs are maximal during the equinoxes. FAIs rarely occur during local winter. The occurrence rate of F region FAIs increases in concert with increases in solar activity. Medium-scale traveling ionospheric disturbances (MSTIDs) are known as an important source of the F region FAIs in middle latitudes. The high occurrence rate of the nighttime FAIs in local summer is consistent with the high occurrence rate of MSTIDs in that season. However, the dependence of the FAI activity on the solar cycle is inconsistent with the MSTID activity. The source of the F region FAIs in middle latitudes is an open question. Our report of different types of FAIs and their occurrence climatology may provide a useful reference for the identification of the source of the middle latitude FAIs.

  20. Study of seasonal climatology and interannual variability over India and its subregions using a regional climate model (RegCM3)

    Indian Academy of Sciences (India)

    P Maharana; A P Dimri

    2014-07-01

    The temporal and spatial variability of the various meteorological parameters over India and its different subregions is high. The Indian subcontinent is surrounded by the complex Himalayan topography in north and the vast oceans in the east, west and south. Such distributions have dominant influence over its climate and thus make the study more complex and challenging. In the present study, the climatology and interannual variability of basic meteorological fields over India and its six homogeneous monsoon subregions (as defined by Indian Institute of Tropical Meteorology (IITM) for all the four meteorological seasons) are analysed using the Regional Climate Model Version 3 (RegCM3). A 22-year (1980–2001) simulation with RegCM3 is carried out to develop such understanding. The National Centre for Environmental Prediction/National Centre for Atmospheric Research, US (NCEP-NCAR) reanalysis 2 (NNRP2) is used as the initial and lateral boundary conditions. The main seasonal features and their variability are represented in model simulation. The temporal variation of precipitation, i.e., the mean annual cycle, is captured over complete India and its homogenous monsoon subregions. The model captured the contribution of seasonal precipitation to the total annual precipitation over India. The model showed variation in the precipitation contribution for some subregions to the total and seasonal precipitation over India. The correlation coefficient (CC) and difference between the coefficient of variation between model fields and the corresponding observations in percentage (COV) is calculated and compared. In most of the cases, the model could represent the magnitude but not the variability. The model processes are found to be more important than in the corresponding observations defining the variability. The model performs quite well over India in capturing the climatology and the meteorological process. The model shows good skills over the relevant subregions during a

  1. Global and diffuse solar irradiance modelling over north-western Europe using MAR regional climate model : validation and construction of a 30-year climatology

    Science.gov (United States)

    Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel

    2015-04-01

    Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.

  2. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    Science.gov (United States)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  3. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel – annual budgets and seasonality

    Directory of Open Access Journals (Sweden)

    C. Velluet

    2014-05-01

    Full Text Available In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82–85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40–60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in

  4. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    Science.gov (United States)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  5. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    Science.gov (United States)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-12-01

    In the sub-Saharan Sahel, energy and water cycling at the land surface is pivotal for the regional climate, water resources and land productivity, yet it is still very poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of long-term average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt: rainfed millet crop and fallow bush. These estimates build on the combination of a 7-year field data set from two typical plots in southwestern Niger with detailed physically based soil-plant-atmosphere modeling, yielding a continuous, comprehensive set of water and energy flux and storage variables over this multiyear period. In the present case in particular, blending field data with mechanistic modeling makes the best use of available data and knowledge for the construction of the multivariate time series. Rather than using the model only to gap-fill observations into a composite series, model-data integration is generalized homogeneously over time by generating the whole series with the entire data-constrained model simulation. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to sub-seasonal scales from the time series produced. Similarities and differences in the two ecosystem behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. Their significance and the benefits they gain from the innovative data-model integration approach are thoroughly discussed

  6. MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures

    CERN Document Server

    McGuire, P C; Smith, M D; Arvidson, R E; Murchie, S L; Clancy, R T; Roush, T L; Cull, S C; Lichtenberg, K A; Wiseman, S M; Green, R O; Martin, T Z; Milliken, R E; Cavender, P J; Humm, D C; Seelos, F P; Seelos, K D; Taylor, H W; Ehlmann, B L; Mustard, J F; Pelkey, S M; Titus, T N; Hash, C D; Malaret, E R

    2009-01-01

    We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical ...

  7. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    Science.gov (United States)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  8. Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F

    Science.gov (United States)

    Smith, J. M.; Rodrigues, F. S.; Fejer, B. G.; Milla, M. A.

    2016-02-01

    We conducted a comprehensive analysis of the vertical drifts and equatorial spread F (ESF) measurements made by the Jicamarca incoherent scatter radar (ISR) between 1994 and 2013. The ISR measurements allowed us to construct not only updated climatological curves of quiet-time vertical plasma drifts but also time-versus-height maps of ESF occurrence over the past two solar cycles. These curves and maps allowed us to better relate the observed ESF occurrence patterns to features in the vertical drift curves than previously possible. We identified an excessively high occurrence of post-midnight F region irregularities during December solstice and low solar flux conditions. More importantly, we also found a high occurrence of ESF events during sudden stratospheric warming (SSW) events. We also proposed and evaluated metrics of evening enhancement of the vertical drifts and ESF occurrence, which allowed us to quantify the relationship between evening drifts and ESF development. Based on a day-to-day analysis of these metrics, we offer estimates of the minimum pre-reversal enhancement (PRE) peak (and mean PRE) values observed prior to ESF development for different solar flux and seasonal conditions. We also found that ESF irregularities can reach the altitudes at least as high as 800 km at the magnetic equator even during low solar flux conditions.

  9. 若干西边界潜流的气候态分布特征%The Climatological Distribution of Several Western Boundary Undercurrents

    Institute of Scientific and Technical Information of China (English)

    臧楠; 王凡; 吴德星

    2011-01-01

    The western boundary undercurrent is an important phenomenon in the ocean circulation, and there was less knowledge about the undercurrents than the surface currents. The climatological distribution of several undercurrents, including Mindanao Undercurent, Luzon undercurrent, Great Barrier Reef undercurrent, East Austrilian undercurrent and Agulhas Undercurrent, were analyzed using the SODA, OFES and ARGO data. The emergence of the subsurface countercurrents is tightly associated with the opposite horizontal gradients of sea surface height and the depth of the thermocline.%“西边界潜流(WBUC)”是海洋环流中的重要现象,与表层环流相比,对次表层潜流的结构认识不足.本文利用SODA、OFES和ARGO资料,分析了北太平洋中的棉兰老潜流(MUC)和吕宋潜流(LUC)、南太平洋中的大堡礁潜流(GBRUC)和东澳大利亚潜流(EAUC)及南印度洋中的阿加勒斯潜流(AUC)的气候态空间分布特征,并且根据地转流反向的判据,分析WBUC的发生条件.

  10. From snowball to moist greenhouse: the climatological evolution of Earth-analog planets simulated with a 3D climate system model

    Science.gov (United States)

    Wolf, Eric T.; Kopparapu, Ravi; Haqq-Misra, Jacob; Toon, Owen Brian

    2015-12-01

    The host star imposes a primary control on terrestrial planet climate. Both the spectral energy distribution and the main sequence lifetime vary as a function of stellar type. Here we present recent results from three-dimensional climate system models describing the evolutionary sequence of Earth-analog planets throughout their habitable lifetimes. Climatological evolution is traced from snowball to moist greenhouse, representing the conventional end-member states of the habitable zone. For Earth the habitable period would have been tantalizingly short, if not for geological and biological regulation of greenhouse gases. Without active carbon cycling, an early snowball could not have been broken until late in Earth’s history. Abrupt solar driven deglaciation would soon be followed by the onset of the water vapor greenhouse feedback and a moist greenhouse climate, leaving little over 1 billion years of habitable surface conditions. Around bluer stars, the habitable period for terrestrial planets is constricted further due to their reduced main sequence lifetimes and thus more rapid brightening. Planets with long-lived habitable periods are most likely found around stars redder than the Sun due to their more gradual brightening.

  11. Ticosonde CFH at Costa Rica: A Seasonal Climatology of Tropical UT-LS Water Vapor and Inter-Comparisons with MLS and CALIPSO

    Science.gov (United States)

    Selkirk, Henry B.; Voemel, Holger; Avery, Melody; Rosenlof, Karen; Davis, Sean; Hurst, Dale; Schoeberl, Mark; Diaz, Jorge Andres; Morris, Gary

    2014-01-01

    Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.

  12. Dynamic crevasses on the northwest margin of the Greenland Ice Sheet: observations of rapid change and relationships to geophysical and climatological trends

    Science.gov (United States)

    Burzynski, A. M.; Mercer, J. L.; Deeb, E. J.; Newman, S. D.; Lever, J. H.; Delaney, A. J.; Davies, R.; Dossin, G.

    2012-12-01

    The Greenland Inland Traverse (GrIT) annually transports fuel and cargo approximately 740 miles over the ice sheet from Thule, a deep-water port on the northwest coast, to resupply inland research stations (NEEM and Summit). The first ~70 miles of the GrIT route are heavily crevassed. These hazardous features are dynamic and must be assessed each year to select a safely navigable traverse route. Since GrIT's initial route assessment in 2007 we have observed increasing sizes and numbers of crevasses/crevasse fields using satellite imagery analysis, field-based ground penetrating radar (GPR) acquisition/analysis, helicopter reconnaissance, and in-situ measurements. The cause of this observed rapid change is yet to be determined. For example, increased crevassing may be attributed to increased flow rates of outlet glaciers, climatological trends, presence of subsurface liquid water, isostatic rebound, or by seismic events. Here we present relationships between observed changes in crevassing along the GrIT route and trends in remotely sensed data, including ice velocity, elevation, and meteorology. Understanding the behavior and timing of past ice dynamics in this region will enable us to better predict future changes, facilitating safe and efficient GrIT route selection and science support. Results of tracking annual crevasses and spatially analyzing available ancillary datasets may yield a better understanding of regional ice dynamics in the determination of mass balance trends.

  13. Climatological validation of TRMM precipitation radar monthly rain products over Cyprus during the first 5 years (December 1997 to November 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Gabella, M.; Perona, G. [Politecnico di Torino - Electronics Dept., Torino (Italy); Michaelides, S.C.; Constantinides, P. [Meteorological Service, Nicosia (Cyprus)

    2006-10-15

    A climatological network of rain gauges operating since 1917 in the island of Cyprus has been used to validate the tropical rainfall measuring mission (TRMM) precipitation radar product over the southeastern Mediterranean Sea. A gridded, monthly TRMM product has been used: the so-called 3A-25hr, version-5. All the rain gauges are covered by eight (3A-25hr) 0.5 x 0.5 pixels: between 32 (33.5 ) and 34 (34.5 ) east (north). The comparison during the first 5 years of the TRMM mission (December 1997-November 2002) shows that quantitative estimates of TRMM precipitation radar are remarkably reliable during three (out of four) wettest months: November, December and January. The gauge and TRMM 5-year average is respectively 284 and 279 mm/(3 months). With respect to the previous 81 years, the rain gauges show an increase of rainfall in the rainiest month, December (+19 mm/month), a decrease in January (-40 mm/month) and February (-24 mm/month) and an overall decrease (from 566 mm/year to 520 mm/year). The TRMM Ku-band radar confirms the paradoxical increase of rain in a single month in spite of decrease in total value per year. (orig.)

  14. Summer Monsoon Impacts on Chlorophyll-a Concentration in the Middle of the South China Sea: Climatological Mean and Annual Variability

    Institute of Scientific and Technical Information of China (English)

    YANG Yuan-Jian; XIAN Tao; SUN Liang; FU Yun-Fei

    2012-01-01

    Climatological mean and annual variations of Chlorophyll-a (Chl-a) distribution, sea surface wind (SSW), and sea surface temperature (SST) from 1998 to 2008 were analyzed in the middle of the South China Sea (SCS), focusing on the typical region off the east coast of Vietnam (8.5-14°N, 109.5-114°E). Based on remote sensing data and SCS summer monsoon index (SCSSMI) data, high Chl-a concentrations in the middle of the SCS in the southwest summer monsoon season (June-September) may be related to strong Ekman pumping and strong wind stress. The maximum of the monthly averaged cli- matological Chl-a in the summer appeared in August. According to the annual variation, there was a significant negative correlation (r = -0.42) between the SCSSMI and SST, a strongly positive correlation (r=0.61) between the SCSSMI and Chl-a, and a strongly negative correlation (r = -0.74) between the SST and Chl-a in the typical region off the east coast of Vietnam during 1998-2008. Due to the E1 Nifio event specifically, the phenomena of a low Chl-a concentration, high SST and weak SCSSMI were extremely predominant in the summer of 1998. These relationships imply that the SCSSMI associated with the SST could be used to predict the annual variability of summer Chl-a in the SCS.

  15. Pliocene Model Intercomparison Project Experiment 1: implementation strategy and mid-Pliocene global climatology using GENESIS v3.0 GCM

    Science.gov (United States)

    Koenig, S. J.; Deconto, R. M.; Pollard, D.

    2012-01-01

    The mid-Pliocene Warm Period (3.29 to 2.97 Ma BP) has been identified as an analogue for the future, with the potential to help understand climate processes in a warmer than modern world. Sets of climate proxies, combined to provide boundary conditions for Global Climate Model (GCM) simulations of the mid-Pliocene, form the basis for the international, data-driven Pliocene Model Intercomparison Project (PlioMIP). Here, we outline the strategy for implementing pre-industrial (modern) and mid-Pliocene forcings and boundary conditions into the GENESIS version 3 GCM, as part of PlioMIP. We describe the prescription of greenhouse gas concentrations and orbital parameters and the implementation of geographic boundary conditions such as land-ice-sea distribution, topography, sea surface temperatures, sea ice extent, vegetation, soils, and ice sheets. We further describe model-specific details including spin-up and integration times. In addition, the global climatology of the mid-Pliocene as simulated by the GENESIS v3 GCM is analyzed and compared to the pre-industrial control simulation. The simulated climate of the mid-Pliocene warm interval is found to differ considerably from pre-industrial. We identify model sensitivity to imposed forcings, and internal feedbacks that collectively affect both local and far-field responses. Our analysis points out the need to assess both the direct impacts of external forcings and the combined effects of indirect, internal feedbacks. This paper provides the basis for assessing model biases within the PlioMIP framework, and will be useful for comparisons with other studies of mid-Pliocene climates.

  16. Climatology and ENSO-related interannual variability of gravity waves in the Southern Hemisphere subtropical stratosphere revealed by high-resolution AIRS observations

    Science.gov (United States)

    Sato, Kaoru; Tsuchiya, Chikara; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    A new temperature retrieval from Atmospheric Infrared Sounder with a fine horizontal resolution of 13.5 km was used to examine gravity wave (GW) characteristics in the austral summer at an altitude of 39 km in the subtropical stratosphere over 8 years from 2003/2004 to 2010/2011. Using an S transform method, GW components were extracted, and GW variances, horizontal wave numbers, and their orientations were determined at each grid point and time. Both climatology and interannual variability of the GW variance were large in the subtropical South Pacific. About 70% of the interannual variation in the GW variance there was regressed to El Niño-Southern Oscillation (ENSO) index. The regression coefficient exhibits a geographical distribution similar to that of the precipitation. In contrast, the regression coefficient of the GW variance to the quasi-biennial oscillation of the equatorial lower stratosphere was not significant in the South Pacific. These results indicate that the interannual variability of GW variance in the South Pacific is controlled largely by the convective activity modulated by the ENSO. An interesting feature is that the GW variance is maximized slightly southward of the precipitation maximum. Possible mechanisms causing the latitudinal difference are (1) dense distribution of islands, which effectively radiate GWs with long vertical wavelengths, to the south of the precipitation maximum; (2) selective excitation of southward propagating GWs in the northward vertical wind shear in the troposphere; and (3) southward refraction of GWs in the latitudinal shear of background zonal wind in the stratosphere.

  17. A Climatology of Wildfire Weather for Victoria, Australia: Based on a Hi-Resolution 40-year Mesoscale Gridded Fire Weather Dataset

    Science.gov (United States)

    Harris, S. L.

    2015-12-01

    Weather and climate are essential components in understanding wildfire characteristics and improving fire management. A high spatial and temporal resolution climatology of fire weather is vital for examining relationships, determining wildfire risks and basing fire management decisions upon. A homogeneous 41-year (1972-2012) hourly 4-km gridded climate dataset for the fire-prone state of Victoria, Australia has been generated using a combination of mesoscale modelling, global reanalysis data, surface observations, and historic observed rainfall analyses. Outputs include surface weather variables such as hourly temperature, relative humidity, wind speed and wind direction. In addition, daily drought indices have been calculated and these have been used to calculate a commonly used fire danger index. This new dataset allows for an almost limitless opportunity for hitherto unavailable analyses - such as fields of percentiles of fire danger indices values, analysis of periods exceeding thresholds at any location, inter-annual and regional variations of fire season characteristics, analysis of prescribed burning windows, and identifying trends over the 41-year period. Furthermore, the hourly mesoscale wind fields provide a homogeneous long-period data set with which to drive fire spread models. The opportunities to advance wildfire research for this region and thereby provide information to improve risk analysis and fire management are immense. This presentation describes the generation of the dataset, evaluation of the outputs and highlights its use and relevance for fire management. In particular, frequency of exceedance of both extreme values (for resource allocation planning), and also frequencies whereby multiple parameters mutually fall within the prescribed burning guidelines, and its interannual variation, will be discussed.

  18. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  19. Global Precipitation Climatology Centre (GPCC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — First is the monitoring product for the period 2007 to present, based on quality-controlled data from 7,000 stations. The second is the Full Data Product (V7)for...

  20. Improved Mars Upper Atmosphere Climatology

    Science.gov (United States)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.

  1. Food Security: A Climatological Perspective

    Science.gov (United States)

    Beer, T.

    2013-05-01

    Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." The International Union of Geodesy and Geophysics (IUGG) is leading the WeatCliFS consortium of international scientific unions to examine weather, climate and food security as well as to look at the interaction of food security and geophysical phenomena. The following fundamental question underpins WeatCliFS: What technologies and methodologies are required to assess the vulnerability of people and places to hazards [such as famine] - and how might these be used at a variety of spatial scales? This talk will review the historical link between climate, drought and food supplies; examine the Australian and international situation; summarise the response of the scientific community and point out the direction for future research.

  2. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to stimulate further research on this critical subject. The study of climate involves much more than

  3. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    Science.gov (United States)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  4. Climatology, Natural Cycles, and Modes of Interannual Variability of the Great Plains Low-Level Jet as Assimilated by the GEOS-1 Data Analysis System

    Science.gov (United States)

    Helfand, H. M.; Schubert, S. D.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable features of the low-level continental flow during the warm-season months, May through August. We have first used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine and validate its climatology and mean diurnal cycle and to study its interannual variability. Interannual variability of the GPLLJ is much smaller than mean diurnal and random intraseasonal variability and comparable in magnitude, but not location, to mean seasonal variability. There are three maxima of interannual low-level meridional flow variability of the GPLLJ over the upper Great Plains, southeastern Texas, and the western Gulf of Mexico. Cross-sectional profiles of mean southerly wind through the Texas maximum remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six years of the reanalysis period and only then. Each of the three variability maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are three prominent modes of interannual. variability. These include the intermittent biennial oscillation (IBO), local to the Texas maximum. Its signal is evident in surface pressure, surface temperature, ground wetness and upper air flow, as well. A larger-scale continental convergence pattern (CCP) of covariance, exhibiting strong anti-correlation between the flow near the Texas and the upper Great Plains variability maxima, is revealed only when the IBO is removed from the interannual

  5. Modeling effects of climatological variability and management practices on conservation of groundwater from the Mississippi River Valley Shallow Alluvial Aquifer in the Mississippi Delta region

    Science.gov (United States)

    Thornton, Robert Frank

    Ninety-eight percent of water taken from the Mississippi River Shallow Alluvial Aquifer, hereafter referred to as "the aquifer" or "MRVA," is used by the agricultural industry for irrigation. Mississippi Delta agriculture is increasingly using more water from the MRVA and the aquifer has been losing about 300,000 acre-feet per year. This research expands on previous work in which a model was developed that simulates the effects of climatic variability, crop acreage changes, and specific irrigation methods on consequent variations in the water volume of the MRVA. This study corrects an identified problem by replacing total growing season precipitation with an irrigation demand driver based on evaporation and crop coefficients and changing the time scale from the entire growing season to a daily resolution. The calculated irrigation demand, as a climatological driver for the model, captures effective precipitation more precisely than the initial growing season precipitation driver. Predictive equations resulting from regression analyses of measured versus calculated irrigation water use showed R2 and correlations of 0.33 and 0.57, 0.77 and 0.88, 0.71 and 0.84, and 0.68 and 0.82 for cotton, corn, soybeans and rice, respectively. Ninety-five percent of the predicted values fall within a range of + or - about 23,000 acre-feet, an error of about 10-percent. The study also adds an additional conservation strategy through the use of surface water from on-farm reservoirs in lieu of groundwater. Analyses show that climate could provide the entire water need of the plants in 70-percent of the years for corn, 65-percent of the years for soybeans and cotton, and even 5-percent of the years for rice. Storing precipitation in on-farm structures is an effective way to reduce reliance of Delta producers on groundwater. If producers adopted, at a minimum, the 97.5:2.5 ratio suggested management practice, this minimal management strategy could potentially conserve 48-percent, 35

  6. A Central European precipitation climatology – Part II: Application of the high-resolution HYRAS data for COSMO-CLM evaluation

    Directory of Open Access Journals (Sweden)

    Susanne Brienen

    2016-05-01

    Full Text Available The horizontal resolution of regional climate model (RCM simulations is increasing constantly in the last years. For the evaluation of these simulations and the further development of the models, adequate observational data sets are required, in particular with respect to the spatial scales. The aim of this paper is to investigate the value of a new high-resolution precipitation climatology, the HYRAS-PRE v.2.0 data set, for the evaluation of RCM output. HYRAS-PRE is available for the time period 1951–2006 at daily resolution and covers ten river catchments in Germany and neighbouring countries at a spatial grid spacing of 5 km. A set of simulations with the regional climate model COSMO-CLM with three different grid spacings (~7$\\sim7$, 14 and 28 km is used for this model evaluation study. In addition, three other data sets with different horizontal resolution are considered in the comparisons: the E‑OBS v.8.0 gridded observations (~25$\\sim25$ km grid spacing, the ERA-Interim reanalysis (~79$\\sim79$ km and the analysis of the driving model GME (~40$\\sim40$–60 km. For three selected years, different spatial and temporal characteristics of daily precipitation are investigated. In all the analyzed precipitation characteri